2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/dax.h>
39 #include <asm/uaccess.h>
40 #include <asm/param.h>
44 #define user_long_t long
46 #ifndef user_siginfo_t
47 #define user_siginfo_t siginfo_t
50 static int load_elf_binary(struct linux_binprm
*bprm
);
51 static unsigned long elf_map(struct file
*, unsigned long, struct elf_phdr
*,
52 int, int, unsigned long);
55 static int load_elf_library(struct file
*);
57 #define load_elf_library NULL
61 * If we don't support core dumping, then supply a NULL so we
64 #ifdef CONFIG_ELF_CORE
65 static int elf_core_dump(struct coredump_params
*cprm
);
67 #define elf_core_dump NULL
70 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
71 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
73 #define ELF_MIN_ALIGN PAGE_SIZE
76 #ifndef ELF_CORE_EFLAGS
77 #define ELF_CORE_EFLAGS 0
80 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
81 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
82 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
84 static struct linux_binfmt elf_format
= {
85 .module
= THIS_MODULE
,
86 .load_binary
= load_elf_binary
,
87 .load_shlib
= load_elf_library
,
88 .core_dump
= elf_core_dump
,
89 .min_coredump
= ELF_EXEC_PAGESIZE
,
92 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
94 static int set_brk(unsigned long start
, unsigned long end
)
96 start
= ELF_PAGEALIGN(start
);
97 end
= ELF_PAGEALIGN(end
);
99 int error
= vm_brk(start
, end
- start
);
103 current
->mm
->start_brk
= current
->mm
->brk
= end
;
107 /* We need to explicitly zero any fractional pages
108 after the data section (i.e. bss). This would
109 contain the junk from the file that should not
112 static int padzero(unsigned long elf_bss
)
116 nbyte
= ELF_PAGEOFFSET(elf_bss
);
118 nbyte
= ELF_MIN_ALIGN
- nbyte
;
119 if (clear_user((void __user
*) elf_bss
, nbyte
))
125 /* Let's use some macros to make this stack manipulation a little clearer */
126 #ifdef CONFIG_STACK_GROWSUP
127 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
128 #define STACK_ROUND(sp, items) \
129 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
130 #define STACK_ALLOC(sp, len) ({ \
131 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
134 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
135 #define STACK_ROUND(sp, items) \
136 (((unsigned long) (sp - items)) &~ 15UL)
137 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
140 #ifndef ELF_BASE_PLATFORM
142 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
143 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
144 * will be copied to the user stack in the same manner as AT_PLATFORM.
146 #define ELF_BASE_PLATFORM NULL
150 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
151 unsigned long load_addr
, unsigned long interp_load_addr
)
153 unsigned long p
= bprm
->p
;
154 int argc
= bprm
->argc
;
155 int envc
= bprm
->envc
;
156 elf_addr_t __user
*argv
;
157 elf_addr_t __user
*envp
;
158 elf_addr_t __user
*sp
;
159 elf_addr_t __user
*u_platform
;
160 elf_addr_t __user
*u_base_platform
;
161 elf_addr_t __user
*u_rand_bytes
;
162 const char *k_platform
= ELF_PLATFORM
;
163 const char *k_base_platform
= ELF_BASE_PLATFORM
;
164 unsigned char k_rand_bytes
[16];
166 elf_addr_t
*elf_info
;
168 const struct cred
*cred
= current_cred();
169 struct vm_area_struct
*vma
;
172 * In some cases (e.g. Hyper-Threading), we want to avoid L1
173 * evictions by the processes running on the same package. One
174 * thing we can do is to shuffle the initial stack for them.
177 p
= arch_align_stack(p
);
180 * If this architecture has a platform capability string, copy it
181 * to userspace. In some cases (Sparc), this info is impossible
182 * for userspace to get any other way, in others (i386) it is
187 size_t len
= strlen(k_platform
) + 1;
189 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
190 if (__copy_to_user(u_platform
, k_platform
, len
))
195 * If this architecture has a "base" platform capability
196 * string, copy it to userspace.
198 u_base_platform
= NULL
;
199 if (k_base_platform
) {
200 size_t len
= strlen(k_base_platform
) + 1;
202 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
203 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
208 * Generate 16 random bytes for userspace PRNG seeding.
210 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
211 u_rand_bytes
= (elf_addr_t __user
*)
212 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
213 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
216 /* Create the ELF interpreter info */
217 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
218 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
219 #define NEW_AUX_ENT(id, val) \
221 elf_info[ei_index++] = id; \
222 elf_info[ei_index++] = val; \
227 * ARCH_DLINFO must come first so PPC can do its special alignment of
229 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
230 * ARCH_DLINFO changes
234 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
235 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
236 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
237 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
238 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
239 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
240 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
241 NEW_AUX_ENT(AT_FLAGS
, 0);
242 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
243 NEW_AUX_ENT(AT_UID
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
244 NEW_AUX_ENT(AT_EUID
, from_kuid_munged(cred
->user_ns
, cred
->euid
));
245 NEW_AUX_ENT(AT_GID
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
246 NEW_AUX_ENT(AT_EGID
, from_kgid_munged(cred
->user_ns
, cred
->egid
));
247 NEW_AUX_ENT(AT_SECURE
, security_bprm_secureexec(bprm
));
248 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
250 NEW_AUX_ENT(AT_HWCAP2
, ELF_HWCAP2
);
252 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
254 NEW_AUX_ENT(AT_PLATFORM
,
255 (elf_addr_t
)(unsigned long)u_platform
);
257 if (k_base_platform
) {
258 NEW_AUX_ENT(AT_BASE_PLATFORM
,
259 (elf_addr_t
)(unsigned long)u_base_platform
);
261 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
262 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
265 /* AT_NULL is zero; clear the rest too */
266 memset(&elf_info
[ei_index
], 0,
267 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
269 /* And advance past the AT_NULL entry. */
272 sp
= STACK_ADD(p
, ei_index
);
274 items
= (argc
+ 1) + (envc
+ 1) + 1;
275 bprm
->p
= STACK_ROUND(sp
, items
);
277 /* Point sp at the lowest address on the stack */
278 #ifdef CONFIG_STACK_GROWSUP
279 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
280 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
282 sp
= (elf_addr_t __user
*)bprm
->p
;
287 * Grow the stack manually; some architectures have a limit on how
288 * far ahead a user-space access may be in order to grow the stack.
290 vma
= find_extend_vma(current
->mm
, bprm
->p
);
294 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
295 if (__put_user(argc
, sp
++))
298 envp
= argv
+ argc
+ 1;
300 /* Populate argv and envp */
301 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
304 if (__put_user((elf_addr_t
)p
, argv
++))
306 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
307 if (!len
|| len
> MAX_ARG_STRLEN
)
311 if (__put_user(0, argv
))
313 current
->mm
->arg_end
= current
->mm
->env_start
= p
;
316 if (__put_user((elf_addr_t
)p
, envp
++))
318 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
319 if (!len
|| len
> MAX_ARG_STRLEN
)
323 if (__put_user(0, envp
))
325 current
->mm
->env_end
= p
;
327 /* Put the elf_info on the stack in the right place. */
328 sp
= (elf_addr_t __user
*)envp
+ 1;
329 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
336 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
337 struct elf_phdr
*eppnt
, int prot
, int type
,
338 unsigned long total_size
)
340 unsigned long map_addr
;
341 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
342 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
343 addr
= ELF_PAGESTART(addr
);
344 size
= ELF_PAGEALIGN(size
);
346 /* mmap() will return -EINVAL if given a zero size, but a
347 * segment with zero filesize is perfectly valid */
352 * total_size is the size of the ELF (interpreter) image.
