ARC: export "abort" for modules
[linux/fpc-iii.git] / fs / binfmt_elf.c
blobe7e25a86bbff4db87a8ef6f3039b80cd272369b9
1 /*
2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/dax.h>
39 #include <asm/uaccess.h>
40 #include <asm/param.h>
41 #include <asm/page.h>
43 #ifndef user_long_t
44 #define user_long_t long
45 #endif
46 #ifndef user_siginfo_t
47 #define user_siginfo_t siginfo_t
48 #endif
50 static int load_elf_binary(struct linux_binprm *bprm);
51 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
52 int, int, unsigned long);
54 #ifdef CONFIG_USELIB
55 static int load_elf_library(struct file *);
56 #else
57 #define load_elf_library NULL
58 #endif
61 * If we don't support core dumping, then supply a NULL so we
62 * don't even try.
64 #ifdef CONFIG_ELF_CORE
65 static int elf_core_dump(struct coredump_params *cprm);
66 #else
67 #define elf_core_dump NULL
68 #endif
70 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
71 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
72 #else
73 #define ELF_MIN_ALIGN PAGE_SIZE
74 #endif
76 #ifndef ELF_CORE_EFLAGS
77 #define ELF_CORE_EFLAGS 0
78 #endif
80 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
81 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
82 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
84 static struct linux_binfmt elf_format = {
85 .module = THIS_MODULE,
86 .load_binary = load_elf_binary,
87 .load_shlib = load_elf_library,
88 .core_dump = elf_core_dump,
89 .min_coredump = ELF_EXEC_PAGESIZE,
92 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
94 static int set_brk(unsigned long start, unsigned long end)
96 start = ELF_PAGEALIGN(start);
97 end = ELF_PAGEALIGN(end);
98 if (end > start) {
99 int error = vm_brk(start, end - start);
100 if (error)
101 return error;
103 current->mm->start_brk = current->mm->brk = end;
104 return 0;
107 /* We need to explicitly zero any fractional pages
108 after the data section (i.e. bss). This would
109 contain the junk from the file that should not
110 be in memory
112 static int padzero(unsigned long elf_bss)
114 unsigned long nbyte;
116 nbyte = ELF_PAGEOFFSET(elf_bss);
117 if (nbyte) {
118 nbyte = ELF_MIN_ALIGN - nbyte;
119 if (clear_user((void __user *) elf_bss, nbyte))
120 return -EFAULT;
122 return 0;
125 /* Let's use some macros to make this stack manipulation a little clearer */
126 #ifdef CONFIG_STACK_GROWSUP
127 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
128 #define STACK_ROUND(sp, items) \
129 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
130 #define STACK_ALLOC(sp, len) ({ \
131 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
132 old_sp; })
133 #else
134 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
135 #define STACK_ROUND(sp, items) \
136 (((unsigned long) (sp - items)) &~ 15UL)
137 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
138 #endif
140 #ifndef ELF_BASE_PLATFORM
142 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
143 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
144 * will be copied to the user stack in the same manner as AT_PLATFORM.
146 #define ELF_BASE_PLATFORM NULL
147 #endif
149 static int
150 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
151 unsigned long load_addr, unsigned long interp_load_addr)
153 unsigned long p = bprm->p;
154 int argc = bprm->argc;
155 int envc = bprm->envc;
156 elf_addr_t __user *argv;
157 elf_addr_t __user *envp;
158 elf_addr_t __user *sp;
159 elf_addr_t __user *u_platform;
160 elf_addr_t __user *u_base_platform;
161 elf_addr_t __user *u_rand_bytes;
162 const char *k_platform = ELF_PLATFORM;
163 const char *k_base_platform = ELF_BASE_PLATFORM;
164 unsigned char k_rand_bytes[16];
165 int items;
166 elf_addr_t *elf_info;
167 int ei_index = 0;
168 const struct cred *cred = current_cred();
169 struct vm_area_struct *vma;
172 * In some cases (e.g. Hyper-Threading), we want to avoid L1
173 * evictions by the processes running on the same package. One
174 * thing we can do is to shuffle the initial stack for them.
177 p = arch_align_stack(p);
180 * If this architecture has a platform capability string, copy it
181 * to userspace. In some cases (Sparc), this info is impossible
182 * for userspace to get any other way, in others (i386) it is
183 * merely difficult.
185 u_platform = NULL;
186 if (k_platform) {
187 size_t len = strlen(k_platform) + 1;
189 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
190 if (__copy_to_user(u_platform, k_platform, len))
191 return -EFAULT;
195 * If this architecture has a "base" platform capability
196 * string, copy it to userspace.
198 u_base_platform = NULL;
199 if (k_base_platform) {
200 size_t len = strlen(k_base_platform) + 1;
202 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
203 if (__copy_to_user(u_base_platform, k_base_platform, len))
204 return -EFAULT;
208 * Generate 16 random bytes for userspace PRNG seeding.
210 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
211 u_rand_bytes = (elf_addr_t __user *)
212 STACK_ALLOC(p, sizeof(k_rand_bytes));
213 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
214 return -EFAULT;
216 /* Create the ELF interpreter info */
217 elf_info = (elf_addr_t *)current->mm->saved_auxv;
218 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
219 #define NEW_AUX_ENT(id, val) \
220 do { \
221 elf_info[ei_index++] = id; \
222 elf_info[ei_index++] = val; \
223 } while (0)
225 #ifdef ARCH_DLINFO
227 * ARCH_DLINFO must come first so PPC can do its special alignment of
228 * AUXV.
229 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
230 * ARCH_DLINFO changes
232 ARCH_DLINFO;
233 #endif
234 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
235 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
236 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
237 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
238 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
239 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
240 NEW_AUX_ENT(AT_BASE, interp_load_addr);
241 NEW_AUX_ENT(AT_FLAGS, 0);
242 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
243 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
244 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
245 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
246 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
247 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
248 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
249 #ifdef ELF_HWCAP2
250 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
251 #endif
252 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
253 if (k_platform) {
254 NEW_AUX_ENT(AT_PLATFORM,
255 (elf_addr_t)(unsigned long)u_platform);
257 if (k_base_platform) {
258 NEW_AUX_ENT(AT_BASE_PLATFORM,
259 (elf_addr_t)(unsigned long)u_base_platform);
261 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
262 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
264 #undef NEW_AUX_ENT
265 /* AT_NULL is zero; clear the rest too */
266 memset(&elf_info[ei_index], 0,
267 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
269 /* And advance past the AT_NULL entry. */
270 ei_index += 2;
272 sp = STACK_ADD(p, ei_index);
274 items = (argc + 1) + (envc + 1) + 1;
275 bprm->p = STACK_ROUND(sp, items);
277 /* Point sp at the lowest address on the stack */
278 #ifdef CONFIG_STACK_GROWSUP
279 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
280 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
281 #else
282 sp = (elf_addr_t __user *)bprm->p;
283 #endif
287 * Grow the stack manually; some architectures have a limit on how
288 * far ahead a user-space access may be in order to grow the stack.
290 vma = find_extend_vma(current->mm, bprm->p);
291 if (!vma)
292 return -EFAULT;
294 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
295 if (__put_user(argc, sp++))
296 return -EFAULT;
297 argv = sp;
298 envp = argv + argc + 1;
300 /* Populate argv and envp */
301 p = current->mm->arg_end = current->mm->arg_start;
302 while (argc-- > 0) {
303 size_t len;
304 if (__put_user((elf_addr_t)p, argv++))
305 return -EFAULT;
306 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
307 if (!len || len > MAX_ARG_STRLEN)
308 return -EINVAL;
309 p += len;
311 if (__put_user(0, argv))
312 return -EFAULT;
313 current->mm->arg_end = current->mm->env_start = p;
314 while (envc-- > 0) {
315 size_t len;
316 if (__put_user((elf_addr_t)p, envp++))
317 return -EFAULT;
318 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
319 if (!len || len > MAX_ARG_STRLEN)
320 return -EINVAL;
321 p += len;
323 if (__put_user(0, envp))
324 return -EFAULT;
325 current->mm->env_end = p;
327 /* Put the elf_info on the stack in the right place. */
328 sp = (elf_addr_t __user *)envp + 1;
329 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
330 return -EFAULT;
331 return 0;
334 #ifndef elf_map
336 static unsigned long elf_map(struct file *filep, unsigned long addr,
337 struct elf_phdr *eppnt, int prot, int type,
338 unsigned long total_size)
340 unsigned long map_addr;
341 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
342 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
343 addr = ELF_PAGESTART(addr);
344 size = ELF_PAGEALIGN(size);
346 /* mmap() will return -EINVAL if given a zero size, but a
347 * segment with zero filesize is perfectly valid */
348 if (!size)
349 return addr;
352 * total_size is the size of the ELF (interpreter) image.
