2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/delay.h>
20 #include <linux/kthread.h>
21 #include <linux/pagemap.h>
25 #include "free-space-cache.h"
26 #include "inode-map.h"
27 #include "transaction.h"
29 static int caching_kthread(void *data
)
31 struct btrfs_root
*root
= data
;
32 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
33 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
35 struct btrfs_path
*path
;
36 struct extent_buffer
*leaf
;
41 if (!btrfs_test_opt(root
->fs_info
, INODE_MAP_CACHE
))
44 path
= btrfs_alloc_path();
48 /* Since the commit root is read-only, we can safely skip locking. */
49 path
->skip_locking
= 1;
50 path
->search_commit_root
= 1;
51 path
->reada
= READA_FORWARD
;
53 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
55 key
.type
= BTRFS_INODE_ITEM_KEY
;
57 /* need to make sure the commit_root doesn't disappear */
58 down_read(&fs_info
->commit_root_sem
);
60 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
65 if (btrfs_fs_closing(fs_info
))
68 leaf
= path
->nodes
[0];
69 slot
= path
->slots
[0];
70 if (slot
>= btrfs_header_nritems(leaf
)) {
71 ret
= btrfs_next_leaf(root
, path
);
78 btrfs_transaction_in_commit(fs_info
)) {
79 leaf
= path
->nodes
[0];
81 if (WARN_ON(btrfs_header_nritems(leaf
) == 0))
85 * Save the key so we can advances forward
88 btrfs_item_key_to_cpu(leaf
, &key
, 0);
89 btrfs_release_path(path
);
90 root
->ino_cache_progress
= last
;
91 up_read(&fs_info
->commit_root_sem
);
98 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
100 if (key
.type
!= BTRFS_INODE_ITEM_KEY
)
103 if (key
.objectid
>= root
->highest_objectid
)
106 if (last
!= (u64
)-1 && last
+ 1 != key
.objectid
) {
107 __btrfs_add_free_space(fs_info
, ctl
, last
+ 1,
108 key
.objectid
- last
- 1);
109 wake_up(&root
->ino_cache_wait
);
117 if (last
< root
->highest_objectid
- 1) {
118 __btrfs_add_free_space(fs_info
, ctl
, last
+ 1,
119 root
->highest_objectid
- last
- 1);
122 spin_lock(&root
->ino_cache_lock
);
123 root
->ino_cache_state
= BTRFS_CACHE_FINISHED
;
124 spin_unlock(&root
->ino_cache_lock
);
126 root
->ino_cache_progress
= (u64
)-1;
127 btrfs_unpin_free_ino(root
);
129 wake_up(&root
->ino_cache_wait
);
130 up_read(&fs_info
->commit_root_sem
);
132 btrfs_free_path(path
);
137 static void start_caching(struct btrfs_root
*root
)
139 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
140 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
141 struct task_struct
*tsk
;
145 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
148 spin_lock(&root
->ino_cache_lock
);
149 if (root
->ino_cache_state
!= BTRFS_CACHE_NO
) {
150 spin_unlock(&root
->ino_cache_lock
);
154 root
->ino_cache_state
= BTRFS_CACHE_STARTED
;
155 spin_unlock(&root
->ino_cache_lock
);
157 ret
= load_free_ino_cache(fs_info
, root
);
159 spin_lock(&root
->ino_cache_lock
);
160 root
->ino_cache_state
= BTRFS_CACHE_FINISHED
;
161 spin_unlock(&root
->ino_cache_lock
);
166 * It can be quite time-consuming to fill the cache by searching
167 * through the extent tree, and this can keep ino allocation path
168 * waiting. Therefore at start we quickly find out the highest
169 * inode number and we know we can use inode numbers which fall in