353 * The _first_ mmap needs to know the full size, otherwise
354 * randomization might put this image into an overlapping
355 * position with the ELF binary image. (since size < total_size)
356 * So we first map the 'big' image - and unmap the remainder at
357 * the end. (which unmap is needed for ELF images with holes.)
360 total_size
= ELF_PAGEALIGN(total_size
);
361 map_addr
= vm_mmap(filep
, addr
, total_size
, prot
, type
, off
);
362 if (!BAD_ADDR(map_addr
))
363 vm_munmap(map_addr
+size
, total_size
-size
);
365 map_addr
= vm_mmap(filep
, addr
, size
, prot
, type
, off
);
370 #endif /* !elf_map */
372 static unsigned long total_mapping_size(struct elf_phdr
*cmds
, int nr
)
374 int i
, first_idx
= -1, last_idx
= -1;
376 for (i
= 0; i
< nr
; i
++) {
377 if (cmds
[i
].p_type
== PT_LOAD
) {
386 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
387 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
391 * load_elf_phdrs() - load ELF program headers
392 * @elf_ex: ELF header of the binary whose program headers should be loaded
393 * @elf_file: the opened ELF binary file
395 * Loads ELF program headers from the binary file elf_file, which has the ELF
396 * header pointed to by elf_ex, into a newly allocated array. The caller is
397 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
399 static struct elf_phdr
*load_elf_phdrs(struct elfhdr
*elf_ex
,
400 struct file
*elf_file
)
402 struct elf_phdr
*elf_phdata
= NULL
;
403 int retval
, size
, err
= -1;
406 * If the size of this structure has changed, then punt, since
407 * we will be doing the wrong thing.
409 if (elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
412 /* Sanity check the number of program headers... */
413 if (elf_ex
->e_phnum
< 1 ||
414 elf_ex
->e_phnum
> 65536U / sizeof(struct elf_phdr
))
417 /* ...and their total size. */
418 size
= sizeof(struct elf_phdr
) * elf_ex
->e_phnum
;
419 if (size
> ELF_MIN_ALIGN
)
422 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
426 /* Read in the program headers */
427 retval
= kernel_read(elf_file
, elf_ex
->e_phoff
,
428 (char *)elf_phdata
, size
);
429 if (retval
!= size
) {
430 err
= (retval
< 0) ? retval
: -EIO
;
444 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
447 * struct arch_elf_state - arch-specific ELF loading state
449 * This structure is used to preserve architecture specific data during
450 * the loading of an ELF file, throughout the checking of architecture
451 * specific ELF headers & through to the point where the ELF load is
452 * known to be proceeding (ie. SET_PERSONALITY).
454 * This implementation is a dummy for architectures which require no
457 struct arch_elf_state
{
460 #define INIT_ARCH_ELF_STATE {}
463 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
464 * @ehdr: The main ELF header
465 * @phdr: The program header to check
466 * @elf: The open ELF file
467 * @is_interp: True if the phdr is from the interpreter of the ELF being
468 * loaded, else false.
469 * @state: Architecture-specific state preserved throughout the process
470 * of loading the ELF.
472 * Inspects the program header phdr to validate its correctness and/or
473 * suitability for the system. Called once per ELF program header in the
474 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
477 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
478 * with that return code.
480 static inline int arch_elf_pt_proc(struct elfhdr
*ehdr
,
481 struct elf_phdr
*phdr
,
482 struct file
*elf
, bool is_interp
,
483 struct arch_elf_state
*state
)
485 /* Dummy implementation, always proceed */
490 * arch_check_elf() - check an ELF executable
491 * @ehdr: The main ELF header
492 * @has_interp: True if the ELF has an interpreter, else false.
493 * @interp_ehdr: The interpreter's ELF header
494 * @state: Architecture-specific state preserved throughout the process
495 * of loading the ELF.
497 * Provides a final opportunity for architecture code to reject the loading
498 * of the ELF & cause an exec syscall to return an error. This is called after
499 * all program headers to be checked by arch_elf_pt_proc have been.
501 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
502 * with that return code.
504 static inline int arch_check_elf(struct elfhdr
*ehdr
, bool has_interp
,
505 struct elfhdr
*interp_ehdr
,
506 struct arch_elf_state
*state
)
508 /* Dummy implementation, always proceed */
512 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
514 /* This is much more generalized than the library routine read function,
515 so we keep this separate. Technically the library read function
516 is only provided so that we can read a.out libraries that have
519 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
520 struct file
*interpreter
, unsigned long *interp_map_addr
,
521 unsigned long no_base
, struct elf_phdr
*interp_elf_phdata
)
523 struct elf_phdr
*eppnt
;
524 unsigned long load_addr
= 0;
525 int load_addr_set
= 0;
526 unsigned long last_bss
= 0, elf_bss
= 0;
527 unsigned long error
= ~0UL;
528 unsigned long total_size
;
531 /* First of all, some simple consistency checks */
532 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
533 interp_elf_ex
->e_type
!= ET_DYN
)
535 if (!elf_check_arch(interp_elf_ex
))
537 if (!interpreter
->f_op
->mmap
)
540 total_size
= total_mapping_size(interp_elf_phdata
,
541 interp_elf_ex
->e_phnum
);
547 eppnt
= interp_elf_phdata
;
548 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
549 if (eppnt
->p_type
== PT_LOAD
) {
550 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
552 unsigned long vaddr
= 0;
553 unsigned long k
, map_addr
;
555 if (eppnt
->p_flags
& PF_R
)
556 elf_prot
= PROT_READ
;
557 if (eppnt
->p_flags
& PF_W
)
558 elf_prot
|= PROT_WRITE
;
559 if (eppnt
->p_flags
& PF_X
)
560 elf_prot
|= PROT_EXEC
;
561 vaddr
= eppnt
->p_vaddr
;
562 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
563 elf_type
|= MAP_FIXED
;
564 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
567 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
568 eppnt
, elf_prot
, elf_type
, total_size
);
570 if (!*interp_map_addr
)
571 *interp_map_addr
= map_addr
;
573 if (BAD_ADDR(map_addr
))
576 if (!load_addr_set
&&
577 interp_elf_ex
->e_type
== ET_DYN
) {
578 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
583 * Check to see if the section's size will overflow the
584 * allowed task size. Note that p_filesz must always be
585 * <= p_memsize so it's only necessary to check p_memsz.
587 k
= load_addr
+ eppnt
->p_vaddr
;
589 eppnt
->p_filesz
> eppnt
->p_memsz
||
590 eppnt
->p_memsz
> TASK_SIZE
||
591 TASK_SIZE
- eppnt
->p_memsz
< k
) {
597 * Find the end of the file mapping for this phdr, and
598 * keep track of the largest address we see for this.
600 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
605 * Do the same thing for the memory mapping - between
606 * elf_bss and last_bss is the bss section.
608 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_memsz
;
615 * Now fill out the bss section: first pad the last page from
616 * the file up to the page boundary, and zero it from elf_bss
617 * up to the end of the page.
619 if (padzero(elf_bss
)) {
624 * Next, align both the file and mem bss up to the page size,
625 * since this is where elf_bss was just zeroed up to, and where
626 * last_bss will end after the vm_brk() below.