353 * The _first_ mmap needs to know the full size, otherwise
354 * randomization might put this image into an overlapping
355 * position with the ELF binary image. (since size < total_size)
356 * So we first map the 'big' image - and unmap the remainder at
357 * the end. (which unmap is needed for ELF images with holes.)
359 if (total_size) {
360 total_size = ELF_PAGEALIGN(total_size);
361 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
362 if (!BAD_ADDR(map_addr))
363 vm_munmap(map_addr+size, total_size-size);
364 } else
365 map_addr = vm_mmap(filep, addr, size, prot, type, off);
367 return(map_addr);
370 #endif /* !elf_map */
372 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
374 int i, first_idx = -1, last_idx = -1;
376 for (i = 0; i < nr; i++) {
377 if (cmds[i].p_type == PT_LOAD) {
378 last_idx = i;
379 if (first_idx == -1)
380 first_idx = i;
383 if (first_idx == -1)
384 return 0;
386 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
387 ELF_PAGESTART(cmds[first_idx].p_vaddr);
391 * load_elf_phdrs() - load ELF program headers
392 * @elf_ex: ELF header of the binary whose program headers should be loaded
393 * @elf_file: the opened ELF binary file
395 * Loads ELF program headers from the binary file elf_file, which has the ELF
396 * header pointed to by elf_ex, into a newly allocated array. The caller is
397 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
399 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
400 struct file *elf_file)
402 struct elf_phdr *elf_phdata = NULL;
403 int retval, size, err = -1;
406 * If the size of this structure has changed, then punt, since
407 * we will be doing the wrong thing.
409 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
410 goto out;
412 /* Sanity check the number of program headers... */
413 if (elf_ex->e_phnum < 1 ||
414 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
415 goto out;
417 /* ...and their total size. */
418 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
419 if (size > ELF_MIN_ALIGN)
420 goto out;
422 elf_phdata = kmalloc(size, GFP_KERNEL);
423 if (!elf_phdata)
424 goto out;
426 /* Read in the program headers */
427 retval = kernel_read(elf_file, elf_ex->e_phoff,
428 (char *)elf_phdata, size);
429 if (retval != size) {
430 err = (retval < 0) ? retval : -EIO;
431 goto out;
434 /* Success! */
435 err = 0;
436 out:
437 if (err) {
438 kfree(elf_phdata);
439 elf_phdata = NULL;
441 return elf_phdata;
444 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
447 * struct arch_elf_state - arch-specific ELF loading state
449 * This structure is used to preserve architecture specific data during
450 * the loading of an ELF file, throughout the checking of architecture
451 * specific ELF headers & through to the point where the ELF load is
452 * known to be proceeding (ie. SET_PERSONALITY).
454 * This implementation is a dummy for architectures which require no
455 * specific state.
457 struct arch_elf_state {
460 #define INIT_ARCH_ELF_STATE {}
463 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
464 * @ehdr: The main ELF header
465 * @phdr: The program header to check
466 * @elf: The open ELF file
467 * @is_interp: True if the phdr is from the interpreter of the ELF being
468 * loaded, else false.
469 * @state: Architecture-specific state preserved throughout the process
470 * of loading the ELF.
472 * Inspects the program header phdr to validate its correctness and/or
473 * suitability for the system. Called once per ELF program header in the
474 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
475 * interpreter.
477 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
478 * with that return code.
480 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
481 struct elf_phdr *phdr,
482 struct file *elf, bool is_interp,
483 struct arch_elf_state *state)
485 /* Dummy implementation, always proceed */
486 return 0;
490 * arch_check_elf() - check an ELF executable
491 * @ehdr: The main ELF header
492 * @has_interp: True if the ELF has an interpreter, else false.
493 * @interp_ehdr: The interpreter's ELF header
494 * @state: Architecture-specific state preserved throughout the process
495 * of loading the ELF.
497 * Provides a final opportunity for architecture code to reject the loading
498 * of the ELF & cause an exec syscall to return an error. This is called after
499 * all program headers to be checked by arch_elf_pt_proc have been.
501 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
502 * with that return code.
504 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
505 struct elfhdr *interp_ehdr,
506 struct arch_elf_state *state)
508 /* Dummy implementation, always proceed */
509 return 0;
512 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
514 /* This is much more generalized than the library routine read function,
515 so we keep this separate. Technically the library read function
516 is only provided so that we can read a.out libraries that have
517 an ELF header */
519 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
520 struct file *interpreter, unsigned long *interp_map_addr,
521 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
523 struct elf_phdr *eppnt;
524 unsigned long load_addr = 0;
525 int load_addr_set = 0;
526 unsigned long last_bss = 0, elf_bss = 0;
527 unsigned long error = ~0UL;
528 unsigned long total_size;
529 int i;
531 /* First of all, some simple consistency checks */
532 if (interp_elf_ex->e_type != ET_EXEC &&
533 interp_elf_ex->e_type != ET_DYN)
534 goto out;
535 if (!elf_check_arch(interp_elf_ex))
536 goto out;
537 if (!interpreter->f_op->mmap)
538 goto out;
540 total_size = total_mapping_size(interp_elf_phdata,
541 interp_elf_ex->e_phnum);
542 if (!total_size) {
543 error = -EINVAL;
544 goto out;
547 eppnt = interp_elf_phdata;
548 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
549 if (eppnt->p_type == PT_LOAD) {
550 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
551 int elf_prot = 0;
552 unsigned long vaddr = 0;
553 unsigned long k, map_addr;
555 if (eppnt->p_flags & PF_R)
556 elf_prot = PROT_READ;
557 if (eppnt->p_flags & PF_W)
558 elf_prot |= PROT_WRITE;
559 if (eppnt->p_flags & PF_X)
560 elf_prot |= PROT_EXEC;
561 vaddr = eppnt->p_vaddr;
562 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
563 elf_type |= MAP_FIXED;
564 else if (no_base && interp_elf_ex->e_type == ET_DYN)
565 load_addr = -vaddr;
567 map_addr = elf_map(interpreter, load_addr + vaddr,
568 eppnt, elf_prot, elf_type, total_size);
569 total_size = 0;
570 if (!*interp_map_addr)
571 *interp_map_addr = map_addr;
572 error = map_addr;
573 if (BAD_ADDR(map_addr))
574 goto out;
576 if (!load_addr_set &&
577 interp_elf_ex->e_type == ET_DYN) {
578 load_addr = map_addr - ELF_PAGESTART(vaddr);
579 load_addr_set = 1;
583 * Check to see if the section's size will overflow the
584 * allowed task size. Note that p_filesz must always be
585 * <= p_memsize so it's only necessary to check p_memsz.
587 k = load_addr + eppnt->p_vaddr;
588 if (BAD_ADDR(k) ||
589 eppnt->p_filesz > eppnt->p_memsz ||
590 eppnt->p_memsz > TASK_SIZE ||
591 TASK_SIZE - eppnt->p_memsz < k) {
592 error = -ENOMEM;
593 goto out;
597 * Find the end of the file mapping for this phdr, and
598 * keep track of the largest address we see for this.
600 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
601 if (k > elf_bss)
602 elf_bss = k;
605 * Do the same thing for the memory mapping - between
606 * elf_bss and last_bss is the bss section.
608 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
609 if (k > last_bss)
610 last_bss = k;
615 * Now fill out the bss section: first pad the last page from
616 * the file up to the page boundary, and zero it from elf_bss
617 * up to the end of the page.
619 if (padzero(elf_bss)) {
620 error = -EFAULT;
621 goto out;
624 * Next, align both the file and mem bss up to the page size,
625 * since this is where elf_bss was just zeroed up to, and where
626 * last_bss will end after the vm_brk() below.
