1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
32 #include <asm/pgtable.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/node.h>
39 #include <linux/userfaultfd_k.h>
40 #include <linux/page_owner.h>
43 int hugetlb_max_hstate __read_mostly
;
44 unsigned int default_hstate_idx
;
45 struct hstate hstates
[HUGE_MAX_HSTATE
];
47 * Minimum page order among possible hugepage sizes, set to a proper value
50 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
52 __initdata
LIST_HEAD(huge_boot_pages
);
54 /* for command line parsing */
55 static struct hstate
* __initdata parsed_hstate
;
56 static unsigned long __initdata default_hstate_max_huge_pages
;
57 static unsigned long __initdata default_hstate_size
;
58 static bool __initdata parsed_valid_hugepagesz
= true;
61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62 * free_huge_pages, and surplus_huge_pages.
64 DEFINE_SPINLOCK(hugetlb_lock
);
67 * Serializes faults on the same logical page. This is used to
68 * prevent spurious OOMs when the hugepage pool is fully utilized.
70 static int num_fault_mutexes
;
71 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
73 /* Forward declaration */
74 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
76 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
78 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
80 spin_unlock(&spool
->lock
);
82 /* If no pages are used, and no other handles to the subpool
83 * remain, give up any reservations mased on minimum size and
86 if (spool
->min_hpages
!= -1)
87 hugetlb_acct_memory(spool
->hstate
,
93 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
96 struct hugepage_subpool
*spool
;
98 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
102 spin_lock_init(&spool
->lock
);
104 spool
->max_hpages
= max_hpages
;
106 spool
->min_hpages
= min_hpages
;
108 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
112 spool
->rsv_hpages
= min_hpages
;
117 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
119 spin_lock(&spool
->lock
);
120 BUG_ON(!spool
->count
);
122 unlock_or_release_subpool(spool
);
126 * Subpool accounting for allocating and reserving pages.
127 * Return -ENOMEM if there are not enough resources to satisfy the
128 * the request. Otherwise, return the number of pages by which the
129 * global pools must be adjusted (upward). The returned value may
130 * only be different than the passed value (delta) in the case where
131 * a subpool minimum size must be manitained.
133 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
141 spin_lock(&spool
->lock
);
143 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
144 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
145 spool
->used_hpages
+= delta
;
152 /* minimum size accounting */
153 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
154 if (delta
> spool
->rsv_hpages
) {
156 * Asking for more reserves than those already taken on
157 * behalf of subpool. Return difference.
159 ret
= delta
- spool
->rsv_hpages
;
160 spool
->rsv_hpages
= 0;
162 ret
= 0; /* reserves already accounted for */
163 spool
->rsv_hpages
-= delta
;
168 spin_unlock(&spool
->lock
);
173 * Subpool accounting for freeing and unreserving pages.
174 * Return the number of global page reservations that must be dropped.
175 * The return value may only be different than the passed value (delta)
176 * in the case where a subpool minimum size must be maintained.
178 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
186 spin_lock(&spool
->lock
);
188 if (spool
->max_hpages
!= -1) /* maximum size accounting */
189 spool
->used_hpages
-= delta
;
191 /* minimum size accounting */
192 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
193 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
196 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
198 spool
->rsv_hpages
+= delta
;
199 if (spool
->rsv_hpages
> spool
->min_hpages
)
200 spool
->rsv_hpages
= spool
->min_hpages
;
204 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 * quota reference, free it now.
207 unlock_or_release_subpool(spool
);
212 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
214 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
217 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
219 return subpool_inode(file_inode(vma
->vm_file
));
223 * Region tracking -- allows tracking of reservations and instantiated pages
224 * across the pages in a mapping.
226 * The region data structures are embedded into a resv_map and protected
227 * by a resv_map's lock. The set of regions within the resv_map represent
228 * reservations for huge pages, or huge pages that have already been
229 * instantiated within the map. The from and to elements are huge page
230 * indicies into the associated mapping. from indicates the starting index
231 * of the region. to represents the first index past the end of the region.
233 * For example, a file region structure with from == 0 and to == 4 represents
234 * four huge pages in a mapping. It is important to note that the to element
235 * represents the first element past the end of the region. This is used in
236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
238 * Interval notation of the form [from, to) will be used to indicate that
239 * the endpoint from is inclusive and to is exclusive.
242 struct list_head link
;
248 * Add the huge page range represented by [f, t) to the reserve
249 * map. In the normal case, existing regions will be expanded
250 * to accommodate the specified range. Sufficient regions should
251 * exist for expansion due to the previous call to region_chg
252 * with the same range. However, it is possible that region_del
253 * could have been called after region_chg and modifed the map
254 * in such a way that no region exists to be expanded. In this
255 * case, pull a region descriptor from the cache associated with
256 * the map and use that for the new range.
258 * Return the number of new huge pages added to the map. This
259 * number is greater than or equal to zero.
261 static long region_add(struct resv_map
*resv
, long f
, long t
)
263 struct list_head
*head
= &resv
->regions
;
264 struct file_region
*rg
, *nrg
, *trg
;
267 spin_lock(&resv
->lock
);
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg
, head
, link
)
274 * If no region exists which can be expanded to include the
275 * specified range, the list must have been modified by an
276 * interleving call to region_del(). Pull a region descriptor
277 * from the cache and use it for this range.
279 if (&rg
->link
== head
|| t
< rg
->from
) {
280 VM_BUG_ON(resv
->region_cache_count
<= 0);
282 resv
->region_cache_count
--;
283 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
,
285 list_del(&nrg
->link
);
289 list_add(&nrg
->link
, rg
->link
.prev
);
295 /* Round our left edge to the current segment if it encloses us. */
299 /* Check for and consume any regions we now overlap with. */
301 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
302 if (&rg
->link
== head
)
307 /* If this area reaches higher then extend our area to
308 * include it completely. If this is not the first area
309 * which we intend to reuse, free it. */
313 /* Decrement return value by the deleted range.
314 * Another range will span this area so that by
315 * end of routine add will be >= zero
317 add
-= (rg
->to
- rg
->from
);
323 add
+= (nrg
->from
- f
); /* Added to beginning of region */
325 add
+= t
- nrg
->to
; /* Added to end of region */
329 resv
->adds_in_progress
--;
330 spin_unlock(&resv
->lock
);
336 * Examine the existing reserve map and determine how many
337 * huge pages in the specified range [f, t) are NOT currently
338 * represented. This routine is called before a subsequent
339 * call to region_add that will actually modify the reserve
340 * map to add the specified range [f, t). region_chg does
341 * not change the number of huge pages represented by the
342 * map. However, if the existing regions in the map can not
343 * be expanded to represent the new range, a new file_region
344 * structure is added to the map as a placeholder. This is
345 * so that the subsequent region_add call will have all the
346 * regions it needs and will not fail.
348 * Upon entry, region_chg will also examine the cache of region descriptors
349 * associated with the map. If there are not enough descriptors cached, one
350 * will be allocated for the in progress add operation.
352 * Returns the number of huge pages that need to be added to the existing
353 * reservation map for the range [f, t). This number is greater or equal to
354 * zero. -ENOMEM is returned if a new file_region structure or cache entry
355 * is needed and can not be allocated.
357 static long region_chg(struct resv_map
*resv
, long f
, long t
)
359 struct list_head
*head
= &resv
->regions
;
360 struct file_region
*rg
, *nrg
= NULL
;
364 spin_lock(&resv
->lock
);
366 resv
->adds_in_progress
++;
369 * Check for sufficient descriptors in the cache to accommodate
370 * the number of in progress add operations.
372 if (resv
->adds_in_progress
> resv
->region_cache_count
) {
373 struct file_region
*trg
;
375 VM_BUG_ON(resv
->adds_in_progress
- resv
->region_cache_count
> 1);
376 /* Must drop lock to allocate a new descriptor. */
377 resv
->adds_in_progress
--;
378 spin_unlock(&resv
->lock
);
380 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
386 spin_lock(&resv
->lock
);
387 list_add(&trg
->link
, &resv
->region_cache
);
388 resv
->region_cache_count
++;
392 /* Locate the region we are before or in. */
393 list_for_each_entry(rg
, head
, link
)
397 /* If we are below the current region then a new region is required.
398 * Subtle, allocate a new region at the position but make it zero
399 * size such that we can guarantee to record the reservation. */
400 if (&rg
->link
== head
|| t
< rg
->from
) {
402 resv
->adds_in_progress
--;
403 spin_unlock(&resv
->lock
);
404 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
410 INIT_LIST_HEAD(&nrg
->link
);
414 list_add(&nrg
->link
, rg
->link
.prev
);
419 /* Round our left edge to the current segment if it encloses us. */
424 /* Check for and consume any regions we now overlap with. */
425 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
426 if (&rg
->link
== head
)
431 /* We overlap with this area, if it extends further than
432 * us then we must extend ourselves. Account for its
433 * existing reservation. */
438 chg
-= rg
->to
- rg
->from
;
442 spin_unlock(&resv
->lock
);
443 /* We already know we raced and no longer need the new region */
447 spin_unlock(&resv
->lock
);
452 * Abort the in progress add operation. The adds_in_progress field
453 * of the resv_map keeps track of the operations in progress between
454 * calls to region_chg and region_add. Operations are sometimes
455 * aborted after the call to region_chg. In such cases, region_abort
456 * is called to decrement the adds_in_progress counter.
458 * NOTE: The range arguments [f, t) are not needed or used in this
459 * routine. They are kept to make reading the calling code easier as
460 * arguments will match the associated region_chg call.
462 static void region_abort(struct resv_map
*resv
, long f
, long t
)
464 spin_lock(&resv
->lock
);
465 VM_BUG_ON(!resv
->region_cache_count
);
466 resv
->adds_in_progress
--;
467 spin_unlock(&resv
->lock
);
471 * Delete the specified range [f, t) from the reserve map. If the
472 * t parameter is LONG_MAX, this indicates that ALL regions after f
473 * should be deleted. Locate the regions which intersect [f, t)
474 * and either trim, delete or split the existing regions.
476 * Returns the number of huge pages deleted from the reserve map.
477 * In the normal case, the return value is zero or more. In the
478 * case where a region must be split, a new region descriptor must
479 * be allocated. If the allocation fails, -ENOMEM will be returned.
480 * NOTE: If the parameter t == LONG_MAX, then we will never split
481 * a region and possibly return -ENOMEM. Callers specifying
482 * t == LONG_MAX do not need to check for -ENOMEM error.
484 static long region_del(struct resv_map
*resv
, long f
, long t
)
486 struct list_head
*head
= &resv
->regions
;
487 struct file_region
*rg
, *trg
;
488 struct file_region
*nrg
= NULL
;
492 spin_lock(&resv
->lock
);
493 list_for_each_entry_safe(rg
, trg
, head
, link
) {
495 * Skip regions before the range to be deleted. file_region
496 * ranges are normally of the form [from, to). However, there
497 * may be a "placeholder" entry in the map which is of the form
498 * (from, to) with from == to. Check for placeholder entries
499 * at the beginning of the range to be deleted.
501 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
507 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
509 * Check for an entry in the cache before dropping
510 * lock and attempting allocation.
513 resv
->region_cache_count
> resv
->adds_in_progress
) {
514 nrg
= list_first_entry(&resv
->region_cache
,
517 list_del(&nrg
->link
);
518 resv
->region_cache_count
--;
522 spin_unlock(&resv
->lock
);
523 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
531 /* New entry for end of split region */
534 INIT_LIST_HEAD(&nrg
->link
);
536 /* Original entry is trimmed */
539 list_add(&nrg
->link
, &rg
->link
);
544 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
545 del
+= rg
->to
- rg
->from
;
551 if (f
<= rg
->from
) { /* Trim beginning of region */
554 } else { /* Trim end of region */
560 spin_unlock(&resv
->lock
);
566 * A rare out of memory error was encountered which prevented removal of
567 * the reserve map region for a page. The huge page itself was free'ed
568 * and removed from the page cache. This routine will adjust the subpool
569 * usage count, and the global reserve count if needed. By incrementing
570 * these counts, the reserve map entry which could not be deleted will
571 * appear as a "reserved" entry instead of simply dangling with incorrect
574 void hugetlb_fix_reserve_counts(struct inode
*inode
)
576 struct hugepage_subpool
*spool
= subpool_inode(inode
);
579 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
581 struct hstate
*h
= hstate_inode(inode
);
583 hugetlb_acct_memory(h
, 1);
588 * Count and return the number of huge pages in the reserve map
589 * that intersect with the range [f, t).
591 static long region_count(struct resv_map
*resv
, long f
, long t
)
593 struct list_head
*head
= &resv
->regions
;
594 struct file_region
*rg
;
597 spin_lock(&resv
->lock
);
598 /* Locate each segment we overlap with, and count that overlap. */
599 list_for_each_entry(rg
, head
, link
) {
608 seg_from
= max(rg
->from
, f
);
609 seg_to
= min(rg
->to
, t
);
611 chg
+= seg_to
- seg_from
;
613 spin_unlock(&resv
->lock
);
619 * Convert the address within this vma to the page offset within
620 * the mapping, in pagecache page units; huge pages here.
622 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
623 struct vm_area_struct
*vma
, unsigned long address
)
625 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
626 (vma
->vm_pgoff
>> huge_page_order(h
));
629 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
630 unsigned long address
)
632 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
634 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
637 * Return the size of the pages allocated when backing a VMA. In the majority
638 * cases this will be same size as used by the page table entries.
640 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
642 if (vma
->vm_ops
&& vma
->vm_ops
->pagesize
)
643 return vma
->vm_ops
->pagesize(vma
);
646 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
649 * Return the page size being used by the MMU to back a VMA. In the majority
650 * of cases, the page size used by the kernel matches the MMU size. On
651 * architectures where it differs, an architecture-specific 'strong'
652 * version of this symbol is required.
654 __weak
unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
656 return vma_kernel_pagesize(vma
);
660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
661 * bits of the reservation map pointer, which are always clear due to
664 #define HPAGE_RESV_OWNER (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
669 * These helpers are used to track how many pages are reserved for
670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671 * is guaranteed to have their future faults succeed.
673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674 * the reserve counters are updated with the hugetlb_lock held. It is safe
675 * to reset the VMA at fork() time as it is not in use yet and there is no
676 * chance of the global counters getting corrupted as a result of the values.
678 * The private mapping reservation is represented in a subtly different
679 * manner to a shared mapping. A shared mapping has a region map associated
680 * with the underlying file, this region map represents the backing file
681 * pages which have ever had a reservation assigned which this persists even
682 * after the page is instantiated. A private mapping has a region map
683 * associated with the original mmap which is attached to all VMAs which
684 * reference it, this region map represents those offsets which have consumed
685 * reservation ie. where pages have been instantiated.