628 elf_bss
= ELF_PAGEALIGN(elf_bss
);
629 last_bss
= ELF_PAGEALIGN(last_bss
);
630 /* Finally, if there is still more bss to allocate, do it. */
631 if (last_bss
> elf_bss
) {
632 error
= vm_brk(elf_bss
, last_bss
- elf_bss
);
643 * These are the functions used to load ELF style executables and shared
644 * libraries. There is no binary dependent code anywhere else.
647 #ifndef STACK_RND_MASK
648 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
651 static unsigned long randomize_stack_top(unsigned long stack_top
)
653 unsigned long random_variable
= 0;
655 if ((current
->flags
& PF_RANDOMIZE
) &&
656 !(current
->personality
& ADDR_NO_RANDOMIZE
)) {
657 random_variable
= get_random_long();
658 random_variable
&= STACK_RND_MASK
;
659 random_variable
<<= PAGE_SHIFT
;
661 #ifdef CONFIG_STACK_GROWSUP
662 return PAGE_ALIGN(stack_top
) + random_variable
;
664 return PAGE_ALIGN(stack_top
) - random_variable
;
668 static int load_elf_binary(struct linux_binprm
*bprm
)
670 struct file
*interpreter
= NULL
; /* to shut gcc up */
671 unsigned long load_addr
= 0, load_bias
= 0;
672 int load_addr_set
= 0;
673 char * elf_interpreter
= NULL
;
675 struct elf_phdr
*elf_ppnt
, *elf_phdata
, *interp_elf_phdata
= NULL
;
676 unsigned long elf_bss
, elf_brk
;
678 unsigned long elf_entry
;
679 unsigned long interp_load_addr
= 0;
680 unsigned long start_code
, end_code
, start_data
, end_data
;
681 unsigned long reloc_func_desc __maybe_unused
= 0;
682 int executable_stack
= EXSTACK_DEFAULT
;
683 struct pt_regs
*regs
= current_pt_regs();
685 struct elfhdr elf_ex
;
686 struct elfhdr interp_elf_ex
;
688 struct arch_elf_state arch_state
= INIT_ARCH_ELF_STATE
;
690 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
696 /* Get the exec-header */
697 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
700 /* First of all, some simple consistency checks */
701 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
704 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
706 if (!elf_check_arch(&loc
->elf_ex
))
708 if (!bprm
->file
->f_op
->mmap
)
711 elf_phdata
= load_elf_phdrs(&loc
->elf_ex
, bprm
->file
);
715 elf_ppnt
= elf_phdata
;
724 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++) {
725 if (elf_ppnt
->p_type
== PT_INTERP
) {
726 /* This is the program interpreter used for
727 * shared libraries - for now assume that this
728 * is an a.out format binary
731 if (elf_ppnt
->p_filesz
> PATH_MAX
||
732 elf_ppnt
->p_filesz
< 2)
736 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
,
738 if (!elf_interpreter
)
741 retval
= kernel_read(bprm
->file
, elf_ppnt
->p_offset
,
744 if (retval
!= elf_ppnt
->p_filesz
) {
747 goto out_free_interp
;
749 /* make sure path is NULL terminated */
751 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
752 goto out_free_interp
;
754 interpreter
= open_exec(elf_interpreter
);
755 retval
= PTR_ERR(interpreter
);
756 if (IS_ERR(interpreter
))
757 goto out_free_interp
;
760 * If the binary is not readable then enforce
761 * mm->dumpable = 0 regardless of the interpreter's
764 would_dump(bprm
, interpreter
);
766 /* Get the exec headers */
767 retval
= kernel_read(interpreter
, 0,
768 (void *)&loc
->interp_elf_ex
,
769 sizeof(loc
->interp_elf_ex
));
770 if (retval
!= sizeof(loc
->interp_elf_ex
)) {
773 goto out_free_dentry
;
781 elf_ppnt
= elf_phdata
;
782 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
783 switch (elf_ppnt
->p_type
) {
785 if (elf_ppnt
->p_flags
& PF_X
)
786 executable_stack
= EXSTACK_ENABLE_X
;
788 executable_stack
= EXSTACK_DISABLE_X
;
791 case PT_LOPROC
... PT_HIPROC
:
792 retval
= arch_elf_pt_proc(&loc
->elf_ex
, elf_ppnt
,
796 goto out_free_dentry
;
800 /* Some simple consistency checks for the interpreter */
801 if (elf_interpreter
) {
803 /* Not an ELF interpreter */
804 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
805 goto out_free_dentry
;
806 /* Verify the interpreter has a valid arch */
807 if (!elf_check_arch(&loc
->interp_elf_ex
))
808 goto out_free_dentry
;
810 /* Load the interpreter program headers */
811 interp_elf_phdata
= load_elf_phdrs(&loc
->interp_elf_ex
,
813 if (!interp_elf_phdata
)
814 goto out_free_dentry
;
816 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
817 elf_ppnt
= interp_elf_phdata
;
818 for (i
= 0; i
< loc
->interp_elf_ex
.e_phnum
; i
++, elf_ppnt
++)
819 switch (elf_ppnt
->p_type
) {
820 case PT_LOPROC
... PT_HIPROC
:
821 retval
= arch_elf_pt_proc(&loc
->interp_elf_ex
,
822 elf_ppnt
, interpreter
,
825 goto out_free_dentry
;
831 * Allow arch code to reject the ELF at this point, whilst it's
832 * still possible to return an error to the code that invoked
835 retval
= arch_check_elf(&loc
->elf_ex
,
836 !!interpreter
, &loc
->interp_elf_ex
,
839 goto out_free_dentry
;
841 /* Flush all traces of the currently running executable */
842 retval
= flush_old_exec(bprm
);
844 goto out_free_dentry
;
846 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
847 may depend on the personality. */
848 SET_PERSONALITY2(loc
->elf_ex
, &arch_state
);
849 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
850 current
->personality
|= READ_IMPLIES_EXEC
;
852 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
853 current
->flags
|= PF_RANDOMIZE
;
855 setup_new_exec(bprm
);
856 install_exec_creds(bprm
);
858 /* Do this so that we can load the interpreter, if need be. We will
859 change some of these later */
860 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
863 goto out_free_dentry
;
865 current
->mm
->start_stack
= bprm
->p
;
867 /* Now we do a little grungy work by mmapping the ELF image into
868 the correct location in memory. */
869 for(i
= 0, elf_ppnt
= elf_phdata
;
870 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
871 int elf_prot
= 0, elf_flags
;
872 unsigned long k
, vaddr
;
873 unsigned long total_size
= 0;
875 if (elf_ppnt
->p_type
!= PT_LOAD
)
878 if (unlikely (elf_brk
> elf_bss
)) {
881 /* There was a PT_LOAD segment with p_memsz > p_filesz
882 before this one. Map anonymous pages, if needed,
883 and clear the area. */
884 retval
= set_brk(elf_bss
+ load_bias
,
885 elf_brk
+ load_bias
);
887 goto out_free_dentry
;
888 nbyte
= ELF_PAGEOFFSET(elf_bss
);
890 nbyte
= ELF_MIN_ALIGN
- nbyte
;
891 if (nbyte
> elf_brk
- elf_bss
)
892 nbyte
= elf_brk
- elf_bss
;
893 if (clear_user((void __user
*)elf_bss
+
896 * This bss-zeroing can fail if the ELF
897 * file specifies odd protections. So
898 * we don't check the return value
904 if (elf_ppnt
->p_flags
& PF_R
)
905 elf_prot
|= PROT_READ
;
906 if (elf_ppnt
->p_flags
& PF_W
)
907 elf_prot
|= PROT_WRITE
;
908 if (elf_ppnt
->p_flags
& PF_X
)
909 elf_prot
|= PROT_EXEC
;
911 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
913 vaddr
= elf_ppnt
->p_vaddr
;
915 * If we are loading ET_EXEC or we have already performed
916 * the ET_DYN load_addr calculations, proceed normally.