628 elf_bss = ELF_PAGEALIGN(elf_bss);
629 last_bss = ELF_PAGEALIGN(last_bss);
630 /* Finally, if there is still more bss to allocate, do it. */
631 if (last_bss > elf_bss) {
632 error = vm_brk(elf_bss, last_bss - elf_bss);
633 if (error)
634 goto out;
637 error = load_addr;
638 out:
639 return error;
643 * These are the functions used to load ELF style executables and shared
644 * libraries. There is no binary dependent code anywhere else.
647 #ifndef STACK_RND_MASK
648 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
649 #endif
651 static unsigned long randomize_stack_top(unsigned long stack_top)
653 unsigned long random_variable = 0;
655 if ((current->flags & PF_RANDOMIZE) &&
656 !(current->personality & ADDR_NO_RANDOMIZE)) {
657 random_variable = get_random_long();
658 random_variable &= STACK_RND_MASK;
659 random_variable <<= PAGE_SHIFT;
661 #ifdef CONFIG_STACK_GROWSUP
662 return PAGE_ALIGN(stack_top) + random_variable;
663 #else
664 return PAGE_ALIGN(stack_top) - random_variable;
665 #endif
668 static int load_elf_binary(struct linux_binprm *bprm)
670 struct file *interpreter = NULL; /* to shut gcc up */
671 unsigned long load_addr = 0, load_bias = 0;
672 int load_addr_set = 0;
673 char * elf_interpreter = NULL;
674 unsigned long error;
675 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
676 unsigned long elf_bss, elf_brk;
677 int retval, i;
678 unsigned long elf_entry;
679 unsigned long interp_load_addr = 0;
680 unsigned long start_code, end_code, start_data, end_data;
681 unsigned long reloc_func_desc __maybe_unused = 0;
682 int executable_stack = EXSTACK_DEFAULT;
683 struct pt_regs *regs = current_pt_regs();
684 struct {
685 struct elfhdr elf_ex;
686 struct elfhdr interp_elf_ex;
687 } *loc;
688 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
690 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
691 if (!loc) {
692 retval = -ENOMEM;
693 goto out_ret;
696 /* Get the exec-header */
697 loc->elf_ex = *((struct elfhdr *)bprm->buf);
699 retval = -ENOEXEC;
700 /* First of all, some simple consistency checks */
701 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
702 goto out;
704 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
705 goto out;
706 if (!elf_check_arch(&loc->elf_ex))
707 goto out;
708 if (!bprm->file->f_op->mmap)
709 goto out;
711 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
712 if (!elf_phdata)
713 goto out;
715 elf_ppnt = elf_phdata;
716 elf_bss = 0;
717 elf_brk = 0;
719 start_code = ~0UL;
720 end_code = 0;
721 start_data = 0;
722 end_data = 0;
724 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
725 if (elf_ppnt->p_type == PT_INTERP) {
726 /* This is the program interpreter used for
727 * shared libraries - for now assume that this
728 * is an a.out format binary
730 retval = -ENOEXEC;
731 if (elf_ppnt->p_filesz > PATH_MAX ||
732 elf_ppnt->p_filesz < 2)
733 goto out_free_ph;
735 retval = -ENOMEM;
736 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
737 GFP_KERNEL);
738 if (!elf_interpreter)
739 goto out_free_ph;
741 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
742 elf_interpreter,
743 elf_ppnt->p_filesz);
744 if (retval != elf_ppnt->p_filesz) {
745 if (retval >= 0)
746 retval = -EIO;
747 goto out_free_interp;
749 /* make sure path is NULL terminated */
750 retval = -ENOEXEC;
751 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
752 goto out_free_interp;
754 interpreter = open_exec(elf_interpreter);
755 retval = PTR_ERR(interpreter);
756 if (IS_ERR(interpreter))
757 goto out_free_interp;
760 * If the binary is not readable then enforce
761 * mm->dumpable = 0 regardless of the interpreter's
762 * permissions.
764 would_dump(bprm, interpreter);
766 /* Get the exec headers */
767 retval = kernel_read(interpreter, 0,
768 (void *)&loc->interp_elf_ex,
769 sizeof(loc->interp_elf_ex));
770 if (retval != sizeof(loc->interp_elf_ex)) {
771 if (retval >= 0)
772 retval = -EIO;
773 goto out_free_dentry;
776 break;
778 elf_ppnt++;
781 elf_ppnt = elf_phdata;
782 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
783 switch (elf_ppnt->p_type) {
784 case PT_GNU_STACK:
785 if (elf_ppnt->p_flags & PF_X)
786 executable_stack = EXSTACK_ENABLE_X;
787 else
788 executable_stack = EXSTACK_DISABLE_X;
789 break;
791 case PT_LOPROC ... PT_HIPROC:
792 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
793 bprm->file, false,
794 &arch_state);
795 if (retval)
796 goto out_free_dentry;
797 break;
800 /* Some simple consistency checks for the interpreter */
801 if (elf_interpreter) {
802 retval = -ELIBBAD;
803 /* Not an ELF interpreter */
804 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
805 goto out_free_dentry;
806 /* Verify the interpreter has a valid arch */
807 if (!elf_check_arch(&loc->interp_elf_ex))
808 goto out_free_dentry;
810 /* Load the interpreter program headers */
811 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
812 interpreter);
813 if (!interp_elf_phdata)
814 goto out_free_dentry;
816 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
817 elf_ppnt = interp_elf_phdata;
818 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
819 switch (elf_ppnt->p_type) {
820 case PT_LOPROC ... PT_HIPROC:
821 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
822 elf_ppnt, interpreter,
823 true, &arch_state);
824 if (retval)
825 goto out_free_dentry;
826 break;
831 * Allow arch code to reject the ELF at this point, whilst it's
832 * still possible to return an error to the code that invoked
833 * the exec syscall.
835 retval = arch_check_elf(&loc->elf_ex,
836 !!interpreter, &loc->interp_elf_ex,
837 &arch_state);
838 if (retval)
839 goto out_free_dentry;
841 /* Flush all traces of the currently running executable */
842 retval = flush_old_exec(bprm);
843 if (retval)
844 goto out_free_dentry;
846 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
847 may depend on the personality. */
848 SET_PERSONALITY2(loc->elf_ex, &arch_state);
849 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
850 current->personality |= READ_IMPLIES_EXEC;
852 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
853 current->flags |= PF_RANDOMIZE;
855 setup_new_exec(bprm);
856 install_exec_creds(bprm);
858 /* Do this so that we can load the interpreter, if need be. We will
859 change some of these later */
860 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
861 executable_stack);
862 if (retval < 0)
863 goto out_free_dentry;
865 current->mm->start_stack = bprm->p;
867 /* Now we do a little grungy work by mmapping the ELF image into
868 the correct location in memory. */
869 for(i = 0, elf_ppnt = elf_phdata;
870 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
871 int elf_prot = 0, elf_flags;
872 unsigned long k, vaddr;
873 unsigned long total_size = 0;
875 if (elf_ppnt->p_type != PT_LOAD)
876 continue;
878 if (unlikely (elf_brk > elf_bss)) {
879 unsigned long nbyte;
881 /* There was a PT_LOAD segment with p_memsz > p_filesz
882 before this one. Map anonymous pages, if needed,
883 and clear the area. */
884 retval = set_brk(elf_bss + load_bias,
885 elf_brk + load_bias);
886 if (retval)
887 goto out_free_dentry;
888 nbyte = ELF_PAGEOFFSET(elf_bss);
889 if (nbyte) {
890 nbyte = ELF_MIN_ALIGN - nbyte;
891 if (nbyte > elf_brk - elf_bss)
892 nbyte = elf_brk - elf_bss;
893 if (clear_user((void __user *)elf_bss +
894 load_bias, nbyte)) {
896 * This bss-zeroing can fail if the ELF
897 * file specifies odd protections. So
898 * we don't check the return value
904 if (elf_ppnt->p_flags & PF_R)
905 elf_prot |= PROT_READ;
906 if (elf_ppnt->p_flags & PF_W)
907 elf_prot |= PROT_WRITE;
908 if (elf_ppnt->p_flags & PF_X)
909 elf_prot |= PROT_EXEC;
911 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
913 vaddr = elf_ppnt->p_vaddr;
915 * If we are loading ET_EXEC or we have already performed
916 * the ET_DYN load_addr calculations, proceed normally.
