dm thin metadata: factor out __write_initial_superblock
[linux/fpc-iii.git] / drivers / md / dm-thin-metadata.c
blob5ead655706d490d249c62dd29a55b9e1d89feaf4
1 /*
2 * Copyright (C) 2011 Red Hat, Inc.
4 * This file is released under the GPL.
5 */
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
17 /*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
23 * - A space map managing the metadata blocks.
25 * - A space map managing the data blocks.
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
42 * Space maps have 2 btrees:
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
75 #define DM_MSG_PREFIX "thin metadata"
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 1
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
87 #define THIN_MAX_CONCURRENT_LOCKS 5
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
93 * Little endian on-disk superblock and device details.
95 struct thin_disk_superblock {
96 __le32 csum; /* Checksum of superblock except for this field. */
97 __le32 flags;
98 __le64 blocknr; /* This block number, dm_block_t. */
100 __u8 uuid[16];
101 __le64 magic;
102 __le32 version;
103 __le32 time;
105 __le64 trans_id;
108 * Root held by userspace transactions.
110 __le64 held_root;
112 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
116 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
118 __le64 data_mapping_root;
121 * Device detail root mapping dev_id -> device_details
123 __le64 device_details_root;
125 __le32 data_block_size; /* In 512-byte sectors. */
127 __le32 metadata_block_size; /* In 512-byte sectors. */
128 __le64 metadata_nr_blocks;
130 __le32 compat_flags;
131 __le32 compat_ro_flags;
132 __le32 incompat_flags;
133 } __packed;
135 struct disk_device_details {
136 __le64 mapped_blocks;
137 __le64 transaction_id; /* When created. */
138 __le32 creation_time;
139 __le32 snapshotted_time;
140 } __packed;
142 struct dm_pool_metadata {
143 struct hlist_node hash;
145 struct block_device *bdev;
146 struct dm_block_manager *bm;
147 struct dm_space_map *metadata_sm;
148 struct dm_space_map *data_sm;
149 struct dm_transaction_manager *tm;
150 struct dm_transaction_manager *nb_tm;
153 * Two-level btree.
154 * First level holds thin_dev_t.
155 * Second level holds mappings.
157 struct dm_btree_info info;
160 * Non-blocking version of the above.
162 struct dm_btree_info nb_info;
165 * Just the top level for deleting whole devices.
167 struct dm_btree_info tl_info;
170 * Just the bottom level for creating new devices.
172 struct dm_btree_info bl_info;
175 * Describes the device details btree.
177 struct dm_btree_info details_info;
179 struct rw_semaphore root_lock;
180 uint32_t time;
181 dm_block_t root;
182 dm_block_t details_root;
183 struct list_head thin_devices;
184 uint64_t trans_id;
185 unsigned long flags;
186 sector_t data_block_size;
189 struct dm_thin_device {
190 struct list_head list;
191 struct dm_pool_metadata *pmd;
192 dm_thin_id id;
194 int open_count;
195 int changed;
196 uint64_t mapped_blocks;
197 uint64_t transaction_id;
198 uint32_t creation_time;
199 uint32_t snapshotted_time;
202 /*----------------------------------------------------------------
203 * superblock validator
204 *--------------------------------------------------------------*/
206 #define SUPERBLOCK_CSUM_XOR 160774
208 static void sb_prepare_for_write(struct dm_block_validator *v,
209 struct dm_block *b,
210 size_t block_size)
212 struct thin_disk_superblock *disk_super = dm_block_data(b);
214 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
215 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
216 block_size - sizeof(__le32),
217 SUPERBLOCK_CSUM_XOR));
220 static int sb_check(struct dm_block_validator *v,
221 struct dm_block *b,