918 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
919 elf_flags
|= MAP_FIXED
;
920 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
922 * This logic is run once for the first LOAD Program
923 * Header for ET_DYN binaries to calculate the
924 * randomization (load_bias) for all the LOAD
925 * Program Headers, and to calculate the entire
926 * size of the ELF mapping (total_size). (Note that
927 * load_addr_set is set to true later once the
928 * initial mapping is performed.)
930 * There are effectively two types of ET_DYN
931 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
932 * and loaders (ET_DYN without INTERP, since they
933 * _are_ the ELF interpreter). The loaders must
934 * be loaded away from programs since the program
935 * may otherwise collide with the loader (especially
936 * for ET_EXEC which does not have a randomized
937 * position). For example to handle invocations of
938 * "./ld.so someprog" to test out a new version of
939 * the loader, the subsequent program that the
940 * loader loads must avoid the loader itself, so
941 * they cannot share the same load range. Sufficient
942 * room for the brk must be allocated with the
943 * loader as well, since brk must be available with
946 * Therefore, programs are loaded offset from
947 * ELF_ET_DYN_BASE and loaders are loaded into the
948 * independently randomized mmap region (0 load_bias
949 * without MAP_FIXED).
951 if (elf_interpreter
) {
952 load_bias
= ELF_ET_DYN_BASE
;
953 if (current
->flags
& PF_RANDOMIZE
)
954 load_bias
+= arch_mmap_rnd();
955 elf_flags
|= MAP_FIXED
;
960 * Since load_bias is used for all subsequent loading
961 * calculations, we must lower it by the first vaddr
962 * so that the remaining calculations based on the
963 * ELF vaddrs will be correctly offset. The result
964 * is then page aligned.
966 load_bias
= ELF_PAGESTART(load_bias
- vaddr
);
968 total_size
= total_mapping_size(elf_phdata
,
969 loc
->elf_ex
.e_phnum
);
972 goto out_free_dentry
;
976 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
977 elf_prot
, elf_flags
, total_size
);
978 if (BAD_ADDR(error
)) {
979 retval
= IS_ERR((void *)error
) ?
980 PTR_ERR((void*)error
) : -EINVAL
;
981 goto out_free_dentry
;
984 if (!load_addr_set
) {
986 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
987 if (loc
->elf_ex
.e_type
== ET_DYN
) {
989 ELF_PAGESTART(load_bias
+ vaddr
);
990 load_addr
+= load_bias
;
991 reloc_func_desc
= load_bias
;
994 k
= elf_ppnt
->p_vaddr
;
1001 * Check to see if the section's size will overflow the
1002 * allowed task size. Note that p_filesz must always be
1003 * <= p_memsz so it is only necessary to check p_memsz.
1005 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
1006 elf_ppnt
->p_memsz
> TASK_SIZE
||
1007 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
1008 /* set_brk can never work. Avoid overflows. */
1010 goto out_free_dentry
;
1013 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
1017 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
1021 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
1026 loc
->elf_ex
.e_entry
+= load_bias
;
1027 elf_bss
+= load_bias
;
1028 elf_brk
+= load_bias
;
1029 start_code
+= load_bias
;
1030 end_code
+= load_bias
;
1031 start_data
+= load_bias
;
1032 end_data
+= load_bias
;
1034 /* Calling set_brk effectively mmaps the pages that we need
1035 * for the bss and break sections. We must do this before
1036 * mapping in the interpreter, to make sure it doesn't wind
1037 * up getting placed where the bss needs to go.
1039 retval
= set_brk(elf_bss
, elf_brk
);
1041 goto out_free_dentry
;
1042 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
1043 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
1044 goto out_free_dentry
;
1047 if (elf_interpreter
) {
1048 unsigned long interp_map_addr
= 0;
1050 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
1053 load_bias
, interp_elf_phdata
);
1054 if (!IS_ERR((void *)elf_entry
)) {
1056 * load_elf_interp() returns relocation
1059 interp_load_addr
= elf_entry
;
1060 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
1062 if (BAD_ADDR(elf_entry
)) {
1063 retval
= IS_ERR((void *)elf_entry
) ?
1064 (int)elf_entry
: -EINVAL
;
1065 goto out_free_dentry
;
1067 reloc_func_desc
= interp_load_addr
;
1069 allow_write_access(interpreter
);
1071 kfree(elf_interpreter
);
1073 elf_entry
= loc
->elf_ex
.e_entry
;
1074 if (BAD_ADDR(elf_entry
)) {
1076 goto out_free_dentry
;
1080 kfree(interp_elf_phdata
);
1083 set_binfmt(&elf_format
);
1085 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1086 retval
= arch_setup_additional_pages(bprm
, !!elf_interpreter
);
1089 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1091 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
1092 load_addr
, interp_load_addr
);
1095 /* N.B. passed_fileno might not be initialized? */
1096 current
->mm
->end_code
= end_code
;
1097 current
->mm
->start_code
= start_code
;
1098 current
->mm
->start_data
= start_data
;
1099 current
->mm
->end_data
= end_data
;
1100 current
->mm
->start_stack
= bprm
->p
;
1102 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1)) {
1103 current
->mm
->brk
= current
->mm
->start_brk
=
1104 arch_randomize_brk(current
->mm
);
1105 #ifdef compat_brk_randomized
1106 current
->brk_randomized
= 1;
1110 if (current
->personality
& MMAP_PAGE_ZERO
) {
1111 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1112 and some applications "depend" upon this behavior.
1113 Since we do not have the power to recompile these, we
1114 emulate the SVr4 behavior. Sigh. */
1115 error
= vm_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
1116 MAP_FIXED
| MAP_PRIVATE
, 0);
1119 #ifdef ELF_PLAT_INIT
1121 * The ABI may specify that certain registers be set up in special
1122 * ways (on i386 %edx is the address of a DT_FINI function, for
1123 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1124 * that the e_entry field is the address of the function descriptor
1125 * for the startup routine, rather than the address of the startup
1126 * routine itself. This macro performs whatever initialization to
1127 * the regs structure is required as well as any relocations to the
1128 * function descriptor entries when executing dynamically links apps.