918 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
919 elf_flags |= MAP_FIXED;
920 } else if (loc->elf_ex.e_type == ET_DYN) {
922 * This logic is run once for the first LOAD Program
923 * Header for ET_DYN binaries to calculate the
924 * randomization (load_bias) for all the LOAD
925 * Program Headers, and to calculate the entire
926 * size of the ELF mapping (total_size). (Note that
927 * load_addr_set is set to true later once the
928 * initial mapping is performed.)
930 * There are effectively two types of ET_DYN
931 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
932 * and loaders (ET_DYN without INTERP, since they
933 * _are_ the ELF interpreter). The loaders must
934 * be loaded away from programs since the program
935 * may otherwise collide with the loader (especially
936 * for ET_EXEC which does not have a randomized
937 * position). For example to handle invocations of
938 * "./ld.so someprog" to test out a new version of
939 * the loader, the subsequent program that the
940 * loader loads must avoid the loader itself, so
941 * they cannot share the same load range. Sufficient
942 * room for the brk must be allocated with the
943 * loader as well, since brk must be available with
944 * the loader.
946 * Therefore, programs are loaded offset from
947 * ELF_ET_DYN_BASE and loaders are loaded into the
948 * independently randomized mmap region (0 load_bias
949 * without MAP_FIXED).
951 if (elf_interpreter) {
952 load_bias = ELF_ET_DYN_BASE;
953 if (current->flags & PF_RANDOMIZE)
954 load_bias += arch_mmap_rnd();
955 elf_flags |= MAP_FIXED;
956 } else
957 load_bias = 0;
960 * Since load_bias is used for all subsequent loading
961 * calculations, we must lower it by the first vaddr
962 * so that the remaining calculations based on the
963 * ELF vaddrs will be correctly offset. The result
964 * is then page aligned.
966 load_bias = ELF_PAGESTART(load_bias - vaddr);
968 total_size = total_mapping_size(elf_phdata,
969 loc->elf_ex.e_phnum);
970 if (!total_size) {
971 retval = -EINVAL;
972 goto out_free_dentry;
976 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
977 elf_prot, elf_flags, total_size);
978 if (BAD_ADDR(error)) {
979 retval = IS_ERR((void *)error) ?
980 PTR_ERR((void*)error) : -EINVAL;
981 goto out_free_dentry;
984 if (!load_addr_set) {
985 load_addr_set = 1;
986 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
987 if (loc->elf_ex.e_type == ET_DYN) {
988 load_bias += error -
989 ELF_PAGESTART(load_bias + vaddr);
990 load_addr += load_bias;
991 reloc_func_desc = load_bias;
994 k = elf_ppnt->p_vaddr;
995 if (k < start_code)
996 start_code = k;
997 if (start_data < k)
998 start_data = k;
1001 * Check to see if the section's size will overflow the
1002 * allowed task size. Note that p_filesz must always be
1003 * <= p_memsz so it is only necessary to check p_memsz.
1005 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1006 elf_ppnt->p_memsz > TASK_SIZE ||
1007 TASK_SIZE - elf_ppnt->p_memsz < k) {
1008 /* set_brk can never work. Avoid overflows. */
1009 retval = -EINVAL;
1010 goto out_free_dentry;
1013 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1015 if (k > elf_bss)
1016 elf_bss = k;
1017 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1018 end_code = k;
1019 if (end_data < k)
1020 end_data = k;
1021 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1022 if (k > elf_brk)
1023 elf_brk = k;
1026 loc->elf_ex.e_entry += load_bias;
1027 elf_bss += load_bias;
1028 elf_brk += load_bias;
1029 start_code += load_bias;
1030 end_code += load_bias;
1031 start_data += load_bias;
1032 end_data += load_bias;
1034 /* Calling set_brk effectively mmaps the pages that we need
1035 * for the bss and break sections. We must do this before
1036 * mapping in the interpreter, to make sure it doesn't wind
1037 * up getting placed where the bss needs to go.
1039 retval = set_brk(elf_bss, elf_brk);
1040 if (retval)
1041 goto out_free_dentry;
1042 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1043 retval = -EFAULT; /* Nobody gets to see this, but.. */
1044 goto out_free_dentry;
1047 if (elf_interpreter) {
1048 unsigned long interp_map_addr = 0;
1050 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1051 interpreter,
1052 &interp_map_addr,
1053 load_bias, interp_elf_phdata);
1054 if (!IS_ERR((void *)elf_entry)) {
1056 * load_elf_interp() returns relocation
1057 * adjustment
1059 interp_load_addr = elf_entry;
1060 elf_entry += loc->interp_elf_ex.e_entry;
1062 if (BAD_ADDR(elf_entry)) {
1063 retval = IS_ERR((void *)elf_entry) ?
1064 (int)elf_entry : -EINVAL;
1065 goto out_free_dentry;
1067 reloc_func_desc = interp_load_addr;
1069 allow_write_access(interpreter);
1070 fput(interpreter);
1071 kfree(elf_interpreter);
1072 } else {
1073 elf_entry = loc->elf_ex.e_entry;
1074 if (BAD_ADDR(elf_entry)) {
1075 retval = -EINVAL;
1076 goto out_free_dentry;
1080 kfree(interp_elf_phdata);
1081 kfree(elf_phdata);
1083 set_binfmt(&elf_format);
1085 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1086 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1087 if (retval < 0)
1088 goto out;
1089 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1091 retval = create_elf_tables(bprm, &loc->elf_ex,
1092 load_addr, interp_load_addr);
1093 if (retval < 0)
1094 goto out;
1095 /* N.B. passed_fileno might not be initialized? */
1096 current->mm->end_code = end_code;
1097 current->mm->start_code = start_code;
1098 current->mm->start_data = start_data;
1099 current->mm->end_data = end_data;
1100 current->mm->start_stack = bprm->p;
1102 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1103 current->mm->brk = current->mm->start_brk =
1104 arch_randomize_brk(current->mm);
1105 #ifdef compat_brk_randomized
1106 current->brk_randomized = 1;
1107 #endif
1110 if (current->personality & MMAP_PAGE_ZERO) {
1111 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1112 and some applications "depend" upon this behavior.
1113 Since we do not have the power to recompile these, we
1114 emulate the SVr4 behavior. Sigh. */
1115 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1116 MAP_FIXED | MAP_PRIVATE, 0);
1119 #ifdef ELF_PLAT_INIT
1121 * The ABI may specify that certain registers be set up in special
1122 * ways (on i386 %edx is the address of a DT_FINI function, for
1123 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1124 * that the e_entry field is the address of the function descriptor
1125 * for the startup routine, rather than the address of the startup
1126 * routine itself. This macro performs whatever initialization to
1127 * the regs structure is required as well as any relocations to the
1128 * function descriptor entries when executing dynamically links apps.