222 size_t block_size)
224 struct thin_disk_superblock *disk_super = dm_block_data(b);
225 __le32 csum_le;
227 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
228 DMERR("sb_check failed: blocknr %llu: "
229 "wanted %llu", le64_to_cpu(disk_super->blocknr),
230 (unsigned long long)dm_block_location(b));
231 return -ENOTBLK;
234 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
235 DMERR("sb_check failed: magic %llu: "
236 "wanted %llu", le64_to_cpu(disk_super->magic),
237 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
238 return -EILSEQ;
241 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
242 block_size - sizeof(__le32),
243 SUPERBLOCK_CSUM_XOR));
244 if (csum_le != disk_super->csum) {
245 DMERR("sb_check failed: csum %u: wanted %u",
246 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
247 return -EILSEQ;
250 return 0;
253 static struct dm_block_validator sb_validator = {
254 .name = "superblock",
255 .prepare_for_write = sb_prepare_for_write,
256 .check = sb_check
259 /*----------------------------------------------------------------
260 * Methods for the btree value types
261 *--------------------------------------------------------------*/
263 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
265 return (b << 24) | t;
268 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
270 *b = v >> 24;
271 *t = v & ((1 << 24) - 1);
274 static void data_block_inc(void *context, void *value_le)
276 struct dm_space_map *sm = context;
277 __le64 v_le;
278 uint64_t b;
279 uint32_t t;
281 memcpy(&v_le, value_le, sizeof(v_le));
282 unpack_block_time(le64_to_cpu(v_le), &b, &t);
283 dm_sm_inc_block(sm, b);
286 static void data_block_dec(void *context, void *value_le)
288 struct dm_space_map *sm = context;
289 __le64 v_le;
290 uint64_t b;
291 uint32_t t;
293 memcpy(&v_le, value_le, sizeof(v_le));
294 unpack_block_time(le64_to_cpu(v_le), &b, &t);
295 dm_sm_dec_block(sm, b);
298 static int data_block_equal(void *context, void *value1_le, void *value2_le)
300 __le64 v1_le, v2_le;
301 uint64_t b1, b2;
302 uint32_t t;
304 memcpy(&v1_le, value1_le, sizeof(v1_le));
305 memcpy(&v2_le, value2_le, sizeof(v2_le));
306 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
307 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
309 return b1 == b2;
312 static void subtree_inc(void *context, void *value)
314 struct dm_btree_info *info = context;
315 __le64 root_le;
316 uint64_t root;
318 memcpy(&root_le, value, sizeof(root_le));
319 root = le64_to_cpu(root_le);
320 dm_tm_inc(info->tm, root);
323 static void subtree_dec(void *context, void *value)
325 struct dm_btree_info *info = context;
326 __le64 root_le;
327 uint64_t root;
329 memcpy(&root_le, value, sizeof(root_le));
330 root = le64_to_cpu(root_le);
331 if (dm_btree_del(info, root))
332 DMERR("btree delete failed\n");
335 static int subtree_equal(void *context, void *value1_le, void *value2_le)
337 __le64 v1_le, v2_le;
338 memcpy(&v1_le, value1_le, sizeof(v1_le));
339 memcpy(&v2_le, value2_le, sizeof(v2_le));
341 return v1_le == v2_le;
344 /*----------------------------------------------------------------*/
346 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
347 struct dm_block **sblock)
349 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
350 &sb_validator, sblock);
353 static int superblock_lock(struct dm_pool_metadata *pmd,
354 struct dm_block **sblock)
356 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
357 &sb_validator, sblock);
360 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
362 int r;
363 unsigned i;
364 struct dm_block *b;
365 __le64 *data_le, zero = cpu_to_le64(0);
366 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
369 * We can't use a validator here - it may be all zeroes.