1130 ELF_PLAT_INIT(regs
, reloc_func_desc
);
1133 start_thread(regs
, elf_entry
, bprm
->p
);
1142 kfree(interp_elf_phdata
);
1143 allow_write_access(interpreter
);
1147 kfree(elf_interpreter
);
1153 #ifdef CONFIG_USELIB
1154 /* This is really simpleminded and specialized - we are loading an
1155 a.out library that is given an ELF header. */
1156 static int load_elf_library(struct file
*file
)
1158 struct elf_phdr
*elf_phdata
;
1159 struct elf_phdr
*eppnt
;
1160 unsigned long elf_bss
, bss
, len
;
1161 int retval
, error
, i
, j
;
1162 struct elfhdr elf_ex
;
1165 retval
= kernel_read(file
, 0, (char *)&elf_ex
, sizeof(elf_ex
));
1166 if (retval
!= sizeof(elf_ex
))
1169 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1172 /* First of all, some simple consistency checks */
1173 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1174 !elf_check_arch(&elf_ex
) || !file
->f_op
->mmap
)
1177 /* Now read in all of the header information */
1179 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1180 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1183 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1189 retval
= kernel_read(file
, elf_ex
.e_phoff
, (char *)eppnt
, j
);
1193 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1194 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1199 while (eppnt
->p_type
!= PT_LOAD
)
1202 /* Now use mmap to map the library into memory. */
1203 error
= vm_mmap(file
,
1204 ELF_PAGESTART(eppnt
->p_vaddr
),
1206 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1207 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1208 MAP_FIXED
| MAP_PRIVATE
| MAP_DENYWRITE
,
1210 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1211 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1214 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1215 if (padzero(elf_bss
)) {
1220 len
= ELF_PAGEALIGN(eppnt
->p_filesz
+ eppnt
->p_vaddr
);
1221 bss
= ELF_PAGEALIGN(eppnt
->p_memsz
+ eppnt
->p_vaddr
);
1223 error
= vm_brk(len
, bss
- len
);
1234 #endif /* #ifdef CONFIG_USELIB */
1236 #ifdef CONFIG_ELF_CORE
1240 * Modelled on fs/exec.c:aout_core_dump()
1241 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1245 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1246 * that are useful for post-mortem analysis are included in every core dump.
1247 * In that way we ensure that the core dump is fully interpretable later
1248 * without matching up the same kernel and hardware config to see what PC values
1249 * meant. These special mappings include - vDSO, vsyscall, and other
1250 * architecture specific mappings
1252 static bool always_dump_vma(struct vm_area_struct
*vma
)
1254 /* Any vsyscall mappings? */
1255 if (vma
== get_gate_vma(vma
->vm_mm
))
1259 * Assume that all vmas with a .name op should always be dumped.
1260 * If this changes, a new vm_ops field can easily be added.
1262 if (vma
->vm_ops
&& vma
->vm_ops
->name
&& vma
->vm_ops
->name(vma
))
1266 * arch_vma_name() returns non-NULL for special architecture mappings,
1267 * such as vDSO sections.
1269 if (arch_vma_name(vma
))
1276 * Decide what to dump of a segment, part, all or none.
1278 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1279 unsigned long mm_flags
)
1281 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1283 /* always dump the vdso and vsyscall sections */
1284 if (always_dump_vma(vma
))
1287 if (vma
->vm_flags
& VM_DONTDUMP
)
1290 /* support for DAX */
1291 if (vma_is_dax(vma
)) {
1292 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(DAX_SHARED
))
1294 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(DAX_PRIVATE
))
1299 /* Hugetlb memory check */
1300 if (vma
->vm_flags
& VM_HUGETLB
) {
1301 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1303 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1308 /* Do not dump I/O mapped devices or special mappings */
1309 if (vma
->vm_flags
& VM_IO
)
1312 /* By default, dump shared memory if mapped from an anonymous file. */
1313 if (vma
->vm_flags
& VM_SHARED
) {
1314 if (file_inode(vma
->vm_file
)->i_nlink
== 0 ?
1315 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1320 /* Dump segments that have been written to. */
1321 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1323 if (vma
->vm_file
== NULL
)
1326 if (FILTER(MAPPED_PRIVATE
))
1330 * If this looks like the beginning of a DSO or executable mapping,
1331 * check for an ELF header. If we find one, dump the first page to
1332 * aid in determining what was mapped here.
1334 if (FILTER(ELF_HEADERS
) &&
1335 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1336 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1338 mm_segment_t fs
= get_fs();
1340 * Doing it this way gets the constant folded by GCC.
1344 char elfmag
[SELFMAG
];
1346 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1347 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1348 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1349 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1350 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1352 * Switch to the user "segment" for get_user(),
1353 * then put back what elf_core_dump() had in place.
1356 if (unlikely(get_user(word
, header
)))
1359 if (word
== magic
.cmp
)
1368 return vma
->vm_end
- vma
->vm_start
;
1371 /* An ELF note in memory */
1376 unsigned int datasz
;
1380 static int notesize(struct memelfnote
*en
)
1384 sz
= sizeof(struct elf_note
);
1385 sz
+= roundup(strlen(en
->name
) + 1, 4);
1386 sz
+= roundup(en
->datasz
, 4);
1391 static int writenote(struct memelfnote
*men
, struct coredump_params
*cprm
)
1394 en
.n_namesz
= strlen(men
->name
) + 1;
1395 en
.n_descsz
= men
->datasz
;
1396 en
.n_type
= men
->type
;
1398 return dump_emit(cprm
, &en
, sizeof(en
)) &&
1399 dump_emit(cprm
, men
->name
, en
.n_namesz
) && dump_align(cprm
, 4) &&
1400 dump_emit(cprm
, men
->data
, men
->datasz
) && dump_align(cprm
, 4);
1403 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1404 u16 machine
, u32 flags
)
1406 memset(elf
, 0, sizeof(*elf
));
1408 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1409 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1410 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1411 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1412 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1414 elf
->e_type
= ET_CORE
;
1415 elf
->e_machine
= machine
;
1416 elf
->e_version
= EV_CURRENT
;
1417 elf
->e_phoff
= sizeof(struct elfhdr
);
1418 elf
->e_flags
= flags
;
1419 elf
->e_ehsize
= sizeof(struct elfhdr
);
1420 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1421 elf
->e_phnum
= segs
;
1426 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1428 phdr
->p_type
= PT_NOTE
;
1429 phdr
->p_offset
= offset
;
1432 phdr
->p_filesz
= sz
;
1439 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1440 unsigned int sz
, void *data
)
1450 * fill up all the fields in prstatus from the given task struct, except
1451 * registers which need to be filled up separately.
1453 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1454 struct task_struct
*p
, long signr
)
1456 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1457 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1458 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1460 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1462 prstatus
->pr_pid
= task_pid_vnr(p
);
1463 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1464 prstatus
->pr_sid
= task_session_vnr(p
);
1465 if (thread_group_leader(p
)) {
1466 struct task_cputime cputime
;
1469 * This is the record for the group leader. It shows the
1470 * group-wide total, not its individual thread total.