687 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
689 return (unsigned long)vma
->vm_private_data
;
692 static void set_vma_private_data(struct vm_area_struct
*vma
,
695 vma
->vm_private_data
= (void *)value
;
698 struct resv_map
*resv_map_alloc(void)
700 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
701 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
703 if (!resv_map
|| !rg
) {
709 kref_init(&resv_map
->refs
);
710 spin_lock_init(&resv_map
->lock
);
711 INIT_LIST_HEAD(&resv_map
->regions
);
713 resv_map
->adds_in_progress
= 0;
715 INIT_LIST_HEAD(&resv_map
->region_cache
);
716 list_add(&rg
->link
, &resv_map
->region_cache
);
717 resv_map
->region_cache_count
= 1;
722 void resv_map_release(struct kref
*ref
)
724 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
725 struct list_head
*head
= &resv_map
->region_cache
;
726 struct file_region
*rg
, *trg
;
728 /* Clear out any active regions before we release the map. */
729 region_del(resv_map
, 0, LONG_MAX
);
731 /* ... and any entries left in the cache */
732 list_for_each_entry_safe(rg
, trg
, head
, link
) {
737 VM_BUG_ON(resv_map
->adds_in_progress
);
742 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
745 * At inode evict time, i_mapping may not point to the original
746 * address space within the inode. This original address space
747 * contains the pointer to the resv_map. So, always use the
748 * address space embedded within the inode.
749 * The VERY common case is inode->mapping == &inode->i_data but,
750 * this may not be true for device special inodes.
752 return (struct resv_map
*)(&inode
->i_data
)->private_data
;
755 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
757 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
758 if (vma
->vm_flags
& VM_MAYSHARE
) {
759 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
760 struct inode
*inode
= mapping
->host
;
762 return inode_resv_map(inode
);
765 return (struct resv_map
*)(get_vma_private_data(vma
) &
770 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
773 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
775 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
776 HPAGE_RESV_MASK
) | (unsigned long)map
);
779 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
782 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
784 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
787 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
791 return (get_vma_private_data(vma
) & flag
) != 0;
794 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
795 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
797 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
798 if (!(vma
->vm_flags
& VM_MAYSHARE
))
799 vma
->vm_private_data
= (void *)0;
802 /* Returns true if the VMA has associated reserve pages */
803 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
805 if (vma
->vm_flags
& VM_NORESERVE
) {
807 * This address is already reserved by other process(chg == 0),
808 * so, we should decrement reserved count. Without decrementing,
809 * reserve count remains after releasing inode, because this
810 * allocated page will go into page cache and is regarded as
811 * coming from reserved pool in releasing step. Currently, we
812 * don't have any other solution to deal with this situation
813 * properly, so add work-around here.
815 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
821 /* Shared mappings always use reserves */
822 if (vma
->vm_flags
& VM_MAYSHARE
) {
824 * We know VM_NORESERVE is not set. Therefore, there SHOULD
825 * be a region map for all pages. The only situation where
826 * there is no region map is if a hole was punched via
827 * fallocate. In this case, there really are no reverves to
828 * use. This situation is indicated if chg != 0.
837 * Only the process that called mmap() has reserves for
840 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
842 * Like the shared case above, a hole punch or truncate
843 * could have been performed on the private mapping.
844 * Examine the value of chg to determine if reserves
845 * actually exist or were previously consumed.
846 * Very Subtle - The value of chg comes from a previous
847 * call to vma_needs_reserves(). The reserve map for
848 * private mappings has different (opposite) semantics
849 * than that of shared mappings. vma_needs_reserves()
850 * has already taken this difference in semantics into
851 * account. Therefore, the meaning of chg is the same
852 * as in the shared case above. Code could easily be
853 * combined, but keeping it separate draws attention to
854 * subtle differences.
865 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
867 int nid
= page_to_nid(page
);
868 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
869 h
->free_huge_pages
++;
870 h
->free_huge_pages_node
[nid
]++;
873 static struct page
*dequeue_huge_page_node_exact(struct hstate
*h
, int nid
)
877 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
878 if (!PageHWPoison(page
))
881 * if 'non-isolated free hugepage' not found on the list,
882 * the allocation fails.
884 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
886 list_move(&page
->lru
, &h
->hugepage_activelist
);
887 set_page_refcounted(page
);
888 h
->free_huge_pages
--;
889 h
->free_huge_pages_node
[nid
]--;
893 static struct page
*dequeue_huge_page_nodemask(struct hstate
*h
, gfp_t gfp_mask
, int nid
,
896 unsigned int cpuset_mems_cookie
;
897 struct zonelist
*zonelist
;
900 int node
= NUMA_NO_NODE
;
902 zonelist
= node_zonelist(nid
, gfp_mask
);
905 cpuset_mems_cookie
= read_mems_allowed_begin();
906 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nmask
) {
909 if (!cpuset_zone_allowed(zone
, gfp_mask
))
912 * no need to ask again on the same node. Pool is node rather than
915 if (zone_to_nid(zone
) == node
)
917 node
= zone_to_nid(zone
);
919 page
= dequeue_huge_page_node_exact(h
, node
);
923 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie
)))
929 /* Movability of hugepages depends on migration support. */
930 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
932 if (hugepage_movable_supported(h
))
933 return GFP_HIGHUSER_MOVABLE
;
938 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
939 struct vm_area_struct
*vma
,
940 unsigned long address
, int avoid_reserve
,
944 struct mempolicy
*mpol
;
946 nodemask_t
*nodemask
;
950 * A child process with MAP_PRIVATE mappings created by their parent
951 * have no page reserves. This check ensures that reservations are
952 * not "stolen". The child may still get SIGKILLed
954 if (!vma_has_reserves(vma
, chg
) &&
955 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
958 /* If reserves cannot be used, ensure enough pages are in the pool */
959 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
962 gfp_mask
= htlb_alloc_mask(h
);
963 nid
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
964 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, nodemask
);
965 if (page
&& !avoid_reserve
&& vma_has_reserves(vma
, chg
)) {
966 SetPagePrivate(page
);
967 h
->resv_huge_pages
--;
978 * common helper functions for hstate_next_node_to_{alloc|free}.
979 * We may have allocated or freed a huge page based on a different
980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
981 * be outside of *nodes_allowed. Ensure that we use an allowed
982 * node for alloc or free.
984 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
986 nid
= next_node_in(nid
, *nodes_allowed
);
987 VM_BUG_ON(nid
>= MAX_NUMNODES
);
992 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
994 if (!node_isset(nid
, *nodes_allowed
))
995 nid
= next_node_allowed(nid
, nodes_allowed
);
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1005 static int hstate_next_node_to_alloc(struct hstate
*h
,
1006 nodemask_t
*nodes_allowed
)
1010 VM_BUG_ON(!nodes_allowed
);
1012 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
1013 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page. Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1024 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1028 VM_BUG_ON(!nodes_allowed
);
1030 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
1031 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
1036 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1037 for (nr_nodes = nodes_weight(*mask); \
1039 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1042 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1043 for (nr_nodes = nodes_weight(*mask); \
1045 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1048 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049 static void destroy_compound_gigantic_page(struct page
*page
,
1053 int nr_pages
= 1 << order
;
1054 struct page
*p
= page
+ 1;
1056 atomic_set(compound_mapcount_ptr(page
), 0);
1057 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1058 clear_compound_head(p
);
1059 set_page_refcounted(p
);
1062 set_compound_order(page
, 0);
1063 __ClearPageHead(page
);
1066 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1068 free_contig_range(page_to_pfn(page
), 1 << order
);
1071 #ifdef CONFIG_CONTIG_ALLOC
1072 static int __alloc_gigantic_page(unsigned long start_pfn
,
1073 unsigned long nr_pages
, gfp_t gfp_mask
)
1075 unsigned long end_pfn
= start_pfn
+ nr_pages
;
1076 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
1080 static bool pfn_range_valid_gigantic(struct zone
*z
,
1081 unsigned long start_pfn
, unsigned long nr_pages
)
1083 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
1086 for (i
= start_pfn
; i
< end_pfn
; i
++) {
1090 page
= pfn_to_page(i
);
1092 if (page_zone(page
) != z
)
1095 if (PageReserved(page
))
1098 if (page_count(page
) > 0)
1108 static bool zone_spans_last_pfn(const struct zone
*zone
,
1109 unsigned long start_pfn
, unsigned long nr_pages
)
1111 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
1112 return zone_spans_pfn(zone
, last_pfn
);
1115 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1116 int nid
, nodemask_t
*nodemask
)
1118 unsigned int order
= huge_page_order(h
);
1119 unsigned long nr_pages
= 1 << order
;
1120 unsigned long ret
, pfn
, flags
;
1121 struct zonelist
*zonelist
;
1125 zonelist
= node_zonelist(nid
, gfp_mask
);
1126 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nodemask
) {
1127 spin_lock_irqsave(&zone
->lock
, flags
);
1129 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
1130 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
1131 if (pfn_range_valid_gigantic(zone
, pfn
, nr_pages
)) {
1133 * We release the zone lock here because
1134 * alloc_contig_range() will also lock the zone
1135 * at some point. If there's an allocation
1136 * spinning on this lock, it may win the race
1137 * and cause alloc_contig_range() to fail...
1139 spin_unlock_irqrestore(&zone
->lock
, flags
);
1140 ret
= __alloc_gigantic_page(pfn
, nr_pages
, gfp_mask
);
1142 return pfn_to_page(pfn
);
1143 spin_lock_irqsave(&zone
->lock
, flags
);
1148 spin_unlock_irqrestore(&zone
->lock
, flags
);
1154 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1155 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1156 #else /* !CONFIG_CONTIG_ALLOC */
1157 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1158 int nid
, nodemask_t
*nodemask
)
1162 #endif /* CONFIG_CONTIG_ALLOC */
1164 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1165 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1166 int nid
, nodemask_t
*nodemask
)
1170 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1171 static inline void destroy_compound_gigantic_page(struct page
*page
,
1172 unsigned int order
) { }
1175 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1179 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
1183 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1184 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1185 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1186 1 << PG_referenced
| 1 << PG_dirty
|
1187 1 << PG_active
| 1 << PG_private
|
1190 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1191 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1192 set_page_refcounted(page
);
1193 if (hstate_is_gigantic(h
)) {
1194 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1195 free_gigantic_page(page
, huge_page_order(h
));
1197 __free_pages(page
, huge_page_order(h
));
1201 struct hstate
*size_to_hstate(unsigned long size
)
1205 for_each_hstate(h
) {
1206 if (huge_page_size(h
) == size
)
1213 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1214 * to hstate->hugepage_activelist.)
1216 * This function can be called for tail pages, but never returns true for them.
1218 bool page_huge_active(struct page
*page
)
1220 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1221 return PageHead(page
) && PagePrivate(&page
[1]);
1224 /* never called for tail page */
1225 static void set_page_huge_active(struct page
*page
)
1227 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1228 SetPagePrivate(&page
[1]);
1231 static void clear_page_huge_active(struct page
*page
)
1233 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1234 ClearPagePrivate(&page
[1]);
1238 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1241 static inline bool PageHugeTemporary(struct page
*page
)
1243 if (!PageHuge(page
))
1246 return (unsigned long)page
[2].mapping
== -1U;
1249 static inline void SetPageHugeTemporary(struct page
*page
)
1251 page
[2].mapping
= (void *)-1U;
1254 static inline void ClearPageHugeTemporary(struct page
*page
)
1256 page
[2].mapping
= NULL
;
1259 void free_huge_page(struct page
*page
)
1262 * Can't pass hstate in here because it is called from the
1263 * compound page destructor.
1265 struct hstate
*h
= page_hstate(page
);
1266 int nid
= page_to_nid(page
);
1267 struct hugepage_subpool
*spool
=
1268 (struct hugepage_subpool
*)page_private(page
);
1269 bool restore_reserve
;
1271 VM_BUG_ON_PAGE(page_count(page
), page
);
1272 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1274 set_page_private(page
, 0);
1275 page
->mapping
= NULL
;
1276 restore_reserve
= PagePrivate(page
);
1277 ClearPagePrivate(page
);
1280 * If PagePrivate() was set on page, page allocation consumed a
1281 * reservation. If the page was associated with a subpool, there
1282 * would have been a page reserved in the subpool before allocation
1283 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1284 * reservtion, do not call hugepage_subpool_put_pages() as this will
1285 * remove the reserved page from the subpool.
1287 if (!restore_reserve
) {
1289 * A return code of zero implies that the subpool will be
1290 * under its minimum size if the reservation is not restored
1291 * after page is free. Therefore, force restore_reserve
1294 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1295 restore_reserve
= true;
1298 spin_lock(&hugetlb_lock
);
1299 clear_page_huge_active(page
);
1300 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1301 pages_per_huge_page(h
), page
);
1302 if (restore_reserve
)
1303 h
->resv_huge_pages
++;
1305 if (PageHugeTemporary(page
)) {
1306 list_del(&page
->lru
);
1307 ClearPageHugeTemporary(page
);
1308 update_and_free_page(h
, page
);
1309 } else if (h
->surplus_huge_pages_node
[nid
]) {
1310 /* remove the page from active list */
1311 list_del(&page
->lru
);
1312 update_and_free_page(h
, page
);
1313 h
->surplus_huge_pages
--;
1314 h
->surplus_huge_pages_node
[nid
]--;
1316 arch_clear_hugepage_flags(page
);
1317 enqueue_huge_page(h
, page
);
1319 spin_unlock(&hugetlb_lock
);
1322 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1324 INIT_LIST_HEAD(&page
->lru
);
1325 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1326 spin_lock(&hugetlb_lock
);
1327 set_hugetlb_cgroup(page
, NULL
);
1329 h
->nr_huge_pages_node
[nid
]++;
1330 spin_unlock(&hugetlb_lock
);
1333 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1336 int nr_pages
= 1 << order
;
1337 struct page
*p
= page
+ 1;
1339 /* we rely on prep_new_huge_page to set the destructor */
1340 set_compound_order(page
, order
);
1341 __ClearPageReserved(page
);
1342 __SetPageHead(page
);
1343 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1345 * For gigantic hugepages allocated through bootmem at
1346 * boot, it's safer to be consistent with the not-gigantic
1347 * hugepages and clear the PG_reserved bit from all tail pages
1348 * too. Otherwse drivers using get_user_pages() to access tail
1349 * pages may get the reference counting wrong if they see
1350 * PG_reserved set on a tail page (despite the head page not
1351 * having PG_reserved set). Enforcing this consistency between
1352 * head and tail pages allows drivers to optimize away a check
1353 * on the head page when they need know if put_page() is needed
1354 * after get_user_pages().