371 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
372 if (r)
373 return r;
375 data_le = dm_block_data(b);
376 *result = 1;
377 for (i = 0; i < block_size; i++) {
378 if (data_le[i] != zero) {
379 *result = 0;
380 break;
384 return dm_bm_unlock(b);
387 static void __setup_btree_details(struct dm_pool_metadata *pmd)
389 pmd->info.tm = pmd->tm;
390 pmd->info.levels = 2;
391 pmd->info.value_type.context = pmd->data_sm;
392 pmd->info.value_type.size = sizeof(__le64);
393 pmd->info.value_type.inc = data_block_inc;
394 pmd->info.value_type.dec = data_block_dec;
395 pmd->info.value_type.equal = data_block_equal;
397 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
398 pmd->nb_info.tm = pmd->nb_tm;
400 pmd->tl_info.tm = pmd->tm;
401 pmd->tl_info.levels = 1;
402 pmd->tl_info.value_type.context = &pmd->info;
403 pmd->tl_info.value_type.size = sizeof(__le64);
404 pmd->tl_info.value_type.inc = subtree_inc;
405 pmd->tl_info.value_type.dec = subtree_dec;
406 pmd->tl_info.value_type.equal = subtree_equal;
408 pmd->bl_info.tm = pmd->tm;
409 pmd->bl_info.levels = 1;
410 pmd->bl_info.value_type.context = pmd->data_sm;
411 pmd->bl_info.value_type.size = sizeof(__le64);
412 pmd->bl_info.value_type.inc = data_block_inc;
413 pmd->bl_info.value_type.dec = data_block_dec;
414 pmd->bl_info.value_type.equal = data_block_equal;
416 pmd->details_info.tm = pmd->tm;
417 pmd->details_info.levels = 1;
418 pmd->details_info.value_type.context = NULL;
419 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
420 pmd->details_info.value_type.inc = NULL;
421 pmd->details_info.value_type.dec = NULL;
422 pmd->details_info.value_type.equal = NULL;
425 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
427 int r;
428 struct dm_block *sblock;
429 struct thin_disk_superblock *disk_super;
430 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
432 if (bdev_size > THIN_METADATA_MAX_SECTORS)
433 bdev_size = THIN_METADATA_MAX_SECTORS;
435 r = superblock_lock_zero(pmd, &sblock);
436 if (r)
437 return r;
439 disk_super = dm_block_data(sblock);
440 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
441 disk_super->version = cpu_to_le32(THIN_VERSION);
442 disk_super->time = 0;
443 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
444 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
445 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
447 r = dm_bm_unlock(sblock);
448 if (r)
449 return r;
451 pmd->flags = 0;
452 r = dm_pool_commit_metadata(pmd);
453 if (r < 0)
454 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
455 __func__, r);
457 return r;
460 static int __open_or_format_metadata(struct dm_pool_metadata *pmd,
461 struct dm_block_manager *bm,
462 dm_block_t nr_blocks, int create)
464 int r;
465 struct dm_space_map *sm, *data_sm;
466 struct dm_transaction_manager *tm;
467 struct dm_block *sblock;
469 if (create) {
470 r = dm_tm_create_with_sm(bm, THIN_SUPERBLOCK_LOCATION, &tm, &sm);
471 if (r < 0) {
472 DMERR("tm_create_with_sm failed");
473 return r;
476 data_sm = dm_sm_disk_create(tm, nr_blocks);
477 if (IS_ERR(data_sm)) {
478 DMERR("sm_disk_create failed");
479 r = PTR_ERR(data_sm);
480 goto bad;
482 } else {
483 struct thin_disk_superblock *disk_super;
485 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION,
486 &sb_validator, &sblock);
487 if (r < 0) {
488 DMERR("couldn't read superblock");
489 return r;
492 disk_super = dm_block_data(sblock);
493 r = dm_tm_open_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
494 disk_super->metadata_space_map_root,
495 sizeof(disk_super->metadata_space_map_root),
496 &tm, &sm);
497 if (r < 0) {
498 DMERR("tm_open_with_sm failed");
499 dm_bm_unlock(sblock);
500 return r;
503 data_sm = dm_sm_disk_open(tm, disk_super->data_space_map_root,
504 sizeof(disk_super->data_space_map_root));
505 if (IS_ERR(data_sm)) {
506 DMERR("sm_disk_open failed");
507 dm_bm_unlock(sblock);
508 r = PTR_ERR(data_sm);
509 goto bad;