1472 thread_group_cputime(p
, &cputime
);
1473 cputime_to_timeval(cputime
.utime
, &prstatus
->pr_utime
);
1474 cputime_to_timeval(cputime
.stime
, &prstatus
->pr_stime
);
1476 cputime_t utime
, stime
;
1478 task_cputime(p
, &utime
, &stime
);
1479 cputime_to_timeval(utime
, &prstatus
->pr_utime
);
1480 cputime_to_timeval(stime
, &prstatus
->pr_stime
);
1482 cputime_to_timeval(p
->signal
->cutime
, &prstatus
->pr_cutime
);
1483 cputime_to_timeval(p
->signal
->cstime
, &prstatus
->pr_cstime
);
1486 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1487 struct mm_struct
*mm
)
1489 const struct cred
*cred
;
1490 unsigned int i
, len
;
1492 /* first copy the parameters from user space */
1493 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1495 len
= mm
->arg_end
- mm
->arg_start
;
1496 if (len
>= ELF_PRARGSZ
)
1497 len
= ELF_PRARGSZ
-1;
1498 if (copy_from_user(&psinfo
->pr_psargs
,
1499 (const char __user
*)mm
->arg_start
, len
))
1501 for(i
= 0; i
< len
; i
++)
1502 if (psinfo
->pr_psargs
[i
] == 0)
1503 psinfo
->pr_psargs
[i
] = ' ';
1504 psinfo
->pr_psargs
[len
] = 0;
1507 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1509 psinfo
->pr_pid
= task_pid_vnr(p
);
1510 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1511 psinfo
->pr_sid
= task_session_vnr(p
);
1513 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1514 psinfo
->pr_state
= i
;
1515 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1516 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1517 psinfo
->pr_nice
= task_nice(p
);
1518 psinfo
->pr_flag
= p
->flags
;
1520 cred
= __task_cred(p
);
1521 SET_UID(psinfo
->pr_uid
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
1522 SET_GID(psinfo
->pr_gid
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
1524 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1529 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1531 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1535 while (auxv
[i
- 2] != AT_NULL
);
1536 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1539 static void fill_siginfo_note(struct memelfnote
*note
, user_siginfo_t
*csigdata
,
1540 const siginfo_t
*siginfo
)
1542 mm_segment_t old_fs
= get_fs();
1544 copy_siginfo_to_user((user_siginfo_t __user
*) csigdata
, siginfo
);
1546 fill_note(note
, "CORE", NT_SIGINFO
, sizeof(*csigdata
), csigdata
);
1549 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1551 * Format of NT_FILE note:
1553 * long count -- how many files are mapped
1554 * long page_size -- units for file_ofs
1555 * array of [COUNT] elements of
1559 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1561 static int fill_files_note(struct memelfnote
*note
)
1563 struct vm_area_struct
*vma
;
1564 unsigned count
, size
, names_ofs
, remaining
, n
;
1566 user_long_t
*start_end_ofs
;
1567 char *name_base
, *name_curpos
;
1569 /* *Estimated* file count and total data size needed */
1570 count
= current
->mm
->map_count
;
1573 names_ofs
= (2 + 3 * count
) * sizeof(data
[0]);
1575 if (size
>= MAX_FILE_NOTE_SIZE
) /* paranoia check */
1577 size
= round_up(size
, PAGE_SIZE
);
1578 data
= vmalloc(size
);
1582 start_end_ofs
= data
+ 2;
1583 name_base
= name_curpos
= ((char *)data
) + names_ofs
;
1584 remaining
= size
- names_ofs
;
1586 for (vma
= current
->mm
->mmap
; vma
!= NULL
; vma
= vma
->vm_next
) {
1588 const char *filename
;
1590 file
= vma
->vm_file
;
1593 filename
= file_path(file
, name_curpos
, remaining
);
1594 if (IS_ERR(filename
)) {
1595 if (PTR_ERR(filename
) == -ENAMETOOLONG
) {
1597 size
= size
* 5 / 4;
1603 /* file_path() fills at the end, move name down */
1604 /* n = strlen(filename) + 1: */
1605 n
= (name_curpos
+ remaining
) - filename
;
1606 remaining
= filename
- name_curpos
;
1607 memmove(name_curpos
, filename
, n
);
1610 *start_end_ofs
++ = vma
->vm_start
;
1611 *start_end_ofs
++ = vma
->vm_end
;
1612 *start_end_ofs
++ = vma
->vm_pgoff
;
1616 /* Now we know exact count of files, can store it */
1618 data
[1] = PAGE_SIZE
;
1620 * Count usually is less than current->mm->map_count,
1621 * we need to move filenames down.
1623 n
= current
->mm
->map_count
- count
;
1625 unsigned shift_bytes
= n
* 3 * sizeof(data
[0]);
1626 memmove(name_base
- shift_bytes
, name_base
,
1627 name_curpos
- name_base
);
1628 name_curpos
-= shift_bytes
;
1631 size
= name_curpos
- (char *)data
;
1632 fill_note(note
, "CORE", NT_FILE
, size
, data
);
1636 #ifdef CORE_DUMP_USE_REGSET
1637 #include <linux/regset.h>
1639 struct elf_thread_core_info
{
1640 struct elf_thread_core_info
*next
;
1641 struct task_struct
*task
;
1642 struct elf_prstatus prstatus
;
1643 struct memelfnote notes
[0];
1646 struct elf_note_info
{
1647 struct elf_thread_core_info
*thread
;
1648 struct memelfnote psinfo
;
1649 struct memelfnote signote
;
1650 struct memelfnote auxv
;
1651 struct memelfnote files
;
1652 user_siginfo_t csigdata
;
1658 * When a regset has a writeback hook, we call it on each thread before
1659 * dumping user memory. On register window machines, this makes sure the
1660 * user memory backing the register data is up to date before we read it.
1662 static void do_thread_regset_writeback(struct task_struct
*task
,
1663 const struct user_regset
*regset
)
1665 if (regset
->writeback
)
1666 regset
->writeback(task
, regset
, 1);
1669 #ifndef PRSTATUS_SIZE
1670 #define PRSTATUS_SIZE(S, R) sizeof(S)
1673 #ifndef SET_PR_FPVALID
1674 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1677 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1678 const struct user_regset_view
*view
,
1679 long signr
, size_t *total
)
1682 unsigned int regset_size
= view
->regsets
[0].n
* view
->regsets
[0].size
;
1685 * NT_PRSTATUS is the one special case, because the regset data
1686 * goes into the pr_reg field inside the note contents, rather
1687 * than being the whole note contents. We fill the reset in here.
1688 * We assume that regset 0 is NT_PRSTATUS.
1690 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1691 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0], 0, regset_size
,
1692 &t
->prstatus
.pr_reg
, NULL
);
1694 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1695 PRSTATUS_SIZE(t
->prstatus
, regset_size
), &t
->prstatus
);
1696 *total
+= notesize(&t
->notes
[0]);
1698 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1701 * Each other regset might generate a note too. For each regset
1702 * that has no core_note_type or is inactive, we leave t->notes[i]
1703 * all zero and we'll know to skip writing it later.
1705 for (i
= 1; i
< view
->n
; ++i
) {
1706 const struct user_regset
*regset
= &view
->regsets
[i
];
1707 do_thread_regset_writeback(t
->task
, regset
);
1708 if (regset
->core_note_type
&& regset
->get
&&
1709 (!regset
->active
|| regset
->active(t
->task
, regset
) > 0)) {
1711 size_t size
= regset
->n
* regset
->size
;
1712 void *data
= kmalloc(size
, GFP_KERNEL
);
1713 if (unlikely(!data
))
1715 ret
= regset
->get(t
->task
, regset
,
1716 0, size
, data
, NULL
);
1720 if (regset
->core_note_type
!= NT_PRFPREG
)
1721 fill_note(&t
->notes
[i
], "LINUX",
1722 regset
->core_note_type
,
1725 SET_PR_FPVALID(&t
->prstatus
,
1727 fill_note(&t
->notes
[i
], "CORE",
1728 NT_PRFPREG
, size
, data
);
1730 *total
+= notesize(&t
->notes
[i
]);
1738 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1739 struct elf_note_info
*info
,
1740 const siginfo_t
*siginfo
, struct pt_regs
*regs
)
1742 struct task_struct
*dump_task
= current
;
1743 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1744 struct elf_thread_core_info
*t
;
1745 struct elf_prpsinfo
*psinfo
;
1746 struct core_thread
*ct
;
1750 info
->thread
= NULL
;
1752 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1753 if (psinfo
== NULL
) {
1754 info
->psinfo
.data
= NULL
; /* So we don't free this wrongly */
1758 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1761 * Figure out how many notes we're going to need for each thread.
1763 info
->thread_notes
= 0;
1764 for (i
= 0; i
< view
->n
; ++i
)
1765 if (view
->regsets
[i
].core_note_type
!= 0)
1766 ++info
->thread_notes
;
1769 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1770 * since it is our one special case.