1356 __ClearPageReserved(p
);
1357 set_page_count(p
, 0);
1358 set_compound_head(p
, page
);
1360 atomic_set(compound_mapcount_ptr(page
), -1);
1364 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1365 * transparent huge pages. See the PageTransHuge() documentation for more
1368 int PageHuge(struct page
*page
)
1370 if (!PageCompound(page
))
1373 page
= compound_head(page
);
1374 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1376 EXPORT_SYMBOL_GPL(PageHuge
);
1379 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1380 * normal or transparent huge pages.
1382 int PageHeadHuge(struct page
*page_head
)
1384 if (!PageHead(page_head
))
1387 return get_compound_page_dtor(page_head
) == free_huge_page
;
1390 pgoff_t
__basepage_index(struct page
*page
)
1392 struct page
*page_head
= compound_head(page
);
1393 pgoff_t index
= page_index(page_head
);
1394 unsigned long compound_idx
;
1396 if (!PageHuge(page_head
))
1397 return page_index(page
);
1399 if (compound_order(page_head
) >= MAX_ORDER
)
1400 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1402 compound_idx
= page
- page_head
;
1404 return (index
<< compound_order(page_head
)) + compound_idx
;
1407 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
1408 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
1410 int order
= huge_page_order(h
);
1413 gfp_mask
|= __GFP_COMP
|__GFP_RETRY_MAYFAIL
|__GFP_NOWARN
;
1414 if (nid
== NUMA_NO_NODE
)
1415 nid
= numa_mem_id();
1416 page
= __alloc_pages_nodemask(gfp_mask
, order
, nid
, nmask
);
1418 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1420 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1426 * Common helper to allocate a fresh hugetlb page. All specific allocators
1427 * should use this function to get new hugetlb pages
1429 static struct page
*alloc_fresh_huge_page(struct hstate
*h
,
1430 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
1434 if (hstate_is_gigantic(h
))
1435 page
= alloc_gigantic_page(h
, gfp_mask
, nid
, nmask
);
1437 page
= alloc_buddy_huge_page(h
, gfp_mask
,
1442 if (hstate_is_gigantic(h
))
1443 prep_compound_gigantic_page(page
, huge_page_order(h
));
1444 prep_new_huge_page(h
, page
, page_to_nid(page
));
1450 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1453 static int alloc_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1457 gfp_t gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
1459 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1460 page
= alloc_fresh_huge_page(h
, gfp_mask
, node
, nodes_allowed
);
1468 put_page(page
); /* free it into the hugepage allocator */
1474 * Free huge page from pool from next node to free.
1475 * Attempt to keep persistent huge pages more or less
1476 * balanced over allowed nodes.
1477 * Called with hugetlb_lock locked.
1479 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1485 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1487 * If we're returning unused surplus pages, only examine
1488 * nodes with surplus pages.
1490 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1491 !list_empty(&h
->hugepage_freelists
[node
])) {
1493 list_entry(h
->hugepage_freelists
[node
].next
,
1495 list_del(&page
->lru
);
1496 h
->free_huge_pages
--;
1497 h
->free_huge_pages_node
[node
]--;
1499 h
->surplus_huge_pages
--;
1500 h
->surplus_huge_pages_node
[node
]--;
1502 update_and_free_page(h
, page
);
1512 * Dissolve a given free hugepage into free buddy pages. This function does
1513 * nothing for in-use hugepages and non-hugepages.
1514 * This function returns values like below:
1516 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1517 * (allocated or reserved.)
1518 * 0: successfully dissolved free hugepages or the page is not a
1519 * hugepage (considered as already dissolved)
1521 int dissolve_free_huge_page(struct page
*page
)
1525 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1526 if (!PageHuge(page
))
1529 spin_lock(&hugetlb_lock
);
1530 if (!PageHuge(page
)) {
1535 if (!page_count(page
)) {
1536 struct page
*head
= compound_head(page
);
1537 struct hstate
*h
= page_hstate(head
);
1538 int nid
= page_to_nid(head
);
1539 if (h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1542 * Move PageHWPoison flag from head page to the raw error page,
1543 * which makes any subpages rather than the error page reusable.
1545 if (PageHWPoison(head
) && page
!= head
) {
1546 SetPageHWPoison(page
);
1547 ClearPageHWPoison(head
);
1549 list_del(&head
->lru
);
1550 h
->free_huge_pages
--;
1551 h
->free_huge_pages_node
[nid
]--;
1552 h
->max_huge_pages
--;
1553 update_and_free_page(h
, head
);
1557 spin_unlock(&hugetlb_lock
);
1562 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1563 * make specified memory blocks removable from the system.
1564 * Note that this will dissolve a free gigantic hugepage completely, if any
1565 * part of it lies within the given range.
1566 * Also note that if dissolve_free_huge_page() returns with an error, all
1567 * free hugepages that were dissolved before that error are lost.
1569 int dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1575 if (!hugepages_supported())
1578 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
) {
1579 page
= pfn_to_page(pfn
);
1580 rc
= dissolve_free_huge_page(page
);
1589 * Allocates a fresh surplus page from the page allocator.
1591 static struct page
*alloc_surplus_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1592 int nid
, nodemask_t
*nmask
)
1594 struct page
*page
= NULL
;
1596 if (hstate_is_gigantic(h
))
1599 spin_lock(&hugetlb_lock
);
1600 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
)
1602 spin_unlock(&hugetlb_lock
);
1604 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
);
1608 spin_lock(&hugetlb_lock
);
1610 * We could have raced with the pool size change.
1611 * Double check that and simply deallocate the new page
1612 * if we would end up overcommiting the surpluses. Abuse
1613 * temporary page to workaround the nasty free_huge_page
1616 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1617 SetPageHugeTemporary(page
);
1618 spin_unlock(&hugetlb_lock
);
1622 h
->surplus_huge_pages
++;
1623 h
->surplus_huge_pages_node
[page_to_nid(page
)]++;
1627 spin_unlock(&hugetlb_lock
);
1632 struct page
*alloc_migrate_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1633 int nid
, nodemask_t
*nmask
)
1637 if (hstate_is_gigantic(h
))
1640 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
);
1645 * We do not account these pages as surplus because they are only
1646 * temporary and will be released properly on the last reference
1648 SetPageHugeTemporary(page
);
1654 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1657 struct page
*alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1658 struct vm_area_struct
*vma
, unsigned long addr
)
1661 struct mempolicy
*mpol
;
1662 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1664 nodemask_t
*nodemask
;
1666 nid
= huge_node(vma
, addr
, gfp_mask
, &mpol
, &nodemask
);
1667 page
= alloc_surplus_huge_page(h
, gfp_mask
, nid
, nodemask
);
1668 mpol_cond_put(mpol
);
1673 /* page migration callback function */
1674 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1676 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1677 struct page
*page
= NULL
;
1679 if (nid
!= NUMA_NO_NODE
)
1680 gfp_mask
|= __GFP_THISNODE
;
1682 spin_lock(&hugetlb_lock
);
1683 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1684 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, NULL
);
1685 spin_unlock(&hugetlb_lock
);
1688 page
= alloc_migrate_huge_page(h
, gfp_mask
, nid
, NULL
);
1693 /* page migration callback function */
1694 struct page
*alloc_huge_page_nodemask(struct hstate
*h
, int preferred_nid
,
1697 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1699 spin_lock(&hugetlb_lock
);
1700 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0) {
1703 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, preferred_nid
, nmask
);
1705 spin_unlock(&hugetlb_lock
);
1709 spin_unlock(&hugetlb_lock
);
1711 return alloc_migrate_huge_page(h
, gfp_mask
, preferred_nid
, nmask
);
1714 /* mempolicy aware migration callback */
1715 struct page
*alloc_huge_page_vma(struct hstate
*h
, struct vm_area_struct
*vma
,
1716 unsigned long address
)
1718 struct mempolicy
*mpol
;
1719 nodemask_t
*nodemask
;
1724 gfp_mask
= htlb_alloc_mask(h
);
1725 node
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
1726 page
= alloc_huge_page_nodemask(h
, node
, nodemask
);
1727 mpol_cond_put(mpol
);
1733 * Increase the hugetlb pool such that it can accommodate a reservation
1736 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1738 struct list_head surplus_list
;
1739 struct page
*page
, *tmp
;
1741 int needed
, allocated
;
1742 bool alloc_ok
= true;
1744 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1746 h
->resv_huge_pages
+= delta
;
1751 INIT_LIST_HEAD(&surplus_list
);
1755 spin_unlock(&hugetlb_lock
);
1756 for (i
= 0; i
< needed
; i
++) {
1757 page
= alloc_surplus_huge_page(h
, htlb_alloc_mask(h
),
1758 NUMA_NO_NODE
, NULL
);
1763 list_add(&page
->lru
, &surplus_list
);
1769 * After retaking hugetlb_lock, we need to recalculate 'needed'
1770 * because either resv_huge_pages or free_huge_pages may have changed.
1772 spin_lock(&hugetlb_lock
);
1773 needed
= (h
->resv_huge_pages
+ delta
) -
1774 (h
->free_huge_pages
+ allocated
);
1779 * We were not able to allocate enough pages to
1780 * satisfy the entire reservation so we free what
1781 * we've allocated so far.
1786 * The surplus_list now contains _at_least_ the number of extra pages
1787 * needed to accommodate the reservation. Add the appropriate number
1788 * of pages to the hugetlb pool and free the extras back to the buddy
1789 * allocator. Commit the entire reservation here to prevent another
1790 * process from stealing the pages as they are added to the pool but
1791 * before they are reserved.
1793 needed
+= allocated
;
1794 h
->resv_huge_pages
+= delta
;
1797 /* Free the needed pages to the hugetlb pool */
1798 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1802 * This page is now managed by the hugetlb allocator and has
1803 * no users -- drop the buddy allocator's reference.
1805 put_page_testzero(page
);
1806 VM_BUG_ON_PAGE(page_count(page
), page
);
1807 enqueue_huge_page(h
, page
);
1810 spin_unlock(&hugetlb_lock
);
1812 /* Free unnecessary surplus pages to the buddy allocator */
1813 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1815 spin_lock(&hugetlb_lock
);
1821 * This routine has two main purposes:
1822 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1823 * in unused_resv_pages. This corresponds to the prior adjustments made
1824 * to the associated reservation map.
1825 * 2) Free any unused surplus pages that may have been allocated to satisfy
1826 * the reservation. As many as unused_resv_pages may be freed.
1828 * Called with hugetlb_lock held. However, the lock could be dropped (and
1829 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1830 * we must make sure nobody else can claim pages we are in the process of
1831 * freeing. Do this by ensuring resv_huge_page always is greater than the
1832 * number of huge pages we plan to free when dropping the lock.
1834 static void return_unused_surplus_pages(struct hstate
*h
,
1835 unsigned long unused_resv_pages
)
1837 unsigned long nr_pages
;
1839 /* Cannot return gigantic pages currently */
1840 if (hstate_is_gigantic(h
))
1844 * Part (or even all) of the reservation could have been backed
1845 * by pre-allocated pages. Only free surplus pages.
1847 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1850 * We want to release as many surplus pages as possible, spread
1851 * evenly across all nodes with memory. Iterate across these nodes
1852 * until we can no longer free unreserved surplus pages. This occurs
1853 * when the nodes with surplus pages have no free pages.
1854 * free_pool_huge_page() will balance the the freed pages across the
1855 * on-line nodes with memory and will handle the hstate accounting.
1857 * Note that we decrement resv_huge_pages as we free the pages. If
1858 * we drop the lock, resv_huge_pages will still be sufficiently large
1859 * to cover subsequent pages we may free.
1861 while (nr_pages
--) {
1862 h
->resv_huge_pages
--;
1863 unused_resv_pages
--;
1864 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1866 cond_resched_lock(&hugetlb_lock
);
1870 /* Fully uncommit the reservation */
1871 h
->resv_huge_pages
-= unused_resv_pages
;
1876 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1877 * are used by the huge page allocation routines to manage reservations.
1879 * vma_needs_reservation is called to determine if the huge page at addr
1880 * within the vma has an associated reservation. If a reservation is
1881 * needed, the value 1 is returned. The caller is then responsible for
1882 * managing the global reservation and subpool usage counts. After
1883 * the huge page has been allocated, vma_commit_reservation is called
1884 * to add the page to the reservation map. If the page allocation fails,
1885 * the reservation must be ended instead of committed. vma_end_reservation
1886 * is called in such cases.
1888 * In the normal case, vma_commit_reservation returns the same value
1889 * as the preceding vma_needs_reservation call. The only time this
1890 * is not the case is if a reserve map was changed between calls. It
1891 * is the responsibility of the caller to notice the difference and
1892 * take appropriate action.
1894 * vma_add_reservation is used in error paths where a reservation must
1895 * be restored when a newly allocated huge page must be freed. It is
1896 * to be called after calling vma_needs_reservation to determine if a
1897 * reservation exists.
1899 enum vma_resv_mode
{
1905 static long __vma_reservation_common(struct hstate
*h
,
1906 struct vm_area_struct
*vma
, unsigned long addr
,
1907 enum vma_resv_mode mode
)
1909 struct resv_map
*resv
;
1913 resv
= vma_resv_map(vma
);
1917 idx
= vma_hugecache_offset(h
, vma
, addr
);
1919 case VMA_NEEDS_RESV
:
1920 ret
= region_chg(resv
, idx
, idx
+ 1);
1922 case VMA_COMMIT_RESV
:
1923 ret
= region_add(resv
, idx
, idx
+ 1);
1926 region_abort(resv
, idx
, idx
+ 1);
1930 if (vma
->vm_flags
& VM_MAYSHARE
)
1931 ret
= region_add(resv
, idx
, idx
+ 1);
1933 region_abort(resv
, idx
, idx
+ 1);
1934 ret
= region_del(resv
, idx
, idx
+ 1);
1941 if (vma
->vm_flags
& VM_MAYSHARE
)
1943 else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) && ret
>= 0) {
1945 * In most cases, reserves always exist for private mappings.
1946 * However, a file associated with mapping could have been
1947 * hole punched or truncated after reserves were consumed.
1948 * As subsequent fault on such a range will not use reserves.
1949 * Subtle - The reserve map for private mappings has the
1950 * opposite meaning than that of shared mappings. If NO
1951 * entry is in the reserve map, it means a reservation exists.
1952 * If an entry exists in the reserve map, it means the
1953 * reservation has already been consumed. As a result, the
1954 * return value of this routine is the opposite of the
1955 * value returned from reserve map manipulation routines above.