512 dm_bm_unlock(sblock);
515 pmd->bm = bm;
516 pmd->metadata_sm = sm;
517 pmd->data_sm = data_sm;
518 pmd->tm = tm;
519 pmd->nb_tm = dm_tm_create_non_blocking_clone(tm);
520 if (!pmd->nb_tm) {
521 DMERR("could not create clone tm");
522 r = -ENOMEM;
523 goto bad_data_sm;
526 __setup_btree_details(pmd);
528 pmd->root = 0;
529 pmd->details_root = 0;
530 pmd->trans_id = 0;
531 pmd->flags = 0;
533 if (!create)
534 return 0;
536 r = dm_btree_empty(&pmd->info, &pmd->root);
537 if (r < 0)
538 goto bad_data_sm;
540 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
541 if (r < 0) {
542 DMERR("couldn't create devices root");
543 goto bad_data_sm;
546 r = __write_initial_superblock(pmd);
547 if (r)
548 goto bad_data_sm;
550 return 0;
552 bad_data_sm:
553 dm_sm_destroy(data_sm);
554 bad:
555 dm_tm_destroy(tm);
556 dm_sm_destroy(sm);
558 return r;
561 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd,
562 dm_block_t nr_blocks, int *create)
564 int r;
566 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE,
567 THIN_METADATA_CACHE_SIZE,
568 THIN_MAX_CONCURRENT_LOCKS);
569 if (IS_ERR(pmd->bm)) {
570 DMERR("could not create block manager");
571 return PTR_ERR(pmd->bm);
574 r = __superblock_all_zeroes(pmd->bm, create);
575 if (r) {
576 dm_block_manager_destroy(pmd->bm);
577 return r;
580 r = __open_or_format_metadata(pmd, pmd->bm, nr_blocks, *create);
581 if (r)
582 dm_block_manager_destroy(pmd->bm);
584 return r;
587 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
589 dm_sm_destroy(pmd->data_sm);
590 dm_sm_destroy(pmd->metadata_sm);
591 dm_tm_destroy(pmd->nb_tm);
592 dm_tm_destroy(pmd->tm);
593 dm_block_manager_destroy(pmd->bm);
596 static int __begin_transaction(struct dm_pool_metadata *pmd)
598 int r;
599 u32 features;
600 struct thin_disk_superblock *disk_super;
601 struct dm_block *sblock;
604 * We re-read the superblock every time. Shouldn't need to do this
605 * really.
607 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
608 &sb_validator, &sblock);
609 if (r)
610 return r;
612 disk_super = dm_block_data(sblock);
613 pmd->time = le32_to_cpu(disk_super->time);
614 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
615 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
616 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
617 pmd->flags = le32_to_cpu(disk_super->flags);
618 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
620 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
621 if (features) {
622 DMERR("could not access metadata due to "
623 "unsupported optional features (%lx).",
624 (unsigned long)features);
625 r = -EINVAL;
626 goto out;
630 * Check for read-only metadata to skip the following RDWR checks.
632 if (get_disk_ro(pmd->bdev->bd_disk))
633 goto out;
635 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
636 if (features) {
637 DMERR("could not access metadata RDWR due to "
638 "unsupported optional features (%lx).",
639 (unsigned long)features);
640 r = -EINVAL;
643 out:
644 dm_bm_unlock(sblock);
645 return r;
648 static int __write_changed_details(struct dm_pool_metadata *pmd)
650 int r;
651 struct dm_thin_device *td, *tmp;
652 struct disk_device_details details;
653 uint64_t key;
655 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
656 if (!td->changed)
657 continue;
659 key = td->id;
661 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
662 details.transaction_id = cpu_to_le64(td->transaction_id);
663 details.creation_time = cpu_to_le32(td->creation_time);
664 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
665 __dm_bless_for_disk(&details);
667 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
668 &key, &details, &pmd->details_root);
669 if (r)
670 return r;
672 if (td->open_count)
673 td->changed = 0;
674 else {
675 list_del(&td->list);
676 kfree(td);
680 return 0;
683 static int __commit_transaction(struct dm_pool_metadata *pmd)
686 * FIXME: Associated pool should be made read-only on failure.