1772 if (unlikely(info
->thread_notes
== 0) ||
1773 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1779 * Initialize the ELF file header.
1781 fill_elf_header(elf
, phdrs
,
1782 view
->e_machine
, view
->e_flags
);
1785 * Allocate a structure for each thread.
1787 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1788 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1789 notes
[info
->thread_notes
]),
1795 if (ct
->task
== dump_task
|| !info
->thread
) {
1796 t
->next
= info
->thread
;
1800 * Make sure to keep the original task at
1801 * the head of the list.
1803 t
->next
= info
->thread
->next
;
1804 info
->thread
->next
= t
;
1809 * Now fill in each thread's information.
1811 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1812 if (!fill_thread_core_info(t
, view
, siginfo
->si_signo
, &info
->size
))
1816 * Fill in the two process-wide notes.
1818 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1819 info
->size
+= notesize(&info
->psinfo
);
1821 fill_siginfo_note(&info
->signote
, &info
->csigdata
, siginfo
);
1822 info
->size
+= notesize(&info
->signote
);
1824 fill_auxv_note(&info
->auxv
, current
->mm
);
1825 info
->size
+= notesize(&info
->auxv
);
1827 if (fill_files_note(&info
->files
) == 0)
1828 info
->size
+= notesize(&info
->files
);
1833 static size_t get_note_info_size(struct elf_note_info
*info
)
1839 * Write all the notes for each thread. When writing the first thread, the
1840 * process-wide notes are interleaved after the first thread-specific note.
1842 static int write_note_info(struct elf_note_info
*info
,
1843 struct coredump_params
*cprm
)
1846 struct elf_thread_core_info
*t
= info
->thread
;
1851 if (!writenote(&t
->notes
[0], cprm
))
1854 if (first
&& !writenote(&info
->psinfo
, cprm
))
1856 if (first
&& !writenote(&info
->signote
, cprm
))
1858 if (first
&& !writenote(&info
->auxv
, cprm
))
1860 if (first
&& info
->files
.data
&&
1861 !writenote(&info
->files
, cprm
))
1864 for (i
= 1; i
< info
->thread_notes
; ++i
)
1865 if (t
->notes
[i
].data
&&
1866 !writenote(&t
->notes
[i
], cprm
))
1876 static void free_note_info(struct elf_note_info
*info
)
1878 struct elf_thread_core_info
*threads
= info
->thread
;
1881 struct elf_thread_core_info
*t
= threads
;
1883 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1884 for (i
= 1; i
< info
->thread_notes
; ++i
)
1885 kfree(t
->notes
[i
].data
);
1888 kfree(info
->psinfo
.data
);
1889 vfree(info
->files
.data
);
1894 /* Here is the structure in which status of each thread is captured. */
1895 struct elf_thread_status
1897 struct list_head list
;
1898 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1899 elf_fpregset_t fpu
; /* NT_PRFPREG */
1900 struct task_struct
*thread
;
1901 #ifdef ELF_CORE_COPY_XFPREGS
1902 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1904 struct memelfnote notes
[3];
1909 * In order to add the specific thread information for the elf file format,
1910 * we need to keep a linked list of every threads pr_status and then create
1911 * a single section for them in the final core file.
1913 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1916 struct task_struct
*p
= t
->thread
;
1919 fill_prstatus(&t
->prstatus
, p
, signr
);
1920 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1922 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1925 sz
+= notesize(&t
->notes
[0]);
1927 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1929 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1932 sz
+= notesize(&t
->notes
[1]);
1935 #ifdef ELF_CORE_COPY_XFPREGS
1936 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1937 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1938 sizeof(t
->xfpu
), &t
->xfpu
);
1940 sz
+= notesize(&t
->notes
[2]);
1946 struct elf_note_info
{
1947 struct memelfnote
*notes
;
1948 struct memelfnote
*notes_files
;
1949 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1950 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1951 struct list_head thread_list
;
1952 elf_fpregset_t
*fpu
;
1953 #ifdef ELF_CORE_COPY_XFPREGS
1954 elf_fpxregset_t
*xfpu
;
1956 user_siginfo_t csigdata
;
1957 int thread_status_size
;
1961 static int elf_note_info_init(struct elf_note_info
*info
)
1963 memset(info
, 0, sizeof(*info
));
1964 INIT_LIST_HEAD(&info
->thread_list
);
1966 /* Allocate space for ELF notes */
1967 info
->notes
= kmalloc(8 * sizeof(struct memelfnote
), GFP_KERNEL
);
1970 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
1973 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
1974 if (!info
->prstatus
)
1976 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
1979 #ifdef ELF_CORE_COPY_XFPREGS
1980 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
1987 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1988 struct elf_note_info
*info
,
1989 const siginfo_t
*siginfo
, struct pt_regs
*regs
)
1991 struct list_head
*t
;
1992 struct core_thread
*ct
;
1993 struct elf_thread_status
*ets
;
1995 if (!elf_note_info_init(info
))
1998 for (ct
= current
->mm
->core_state
->dumper
.next
;
1999 ct
; ct
= ct
->next
) {
2000 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
2004 ets
->thread
= ct
->task
;
2005 list_add(&ets
->list
, &info
->thread_list
);
2008 list_for_each(t
, &info
->thread_list
) {
2011 ets
= list_entry(t
, struct elf_thread_status
, list
);
2012 sz
= elf_dump_thread_status(siginfo
->si_signo
, ets
);
2013 info
->thread_status_size
+= sz
;
2015 /* now collect the dump for the current */
2016 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
2017 fill_prstatus(info
->prstatus
, current
, siginfo
->si_signo
);
2018 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
2021 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
);
2024 * Set up the notes in similar form to SVR4 core dumps made
2025 * with info from their /proc.
2028 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
2029 sizeof(*info
->prstatus
), info
->prstatus
);
2030 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
2031 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
2032 sizeof(*info
->psinfo
), info
->psinfo
);
2034 fill_siginfo_note(info
->notes
+ 2, &info
->csigdata
, siginfo
);
2035 fill_auxv_note(info
->notes
+ 3, current
->mm
);
2038 if (fill_files_note(info
->notes
+ info
->numnote
) == 0) {
2039 info
->notes_files
= info
->notes
+ info
->numnote
;
2043 /* Try to dump the FPU. */
2044 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
2046 if (info
->prstatus
->pr_fpvalid
)
2047 fill_note(info
->notes
+ info
->numnote
++,
2048 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
2049 #ifdef ELF_CORE_COPY_XFPREGS
2050 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
2051 fill_note(info
->notes
+ info
->numnote
++,
2052 "LINUX", ELF_CORE_XFPREG_TYPE
,
2053 sizeof(*info
->xfpu
), info
->xfpu
);
2059 static size_t get_note_info_size(struct elf_note_info
*info
)
2064 for (i
= 0; i
< info
->numnote
; i
++)
2065 sz
+= notesize(info
->notes
+ i
);
2067 sz
+= info
->thread_status_size
;
2072 static int write_note_info(struct elf_note_info
*info
,
2073 struct coredump_params
*cprm
)
2076 struct list_head
*t
;
2078 for (i
= 0; i
< info
->numnote
; i
++)
2079 if (!writenote(info
->notes
+ i
, cprm
))
2082 /* write out the thread status notes section */
2083 list_for_each(t
, &info
->thread_list
) {
2084 struct elf_thread_status
*tmp
=
2085 list_entry(t
, struct elf_thread_status
, list
);
2087 for (i
= 0; i
< tmp
->num_notes
; i
++)
2088 if (!writenote(&tmp
->notes
[i
], cprm
))
2095 static void free_note_info(struct elf_note_info
*info
)
2097 while (!list_empty(&info
->thread_list
)) {
2098 struct list_head
*tmp
= info
->thread_list
.next
;
2100 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
2103 /* Free data possibly allocated by fill_files_note(): */
2104 if (info
->notes_files
)
2105 vfree(info
->notes_files
->data
);
2107 kfree(info
->prstatus
);
2108 kfree(info
->psinfo
);
2111 #ifdef ELF_CORE_COPY_XFPREGS
2118 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
2119 struct vm_area_struct
*gate_vma
)
2121 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
2128 * Helper function for iterating across a vma list. It ensures that the caller
2129 * will visit `gate_vma' prior to terminating the search.