170 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
172 ret
= btrfs_find_free_objectid(root
, &objectid
);
173 if (!ret
&& objectid
<= BTRFS_LAST_FREE_OBJECTID
) {
174 __btrfs_add_free_space(fs_info
, ctl
, objectid
,
175 BTRFS_LAST_FREE_OBJECTID
- objectid
+ 1);
178 tsk
= kthread_run(caching_kthread
, root
, "btrfs-ino-cache-%llu",
179 root
->root_key
.objectid
);
181 btrfs_warn(fs_info
, "failed to start inode caching task");
182 btrfs_clear_pending_and_info(fs_info
, INODE_MAP_CACHE
,
183 "disabling inode map caching");
187 int btrfs_find_free_ino(struct btrfs_root
*root
, u64
*objectid
)
189 if (!btrfs_test_opt(root
->fs_info
, INODE_MAP_CACHE
))
190 return btrfs_find_free_objectid(root
, objectid
);
193 *objectid
= btrfs_find_ino_for_alloc(root
);
200 wait_event(root
->ino_cache_wait
,
201 root
->ino_cache_state
== BTRFS_CACHE_FINISHED
||
202 root
->free_ino_ctl
->free_space
> 0);
204 if (root
->ino_cache_state
== BTRFS_CACHE_FINISHED
&&
205 root
->free_ino_ctl
->free_space
== 0)
211 void btrfs_return_ino(struct btrfs_root
*root
, u64 objectid
)
213 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
214 struct btrfs_free_space_ctl
*pinned
= root
->free_ino_pinned
;
216 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
219 if (root
->ino_cache_state
== BTRFS_CACHE_FINISHED
) {
220 __btrfs_add_free_space(fs_info
, pinned
, objectid
, 1);
222 down_write(&fs_info
->commit_root_sem
);
223 spin_lock(&root
->ino_cache_lock
);
224 if (root
->ino_cache_state
== BTRFS_CACHE_FINISHED
) {
225 spin_unlock(&root
->ino_cache_lock
);
226 up_write(&fs_info
->commit_root_sem
);
229 spin_unlock(&root
->ino_cache_lock
);
233 __btrfs_add_free_space(fs_info
, pinned
, objectid
, 1);
235 up_write(&fs_info
->commit_root_sem
);
240 * When a transaction is committed, we'll move those inode numbers which are
241 * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
242 * others will just be dropped, because the commit root we were searching has
245 * Must be called with root->fs_info->commit_root_sem held
247 void btrfs_unpin_free_ino(struct btrfs_root
*root
)
249 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
250 struct rb_root
*rbroot
= &root
->free_ino_pinned
->free_space_offset
;
251 spinlock_t
*rbroot_lock
= &root
->free_ino_pinned
->tree_lock
;
252 struct btrfs_free_space
*info
;
256 if (!btrfs_test_opt(root
->fs_info
, INODE_MAP_CACHE
))
260 bool add_to_ctl
= true;
262 spin_lock(rbroot_lock
);
263 n
= rb_first(rbroot
);
265 spin_unlock(rbroot_lock
);
269 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
270 BUG_ON(info
->bitmap
); /* Logic error */
272 if (info
->offset
> root
->ino_cache_progress
)
274 else if (info
->offset
+ info
->bytes
> root
->ino_cache_progress
)
275 count
= root
->ino_cache_progress
- info
->offset
+ 1;
279 rb_erase(&info
->offset_index
, rbroot
);
280 spin_unlock(rbroot_lock
);
282 __btrfs_add_free_space(root
->fs_info
, ctl
,
283 info
->offset
, count
);
284 kmem_cache_free(btrfs_free_space_cachep
, info
);
288 #define INIT_THRESHOLD ((SZ_32K / 2) / sizeof(struct btrfs_free_space))
289 #define INODES_PER_BITMAP (PAGE_SIZE * 8)
292 * The goal is to keep the memory used by the free_ino tree won't
293 * exceed the memory if we use bitmaps only.