1963 return ret
< 0 ? ret
: 0;
1966 static long vma_needs_reservation(struct hstate
*h
,
1967 struct vm_area_struct
*vma
, unsigned long addr
)
1969 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
1972 static long vma_commit_reservation(struct hstate
*h
,
1973 struct vm_area_struct
*vma
, unsigned long addr
)
1975 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
1978 static void vma_end_reservation(struct hstate
*h
,
1979 struct vm_area_struct
*vma
, unsigned long addr
)
1981 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
1984 static long vma_add_reservation(struct hstate
*h
,
1985 struct vm_area_struct
*vma
, unsigned long addr
)
1987 return __vma_reservation_common(h
, vma
, addr
, VMA_ADD_RESV
);
1991 * This routine is called to restore a reservation on error paths. In the
1992 * specific error paths, a huge page was allocated (via alloc_huge_page)
1993 * and is about to be freed. If a reservation for the page existed,
1994 * alloc_huge_page would have consumed the reservation and set PagePrivate
1995 * in the newly allocated page. When the page is freed via free_huge_page,
1996 * the global reservation count will be incremented if PagePrivate is set.
1997 * However, free_huge_page can not adjust the reserve map. Adjust the
1998 * reserve map here to be consistent with global reserve count adjustments
1999 * to be made by free_huge_page.
2001 static void restore_reserve_on_error(struct hstate
*h
,
2002 struct vm_area_struct
*vma
, unsigned long address
,
2005 if (unlikely(PagePrivate(page
))) {
2006 long rc
= vma_needs_reservation(h
, vma
, address
);
2008 if (unlikely(rc
< 0)) {
2010 * Rare out of memory condition in reserve map
2011 * manipulation. Clear PagePrivate so that
2012 * global reserve count will not be incremented
2013 * by free_huge_page. This will make it appear
2014 * as though the reservation for this page was
2015 * consumed. This may prevent the task from
2016 * faulting in the page at a later time. This
2017 * is better than inconsistent global huge page
2018 * accounting of reserve counts.
2020 ClearPagePrivate(page
);
2022 rc
= vma_add_reservation(h
, vma
, address
);
2023 if (unlikely(rc
< 0))
2025 * See above comment about rare out of
2028 ClearPagePrivate(page
);
2030 vma_end_reservation(h
, vma
, address
);
2034 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
2035 unsigned long addr
, int avoid_reserve
)
2037 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2038 struct hstate
*h
= hstate_vma(vma
);
2040 long map_chg
, map_commit
;
2043 struct hugetlb_cgroup
*h_cg
;
2045 idx
= hstate_index(h
);
2047 * Examine the region/reserve map to determine if the process
2048 * has a reservation for the page to be allocated. A return
2049 * code of zero indicates a reservation exists (no change).
2051 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
2053 return ERR_PTR(-ENOMEM
);
2056 * Processes that did not create the mapping will have no
2057 * reserves as indicated by the region/reserve map. Check
2058 * that the allocation will not exceed the subpool limit.
2059 * Allocations for MAP_NORESERVE mappings also need to be
2060 * checked against any subpool limit.
2062 if (map_chg
|| avoid_reserve
) {
2063 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
2065 vma_end_reservation(h
, vma
, addr
);
2066 return ERR_PTR(-ENOSPC
);
2070 * Even though there was no reservation in the region/reserve
2071 * map, there could be reservations associated with the
2072 * subpool that can be used. This would be indicated if the
2073 * return value of hugepage_subpool_get_pages() is zero.
2074 * However, if avoid_reserve is specified we still avoid even
2075 * the subpool reservations.
2081 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
2083 goto out_subpool_put
;
2085 spin_lock(&hugetlb_lock
);
2087 * glb_chg is passed to indicate whether or not a page must be taken
2088 * from the global free pool (global change). gbl_chg == 0 indicates
2089 * a reservation exists for the allocation.
2091 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
2093 spin_unlock(&hugetlb_lock
);
2094 page
= alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
2096 goto out_uncharge_cgroup
;
2097 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
2098 SetPagePrivate(page
);
2099 h
->resv_huge_pages
--;
2101 spin_lock(&hugetlb_lock
);
2102 list_move(&page
->lru
, &h
->hugepage_activelist
);
2105 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
2106 spin_unlock(&hugetlb_lock
);
2108 set_page_private(page
, (unsigned long)spool
);
2110 map_commit
= vma_commit_reservation(h
, vma
, addr
);
2111 if (unlikely(map_chg
> map_commit
)) {
2113 * The page was added to the reservation map between
2114 * vma_needs_reservation and vma_commit_reservation.
2115 * This indicates a race with hugetlb_reserve_pages.
2116 * Adjust for the subpool count incremented above AND
2117 * in hugetlb_reserve_pages for the same page. Also,
2118 * the reservation count added in hugetlb_reserve_pages
2119 * no longer applies.
2123 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
2124 hugetlb_acct_memory(h
, -rsv_adjust
);
2128 out_uncharge_cgroup
:
2129 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
2131 if (map_chg
|| avoid_reserve
)
2132 hugepage_subpool_put_pages(spool
, 1);
2133 vma_end_reservation(h
, vma
, addr
);
2134 return ERR_PTR(-ENOSPC
);
2137 int alloc_bootmem_huge_page(struct hstate
*h
)
2138 __attribute__ ((weak
, alias("__alloc_bootmem_huge_page")));
2139 int __alloc_bootmem_huge_page(struct hstate
*h
)
2141 struct huge_bootmem_page
*m
;
2144 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
2147 addr
= memblock_alloc_try_nid_raw(
2148 huge_page_size(h
), huge_page_size(h
),
2149 0, MEMBLOCK_ALLOC_ACCESSIBLE
, node
);
2152 * Use the beginning of the huge page to store the
2153 * huge_bootmem_page struct (until gather_bootmem
2154 * puts them into the mem_map).
2163 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
2164 /* Put them into a private list first because mem_map is not up yet */
2165 INIT_LIST_HEAD(&m
->list
);
2166 list_add(&m
->list
, &huge_boot_pages
);
2171 static void __init
prep_compound_huge_page(struct page
*page
,
2174 if (unlikely(order
> (MAX_ORDER
- 1)))
2175 prep_compound_gigantic_page(page
, order
);
2177 prep_compound_page(page
, order
);
2180 /* Put bootmem huge pages into the standard lists after mem_map is up */
2181 static void __init
gather_bootmem_prealloc(void)
2183 struct huge_bootmem_page
*m
;
2185 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2186 struct page
*page
= virt_to_page(m
);
2187 struct hstate
*h
= m
->hstate
;
2189 WARN_ON(page_count(page
) != 1);
2190 prep_compound_huge_page(page
, h
->order
);
2191 WARN_ON(PageReserved(page
));
2192 prep_new_huge_page(h
, page
, page_to_nid(page
));
2193 put_page(page
); /* free it into the hugepage allocator */
2196 * If we had gigantic hugepages allocated at boot time, we need
2197 * to restore the 'stolen' pages to totalram_pages in order to
2198 * fix confusing memory reports from free(1) and another
2199 * side-effects, like CommitLimit going negative.
2201 if (hstate_is_gigantic(h
))
2202 adjust_managed_page_count(page
, 1 << h
->order
);
2207 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2211 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2212 if (hstate_is_gigantic(h
)) {
2213 if (!alloc_bootmem_huge_page(h
))
2215 } else if (!alloc_pool_huge_page(h
,
2216 &node_states
[N_MEMORY
]))
2220 if (i
< h
->max_huge_pages
) {
2223 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2224 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2225 h
->max_huge_pages
, buf
, i
);
2226 h
->max_huge_pages
= i
;
2230 static void __init
hugetlb_init_hstates(void)
2234 for_each_hstate(h
) {
2235 if (minimum_order
> huge_page_order(h
))
2236 minimum_order
= huge_page_order(h
);
2238 /* oversize hugepages were init'ed in early boot */
2239 if (!hstate_is_gigantic(h
))
2240 hugetlb_hstate_alloc_pages(h
);
2242 VM_BUG_ON(minimum_order
== UINT_MAX
);
2245 static void __init
report_hugepages(void)
2249 for_each_hstate(h
) {
2252 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2253 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2254 buf
, h
->free_huge_pages
);
2258 #ifdef CONFIG_HIGHMEM
2259 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2260 nodemask_t
*nodes_allowed
)
2264 if (hstate_is_gigantic(h
))
2267 for_each_node_mask(i
, *nodes_allowed
) {
2268 struct page
*page
, *next
;
2269 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2270 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2271 if (count
>= h
->nr_huge_pages
)
2273 if (PageHighMem(page
))
2275 list_del(&page
->lru
);
2276 update_and_free_page(h
, page
);
2277 h
->free_huge_pages
--;
2278 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2283 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2284 nodemask_t
*nodes_allowed
)
2290 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2291 * balanced by operating on them in a round-robin fashion.
2292 * Returns 1 if an adjustment was made.
2294 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2299 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2302 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2303 if (h
->surplus_huge_pages_node
[node
])
2307 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2308 if (h
->surplus_huge_pages_node
[node
] <
2309 h
->nr_huge_pages_node
[node
])
2316 h
->surplus_huge_pages
+= delta
;
2317 h
->surplus_huge_pages_node
[node
] += delta
;
2321 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2322 static int set_max_huge_pages(struct hstate
*h
, unsigned long count
, int nid
,
2323 nodemask_t
*nodes_allowed
)
2325 unsigned long min_count
, ret
;
2327 spin_lock(&hugetlb_lock
);
2330 * Check for a node specific request.
2331 * Changing node specific huge page count may require a corresponding
2332 * change to the global count. In any case, the passed node mask
2333 * (nodes_allowed) will restrict alloc/free to the specified node.
2335 if (nid
!= NUMA_NO_NODE
) {
2336 unsigned long old_count
= count
;
2338 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2340 * User may have specified a large count value which caused the
2341 * above calculation to overflow. In this case, they wanted
2342 * to allocate as many huge pages as possible. Set count to
2343 * largest possible value to align with their intention.
2345 if (count
< old_count
)
2350 * Gigantic pages runtime allocation depend on the capability for large
2351 * page range allocation.
2352 * If the system does not provide this feature, return an error when
2353 * the user tries to allocate gigantic pages but let the user free the
2354 * boottime allocated gigantic pages.
2356 if (hstate_is_gigantic(h
) && !IS_ENABLED(CONFIG_CONTIG_ALLOC
)) {
2357 if (count
> persistent_huge_pages(h
)) {
2358 spin_unlock(&hugetlb_lock
);
2361 /* Fall through to decrease pool */
2365 * Increase the pool size
2366 * First take pages out of surplus state. Then make up the
2367 * remaining difference by allocating fresh huge pages.
2369 * We might race with alloc_surplus_huge_page() here and be unable
2370 * to convert a surplus huge page to a normal huge page. That is
2371 * not critical, though, it just means the overall size of the
2372 * pool might be one hugepage larger than it needs to be, but
2373 * within all the constraints specified by the sysctls.
2375 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2376 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2380 while (count
> persistent_huge_pages(h
)) {
2382 * If this allocation races such that we no longer need the
2383 * page, free_huge_page will handle it by freeing the page
2384 * and reducing the surplus.
2386 spin_unlock(&hugetlb_lock
);
2388 /* yield cpu to avoid soft lockup */
2391 ret
= alloc_pool_huge_page(h
, nodes_allowed
);
2392 spin_lock(&hugetlb_lock
);
2396 /* Bail for signals. Probably ctrl-c from user */
2397 if (signal_pending(current
))
2402 * Decrease the pool size
2403 * First return free pages to the buddy allocator (being careful
2404 * to keep enough around to satisfy reservations). Then place
2405 * pages into surplus state as needed so the pool will shrink
2406 * to the desired size as pages become free.
2408 * By placing pages into the surplus state independent of the
2409 * overcommit value, we are allowing the surplus pool size to
2410 * exceed overcommit. There are few sane options here. Since
2411 * alloc_surplus_huge_page() is checking the global counter,
2412 * though, we'll note that we're not allowed to exceed surplus
2413 * and won't grow the pool anywhere else. Not until one of the
2414 * sysctls are changed, or the surplus pages go out of use.
2416 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2417 min_count
= max(count
, min_count
);
2418 try_to_free_low(h
, min_count
, nodes_allowed
);
2419 while (min_count
< persistent_huge_pages(h
)) {
2420 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2422 cond_resched_lock(&hugetlb_lock
);
2424 while (count
< persistent_huge_pages(h
)) {
2425 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2429 h
->max_huge_pages
= persistent_huge_pages(h
);
2430 spin_unlock(&hugetlb_lock
);
2435 #define HSTATE_ATTR_RO(_name) \
2436 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2438 #define HSTATE_ATTR(_name) \
2439 static struct kobj_attribute _name##_attr = \
2440 __ATTR(_name, 0644, _name##_show, _name##_store)
2442 static struct kobject
*hugepages_kobj
;
2443 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2445 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2447 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2451 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2452 if (hstate_kobjs
[i
] == kobj
) {
2454 *nidp
= NUMA_NO_NODE
;
2458 return kobj_to_node_hstate(kobj
, nidp
);
2461 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2462 struct kobj_attribute
*attr
, char *buf
)
2465 unsigned long nr_huge_pages
;
2468 h
= kobj_to_hstate(kobj
, &nid
);
2469 if (nid
== NUMA_NO_NODE
)
2470 nr_huge_pages
= h
->nr_huge_pages
;
2472 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2474 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2477 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2478 struct hstate
*h
, int nid
,
2479 unsigned long count
, size_t len
)
2482 nodemask_t nodes_allowed
, *n_mask
;
2484 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
2487 if (nid
== NUMA_NO_NODE
) {
2489 * global hstate attribute
2491 if (!(obey_mempolicy
&&
2492 init_nodemask_of_mempolicy(&nodes_allowed
)))
2493 n_mask
= &node_states
[N_MEMORY
];
2495 n_mask
= &nodes_allowed
;
2498 * Node specific request. count adjustment happens in
2499 * set_max_huge_pages() after acquiring hugetlb_lock.
2501 init_nodemask_of_node(&nodes_allowed
, nid
);
2502 n_mask
= &nodes_allowed
;
2505 err
= set_max_huge_pages(h
, count
, nid
, n_mask
);
2507 return err
? err
: len
;
2510 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2511 struct kobject
*kobj
, const char *buf
,
2515 unsigned long count
;
2519 err
= kstrtoul(buf
, 10, &count
);
2523 h
= kobj_to_hstate(kobj
, &nid
);
2524 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2527 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2528 struct kobj_attribute
*attr
, char *buf
)
2530 return nr_hugepages_show_common(kobj
, attr
, buf
);
2533 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2534 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2536 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2538 HSTATE_ATTR(nr_hugepages
);
2543 * hstate attribute for optionally mempolicy-based constraint on persistent
2544 * huge page alloc/free.