2131 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
2132 struct vm_area_struct
*gate_vma
)
2134 struct vm_area_struct
*ret
;
2136 ret
= this_vma
->vm_next
;
2139 if (this_vma
== gate_vma
)
2144 static void fill_extnum_info(struct elfhdr
*elf
, struct elf_shdr
*shdr4extnum
,
2145 elf_addr_t e_shoff
, int segs
)
2147 elf
->e_shoff
= e_shoff
;
2148 elf
->e_shentsize
= sizeof(*shdr4extnum
);
2150 elf
->e_shstrndx
= SHN_UNDEF
;
2152 memset(shdr4extnum
, 0, sizeof(*shdr4extnum
));
2154 shdr4extnum
->sh_type
= SHT_NULL
;
2155 shdr4extnum
->sh_size
= elf
->e_shnum
;
2156 shdr4extnum
->sh_link
= elf
->e_shstrndx
;
2157 shdr4extnum
->sh_info
= segs
;
2163 * This is a two-pass process; first we find the offsets of the bits,
2164 * and then they are actually written out. If we run out of core limit
2167 static int elf_core_dump(struct coredump_params
*cprm
)
2172 size_t vma_data_size
= 0;
2173 struct vm_area_struct
*vma
, *gate_vma
;
2174 struct elfhdr
*elf
= NULL
;
2175 loff_t offset
= 0, dataoff
;
2176 struct elf_note_info info
= { };
2177 struct elf_phdr
*phdr4note
= NULL
;
2178 struct elf_shdr
*shdr4extnum
= NULL
;
2181 elf_addr_t
*vma_filesz
= NULL
;
2184 * We no longer stop all VM operations.
2186 * This is because those proceses that could possibly change map_count
2187 * or the mmap / vma pages are now blocked in do_exit on current
2188 * finishing this core dump.
2190 * Only ptrace can touch these memory addresses, but it doesn't change
2191 * the map_count or the pages allocated. So no possibility of crashing
2192 * exists while dumping the mm->vm_next areas to the core file.
2195 /* alloc memory for large data structures: too large to be on stack */
2196 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
2200 * The number of segs are recored into ELF header as 16bit value.
2201 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2203 segs
= current
->mm
->map_count
;
2204 segs
+= elf_core_extra_phdrs();
2206 gate_vma
= get_gate_vma(current
->mm
);
2207 if (gate_vma
!= NULL
)
2210 /* for notes section */
2213 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2214 * this, kernel supports extended numbering. Have a look at
2215 * include/linux/elf.h for further information. */
2216 e_phnum
= segs
> PN_XNUM
? PN_XNUM
: segs
;
2219 * Collect all the non-memory information about the process for the
2220 * notes. This also sets up the file header.
2222 if (!fill_note_info(elf
, e_phnum
, &info
, cprm
->siginfo
, cprm
->regs
))
2230 offset
+= sizeof(*elf
); /* Elf header */
2231 offset
+= segs
* sizeof(struct elf_phdr
); /* Program headers */
2233 /* Write notes phdr entry */
2235 size_t sz
= get_note_info_size(&info
);
2237 sz
+= elf_coredump_extra_notes_size();
2239 phdr4note
= kmalloc(sizeof(*phdr4note
), GFP_KERNEL
);
2243 fill_elf_note_phdr(phdr4note
, sz
, offset
);
2247 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2249 vma_filesz
= kmalloc_array(segs
- 1, sizeof(*vma_filesz
), GFP_KERNEL
);
2253 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2254 vma
= next_vma(vma
, gate_vma
)) {
2255 unsigned long dump_size
;
2257 dump_size
= vma_dump_size(vma
, cprm
->mm_flags
);
2258 vma_filesz
[i
++] = dump_size
;
2259 vma_data_size
+= dump_size
;
2262 offset
+= vma_data_size
;
2263 offset
+= elf_core_extra_data_size();
2266 if (e_phnum
== PN_XNUM
) {
2267 shdr4extnum
= kmalloc(sizeof(*shdr4extnum
), GFP_KERNEL
);
2270 fill_extnum_info(elf
, shdr4extnum
, e_shoff
, segs
);
2275 if (!dump_emit(cprm
, elf
, sizeof(*elf
)))
2278 if (!dump_emit(cprm
, phdr4note
, sizeof(*phdr4note
)))
2281 /* Write program headers for segments dump */
2282 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2283 vma
= next_vma(vma
, gate_vma
)) {
2284 struct elf_phdr phdr
;
2286 phdr
.p_type
= PT_LOAD
;
2287 phdr
.p_offset
= offset
;
2288 phdr
.p_vaddr
= vma
->vm_start
;
2290 phdr
.p_filesz
= vma_filesz
[i
++];
2291 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
2292 offset
+= phdr
.p_filesz
;
2293 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
2294 if (vma
->vm_flags
& VM_WRITE
)
2295 phdr
.p_flags
|= PF_W
;
2296 if (vma
->vm_flags
& VM_EXEC
)
2297 phdr
.p_flags
|= PF_X
;
2298 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2300 if (!dump_emit(cprm
, &phdr
, sizeof(phdr
)))
2304 if (!elf_core_write_extra_phdrs(cprm
, offset
))
2307 /* write out the notes section */
2308 if (!write_note_info(&info
, cprm
))
2311 if (elf_coredump_extra_notes_write(cprm
))
2315 if (!dump_skip(cprm
, dataoff
- cprm
->pos
))
2318 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2319 vma
= next_vma(vma
, gate_vma
)) {
2323 end
= vma
->vm_start
+ vma_filesz
[i
++];
2325 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2329 page
= get_dump_page(addr
);
2331 void *kaddr
= kmap(page
);
2332 stop
= !dump_emit(cprm
, kaddr
, PAGE_SIZE
);
2336 stop
= !dump_skip(cprm
, PAGE_SIZE
);
2341 dump_truncate(cprm
);
2343 if (!elf_core_write_extra_data(cprm
))
2346 if (e_phnum
== PN_XNUM
) {
2347 if (!dump_emit(cprm
, shdr4extnum
, sizeof(*shdr4extnum
)))
2355 free_note_info(&info
);
2364 #endif /* CONFIG_ELF_CORE */
2366 static int __init
init_elf_binfmt(void)
2368 register_binfmt(&elf_format
);
2372 static void __exit
exit_elf_binfmt(void)
2374 /* Remove the COFF and ELF loaders. */
2375 unregister_binfmt(&elf_format
);
2378 core_initcall(init_elf_binfmt
);
2379 module_exit(exit_elf_binfmt
);
2380 MODULE_LICENSE("GPL");