295 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
297 struct btrfs_free_space
*info
;
302 n
= rb_last(&ctl
->free_space_offset
);
304 ctl
->extents_thresh
= INIT_THRESHOLD
;
307 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
310 * Find the maximum inode number in the filesystem. Note we
311 * ignore the fact that this can be a bitmap, because we are
312 * not doing precise calculation.
314 max_ino
= info
->bytes
- 1;
316 max_bitmaps
= ALIGN(max_ino
, INODES_PER_BITMAP
) / INODES_PER_BITMAP
;
317 if (max_bitmaps
<= ctl
->total_bitmaps
) {
318 ctl
->extents_thresh
= 0;
322 ctl
->extents_thresh
= (max_bitmaps
- ctl
->total_bitmaps
) *
323 PAGE_SIZE
/ sizeof(*info
);
327 * We don't fall back to bitmap, if we are below the extents threshold
328 * or this chunk of inode numbers is a big one.
330 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
331 struct btrfs_free_space
*info
)
333 if (ctl
->free_extents
< ctl
->extents_thresh
||
334 info
->bytes
> INODES_PER_BITMAP
/ 10)
340 static const struct btrfs_free_space_op free_ino_op
= {
341 .recalc_thresholds
= recalculate_thresholds
,
342 .use_bitmap
= use_bitmap
,
345 static void pinned_recalc_thresholds(struct btrfs_free_space_ctl
*ctl
)
349 static bool pinned_use_bitmap(struct btrfs_free_space_ctl
*ctl
,
350 struct btrfs_free_space
*info
)
353 * We always use extents for two reasons:
355 * - The pinned tree is only used during the process of caching
357 * - Make code simpler. See btrfs_unpin_free_ino().
362 static const struct btrfs_free_space_op pinned_free_ino_op
= {
363 .recalc_thresholds
= pinned_recalc_thresholds
,
364 .use_bitmap
= pinned_use_bitmap
,
367 void btrfs_init_free_ino_ctl(struct btrfs_root
*root
)
369 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
370 struct btrfs_free_space_ctl
*pinned
= root
->free_ino_pinned
;
372 spin_lock_init(&ctl
->tree_lock
);
376 ctl
->op
= &free_ino_op
;
377 INIT_LIST_HEAD(&ctl
->trimming_ranges
);
378 mutex_init(&ctl
->cache_writeout_mutex
);
381 * Initially we allow to use 16K of ram to cache chunks of
382 * inode numbers before we resort to bitmaps. This is somewhat
383 * arbitrary, but it will be adjusted in runtime.
385 ctl
->extents_thresh
= INIT_THRESHOLD
;
387 spin_lock_init(&pinned
->tree_lock
);
390 pinned
->private = NULL
;
391 pinned
->extents_thresh
= 0;
392 pinned
->op
= &pinned_free_ino_op
;
395 int btrfs_save_ino_cache(struct btrfs_root
*root
,
396 struct btrfs_trans_handle
*trans
)
398 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
399 struct btrfs_path
*path
;
401 struct btrfs_block_rsv
*rsv
;
408 /* only fs tree and subvol/snap needs ino cache */
409 if (root
->root_key
.objectid
!= BTRFS_FS_TREE_OBJECTID
&&
410 (root
->root_key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
||
411 root
->root_key
.objectid
> BTRFS_LAST_FREE_OBJECTID
))
414 /* Don't save inode cache if we are deleting this root */
415 if (btrfs_root_refs(&root
->root_item
) == 0)
418 if (!btrfs_test_opt(root
->fs_info
, INODE_MAP_CACHE
))
421 path
= btrfs_alloc_path();
425 rsv
= trans
->block_rsv
;
426 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
428 num_bytes
= trans
->bytes_reserved
;
430 * 1 item for inode item insertion if need