1130 ELF_PLAT_INIT(regs, reloc_func_desc);
1131 #endif
1133 start_thread(regs, elf_entry, bprm->p);
1134 retval = 0;
1135 out:
1136 kfree(loc);
1137 out_ret:
1138 return retval;
1140 /* error cleanup */
1141 out_free_dentry:
1142 kfree(interp_elf_phdata);
1143 allow_write_access(interpreter);
1144 if (interpreter)
1145 fput(interpreter);
1146 out_free_interp:
1147 kfree(elf_interpreter);
1148 out_free_ph:
1149 kfree(elf_phdata);
1150 goto out;
1153 #ifdef CONFIG_USELIB
1154 /* This is really simpleminded and specialized - we are loading an
1155 a.out library that is given an ELF header. */
1156 static int load_elf_library(struct file *file)
1158 struct elf_phdr *elf_phdata;
1159 struct elf_phdr *eppnt;
1160 unsigned long elf_bss, bss, len;
1161 int retval, error, i, j;
1162 struct elfhdr elf_ex;
1164 error = -ENOEXEC;
1165 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1166 if (retval != sizeof(elf_ex))
1167 goto out;
1169 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1170 goto out;
1172 /* First of all, some simple consistency checks */
1173 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1174 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1175 goto out;
1177 /* Now read in all of the header information */
1179 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1180 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1182 error = -ENOMEM;
1183 elf_phdata = kmalloc(j, GFP_KERNEL);
1184 if (!elf_phdata)
1185 goto out;
1187 eppnt = elf_phdata;
1188 error = -ENOEXEC;
1189 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1190 if (retval != j)
1191 goto out_free_ph;
1193 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1194 if ((eppnt + i)->p_type == PT_LOAD)
1195 j++;
1196 if (j != 1)
1197 goto out_free_ph;
1199 while (eppnt->p_type != PT_LOAD)
1200 eppnt++;
1202 /* Now use mmap to map the library into memory. */
1203 error = vm_mmap(file,
1204 ELF_PAGESTART(eppnt->p_vaddr),
1205 (eppnt->p_filesz +
1206 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1207 PROT_READ | PROT_WRITE | PROT_EXEC,
1208 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1209 (eppnt->p_offset -
1210 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1211 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1212 goto out_free_ph;
1214 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1215 if (padzero(elf_bss)) {
1216 error = -EFAULT;
1217 goto out_free_ph;
1220 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1221 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1222 if (bss > len) {
1223 error = vm_brk(len, bss - len);
1224 if (error)
1225 goto out_free_ph;
1227 error = 0;
1229 out_free_ph:
1230 kfree(elf_phdata);
1231 out:
1232 return error;
1234 #endif /* #ifdef CONFIG_USELIB */
1236 #ifdef CONFIG_ELF_CORE
1238 * ELF core dumper
1240 * Modelled on fs/exec.c:aout_core_dump()
1241 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1245 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1246 * that are useful for post-mortem analysis are included in every core dump.
1247 * In that way we ensure that the core dump is fully interpretable later
1248 * without matching up the same kernel and hardware config to see what PC values
1249 * meant. These special mappings include - vDSO, vsyscall, and other
1250 * architecture specific mappings
1252 static bool always_dump_vma(struct vm_area_struct *vma)
1254 /* Any vsyscall mappings? */
1255 if (vma == get_gate_vma(vma->vm_mm))
1256 return true;
1259 * Assume that all vmas with a .name op should always be dumped.
1260 * If this changes, a new vm_ops field can easily be added.
1262 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1263 return true;
1266 * arch_vma_name() returns non-NULL for special architecture mappings,
1267 * such as vDSO sections.
1269 if (arch_vma_name(vma))
1270 return true;
1272 return false;
1276 * Decide what to dump of a segment, part, all or none.
1278 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1279 unsigned long mm_flags)
1281 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1283 /* always dump the vdso and vsyscall sections */
1284 if (always_dump_vma(vma))
1285 goto whole;
1287 if (vma->vm_flags & VM_DONTDUMP)
1288 return 0;
1290 /* support for DAX */
1291 if (vma_is_dax(vma)) {
1292 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1293 goto whole;
1294 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1295 goto whole;
1296 return 0;
1299 /* Hugetlb memory check */
1300 if (vma->vm_flags & VM_HUGETLB) {
1301 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1302 goto whole;
1303 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1304 goto whole;
1305 return 0;
1308 /* Do not dump I/O mapped devices or special mappings */
1309 if (vma->vm_flags & VM_IO)
1310 return 0;
1312 /* By default, dump shared memory if mapped from an anonymous file. */
1313 if (vma->vm_flags & VM_SHARED) {
1314 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1315 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1316 goto whole;
1317 return 0;
1320 /* Dump segments that have been written to. */
1321 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1322 goto whole;
1323 if (vma->vm_file == NULL)
1324 return 0;
1326 if (FILTER(MAPPED_PRIVATE))
1327 goto whole;
1330 * If this looks like the beginning of a DSO or executable mapping,
1331 * check for an ELF header. If we find one, dump the first page to
1332 * aid in determining what was mapped here.
1334 if (FILTER(ELF_HEADERS) &&
1335 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1336 u32 __user *header = (u32 __user *) vma->vm_start;
1337 u32 word;
1338 mm_segment_t fs = get_fs();
1340 * Doing it this way gets the constant folded by GCC.
1342 union {
1343 u32 cmp;
1344 char elfmag[SELFMAG];
1345 } magic;
1346 BUILD_BUG_ON(SELFMAG != sizeof word);
1347 magic.elfmag[EI_MAG0] = ELFMAG0;
1348 magic.elfmag[EI_MAG1] = ELFMAG1;
1349 magic.elfmag[EI_MAG2] = ELFMAG2;
1350 magic.elfmag[EI_MAG3] = ELFMAG3;
1352 * Switch to the user "segment" for get_user(),
1353 * then put back what elf_core_dump() had in place.
1355 set_fs(USER_DS);
1356 if (unlikely(get_user(word, header)))
1357 word = 0;
1358 set_fs(fs);
1359 if (word == magic.cmp)
1360 return PAGE_SIZE;
1363 #undef FILTER
1365 return 0;
1367 whole:
1368 return vma->vm_end - vma->vm_start;
1371 /* An ELF note in memory */
1372 struct memelfnote
1374 const char *name;
1375 int type;
1376 unsigned int datasz;
1377 void *data;
1380 static int notesize(struct memelfnote *en)
1382 int sz;
1384 sz = sizeof(struct elf_note);
1385 sz += roundup(strlen(en->name) + 1, 4);
1386 sz += roundup(en->datasz, 4);
1388 return sz;
1391 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1393 struct elf_note en;
1394 en.n_namesz = strlen(men->name) + 1;
1395 en.n_descsz = men->datasz;
1396 en.n_type = men->type;
1398 return dump_emit(cprm, &en, sizeof(en)) &&
1399 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1400 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1403 static void fill_elf_header(struct elfhdr *elf, int segs,
1404 u16 machine, u32 flags)
1406 memset(elf, 0, sizeof(*elf));
1408 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1409 elf->e_ident[EI_CLASS] = ELF_CLASS;
1410 elf->e_ident[EI_DATA] = ELF_DATA;
1411 elf->e_ident[EI_VERSION] = EV_CURRENT;
1412 elf->e_ident[EI_OSABI] = ELF_OSABI;
1414 elf->e_type = ET_CORE;
1415 elf->e_machine = machine;
1416 elf->e_version = EV_CURRENT;
1417 elf->e_phoff = sizeof(struct elfhdr);
1418 elf->e_flags = flags;
1419 elf->e_ehsize = sizeof(struct elfhdr);
1420 elf->e_phentsize = sizeof(struct elf_phdr);
1421 elf->e_phnum = segs;
1423 return;
1426 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1428 phdr->p_type = PT_NOTE;
1429 phdr->p_offset = offset;
1430 phdr->p_vaddr = 0;
1431 phdr->p_paddr = 0;
1432 phdr->p_filesz = sz;
1433 phdr->p_memsz = 0;
1434 phdr->p_flags = 0;
1435 phdr->p_align = 0;
1436 return;
1439 static void fill_note(struct memelfnote *note, const char *name, int type,
1440 unsigned int sz, void *data)
1442 note->name = name;
1443 note->type = type;
1444 note->datasz = sz;
1445 note->data = data;
1446 return;
1450 * fill up all the fields in prstatus from the given task struct, except
1451 * registers which need to be filled up separately.
1453 static void fill_prstatus(struct elf_prstatus *prstatus,
1454 struct task_struct *p, long signr)
1456 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1457 prstatus->pr_sigpend = p->pending.signal.sig[0];
1458 prstatus->pr_sighold = p->blocked.sig[0];
1459 rcu_read_lock();
1460 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1461 rcu_read_unlock();
1462 prstatus->pr_pid = task_pid_vnr(p);
1463 prstatus->pr_pgrp = task_pgrp_vnr(p);
1464 prstatus->pr_sid = task_session_vnr(p);
1465 if (thread_group_leader(p)) {
1466 struct task_cputime cputime;
1469 * This is the record for the group leader. It shows the
1470 * group-wide total, not its individual thread total.