2546 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2547 struct kobj_attribute
*attr
, char *buf
)
2549 return nr_hugepages_show_common(kobj
, attr
, buf
);
2552 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2553 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2555 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2557 HSTATE_ATTR(nr_hugepages_mempolicy
);
2561 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2562 struct kobj_attribute
*attr
, char *buf
)
2564 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2565 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2568 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2569 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2572 unsigned long input
;
2573 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2575 if (hstate_is_gigantic(h
))
2578 err
= kstrtoul(buf
, 10, &input
);
2582 spin_lock(&hugetlb_lock
);
2583 h
->nr_overcommit_huge_pages
= input
;
2584 spin_unlock(&hugetlb_lock
);
2588 HSTATE_ATTR(nr_overcommit_hugepages
);
2590 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2591 struct kobj_attribute
*attr
, char *buf
)
2594 unsigned long free_huge_pages
;
2597 h
= kobj_to_hstate(kobj
, &nid
);
2598 if (nid
== NUMA_NO_NODE
)
2599 free_huge_pages
= h
->free_huge_pages
;
2601 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2603 return sprintf(buf
, "%lu\n", free_huge_pages
);
2605 HSTATE_ATTR_RO(free_hugepages
);
2607 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2608 struct kobj_attribute
*attr
, char *buf
)
2610 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2611 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2613 HSTATE_ATTR_RO(resv_hugepages
);
2615 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2616 struct kobj_attribute
*attr
, char *buf
)
2619 unsigned long surplus_huge_pages
;
2622 h
= kobj_to_hstate(kobj
, &nid
);
2623 if (nid
== NUMA_NO_NODE
)
2624 surplus_huge_pages
= h
->surplus_huge_pages
;
2626 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2628 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2630 HSTATE_ATTR_RO(surplus_hugepages
);
2632 static struct attribute
*hstate_attrs
[] = {
2633 &nr_hugepages_attr
.attr
,
2634 &nr_overcommit_hugepages_attr
.attr
,
2635 &free_hugepages_attr
.attr
,
2636 &resv_hugepages_attr
.attr
,
2637 &surplus_hugepages_attr
.attr
,
2639 &nr_hugepages_mempolicy_attr
.attr
,
2644 static const struct attribute_group hstate_attr_group
= {
2645 .attrs
= hstate_attrs
,
2648 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2649 struct kobject
**hstate_kobjs
,
2650 const struct attribute_group
*hstate_attr_group
)
2653 int hi
= hstate_index(h
);
2655 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2656 if (!hstate_kobjs
[hi
])
2659 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2661 kobject_put(hstate_kobjs
[hi
]);
2666 static void __init
hugetlb_sysfs_init(void)
2671 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2672 if (!hugepages_kobj
)
2675 for_each_hstate(h
) {
2676 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2677 hstate_kobjs
, &hstate_attr_group
);
2679 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2686 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2687 * with node devices in node_devices[] using a parallel array. The array
2688 * index of a node device or _hstate == node id.
2689 * This is here to avoid any static dependency of the node device driver, in
2690 * the base kernel, on the hugetlb module.
2692 struct node_hstate
{
2693 struct kobject
*hugepages_kobj
;
2694 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2696 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2699 * A subset of global hstate attributes for node devices
2701 static struct attribute
*per_node_hstate_attrs
[] = {
2702 &nr_hugepages_attr
.attr
,
2703 &free_hugepages_attr
.attr
,
2704 &surplus_hugepages_attr
.attr
,
2708 static const struct attribute_group per_node_hstate_attr_group
= {
2709 .attrs
= per_node_hstate_attrs
,
2713 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2714 * Returns node id via non-NULL nidp.
2716 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2720 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2721 struct node_hstate
*nhs
= &node_hstates
[nid
];
2723 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2724 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2736 * Unregister hstate attributes from a single node device.
2737 * No-op if no hstate attributes attached.
2739 static void hugetlb_unregister_node(struct node
*node
)
2742 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2744 if (!nhs
->hugepages_kobj
)
2745 return; /* no hstate attributes */
2747 for_each_hstate(h
) {
2748 int idx
= hstate_index(h
);
2749 if (nhs
->hstate_kobjs
[idx
]) {
2750 kobject_put(nhs
->hstate_kobjs
[idx
]);
2751 nhs
->hstate_kobjs
[idx
] = NULL
;
2755 kobject_put(nhs
->hugepages_kobj
);
2756 nhs
->hugepages_kobj
= NULL
;
2761 * Register hstate attributes for a single node device.
2762 * No-op if attributes already registered.
2764 static void hugetlb_register_node(struct node
*node
)
2767 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2770 if (nhs
->hugepages_kobj
)
2771 return; /* already allocated */
2773 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2775 if (!nhs
->hugepages_kobj
)
2778 for_each_hstate(h
) {
2779 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2781 &per_node_hstate_attr_group
);
2783 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2784 h
->name
, node
->dev
.id
);
2785 hugetlb_unregister_node(node
);
2792 * hugetlb init time: register hstate attributes for all registered node
2793 * devices of nodes that have memory. All on-line nodes should have
2794 * registered their associated device by this time.
2796 static void __init
hugetlb_register_all_nodes(void)
2800 for_each_node_state(nid
, N_MEMORY
) {
2801 struct node
*node
= node_devices
[nid
];
2802 if (node
->dev
.id
== nid
)
2803 hugetlb_register_node(node
);
2807 * Let the node device driver know we're here so it can
2808 * [un]register hstate attributes on node hotplug.
2810 register_hugetlbfs_with_node(hugetlb_register_node
,
2811 hugetlb_unregister_node
);
2813 #else /* !CONFIG_NUMA */
2815 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2823 static void hugetlb_register_all_nodes(void) { }
2827 static int __init
hugetlb_init(void)
2831 if (!hugepages_supported())
2834 if (!size_to_hstate(default_hstate_size
)) {
2835 if (default_hstate_size
!= 0) {
2836 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2837 default_hstate_size
, HPAGE_SIZE
);
2840 default_hstate_size
= HPAGE_SIZE
;
2841 if (!size_to_hstate(default_hstate_size
))
2842 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2844 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2845 if (default_hstate_max_huge_pages
) {
2846 if (!default_hstate
.max_huge_pages
)
2847 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2850 hugetlb_init_hstates();
2851 gather_bootmem_prealloc();
2854 hugetlb_sysfs_init();
2855 hugetlb_register_all_nodes();
2856 hugetlb_cgroup_file_init();
2859 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2861 num_fault_mutexes
= 1;
2863 hugetlb_fault_mutex_table
=
2864 kmalloc_array(num_fault_mutexes
, sizeof(struct mutex
),
2866 BUG_ON(!hugetlb_fault_mutex_table
);
2868 for (i
= 0; i
< num_fault_mutexes
; i
++)
2869 mutex_init(&hugetlb_fault_mutex_table
[i
]);
2872 subsys_initcall(hugetlb_init
);
2874 /* Should be called on processing a hugepagesz=... option */
2875 void __init
hugetlb_bad_size(void)
2877 parsed_valid_hugepagesz
= false;
2880 void __init
hugetlb_add_hstate(unsigned int order
)
2885 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2886 pr_warn("hugepagesz= specified twice, ignoring\n");
2889 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2891 h
= &hstates
[hugetlb_max_hstate
++];
2893 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2894 h
->nr_huge_pages
= 0;
2895 h
->free_huge_pages
= 0;
2896 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2897 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2898 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2899 h
->next_nid_to_alloc
= first_memory_node
;
2900 h
->next_nid_to_free
= first_memory_node
;
2901 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2902 huge_page_size(h
)/1024);
2907 static int __init
hugetlb_nrpages_setup(char *s
)
2910 static unsigned long *last_mhp
;
2912 if (!parsed_valid_hugepagesz
) {
2913 pr_warn("hugepages = %s preceded by "
2914 "an unsupported hugepagesz, ignoring\n", s
);
2915 parsed_valid_hugepagesz
= true;
2919 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2920 * so this hugepages= parameter goes to the "default hstate".
2922 else if (!hugetlb_max_hstate
)
2923 mhp
= &default_hstate_max_huge_pages
;
2925 mhp
= &parsed_hstate
->max_huge_pages
;
2927 if (mhp
== last_mhp
) {
2928 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2932 if (sscanf(s
, "%lu", mhp
) <= 0)
2936 * Global state is always initialized later in hugetlb_init.
2937 * But we need to allocate >= MAX_ORDER hstates here early to still
2938 * use the bootmem allocator.
2940 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2941 hugetlb_hstate_alloc_pages(parsed_hstate
);
2947 __setup("hugepages=", hugetlb_nrpages_setup
);
2949 static int __init
hugetlb_default_setup(char *s
)
2951 default_hstate_size
= memparse(s
, &s
);
2954 __setup("default_hugepagesz=", hugetlb_default_setup
);
2956 static unsigned int cpuset_mems_nr(unsigned int *array
)
2959 unsigned int nr
= 0;
2961 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2967 #ifdef CONFIG_SYSCTL
2968 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2969 struct ctl_table
*table
, int write
,
2970 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2972 struct hstate
*h
= &default_hstate
;
2973 unsigned long tmp
= h
->max_huge_pages
;
2976 if (!hugepages_supported())
2980 table
->maxlen
= sizeof(unsigned long);
2981 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2986 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2987 NUMA_NO_NODE
, tmp
, *length
);
2992 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2993 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2996 return hugetlb_sysctl_handler_common(false, table
, write
,
2997 buffer
, length
, ppos
);
3001 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
3002 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3004 return hugetlb_sysctl_handler_common(true, table
, write
,
3005 buffer
, length
, ppos
);
3007 #endif /* CONFIG_NUMA */
3009 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
3010 void __user
*buffer
,
3011 size_t *length
, loff_t
*ppos
)
3013 struct hstate
*h
= &default_hstate
;
3017 if (!hugepages_supported())
3020 tmp
= h
->nr_overcommit_huge_pages
;
3022 if (write
&& hstate_is_gigantic(h
))
3026 table
->maxlen
= sizeof(unsigned long);
3027 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3032 spin_lock(&hugetlb_lock
);
3033 h
->nr_overcommit_huge_pages
= tmp
;
3034 spin_unlock(&hugetlb_lock
);
3040 #endif /* CONFIG_SYSCTL */
3042 void hugetlb_report_meminfo(struct seq_file
*m
)
3045 unsigned long total
= 0;
3047 if (!hugepages_supported())
3050 for_each_hstate(h
) {
3051 unsigned long count
= h
->nr_huge_pages
;
3053 total
+= (PAGE_SIZE
<< huge_page_order(h
)) * count
;
3055 if (h
== &default_hstate
)
3057 "HugePages_Total: %5lu\n"
3058 "HugePages_Free: %5lu\n"
3059 "HugePages_Rsvd: %5lu\n"
3060 "HugePages_Surp: %5lu\n"
3061 "Hugepagesize: %8lu kB\n",
3065 h
->surplus_huge_pages
,
3066 (PAGE_SIZE
<< huge_page_order(h
)) / 1024);
3069 seq_printf(m
, "Hugetlb: %8lu kB\n", total
/ 1024);
3072 int hugetlb_report_node_meminfo(int nid
, char *buf
)
3074 struct hstate
*h
= &default_hstate
;
3075 if (!hugepages_supported())
3078 "Node %d HugePages_Total: %5u\n"
3079 "Node %d HugePages_Free: %5u\n"
3080 "Node %d HugePages_Surp: %5u\n",
3081 nid
, h
->nr_huge_pages_node
[nid
],
3082 nid
, h
->free_huge_pages_node
[nid
],
3083 nid
, h
->surplus_huge_pages_node
[nid
]);
3086 void hugetlb_show_meminfo(void)
3091 if (!hugepages_supported())
3094 for_each_node_state(nid
, N_MEMORY
)
3096 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3098 h
->nr_huge_pages_node
[nid
],
3099 h
->free_huge_pages_node
[nid
],
3100 h
->surplus_huge_pages_node
[nid
],
3101 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
3104 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
3106 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
3107 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
3110 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3111 unsigned long hugetlb_total_pages(void)
3114 unsigned long nr_total_pages
= 0;
3117 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
3118 return nr_total_pages
;
3121 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
3125 spin_lock(&hugetlb_lock
);
3127 * When cpuset is configured, it breaks the strict hugetlb page
3128 * reservation as the accounting is done on a global variable. Such
3129 * reservation is completely rubbish in the presence of cpuset because
3130 * the reservation is not checked against page availability for the
3131 * current cpuset. Application can still potentially OOM'ed by kernel
3132 * with lack of free htlb page in cpuset that the task is in.
3133 * Attempt to enforce strict accounting with cpuset is almost
3134 * impossible (or too ugly) because cpuset is too fluid that
3135 * task or memory node can be dynamically moved between cpusets.
3137 * The change of semantics for shared hugetlb mapping with cpuset is
3138 * undesirable. However, in order to preserve some of the semantics,
3139 * we fall back to check against current free page availability as
3140 * a best attempt and hopefully to minimize the impact of changing
3141 * semantics that cpuset has.
3144 if (gather_surplus_pages(h
, delta
) < 0)
3147 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
3148 return_unused_surplus_pages(h
, delta
);
3155 return_unused_surplus_pages(h
, (unsigned long) -delta
);
3158 spin_unlock(&hugetlb_lock
);
3162 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
3164 struct resv_map
*resv
= vma_resv_map(vma
);
3167 * This new VMA should share its siblings reservation map if present.
3168 * The VMA will only ever have a valid reservation map pointer where
3169 * it is being copied for another still existing VMA. As that VMA
3170 * has a reference to the reservation map it cannot disappear until
3171 * after this open call completes. It is therefore safe to take a
3172 * new reference here without additional locking.
3174 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3175 kref_get(&resv
->refs
);
3178 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
3180 struct hstate
*h
= hstate_vma(vma
);
3181 struct resv_map
*resv
= vma_resv_map(vma
);
3182 struct hugepage_subpool
*spool
= subpool_vma(vma
);
3183 unsigned long reserve
, start
, end
;
3186 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3189 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
3190 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
3192 reserve
= (end
- start
) - region_count(resv
, start
, end
);
3194 kref_put(&resv
->refs
, resv_map_release
);
3198 * Decrement reserve counts. The global reserve count may be
3199 * adjusted if the subpool has a minimum size.