431 * 4 items for inode item update (in the worst case)
432 * 1 items for slack space if we need do truncation
433 * 1 item for free space object
434 * 3 items for pre-allocation
436 trans
->bytes_reserved
= btrfs_calc_trans_metadata_size(root
, 10);
437 ret
= btrfs_block_rsv_add(root
, trans
->block_rsv
,
438 trans
->bytes_reserved
,
439 BTRFS_RESERVE_NO_FLUSH
);
442 trace_btrfs_space_reservation(root
->fs_info
, "ino_cache",
443 trans
->transid
, trans
->bytes_reserved
, 1);
445 inode
= lookup_free_ino_inode(root
, path
);
446 if (IS_ERR(inode
) && (PTR_ERR(inode
) != -ENOENT
|| retry
)) {
447 ret
= PTR_ERR(inode
);
452 BUG_ON(retry
); /* Logic error */
455 ret
= create_free_ino_inode(root
, trans
, path
);
461 BTRFS_I(inode
)->generation
= 0;
462 ret
= btrfs_update_inode(trans
, root
, inode
);
464 btrfs_abort_transaction(trans
, ret
);
468 if (i_size_read(inode
) > 0) {
469 ret
= btrfs_truncate_free_space_cache(root
, trans
, NULL
, inode
);
472 btrfs_abort_transaction(trans
, ret
);
477 spin_lock(&root
->ino_cache_lock
);
478 if (root
->ino_cache_state
!= BTRFS_CACHE_FINISHED
) {
480 spin_unlock(&root
->ino_cache_lock
);
483 spin_unlock(&root
->ino_cache_lock
);
485 spin_lock(&ctl
->tree_lock
);
486 prealloc
= sizeof(struct btrfs_free_space
) * ctl
->free_extents
;
487 prealloc
= ALIGN(prealloc
, PAGE_SIZE
);
488 prealloc
+= ctl
->total_bitmaps
* PAGE_SIZE
;
489 spin_unlock(&ctl
->tree_lock
);
491 /* Just to make sure we have enough space */
492 prealloc
+= 8 * PAGE_SIZE
;
494 ret
= btrfs_delalloc_reserve_space(inode
, 0, prealloc
);
498 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, prealloc
,
499 prealloc
, prealloc
, &alloc_hint
);
501 btrfs_delalloc_release_metadata(inode
, prealloc
);
505 ret
= btrfs_write_out_ino_cache(root
, trans
, path
, inode
);
509 trace_btrfs_space_reservation(root
->fs_info
, "ino_cache",
510 trans
->transid
, trans
->bytes_reserved
, 0);
511 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
513 trans
->block_rsv
= rsv
;
514 trans
->bytes_reserved
= num_bytes
;
516 btrfs_free_path(path
);
520 int btrfs_find_highest_objectid(struct btrfs_root
*root
, u64
*objectid
)
522 struct btrfs_path
*path
;
524 struct extent_buffer
*l
;
525 struct btrfs_key search_key
;
526 struct btrfs_key found_key
;
529 path
= btrfs_alloc_path();
533 search_key
.objectid
= BTRFS_LAST_FREE_OBJECTID
;
534 search_key
.type
= -1;
535 search_key
.offset
= (u64
)-1;
536 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
539 BUG_ON(ret
== 0); /* Corruption */
540 if (path
->slots
[0] > 0) {
541 slot
= path
->slots
[0] - 1;
543 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
544 *objectid
= max_t(u64
, found_key
.objectid
,
545 BTRFS_FIRST_FREE_OBJECTID
- 1);
547 *objectid
= BTRFS_FIRST_FREE_OBJECTID
- 1;
551 btrfs_free_path(path
);
555 int btrfs_find_free_objectid(struct btrfs_root
*root
, u64
*objectid
)
558 mutex_lock(&root
->objectid_mutex
);
560 if (unlikely(root
->highest_objectid
>= BTRFS_LAST_FREE_OBJECTID
)) {
561 btrfs_warn(root
->fs_info
,
562 "the objectid of root %llu reaches its highest value",
563 root
->root_key
.objectid
);
568 *objectid
= ++root
->highest_objectid
;
571 mutex_unlock(&root
->objectid_mutex
);