1472 thread_group_cputime(p, &cputime);
1473 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1474 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1475 } else {
1476 cputime_t utime, stime;
1478 task_cputime(p, &utime, &stime);
1479 cputime_to_timeval(utime, &prstatus->pr_utime);
1480 cputime_to_timeval(stime, &prstatus->pr_stime);
1482 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1483 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1486 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1487 struct mm_struct *mm)
1489 const struct cred *cred;
1490 unsigned int i, len;
1492 /* first copy the parameters from user space */
1493 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1495 len = mm->arg_end - mm->arg_start;
1496 if (len >= ELF_PRARGSZ)
1497 len = ELF_PRARGSZ-1;
1498 if (copy_from_user(&psinfo->pr_psargs,
1499 (const char __user *)mm->arg_start, len))
1500 return -EFAULT;
1501 for(i = 0; i < len; i++)
1502 if (psinfo->pr_psargs[i] == 0)
1503 psinfo->pr_psargs[i] = ' ';
1504 psinfo->pr_psargs[len] = 0;
1506 rcu_read_lock();
1507 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1508 rcu_read_unlock();
1509 psinfo->pr_pid = task_pid_vnr(p);
1510 psinfo->pr_pgrp = task_pgrp_vnr(p);
1511 psinfo->pr_sid = task_session_vnr(p);
1513 i = p->state ? ffz(~p->state) + 1 : 0;
1514 psinfo->pr_state = i;
1515 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1516 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1517 psinfo->pr_nice = task_nice(p);
1518 psinfo->pr_flag = p->flags;
1519 rcu_read_lock();
1520 cred = __task_cred(p);
1521 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1522 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1523 rcu_read_unlock();
1524 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1526 return 0;
1529 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1531 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1532 int i = 0;
1534 i += 2;
1535 while (auxv[i - 2] != AT_NULL);
1536 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1539 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1540 const siginfo_t *siginfo)
1542 mm_segment_t old_fs = get_fs();
1543 set_fs(KERNEL_DS);
1544 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1545 set_fs(old_fs);
1546 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1549 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1551 * Format of NT_FILE note:
1553 * long count -- how many files are mapped
1554 * long page_size -- units for file_ofs
1555 * array of [COUNT] elements of
1556 * long start
1557 * long end
1558 * long file_ofs
1559 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1561 static int fill_files_note(struct memelfnote *note)
1563 struct vm_area_struct *vma;
1564 unsigned count, size, names_ofs, remaining, n;
1565 user_long_t *data;
1566 user_long_t *start_end_ofs;
1567 char *name_base, *name_curpos;
1569 /* *Estimated* file count and total data size needed */
1570 count = current->mm->map_count;
1571 size = count * 64;
1573 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1574 alloc:
1575 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1576 return -EINVAL;
1577 size = round_up(size, PAGE_SIZE);
1578 data = vmalloc(size);
1579 if (!data)
1580 return -ENOMEM;
1582 start_end_ofs = data + 2;
1583 name_base = name_curpos = ((char *)data) + names_ofs;
1584 remaining = size - names_ofs;
1585 count = 0;
1586 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1587 struct file *file;
1588 const char *filename;
1590 file = vma->vm_file;
1591 if (!file)
1592 continue;
1593 filename = file_path(file, name_curpos, remaining);
1594 if (IS_ERR(filename)) {
1595 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1596 vfree(data);
1597 size = size * 5 / 4;
1598 goto alloc;
1600 continue;
1603 /* file_path() fills at the end, move name down */
1604 /* n = strlen(filename) + 1: */
1605 n = (name_curpos + remaining) - filename;
1606 remaining = filename - name_curpos;
1607 memmove(name_curpos, filename, n);
1608 name_curpos += n;
1610 *start_end_ofs++ = vma->vm_start;
1611 *start_end_ofs++ = vma->vm_end;
1612 *start_end_ofs++ = vma->vm_pgoff;
1613 count++;
1616 /* Now we know exact count of files, can store it */
1617 data[0] = count;
1618 data[1] = PAGE_SIZE;
1620 * Count usually is less than current->mm->map_count,
1621 * we need to move filenames down.
1623 n = current->mm->map_count - count;
1624 if (n != 0) {
1625 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1626 memmove(name_base - shift_bytes, name_base,
1627 name_curpos - name_base);
1628 name_curpos -= shift_bytes;
1631 size = name_curpos - (char *)data;
1632 fill_note(note, "CORE", NT_FILE, size, data);
1633 return 0;
1636 #ifdef CORE_DUMP_USE_REGSET
1637 #include <linux/regset.h>
1639 struct elf_thread_core_info {
1640 struct elf_thread_core_info *next;
1641 struct task_struct *task;
1642 struct elf_prstatus prstatus;
1643 struct memelfnote notes[0];
1646 struct elf_note_info {
1647 struct elf_thread_core_info *thread;
1648 struct memelfnote psinfo;
1649 struct memelfnote signote;
1650 struct memelfnote auxv;
1651 struct memelfnote files;
1652 user_siginfo_t csigdata;
1653 size_t size;
1654 int thread_notes;
1658 * When a regset has a writeback hook, we call it on each thread before
1659 * dumping user memory. On register window machines, this makes sure the
1660 * user memory backing the register data is up to date before we read it.
1662 static void do_thread_regset_writeback(struct task_struct *task,
1663 const struct user_regset *regset)
1665 if (regset->writeback)
1666 regset->writeback(task, regset, 1);
1669 #ifndef PRSTATUS_SIZE
1670 #define PRSTATUS_SIZE(S, R) sizeof(S)
1671 #endif
1673 #ifndef SET_PR_FPVALID
1674 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1675 #endif
1677 static int fill_thread_core_info(struct elf_thread_core_info *t,
1678 const struct user_regset_view *view,
1679 long signr, size_t *total)
1681 unsigned int i;
1682 unsigned int regset_size = view->regsets[0].n * view->regsets[0].size;
1685 * NT_PRSTATUS is the one special case, because the regset data
1686 * goes into the pr_reg field inside the note contents, rather
1687 * than being the whole note contents. We fill the reset in here.
1688 * We assume that regset 0 is NT_PRSTATUS.
1690 fill_prstatus(&t->prstatus, t->task, signr);
1691 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset_size,
1692 &t->prstatus.pr_reg, NULL);
1694 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1695 PRSTATUS_SIZE(t->prstatus, regset_size), &t->prstatus);
1696 *total += notesize(&t->notes[0]);
1698 do_thread_regset_writeback(t->task, &view->regsets[0]);
1701 * Each other regset might generate a note too. For each regset
1702 * that has no core_note_type or is inactive, we leave t->notes[i]
1703 * all zero and we'll know to skip writing it later.
1705 for (i = 1; i < view->n; ++i) {
1706 const struct user_regset *regset = &view->regsets[i];
1707 do_thread_regset_writeback(t->task, regset);
1708 if (regset->core_note_type && regset->get &&
1709 (!regset->active || regset->active(t->task, regset) > 0)) {
1710 int ret;
1711 size_t size = regset->n * regset->size;
1712 void *data = kmalloc(size, GFP_KERNEL);
1713 if (unlikely(!data))
1714 return 0;
1715 ret = regset->get(t->task, regset,
1716 0, size, data, NULL);
1717 if (unlikely(ret))
1718 kfree(data);
1719 else {
1720 if (regset->core_note_type != NT_PRFPREG)
1721 fill_note(&t->notes[i], "LINUX",
1722 regset->core_note_type,
1723 size, data);
1724 else {
1725 SET_PR_FPVALID(&t->prstatus,
1726 1, regset_size);
1727 fill_note(&t->notes[i], "CORE",
1728 NT_PRFPREG, size, data);
1730 *total += notesize(&t->notes[i]);
1735 return 1;
1738 static int fill_note_info(struct elfhdr *elf, int phdrs,
1739 struct elf_note_info *info,
1740 const siginfo_t *siginfo, struct pt_regs *regs)
1742 struct task_struct *dump_task = current;
1743 const struct user_regset_view *view = task_user_regset_view(dump_task);
1744 struct elf_thread_core_info *t;
1745 struct elf_prpsinfo *psinfo;
1746 struct core_thread *ct;
1747 unsigned int i;
1749 info->size = 0;
1750 info->thread = NULL;
1752 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1753 if (psinfo == NULL) {
1754 info->psinfo.data = NULL; /* So we don't free this wrongly */
1755 return 0;
1758 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1761 * Figure out how many notes we're going to need for each thread.