3201 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3202 hugetlb_acct_memory(h
, -gbl_reserve
);
3206 static int hugetlb_vm_op_split(struct vm_area_struct
*vma
, unsigned long addr
)
3208 if (addr
& ~(huge_page_mask(hstate_vma(vma
))))
3213 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct
*vma
)
3215 struct hstate
*hstate
= hstate_vma(vma
);
3217 return 1UL << huge_page_shift(hstate
);
3221 * We cannot handle pagefaults against hugetlb pages at all. They cause
3222 * handle_mm_fault() to try to instantiate regular-sized pages in the
3223 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3226 static vm_fault_t
hugetlb_vm_op_fault(struct vm_fault
*vmf
)
3233 * When a new function is introduced to vm_operations_struct and added
3234 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3235 * This is because under System V memory model, mappings created via
3236 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3237 * their original vm_ops are overwritten with shm_vm_ops.
3239 const struct vm_operations_struct hugetlb_vm_ops
= {
3240 .fault
= hugetlb_vm_op_fault
,
3241 .open
= hugetlb_vm_op_open
,
3242 .close
= hugetlb_vm_op_close
,
3243 .split
= hugetlb_vm_op_split
,
3244 .pagesize
= hugetlb_vm_op_pagesize
,
3247 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3253 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3254 vma
->vm_page_prot
)));
3256 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3257 vma
->vm_page_prot
));
3259 entry
= pte_mkyoung(entry
);
3260 entry
= pte_mkhuge(entry
);
3261 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3266 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3267 unsigned long address
, pte_t
*ptep
)
3271 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3272 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3273 update_mmu_cache(vma
, address
, ptep
);
3276 bool is_hugetlb_entry_migration(pte_t pte
)
3280 if (huge_pte_none(pte
) || pte_present(pte
))
3282 swp
= pte_to_swp_entry(pte
);
3283 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3289 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3293 if (huge_pte_none(pte
) || pte_present(pte
))
3295 swp
= pte_to_swp_entry(pte
);
3296 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3302 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3303 struct vm_area_struct
*vma
)
3305 pte_t
*src_pte
, *dst_pte
, entry
, dst_entry
;
3306 struct page
*ptepage
;
3309 struct hstate
*h
= hstate_vma(vma
);
3310 unsigned long sz
= huge_page_size(h
);
3311 struct mmu_notifier_range range
;
3314 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3317 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, src
,
3320 mmu_notifier_invalidate_range_start(&range
);
3323 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3324 spinlock_t
*src_ptl
, *dst_ptl
;
3325 src_pte
= huge_pte_offset(src
, addr
, sz
);
3328 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3335 * If the pagetables are shared don't copy or take references.
3336 * dst_pte == src_pte is the common case of src/dest sharing.
3338 * However, src could have 'unshared' and dst shares with
3339 * another vma. If dst_pte !none, this implies sharing.
3340 * Check here before taking page table lock, and once again
3341 * after taking the lock below.
3343 dst_entry
= huge_ptep_get(dst_pte
);
3344 if ((dst_pte
== src_pte
) || !huge_pte_none(dst_entry
))
3347 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3348 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3349 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3350 entry
= huge_ptep_get(src_pte
);
3351 dst_entry
= huge_ptep_get(dst_pte
);
3352 if (huge_pte_none(entry
) || !huge_pte_none(dst_entry
)) {
3354 * Skip if src entry none. Also, skip in the
3355 * unlikely case dst entry !none as this implies
3356 * sharing with another vma.
3359 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3360 is_hugetlb_entry_hwpoisoned(entry
))) {
3361 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3363 if (is_write_migration_entry(swp_entry
) && cow
) {
3365 * COW mappings require pages in both
3366 * parent and child to be set to read.
3368 make_migration_entry_read(&swp_entry
);
3369 entry
= swp_entry_to_pte(swp_entry
);
3370 set_huge_swap_pte_at(src
, addr
, src_pte
,
3373 set_huge_swap_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
3377 * No need to notify as we are downgrading page
3378 * table protection not changing it to point
3381 * See Documentation/vm/mmu_notifier.rst
3383 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3385 entry
= huge_ptep_get(src_pte
);
3386 ptepage
= pte_page(entry
);
3388 page_dup_rmap(ptepage
, true);
3389 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3390 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3392 spin_unlock(src_ptl
);
3393 spin_unlock(dst_ptl
);
3397 mmu_notifier_invalidate_range_end(&range
);
3402 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3403 unsigned long start
, unsigned long end
,
3404 struct page
*ref_page
)
3406 struct mm_struct
*mm
= vma
->vm_mm
;
3407 unsigned long address
;
3412 struct hstate
*h
= hstate_vma(vma
);
3413 unsigned long sz
= huge_page_size(h
);
3414 struct mmu_notifier_range range
;
3416 WARN_ON(!is_vm_hugetlb_page(vma
));
3417 BUG_ON(start
& ~huge_page_mask(h
));
3418 BUG_ON(end
& ~huge_page_mask(h
));
3421 * This is a hugetlb vma, all the pte entries should point
3424 tlb_change_page_size(tlb
, sz
);
3425 tlb_start_vma(tlb
, vma
);
3428 * If sharing possible, alert mmu notifiers of worst case.
3430 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
, mm
, start
,
3432 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
3433 mmu_notifier_invalidate_range_start(&range
);
3435 for (; address
< end
; address
+= sz
) {
3436 ptep
= huge_pte_offset(mm
, address
, sz
);
3440 ptl
= huge_pte_lock(h
, mm
, ptep
);
3441 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3444 * We just unmapped a page of PMDs by clearing a PUD.
3445 * The caller's TLB flush range should cover this area.
3450 pte
= huge_ptep_get(ptep
);
3451 if (huge_pte_none(pte
)) {
3457 * Migrating hugepage or HWPoisoned hugepage is already
3458 * unmapped and its refcount is dropped, so just clear pte here.
3460 if (unlikely(!pte_present(pte
))) {
3461 huge_pte_clear(mm
, address
, ptep
, sz
);
3466 page
= pte_page(pte
);
3468 * If a reference page is supplied, it is because a specific
3469 * page is being unmapped, not a range. Ensure the page we
3470 * are about to unmap is the actual page of interest.
3473 if (page
!= ref_page
) {
3478 * Mark the VMA as having unmapped its page so that
3479 * future faults in this VMA will fail rather than
3480 * looking like data was lost
3482 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3485 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3486 tlb_remove_huge_tlb_entry(h
, tlb
, ptep
, address
);
3487 if (huge_pte_dirty(pte
))
3488 set_page_dirty(page
);
3490 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3491 page_remove_rmap(page
, true);
3494 tlb_remove_page_size(tlb
, page
, huge_page_size(h
));
3496 * Bail out after unmapping reference page if supplied
3501 mmu_notifier_invalidate_range_end(&range
);
3502 tlb_end_vma(tlb
, vma
);
3505 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3506 struct vm_area_struct
*vma
, unsigned long start
,
3507 unsigned long end
, struct page
*ref_page
)
3509 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3512 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3513 * test will fail on a vma being torn down, and not grab a page table
3514 * on its way out. We're lucky that the flag has such an appropriate
3515 * name, and can in fact be safely cleared here. We could clear it
3516 * before the __unmap_hugepage_range above, but all that's necessary
3517 * is to clear it before releasing the i_mmap_rwsem. This works
3518 * because in the context this is called, the VMA is about to be
3519 * destroyed and the i_mmap_rwsem is held.
3521 vma
->vm_flags
&= ~VM_MAYSHARE
;
3524 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3525 unsigned long end
, struct page
*ref_page
)
3527 struct mm_struct
*mm
;
3528 struct mmu_gather tlb
;
3529 unsigned long tlb_start
= start
;
3530 unsigned long tlb_end
= end
;
3533 * If shared PMDs were possibly used within this vma range, adjust
3534 * start/end for worst case tlb flushing.
3535 * Note that we can not be sure if PMDs are shared until we try to
3536 * unmap pages. However, we want to make sure TLB flushing covers
3537 * the largest possible range.
3539 adjust_range_if_pmd_sharing_possible(vma
, &tlb_start
, &tlb_end
);
3543 tlb_gather_mmu(&tlb
, mm
, tlb_start
, tlb_end
);
3544 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3545 tlb_finish_mmu(&tlb
, tlb_start
, tlb_end
);
3549 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3550 * mappping it owns the reserve page for. The intention is to unmap the page
3551 * from other VMAs and let the children be SIGKILLed if they are faulting the
3554 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3555 struct page
*page
, unsigned long address
)
3557 struct hstate
*h
= hstate_vma(vma
);
3558 struct vm_area_struct
*iter_vma
;
3559 struct address_space
*mapping
;
3563 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3564 * from page cache lookup which is in HPAGE_SIZE units.
3566 address
= address
& huge_page_mask(h
);
3567 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
3569 mapping
= vma
->vm_file
->f_mapping
;
3572 * Take the mapping lock for the duration of the table walk. As
3573 * this mapping should be shared between all the VMAs,
3574 * __unmap_hugepage_range() is called as the lock is already held
3576 i_mmap_lock_write(mapping
);
3577 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
3578 /* Do not unmap the current VMA */
3579 if (iter_vma
== vma
)
3583 * Shared VMAs have their own reserves and do not affect
3584 * MAP_PRIVATE accounting but it is possible that a shared
3585 * VMA is using the same page so check and skip such VMAs.
3587 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
3591 * Unmap the page from other VMAs without their own reserves.
3592 * They get marked to be SIGKILLed if they fault in these
3593 * areas. This is because a future no-page fault on this VMA
3594 * could insert a zeroed page instead of the data existing
3595 * from the time of fork. This would look like data corruption
3597 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
3598 unmap_hugepage_range(iter_vma
, address
,
3599 address
+ huge_page_size(h
), page
);
3601 i_mmap_unlock_write(mapping
);
3605 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3606 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3607 * cannot race with other handlers or page migration.
3608 * Keep the pte_same checks anyway to make transition from the mutex easier.
3610 static vm_fault_t
hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3611 unsigned long address
, pte_t
*ptep
,
3612 struct page
*pagecache_page
, spinlock_t
*ptl
)
3615 struct hstate
*h
= hstate_vma(vma
);
3616 struct page
*old_page
, *new_page
;
3617 int outside_reserve
= 0;
3619 unsigned long haddr
= address
& huge_page_mask(h
);
3620 struct mmu_notifier_range range
;
3622 pte
= huge_ptep_get(ptep
);
3623 old_page
= pte_page(pte
);
3626 /* If no-one else is actually using this page, avoid the copy
3627 * and just make the page writable */
3628 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
3629 page_move_anon_rmap(old_page
, vma
);
3630 set_huge_ptep_writable(vma
, haddr
, ptep
);
3635 * If the process that created a MAP_PRIVATE mapping is about to
3636 * perform a COW due to a shared page count, attempt to satisfy
3637 * the allocation without using the existing reserves. The pagecache
3638 * page is used to determine if the reserve at this address was
3639 * consumed or not. If reserves were used, a partial faulted mapping
3640 * at the time of fork() could consume its reserves on COW instead
3641 * of the full address range.
3643 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
3644 old_page
!= pagecache_page
)
3645 outside_reserve
= 1;
3650 * Drop page table lock as buddy allocator may be called. It will
3651 * be acquired again before returning to the caller, as expected.
3654 new_page
= alloc_huge_page(vma
, haddr
, outside_reserve
);
3656 if (IS_ERR(new_page
)) {
3658 * If a process owning a MAP_PRIVATE mapping fails to COW,
3659 * it is due to references held by a child and an insufficient
3660 * huge page pool. To guarantee the original mappers
3661 * reliability, unmap the page from child processes. The child
3662 * may get SIGKILLed if it later faults.
3664 if (outside_reserve
) {
3666 BUG_ON(huge_pte_none(pte
));
3667 unmap_ref_private(mm
, vma
, old_page
, haddr
);
3668 BUG_ON(huge_pte_none(pte
));
3670 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3672 pte_same(huge_ptep_get(ptep
), pte
)))
3673 goto retry_avoidcopy
;
3675 * race occurs while re-acquiring page table
3676 * lock, and our job is done.
3681 ret
= vmf_error(PTR_ERR(new_page
));
3682 goto out_release_old
;
3686 * When the original hugepage is shared one, it does not have
3687 * anon_vma prepared.
3689 if (unlikely(anon_vma_prepare(vma
))) {
3691 goto out_release_all
;
3694 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3695 pages_per_huge_page(h
));
3696 __SetPageUptodate(new_page
);
3698 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
, haddr
,
3699 haddr
+ huge_page_size(h
));
3700 mmu_notifier_invalidate_range_start(&range
);
3703 * Retake the page table lock to check for racing updates
3704 * before the page tables are altered
3707 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3708 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3709 ClearPagePrivate(new_page
);
3712 huge_ptep_clear_flush(vma
, haddr
, ptep
);
3713 mmu_notifier_invalidate_range(mm
, range
.start
, range
.end
);
3714 set_huge_pte_at(mm
, haddr
, ptep
,
3715 make_huge_pte(vma
, new_page
, 1));
3716 page_remove_rmap(old_page
, true);
3717 hugepage_add_new_anon_rmap(new_page
, vma
, haddr
);
3718 set_page_huge_active(new_page
);
3719 /* Make the old page be freed below */
3720 new_page
= old_page
;
3723 mmu_notifier_invalidate_range_end(&range
);
3725 restore_reserve_on_error(h
, vma
, haddr
, new_page
);
3730 spin_lock(ptl
); /* Caller expects lock to be held */
3734 /* Return the pagecache page at a given address within a VMA */
3735 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3736 struct vm_area_struct
*vma
, unsigned long address
)
3738 struct address_space
*mapping
;
3741 mapping
= vma
->vm_file
->f_mapping
;
3742 idx
= vma_hugecache_offset(h
, vma
, address
);
3744 return find_lock_page(mapping
, idx
);
3748 * Return whether there is a pagecache page to back given address within VMA.
3749 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3751 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3752 struct vm_area_struct
*vma
, unsigned long address
)
3754 struct address_space
*mapping
;
3758 mapping
= vma
->vm_file
->f_mapping
;
3759 idx
= vma_hugecache_offset(h
, vma
, address
);
3761 page
= find_get_page(mapping
, idx
);
3764 return page
!= NULL
;
3767 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
3770 struct inode
*inode
= mapping
->host
;
3771 struct hstate
*h
= hstate_inode(inode
);
3772 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3776 ClearPagePrivate(page
);
3779 * set page dirty so that it will not be removed from cache/file
3780 * by non-hugetlbfs specific code paths.