1763 info->thread_notes = 0;
1764 for (i = 0; i < view->n; ++i)
1765 if (view->regsets[i].core_note_type != 0)
1766 ++info->thread_notes;
1769 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1770 * since it is our one special case.
1772 if (unlikely(info->thread_notes == 0) ||
1773 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1774 WARN_ON(1);
1775 return 0;
1779 * Initialize the ELF file header.
1781 fill_elf_header(elf, phdrs,
1782 view->e_machine, view->e_flags);
1785 * Allocate a structure for each thread.
1787 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1788 t = kzalloc(offsetof(struct elf_thread_core_info,
1789 notes[info->thread_notes]),
1790 GFP_KERNEL);
1791 if (unlikely(!t))
1792 return 0;
1794 t->task = ct->task;
1795 if (ct->task == dump_task || !info->thread) {
1796 t->next = info->thread;
1797 info->thread = t;
1798 } else {
1800 * Make sure to keep the original task at
1801 * the head of the list.
1803 t->next = info->thread->next;
1804 info->thread->next = t;
1809 * Now fill in each thread's information.
1811 for (t = info->thread; t != NULL; t = t->next)
1812 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1813 return 0;
1816 * Fill in the two process-wide notes.
1818 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1819 info->size += notesize(&info->psinfo);
1821 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1822 info->size += notesize(&info->signote);
1824 fill_auxv_note(&info->auxv, current->mm);
1825 info->size += notesize(&info->auxv);
1827 if (fill_files_note(&info->files) == 0)
1828 info->size += notesize(&info->files);
1830 return 1;
1833 static size_t get_note_info_size(struct elf_note_info *info)
1835 return info->size;
1839 * Write all the notes for each thread. When writing the first thread, the
1840 * process-wide notes are interleaved after the first thread-specific note.
1842 static int write_note_info(struct elf_note_info *info,
1843 struct coredump_params *cprm)
1845 bool first = true;
1846 struct elf_thread_core_info *t = info->thread;
1848 do {
1849 int i;
1851 if (!writenote(&t->notes[0], cprm))
1852 return 0;
1854 if (first && !writenote(&info->psinfo, cprm))
1855 return 0;
1856 if (first && !writenote(&info->signote, cprm))
1857 return 0;
1858 if (first && !writenote(&info->auxv, cprm))
1859 return 0;
1860 if (first && info->files.data &&
1861 !writenote(&info->files, cprm))
1862 return 0;
1864 for (i = 1; i < info->thread_notes; ++i)
1865 if (t->notes[i].data &&
1866 !writenote(&t->notes[i], cprm))
1867 return 0;
1869 first = false;
1870 t = t->next;
1871 } while (t);
1873 return 1;
1876 static void free_note_info(struct elf_note_info *info)
1878 struct elf_thread_core_info *threads = info->thread;
1879 while (threads) {
1880 unsigned int i;
1881 struct elf_thread_core_info *t = threads;
1882 threads = t->next;
1883 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1884 for (i = 1; i < info->thread_notes; ++i)
1885 kfree(t->notes[i].data);
1886 kfree(t);
1888 kfree(info->psinfo.data);
1889 vfree(info->files.data);
1892 #else
1894 /* Here is the structure in which status of each thread is captured. */
1895 struct elf_thread_status
1897 struct list_head list;
1898 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1899 elf_fpregset_t fpu; /* NT_PRFPREG */
1900 struct task_struct *thread;
1901 #ifdef ELF_CORE_COPY_XFPREGS
1902 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1903 #endif
1904 struct memelfnote notes[3];
1905 int num_notes;
1909 * In order to add the specific thread information for the elf file format,
1910 * we need to keep a linked list of every threads pr_status and then create
1911 * a single section for them in the final core file.
1913 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1915 int sz = 0;
1916 struct task_struct *p = t->thread;
1917 t->num_notes = 0;
1919 fill_prstatus(&t->prstatus, p, signr);
1920 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1922 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1923 &(t->prstatus));
1924 t->num_notes++;
1925 sz += notesize(&t->notes[0]);
1927 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1928 &t->fpu))) {
1929 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1930 &(t->fpu));
1931 t->num_notes++;
1932 sz += notesize(&t->notes[1]);
1935 #ifdef ELF_CORE_COPY_XFPREGS
1936 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1937 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1938 sizeof(t->xfpu), &t->xfpu);
1939 t->num_notes++;
1940 sz += notesize(&t->notes[2]);
1942 #endif
1943 return sz;
1946 struct elf_note_info {
1947 struct memelfnote *notes;
1948 struct memelfnote *notes_files;
1949 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1950 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1951 struct list_head thread_list;
1952 elf_fpregset_t *fpu;
1953 #ifdef ELF_CORE_COPY_XFPREGS
1954 elf_fpxregset_t *xfpu;
1955 #endif
1956 user_siginfo_t csigdata;
1957 int thread_status_size;
1958 int numnote;
1961 static int elf_note_info_init(struct elf_note_info *info)
1963 memset(info, 0, sizeof(*info));
1964 INIT_LIST_HEAD(&info->thread_list);
1966 /* Allocate space for ELF notes */
1967 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1968 if (!info->notes)
1969 return 0;
1970 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1971 if (!info->psinfo)
1972 return 0;
1973 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1974 if (!info->prstatus)
1975 return 0;
1976 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1977 if (!info->fpu)
1978 return 0;
1979 #ifdef ELF_CORE_COPY_XFPREGS
1980 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1981 if (!info->xfpu)
1982 return 0;
1983 #endif
1984 return 1;
1987 static int fill_note_info(struct elfhdr *elf, int phdrs,
1988 struct elf_note_info *info,
1989 const siginfo_t *siginfo, struct pt_regs *regs)
1991 struct list_head *t;
1992 struct core_thread *ct;
1993 struct elf_thread_status *ets;
1995 if (!elf_note_info_init(info))
1996 return 0;
1998 for (ct = current->mm->core_state->dumper.next;
1999 ct; ct = ct->next) {
2000 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2001 if (!ets)
2002 return 0;
2004 ets->thread = ct->task;
2005 list_add(&ets->list, &info->thread_list);
2008 list_for_each(t, &info->thread_list) {
2009 int sz;
2011 ets = list_entry(t, struct elf_thread_status, list);
2012 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2013 info->thread_status_size += sz;
2015 /* now collect the dump for the current */
2016 memset(info->prstatus, 0, sizeof(*info->prstatus));
2017 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2018 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2020 /* Set up header */
2021 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2024 * Set up the notes in similar form to SVR4 core dumps made
2025 * with info from their /proc.
2028 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2029 sizeof(*info->prstatus), info->prstatus);
2030 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2031 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2032 sizeof(*info->psinfo), info->psinfo);
2034 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2035 fill_auxv_note(info->notes + 3, current->mm);
2036 info->numnote = 4;
2038 if (fill_files_note(info->notes + info->numnote) == 0) {
2039 info->notes_files = info->notes + info->numnote;
2040 info->numnote++;
2043 /* Try to dump the FPU. */
2044 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2045 info->fpu);
2046 if (info->prstatus->pr_fpvalid)
2047 fill_note(info->notes + info->numnote++,
2048 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2049 #ifdef ELF_CORE_COPY_XFPREGS
2050 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2051 fill_note(info->notes + info->numnote++,
2052 "LINUX", ELF_CORE_XFPREG_TYPE,
2053 sizeof(*info->xfpu), info->xfpu);
2054 #endif
2056 return 1;
2059 static size_t get_note_info_size(struct elf_note_info *info)
2061 int sz = 0;
2062 int i;
2064 for (i = 0; i < info->numnote; i++)
2065 sz += notesize(info->notes + i);
2067 sz += info->thread_status_size;
2069 return sz;
2072 static int write_note_info(struct elf_note_info *info,
2073 struct coredump_params *cprm)
2075 int i;
2076 struct list_head *t;
2078 for (i = 0; i < info->numnote; i++)
2079 if (!writenote(info->notes + i, cprm))
2080 return 0;
2082 /* write out the thread status notes section */
2083 list_for_each(t, &info->thread_list) {
2084 struct elf_thread_status *tmp =
2085 list_entry(t, struct elf_thread_status, list);
2087 for (i = 0; i < tmp->num_notes; i++)
2088 if (!writenote(&tmp->notes[i], cprm))
2089 return 0;
2092 return 1;
2095 static void free_note_info(struct elf_note_info *info)
2097 while (!list_empty(&info->thread_list)) {
2098 struct list_head *tmp = info->thread_list.next;
2099 list_del(tmp);
2100 kfree(list_entry(tmp, struct elf_thread_status, list));
2103 /* Free data possibly allocated by fill_files_note(): */
2104 if (info->notes_files)
2105 vfree(info->notes_files->data);
2107 kfree(info->prstatus);
2108 kfree(info->psinfo);
2109 kfree(info->notes);
2110 kfree(info->fpu);
2111 #ifdef ELF_CORE_COPY_XFPREGS
2112 kfree(info->xfpu);
2113 #endif
2116 #endif
2118 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2119 struct vm_area_struct *gate_vma)
2121 struct vm_area_struct *ret = tsk->mm->mmap;
2123 if (ret)
2124 return ret;
2125 return gate_vma;
2128 * Helper function for iterating across a vma list. It ensures that the caller
2129 * will visit `gate_vma' prior to terminating the search.
2131 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2132 struct vm_area_struct *gate_vma)
2134 struct vm_area_struct *ret;
2136 ret = this_vma->vm_next;
2137 if (ret)
2138 return ret;
2139 if (this_vma == gate_vma)
2140 return NULL;
2141 return gate_vma;
2144 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2145 elf_addr_t e_shoff, int segs)
2147 elf->e_shoff = e_shoff;
2148 elf->e_shentsize = sizeof(*shdr4extnum);
2149 elf->e_shnum = 1;
2150 elf->e_shstrndx = SHN_UNDEF;
2152 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2154 shdr4extnum->sh_type = SHT_NULL;
2155 shdr4extnum->sh_size = elf->e_shnum;
2156 shdr4extnum->sh_link = elf->e_shstrndx;
2157 shdr4extnum->sh_info = segs;
2161 * Actual dumper
2163 * This is a two-pass process; first we find the offsets of the bits,
2164 * and then they are actually written out. If we run out of core limit
2165 * we just truncate.
2167 static int elf_core_dump(struct coredump_params *cprm)
2169 int has_dumped = 0;
2170 mm_segment_t fs;
2171 int segs, i;
2172 size_t vma_data_size = 0;
2173 struct vm_area_struct *vma, *gate_vma;
2174 struct elfhdr *elf = NULL;
2175 loff_t offset = 0, dataoff;
2176 struct elf_note_info info = { };
2177 struct elf_phdr *phdr4note = NULL;
2178 struct elf_shdr *shdr4extnum = NULL;
2179 Elf_Half e_phnum;
2180 elf_addr_t e_shoff;
2181 elf_addr_t *vma_filesz = NULL;
2184 * We no longer stop all VM operations.
2186 * This is because those proceses that could possibly change map_count
2187 * or the mmap / vma pages are now blocked in do_exit on current
2188 * finishing this core dump.
2190 * Only ptrace can touch these memory addresses, but it doesn't change
2191 * the map_count or the pages allocated. So no possibility of crashing
2192 * exists while dumping the mm->vm_next areas to the core file.
2195 /* alloc memory for large data structures: too large to be on stack */
2196 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2197 if (!elf)
2198 goto out;
2200 * The number of segs are recored into ELF header as 16bit value.
2201 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2203 segs = current->mm->map_count;
2204 segs += elf_core_extra_phdrs();
2206 gate_vma = get_gate_vma(current->mm);
2207 if (gate_vma != NULL)
2208 segs++;
2210 /* for notes section */
2211 segs++;
2213 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2214 * this, kernel supports extended numbering. Have a look at
2215 * include/linux/elf.h for further information. */
2216 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2219 * Collect all the non-memory information about the process for the
2220 * notes. This also sets up the file header.
2222 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2223 goto cleanup;
2225 has_dumped = 1;
2227 fs = get_fs();
2228 set_fs(KERNEL_DS);
2230 offset += sizeof(*elf); /* Elf header */
2231 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2233 /* Write notes phdr entry */
2235 size_t sz = get_note_info_size(&info);
2237 sz += elf_coredump_extra_notes_size();
2239 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2240 if (!phdr4note)
2241 goto end_coredump;
2243 fill_elf_note_phdr(phdr4note, sz, offset);
2244 offset += sz;
2247 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2249 vma_filesz = kmalloc_array(segs - 1, sizeof(*vma_filesz), GFP_KERNEL);
2250 if (!vma_filesz)
2251 goto end_coredump;
2253 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2254 vma = next_vma(vma, gate_vma)) {
2255 unsigned long dump_size;
2257 dump_size = vma_dump_size(vma, cprm->mm_flags);
2258 vma_filesz[i++] = dump_size;
2259 vma_data_size += dump_size;
2262 offset += vma_data_size;
2263 offset += elf_core_extra_data_size();
2264 e_shoff = offset;
2266 if (e_phnum == PN_XNUM) {
2267 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2268 if (!shdr4extnum)
2269 goto end_coredump;
2270 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2273 offset = dataoff;
2275 if (!dump_emit(cprm, elf, sizeof(*elf)))
2276 goto end_coredump;
2278 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2279 goto end_coredump;
2281 /* Write program headers for segments dump */
2282 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2283 vma = next_vma(vma, gate_vma)) {
2284 struct elf_phdr phdr;
2286 phdr.p_type = PT_LOAD;
2287 phdr.p_offset = offset;
2288 phdr.p_vaddr = vma->vm_start;
2289 phdr.p_paddr = 0;
2290 phdr.p_filesz = vma_filesz[i++];
2291 phdr.p_memsz = vma->vm_end - vma->vm_start;
2292 offset += phdr.p_filesz;
2293 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2294 if (vma->vm_flags & VM_WRITE)
2295 phdr.p_flags |= PF_W;
2296 if (vma->vm_flags & VM_EXEC)
2297 phdr.p_flags |= PF_X;
2298 phdr.p_align = ELF_EXEC_PAGESIZE;
2300 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2301 goto end_coredump;
2304 if (!elf_core_write_extra_phdrs(cprm, offset))
2305 goto end_coredump;
2307 /* write out the notes section */
2308 if (!write_note_info(&info, cprm))
2309 goto end_coredump;
2311 if (elf_coredump_extra_notes_write(cprm))
2312 goto end_coredump;
2314 /* Align to page */
2315 if (!dump_skip(cprm, dataoff - cprm->pos))
2316 goto end_coredump;
2318 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2319 vma = next_vma(vma, gate_vma)) {
2320 unsigned long addr;
2321 unsigned long end;
2323 end = vma->vm_start + vma_filesz[i++];
2325 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2326 struct page *page;
2327 int stop;
2329 page = get_dump_page(addr);
2330 if (page) {
2331 void *kaddr = kmap(page);
2332 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2333 kunmap(page);
2334 put_page(page);
2335 } else
2336 stop = !dump_skip(cprm, PAGE_SIZE);
2337 if (stop)
2338 goto end_coredump;
2341 dump_truncate(cprm);
2343 if (!elf_core_write_extra_data(cprm))
2344 goto end_coredump;
2346 if (e_phnum == PN_XNUM) {
2347 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2348 goto end_coredump;
2351 end_coredump:
2352 set_fs(fs);
2354 cleanup:
2355 free_note_info(&info);
2356 kfree(shdr4extnum);
2357 kfree(vma_filesz);
2358 kfree(phdr4note);
2359 kfree(elf);
2360 out:
2361 return has_dumped;
2364 #endif /* CONFIG_ELF_CORE */
2366 static int __init init_elf_binfmt(void)
2368 register_binfmt(&elf_format);
2369 return 0;
2372 static void __exit exit_elf_binfmt(void)
2374 /* Remove the COFF and ELF loaders. */
2375 unregister_binfmt(&elf_format);
2378 core_initcall(init_elf_binfmt);
2379 module_exit(exit_elf_binfmt);
2380 MODULE_LICENSE("GPL");