3782 set_page_dirty(page
);
3784 spin_lock(&inode
->i_lock
);
3785 inode
->i_blocks
+= blocks_per_huge_page(h
);
3786 spin_unlock(&inode
->i_lock
);
3790 static vm_fault_t
hugetlb_no_page(struct mm_struct
*mm
,
3791 struct vm_area_struct
*vma
,
3792 struct address_space
*mapping
, pgoff_t idx
,
3793 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3795 struct hstate
*h
= hstate_vma(vma
);
3796 vm_fault_t ret
= VM_FAULT_SIGBUS
;
3802 unsigned long haddr
= address
& huge_page_mask(h
);
3803 bool new_page
= false;
3806 * Currently, we are forced to kill the process in the event the
3807 * original mapper has unmapped pages from the child due to a failed
3808 * COW. Warn that such a situation has occurred as it may not be obvious
3810 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3811 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3817 * Use page lock to guard against racing truncation
3818 * before we get page_table_lock.
3821 page
= find_lock_page(mapping
, idx
);
3823 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3828 * Check for page in userfault range
3830 if (userfaultfd_missing(vma
)) {
3832 struct vm_fault vmf
= {
3837 * Hard to debug if it ends up being
3838 * used by a callee that assumes
3839 * something about the other
3840 * uninitialized fields... same as in
3846 * hugetlb_fault_mutex must be dropped before
3847 * handling userfault. Reacquire after handling
3848 * fault to make calling code simpler.
3850 hash
= hugetlb_fault_mutex_hash(h
, mapping
, idx
, haddr
);
3851 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3852 ret
= handle_userfault(&vmf
, VM_UFFD_MISSING
);
3853 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3857 page
= alloc_huge_page(vma
, haddr
, 0);
3859 ret
= vmf_error(PTR_ERR(page
));
3862 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3863 __SetPageUptodate(page
);
3866 if (vma
->vm_flags
& VM_MAYSHARE
) {
3867 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
3876 if (unlikely(anon_vma_prepare(vma
))) {
3878 goto backout_unlocked
;
3884 * If memory error occurs between mmap() and fault, some process
3885 * don't have hwpoisoned swap entry for errored virtual address.
3886 * So we need to block hugepage fault by PG_hwpoison bit check.
3888 if (unlikely(PageHWPoison(page
))) {
3889 ret
= VM_FAULT_HWPOISON
|
3890 VM_FAULT_SET_HINDEX(hstate_index(h
));
3891 goto backout_unlocked
;
3896 * If we are going to COW a private mapping later, we examine the
3897 * pending reservations for this page now. This will ensure that
3898 * any allocations necessary to record that reservation occur outside
3901 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3902 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
3904 goto backout_unlocked
;
3906 /* Just decrements count, does not deallocate */
3907 vma_end_reservation(h
, vma
, haddr
);
3910 ptl
= huge_pte_lock(h
, mm
, ptep
);
3911 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3916 if (!huge_pte_none(huge_ptep_get(ptep
)))
3920 ClearPagePrivate(page
);
3921 hugepage_add_new_anon_rmap(page
, vma
, haddr
);
3923 page_dup_rmap(page
, true);
3924 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3925 && (vma
->vm_flags
& VM_SHARED
)));
3926 set_huge_pte_at(mm
, haddr
, ptep
, new_pte
);
3928 hugetlb_count_add(pages_per_huge_page(h
), mm
);
3929 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3930 /* Optimization, do the COW without a second fault */
3931 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, page
, ptl
);
3937 * Only make newly allocated pages active. Existing pages found
3938 * in the pagecache could be !page_huge_active() if they have been
3939 * isolated for migration.
3942 set_page_huge_active(page
);
3952 restore_reserve_on_error(h
, vma
, haddr
, page
);
3958 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct address_space
*mapping
,
3959 pgoff_t idx
, unsigned long address
)
3961 unsigned long key
[2];
3964 key
[0] = (unsigned long) mapping
;
3967 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3969 return hash
& (num_fault_mutexes
- 1);
3973 * For uniprocesor systems we always use a single mutex, so just
3974 * return 0 and avoid the hashing overhead.
3976 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct address_space
*mapping
,
3977 pgoff_t idx
, unsigned long address
)
3983 vm_fault_t
hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3984 unsigned long address
, unsigned int flags
)
3991 struct page
*page
= NULL
;
3992 struct page
*pagecache_page
= NULL
;
3993 struct hstate
*h
= hstate_vma(vma
);
3994 struct address_space
*mapping
;
3995 int need_wait_lock
= 0;
3996 unsigned long haddr
= address
& huge_page_mask(h
);
3998 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
4000 entry
= huge_ptep_get(ptep
);
4001 if (unlikely(is_hugetlb_entry_migration(entry
))) {
4002 migration_entry_wait_huge(vma
, mm
, ptep
);
4004 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
4005 return VM_FAULT_HWPOISON_LARGE
|
4006 VM_FAULT_SET_HINDEX(hstate_index(h
));
4008 ptep
= huge_pte_alloc(mm
, haddr
, huge_page_size(h
));
4010 return VM_FAULT_OOM
;
4013 mapping
= vma
->vm_file
->f_mapping
;
4014 idx
= vma_hugecache_offset(h
, vma
, haddr
);
4017 * Serialize hugepage allocation and instantiation, so that we don't
4018 * get spurious allocation failures if two CPUs race to instantiate
4019 * the same page in the page cache.
4021 hash
= hugetlb_fault_mutex_hash(h
, mapping
, idx
, haddr
);
4022 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
4024 entry
= huge_ptep_get(ptep
);
4025 if (huge_pte_none(entry
)) {
4026 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
4033 * entry could be a migration/hwpoison entry at this point, so this
4034 * check prevents the kernel from going below assuming that we have
4035 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4036 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4039 if (!pte_present(entry
))
4043 * If we are going to COW the mapping later, we examine the pending
4044 * reservations for this page now. This will ensure that any
4045 * allocations necessary to record that reservation occur outside the
4046 * spinlock. For private mappings, we also lookup the pagecache
4047 * page now as it is used to determine if a reservation has been
4050 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
4051 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
4055 /* Just decrements count, does not deallocate */
4056 vma_end_reservation(h
, vma
, haddr
);
4058 if (!(vma
->vm_flags
& VM_MAYSHARE
))
4059 pagecache_page
= hugetlbfs_pagecache_page(h
,
4063 ptl
= huge_pte_lock(h
, mm
, ptep
);
4065 /* Check for a racing update before calling hugetlb_cow */
4066 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
4070 * hugetlb_cow() requires page locks of pte_page(entry) and
4071 * pagecache_page, so here we need take the former one
4072 * when page != pagecache_page or !pagecache_page.
4074 page
= pte_page(entry
);
4075 if (page
!= pagecache_page
)
4076 if (!trylock_page(page
)) {
4083 if (flags
& FAULT_FLAG_WRITE
) {
4084 if (!huge_pte_write(entry
)) {
4085 ret
= hugetlb_cow(mm
, vma
, address
, ptep
,
4086 pagecache_page
, ptl
);
4089 entry
= huge_pte_mkdirty(entry
);
4091 entry
= pte_mkyoung(entry
);
4092 if (huge_ptep_set_access_flags(vma
, haddr
, ptep
, entry
,
4093 flags
& FAULT_FLAG_WRITE
))
4094 update_mmu_cache(vma
, haddr
, ptep
);
4096 if (page
!= pagecache_page
)
4102 if (pagecache_page
) {
4103 unlock_page(pagecache_page
);
4104 put_page(pagecache_page
);
4107 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
4109 * Generally it's safe to hold refcount during waiting page lock. But
4110 * here we just wait to defer the next page fault to avoid busy loop and
4111 * the page is not used after unlocked before returning from the current
4112 * page fault. So we are safe from accessing freed page, even if we wait
4113 * here without taking refcount.
4116 wait_on_page_locked(page
);
4121 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4122 * modifications for huge pages.
4124 int hugetlb_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
4126 struct vm_area_struct
*dst_vma
,
4127 unsigned long dst_addr
,
4128 unsigned long src_addr
,
4129 struct page
**pagep
)
4131 struct address_space
*mapping
;
4134 int vm_shared
= dst_vma
->vm_flags
& VM_SHARED
;
4135 struct hstate
*h
= hstate_vma(dst_vma
);
4143 page
= alloc_huge_page(dst_vma
, dst_addr
, 0);
4147 ret
= copy_huge_page_from_user(page
,
4148 (const void __user
*) src_addr
,
4149 pages_per_huge_page(h
), false);
4151 /* fallback to copy_from_user outside mmap_sem */
4152 if (unlikely(ret
)) {
4155 /* don't free the page */
4164 * The memory barrier inside __SetPageUptodate makes sure that
4165 * preceding stores to the page contents become visible before
4166 * the set_pte_at() write.
4168 __SetPageUptodate(page
);
4170 mapping
= dst_vma
->vm_file
->f_mapping
;
4171 idx
= vma_hugecache_offset(h
, dst_vma
, dst_addr
);
4174 * If shared, add to page cache
4177 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4180 goto out_release_nounlock
;
4183 * Serialization between remove_inode_hugepages() and
4184 * huge_add_to_page_cache() below happens through the
4185 * hugetlb_fault_mutex_table that here must be hold by
4188 ret
= huge_add_to_page_cache(page
, mapping
, idx
);
4190 goto out_release_nounlock
;
4193 ptl
= huge_pte_lockptr(h
, dst_mm
, dst_pte
);
4197 * Recheck the i_size after holding PT lock to make sure not
4198 * to leave any page mapped (as page_mapped()) beyond the end
4199 * of the i_size (remove_inode_hugepages() is strict about
4200 * enforcing that). If we bail out here, we'll also leave a
4201 * page in the radix tree in the vm_shared case beyond the end
4202 * of the i_size, but remove_inode_hugepages() will take care
4203 * of it as soon as we drop the hugetlb_fault_mutex_table.
4205 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4208 goto out_release_unlock
;
4211 if (!huge_pte_none(huge_ptep_get(dst_pte
)))
4212 goto out_release_unlock
;
4215 page_dup_rmap(page
, true);
4217 ClearPagePrivate(page
);
4218 hugepage_add_new_anon_rmap(page
, dst_vma
, dst_addr
);
4221 _dst_pte
= make_huge_pte(dst_vma
, page
, dst_vma
->vm_flags
& VM_WRITE
);
4222 if (dst_vma
->vm_flags
& VM_WRITE
)
4223 _dst_pte
= huge_pte_mkdirty(_dst_pte
);
4224 _dst_pte
= pte_mkyoung(_dst_pte
);
4226 set_huge_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
4228 (void)huge_ptep_set_access_flags(dst_vma
, dst_addr
, dst_pte
, _dst_pte
,
4229 dst_vma
->vm_flags
& VM_WRITE
);
4230 hugetlb_count_add(pages_per_huge_page(h
), dst_mm
);
4232 /* No need to invalidate - it was non-present before */
4233 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
4236 set_page_huge_active(page
);
4246 out_release_nounlock
:
4251 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4252 struct page
**pages
, struct vm_area_struct
**vmas
,
4253 unsigned long *position
, unsigned long *nr_pages
,
4254 long i
, unsigned int flags
, int *nonblocking
)
4256 unsigned long pfn_offset
;
4257 unsigned long vaddr
= *position
;
4258 unsigned long remainder
= *nr_pages
;
4259 struct hstate
*h
= hstate_vma(vma
);
4262 while (vaddr
< vma
->vm_end
&& remainder
) {
4264 spinlock_t
*ptl
= NULL
;
4269 * If we have a pending SIGKILL, don't keep faulting pages and
4270 * potentially allocating memory.
4272 if (fatal_signal_pending(current
)) {
4278 * Some archs (sparc64, sh*) have multiple pte_ts to
4279 * each hugepage. We have to make sure we get the
4280 * first, for the page indexing below to work.
4282 * Note that page table lock is not held when pte is null.
4284 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
),
4287 ptl
= huge_pte_lock(h
, mm
, pte
);
4288 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
4291 * When coredumping, it suits get_dump_page if we just return
4292 * an error where there's an empty slot with no huge pagecache
4293 * to back it. This way, we avoid allocating a hugepage, and
4294 * the sparse dumpfile avoids allocating disk blocks, but its
4295 * huge holes still show up with zeroes where they need to be.
4297 if (absent
&& (flags
& FOLL_DUMP
) &&
4298 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
4306 * We need call hugetlb_fault for both hugepages under migration
4307 * (in which case hugetlb_fault waits for the migration,) and
4308 * hwpoisoned hugepages (in which case we need to prevent the
4309 * caller from accessing to them.) In order to do this, we use
4310 * here is_swap_pte instead of is_hugetlb_entry_migration and
4311 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4312 * both cases, and because we can't follow correct pages
4313 * directly from any kind of swap entries.
4315 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
4316 ((flags
& FOLL_WRITE
) &&
4317 !huge_pte_write(huge_ptep_get(pte
)))) {
4319 unsigned int fault_flags
= 0;
4323 if (flags
& FOLL_WRITE
)
4324 fault_flags
|= FAULT_FLAG_WRITE
;
4326 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
4327 if (flags
& FOLL_NOWAIT
)
4328 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4329 FAULT_FLAG_RETRY_NOWAIT
;
4330 if (flags
& FOLL_TRIED
) {
4331 VM_WARN_ON_ONCE(fault_flags
&
4332 FAULT_FLAG_ALLOW_RETRY
);
4333 fault_flags
|= FAULT_FLAG_TRIED
;
4335 ret
= hugetlb_fault(mm
, vma
, vaddr
, fault_flags
);
4336 if (ret
& VM_FAULT_ERROR
) {
4337 err
= vm_fault_to_errno(ret
, flags
);
4341 if (ret
& VM_FAULT_RETRY
) {
4343 !(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
4347 * VM_FAULT_RETRY must not return an
4348 * error, it will return zero
4351 * No need to update "position" as the
4352 * caller will not check it after
4353 * *nr_pages is set to 0.
4360 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
4361 page
= pte_page(huge_ptep_get(pte
));
4364 * Instead of doing 'try_get_page()' below in the same_page
4365 * loop, just check the count once here.
4367 if (unlikely(page_count(page
) <= 0)) {
4377 pages
[i
] = mem_map_offset(page
, pfn_offset
);
4388 if (vaddr
< vma
->vm_end
&& remainder
&&
4389 pfn_offset
< pages_per_huge_page(h
)) {
4391 * We use pfn_offset to avoid touching the pageframes
4392 * of this compound page.
4398 *nr_pages
= remainder
;
4400 * setting position is actually required only if remainder is
4401 * not zero but it's faster not to add a "if (remainder)"
4409 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4411 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4414 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4417 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
4418 unsigned long address
, unsigned long end
, pgprot_t newprot
)
4420 struct mm_struct
*mm
= vma
->vm_mm
;
4421 unsigned long start
= address
;
4424 struct hstate
*h
= hstate_vma(vma
);
4425 unsigned long pages
= 0;
4426 bool shared_pmd
= false;
4427 struct mmu_notifier_range range
;
4430 * In the case of shared PMDs, the area to flush could be beyond
4431 * start/end. Set range.start/range.end to cover the maximum possible
4432 * range if PMD sharing is possible.
4434 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_VMA
,
4435 0, vma
, mm
, start
, end
);
4436 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
4438 BUG_ON(address
>= end
);
4439 flush_cache_range(vma
, range
.start
, range
.end
);
4441 mmu_notifier_invalidate_range_start(&range
);
4442 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
4443 for (; address
< end
; address
+= huge_page_size(h
)) {
4445 ptep
= huge_pte_offset(mm
, address
, huge_page_size(h
));
4448 ptl
= huge_pte_lock(h
, mm
, ptep
);
4449 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
4455 pte
= huge_ptep_get(ptep
);
4456 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
4460 if (unlikely(is_hugetlb_entry_migration(pte
))) {
4461 swp_entry_t entry
= pte_to_swp_entry(pte
);
4463 if (is_write_migration_entry(entry
)) {
4466 make_migration_entry_read(&entry
);
4467 newpte
= swp_entry_to_pte(entry
);
4468 set_huge_swap_pte_at(mm
, address
, ptep
,
4469 newpte
, huge_page_size(h
));
4475 if (!huge_pte_none(pte
)) {
4478 old_pte
= huge_ptep_modify_prot_start(vma
, address
, ptep
);
4479 pte
= pte_mkhuge(huge_pte_modify(old_pte
, newprot
));
4480 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
4481 huge_ptep_modify_prot_commit(vma
, address
, ptep
, old_pte
, pte
);
4487 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4488 * may have cleared our pud entry and done put_page on the page table:
4489 * once we release i_mmap_rwsem, another task can do the final put_page
4490 * and that page table be reused and filled with junk. If we actually
4491 * did unshare a page of pmds, flush the range corresponding to the pud.
4494 flush_hugetlb_tlb_range(vma
, range
.start
, range
.end
);
4496 flush_hugetlb_tlb_range(vma
, start
, end
);
4498 * No need to call mmu_notifier_invalidate_range() we are downgrading
4499 * page table protection not changing it to point to a new page.
4501 * See Documentation/vm/mmu_notifier.rst
4503 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
4504 mmu_notifier_invalidate_range_end(&range
);
4506 return pages
<< h
->order
;
4509 int hugetlb_reserve_pages(struct inode
*inode
,
4511 struct vm_area_struct
*vma
,
4512 vm_flags_t vm_flags
)
4515 struct hstate
*h
= hstate_inode(inode
);
4516 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4517 struct resv_map
*resv_map
;
4520 /* This should never happen */
4522 VM_WARN(1, "%s called with a negative range\n", __func__
);
4527 * Only apply hugepage reservation if asked. At fault time, an
4528 * attempt will be made for VM_NORESERVE to allocate a page
4529 * without using reserves
4531 if (vm_flags
& VM_NORESERVE
)
4535 * Shared mappings base their reservation on the number of pages that
4536 * are already allocated on behalf of the file. Private mappings need
4537 * to reserve the full area even if read-only as mprotect() may be
4538 * called to make the mapping read-write. Assume !vma is a shm mapping
4540 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4542 * resv_map can not be NULL as hugetlb_reserve_pages is only
4543 * called for inodes for which resv_maps were created (see
4544 * hugetlbfs_get_inode).
4546 resv_map
= inode_resv_map(inode
);
4548 chg
= region_chg(resv_map
, from
, to
);
4551 resv_map
= resv_map_alloc();
4557 set_vma_resv_map(vma
, resv_map
);
4558 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
4567 * There must be enough pages in the subpool for the mapping. If
4568 * the subpool has a minimum size, there may be some global
4569 * reservations already in place (gbl_reserve).
4571 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
4572 if (gbl_reserve
< 0) {
4578 * Check enough hugepages are available for the reservation.
4579 * Hand the pages back to the subpool if there are not
4581 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
4583 /* put back original number of pages, chg */
4584 (void)hugepage_subpool_put_pages(spool
, chg
);
4589 * Account for the reservations made. Shared mappings record regions
4590 * that have reservations as they are shared by multiple VMAs.
4591 * When the last VMA disappears, the region map says how much
4592 * the reservation was and the page cache tells how much of
4593 * the reservation was consumed. Private mappings are per-VMA and
4594 * only the consumed reservations are tracked. When the VMA
4595 * disappears, the original reservation is the VMA size and the
4596 * consumed reservations are stored in the map. Hence, nothing
4597 * else has to be done for private mappings here
4599 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4600 long add
= region_add(resv_map
, from
, to
);
4602 if (unlikely(chg
> add
)) {
4604 * pages in this range were added to the reserve
4605 * map between region_chg and region_add. This
4606 * indicates a race with alloc_huge_page. Adjust
4607 * the subpool and reserve counts modified above
4608 * based on the difference.
4612 rsv_adjust
= hugepage_subpool_put_pages(spool
,
4614 hugetlb_acct_memory(h
, -rsv_adjust
);
4619 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
4620 /* Don't call region_abort if region_chg failed */
4622 region_abort(resv_map
, from
, to
);
4623 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
4624 kref_put(&resv_map
->refs
, resv_map_release
);
4628 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
4631 struct hstate
*h
= hstate_inode(inode
);
4632 struct resv_map
*resv_map
= inode_resv_map(inode
);
4634 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4638 * Since this routine can be called in the evict inode path for all
4639 * hugetlbfs inodes, resv_map could be NULL.
4642 chg
= region_del(resv_map
, start
, end
);
4644 * region_del() can fail in the rare case where a region
4645 * must be split and another region descriptor can not be
4646 * allocated. If end == LONG_MAX, it will not fail.
4652 spin_lock(&inode
->i_lock
);
4653 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
4654 spin_unlock(&inode
->i_lock
);
4657 * If the subpool has a minimum size, the number of global
4658 * reservations to be released may be adjusted.
4660 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
4661 hugetlb_acct_memory(h
, -gbl_reserve
);
4666 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4667 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
4668 struct vm_area_struct
*vma
,
4669 unsigned long addr
, pgoff_t idx
)
4671 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
4673 unsigned long sbase
= saddr
& PUD_MASK
;
4674 unsigned long s_end
= sbase
+ PUD_SIZE
;
4676 /* Allow segments to share if only one is marked locked */
4677 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4678 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4681 * match the virtual addresses, permission and the alignment of the
4684 if (pmd_index(addr
) != pmd_index(saddr
) ||
4685 vm_flags
!= svm_flags
||
4686 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
4692 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
4694 unsigned long base
= addr
& PUD_MASK
;
4695 unsigned long end
= base
+ PUD_SIZE
;
4698 * check on proper vm_flags and page table alignment
4700 if (vma
->vm_flags
& VM_MAYSHARE
&& range_in_vma(vma
, base
, end
))
4706 * Determine if start,end range within vma could be mapped by shared pmd.
4707 * If yes, adjust start and end to cover range associated with possible
4708 * shared pmd mappings.
4710 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
4711 unsigned long *start
, unsigned long *end
)
4713 unsigned long check_addr
= *start
;
4715 if (!(vma
->vm_flags
& VM_MAYSHARE
))
4718 for (check_addr
= *start
; check_addr
< *end
; check_addr
+= PUD_SIZE
) {
4719 unsigned long a_start
= check_addr
& PUD_MASK
;
4720 unsigned long a_end
= a_start
+ PUD_SIZE
;
4723 * If sharing is possible, adjust start/end if necessary.
4725 if (range_in_vma(vma
, a_start
, a_end
)) {
4726 if (a_start
< *start
)
4735 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4736 * and returns the corresponding pte. While this is not necessary for the
4737 * !shared pmd case because we can allocate the pmd later as well, it makes the
4738 * code much cleaner. pmd allocation is essential for the shared case because
4739 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4740 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4741 * bad pmd for sharing.
4743 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4745 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
4746 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4747 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
4749 struct vm_area_struct
*svma
;
4750 unsigned long saddr
;
4755 if (!vma_shareable(vma
, addr
))
4756 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4758 i_mmap_lock_write(mapping
);
4759 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
4763 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
4765 spte
= huge_pte_offset(svma
->vm_mm
, saddr
,
4766 vma_mmu_pagesize(svma
));
4768 get_page(virt_to_page(spte
));
4777 ptl
= huge_pte_lock(hstate_vma(vma
), mm
, spte
);
4778 if (pud_none(*pud
)) {
4779 pud_populate(mm
, pud
,
4780 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
4783 put_page(virt_to_page(spte
));
4787 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4788 i_mmap_unlock_write(mapping
);
4793 * unmap huge page backed by shared pte.
4795 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4796 * indicated by page_count > 1, unmap is achieved by clearing pud and
4797 * decrementing the ref count. If count == 1, the pte page is not shared.
4799 * called with page table lock held.
4801 * returns: 1 successfully unmapped a shared pte page
4802 * 0 the underlying pte page is not shared, or it is the last user
4804 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4806 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
4807 p4d_t
*p4d
= p4d_offset(pgd
, *addr
);
4808 pud_t
*pud
= pud_offset(p4d
, *addr
);
4810 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
4811 if (page_count(virt_to_page(ptep
)) == 1)
4815 put_page(virt_to_page(ptep
));
4817 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
4820 #define want_pmd_share() (1)
4821 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4822 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4827 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4832 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
4833 unsigned long *start
, unsigned long *end
)
4836 #define want_pmd_share() (0)
4837 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4839 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4840 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
4841 unsigned long addr
, unsigned long sz
)
4848 pgd
= pgd_offset(mm
, addr
);
4849 p4d
= p4d_alloc(mm
, pgd
, addr
);
4852 pud
= pud_alloc(mm
, p4d
, addr
);
4854 if (sz
== PUD_SIZE
) {
4857 BUG_ON(sz
!= PMD_SIZE
);
4858 if (want_pmd_share() && pud_none(*pud
))
4859 pte
= huge_pmd_share(mm
, addr
, pud
);
4861 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4864 BUG_ON(pte
&& pte_present(*pte
) && !pte_huge(*pte
));
4870 * huge_pte_offset() - Walk the page table to resolve the hugepage
4871 * entry at address @addr
4873 * Return: Pointer to page table or swap entry (PUD or PMD) for
4874 * address @addr, or NULL if a p*d_none() entry is encountered and the
4875 * size @sz doesn't match the hugepage size at this level of the page
4878 pte_t
*huge_pte_offset(struct mm_struct
*mm
,
4879 unsigned long addr
, unsigned long sz
)
4886 pgd
= pgd_offset(mm
, addr
);
4887 if (!pgd_present(*pgd
))
4889 p4d
= p4d_offset(pgd
, addr
);
4890 if (!p4d_present(*p4d
))
4893 pud
= pud_offset(p4d
, addr
);
4894 if (sz
!= PUD_SIZE
&& pud_none(*pud
))
4896 /* hugepage or swap? */
4897 if (pud_huge(*pud
) || !pud_present(*pud
))
4898 return (pte_t
*)pud
;
4900 pmd
= pmd_offset(pud
, addr
);
4901 if (sz
!= PMD_SIZE
&& pmd_none(*pmd
))
4903 /* hugepage or swap? */
4904 if (pmd_huge(*pmd
) || !pmd_present(*pmd
))
4905 return (pte_t
*)pmd
;
4910 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4913 * These functions are overwritable if your architecture needs its own
4916 struct page
* __weak
4917 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
4920 return ERR_PTR(-EINVAL
);
4923 struct page
* __weak
4924 follow_huge_pd(struct vm_area_struct
*vma
,
4925 unsigned long address
, hugepd_t hpd
, int flags
, int pdshift
)
4927 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4931 struct page
* __weak
4932 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
4933 pmd_t
*pmd
, int flags
)
4935 struct page
*page
= NULL
;
4939 ptl
= pmd_lockptr(mm
, pmd
);
4942 * make sure that the address range covered by this pmd is not
4943 * unmapped from other threads.
4945 if (!pmd_huge(*pmd
))
4947 pte
= huge_ptep_get((pte_t
*)pmd
);
4948 if (pte_present(pte
)) {
4949 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
4950 if (flags
& FOLL_GET
)
4953 if (is_hugetlb_entry_migration(pte
)) {
4955 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
4959 * hwpoisoned entry is treated as no_page_table in
4960 * follow_page_mask().
4968 struct page
* __weak
4969 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
4970 pud_t
*pud
, int flags
)
4972 if (flags
& FOLL_GET
)
4975 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
4978 struct page
* __weak
4979 follow_huge_pgd(struct mm_struct
*mm
, unsigned long address
, pgd_t
*pgd
, int flags
)
4981 if (flags
& FOLL_GET
)
4984 return pte_page(*(pte_t
*)pgd
) + ((address
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
4987 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
4991 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4992 spin_lock(&hugetlb_lock
);
4993 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
4997 clear_page_huge_active(page
);
4998 list_move_tail(&page
->lru
, list
);
5000 spin_unlock(&hugetlb_lock
);
5004 void putback_active_hugepage(struct page
*page
)
5006 VM_BUG_ON_PAGE(!PageHead(page
), page
);
5007 spin_lock(&hugetlb_lock
);
5008 set_page_huge_active(page
);
5009 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
5010 spin_unlock(&hugetlb_lock
);
5014 void move_hugetlb_state(struct page
*oldpage
, struct page
*newpage
, int reason
)
5016 struct hstate
*h
= page_hstate(oldpage
);
5018 hugetlb_cgroup_migrate(oldpage
, newpage
);
5019 set_page_owner_migrate_reason(newpage
, reason
);
5022 * transfer temporary state of the new huge page. This is
5023 * reverse to other transitions because the newpage is going to
5024 * be final while the old one will be freed so it takes over
5025 * the temporary status.
5027 * Also note that we have to transfer the per-node surplus state
5028 * here as well otherwise the global surplus count will not match
5031 if (PageHugeTemporary(newpage
)) {
5032 int old_nid
= page_to_nid(oldpage
);
5033 int new_nid
= page_to_nid(newpage
);
5035 SetPageHugeTemporary(oldpage
);
5036 ClearPageHugeTemporary(newpage
);
5038 spin_lock(&hugetlb_lock
);
5039 if (h
->surplus_huge_pages_node
[old_nid
]) {
5040 h
->surplus_huge_pages_node
[old_nid
]--;
5041 h
->surplus_huge_pages_node
[new_nid
]++;
5043 spin_unlock(&hugetlb_lock
);