688 int r;
689 size_t metadata_len, data_len;
690 struct thin_disk_superblock *disk_super;
691 struct dm_block *sblock;
694 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
696 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
698 r = __write_changed_details(pmd);
699 if (r < 0)
700 return r;
702 r = dm_sm_commit(pmd->data_sm);
703 if (r < 0)
704 return r;
706 r = dm_tm_pre_commit(pmd->tm);
707 if (r < 0)
708 return r;
710 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
711 if (r < 0)
712 return r;
714 r = dm_sm_root_size(pmd->data_sm, &data_len);
715 if (r < 0)
716 return r;
718 r = superblock_lock(pmd, &sblock);
719 if (r)
720 return r;
722 disk_super = dm_block_data(sblock);
723 disk_super->time = cpu_to_le32(pmd->time);
724 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
725 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
726 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
727 disk_super->flags = cpu_to_le32(pmd->flags);
729 r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
730 metadata_len);
731 if (r < 0)
732 goto out_locked;
734 r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
735 data_len);
736 if (r < 0)
737 goto out_locked;
739 return dm_tm_commit(pmd->tm, sblock);
741 out_locked:
742 dm_bm_unlock(sblock);
743 return r;
746 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
747 sector_t data_block_size)
749 int r;
750 struct dm_pool_metadata *pmd;
751 int create;
753 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
754 if (!pmd) {
755 DMERR("could not allocate metadata struct");
756 return ERR_PTR(-ENOMEM);
759 init_rwsem(&pmd->root_lock);
760 pmd->time = 0;
761 INIT_LIST_HEAD(&pmd->thin_devices);
762 pmd->bdev = bdev;
763 pmd->data_block_size = data_block_size;
765 r = __create_persistent_data_objects(pmd, 0, &create);
766 if (r) {
767 kfree(pmd);
768 return ERR_PTR(r);
771 if (!create) {
772 r = __begin_transaction(pmd);
773 if (r < 0) {
774 if (dm_pool_metadata_close(pmd) < 0)
775 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
776 return ERR_PTR(r);
780 return pmd;
783 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
785 int r;
786 unsigned open_devices = 0;
787 struct dm_thin_device *td, *tmp;
789 down_read(&pmd->root_lock);
790 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
791 if (td->open_count)
792 open_devices++;
793 else {
794 list_del(&td->list);
795 kfree(td);
798 up_read(&pmd->root_lock);
800 if (open_devices) {
801 DMERR("attempt to close pmd when %u device(s) are still open",
802 open_devices);
803 return -EBUSY;
806 r = __commit_transaction(pmd);
807 if (r < 0)
808 DMWARN("%s: __commit_transaction() failed, error = %d",
809 __func__, r);
811 __destroy_persistent_data_objects(pmd);
812 kfree(pmd);
814 return 0;
818 * __open_device: Returns @td corresponding to device with id @dev,
819 * creating it if @create is set and incrementing @td->open_count.
820 * On failure, @td is undefined.
822 static int __open_device(struct dm_pool_metadata *pmd,
823 dm_thin_id dev, int create,
824 struct dm_thin_device **td)
826 int r, changed = 0;
827 struct dm_thin_device *td2;
828 uint64_t key = dev;
829 struct disk_device_details details_le;
832 * If the device is already open, return it.
834 list_for_each_entry(td2, &pmd->thin_devices, list)
835 if (td2->id == dev) {
837 * May not create an already-open device.
839 if (create)
840 return -EEXIST;
842 td2->open_count++;
843 *td = td2;
844 return 0;
848 * Check the device exists.
850 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
851 &key, &details_le);
852 if (r) {
853 if (r != -ENODATA || !create)
854 return r;
857 * Create new device.
859 changed = 1;
860 details_le.mapped_blocks = 0;
861 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
862 details_le.creation_time = cpu_to_le32(pmd->time);
863 details_le.snapshotted_time = cpu_to_le32(pmd->time);
866 *td = kmalloc(sizeof(**td), GFP_NOIO);
867 if (!*td)
868 return -ENOMEM;
870 (*td)->pmd = pmd;
871 (*td)->id = dev;
872 (*td)->open_count = 1;
873 (*td)->changed = changed;
874 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
875 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
876 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
877 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
879 list_add(&(*td)->list, &pmd->thin_devices);
881 return 0;
884 static void __close_device(struct dm_thin_device *td)
886 --td->open_count;
889 static int __create_thin(struct dm_pool_metadata *pmd,
890 dm_thin_id dev)
892 int r;
893 dm_block_t dev_root;
894 uint64_t key = dev;
895 struct disk_device_details details_le;
896 struct dm_thin_device *td;
897 __le64 value;
899 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
900 &key, &details_le);
901 if (!r)
902 return -EEXIST;
905 * Create an empty btree for the mappings.
907 r = dm_btree_empty(&pmd->bl_info, &dev_root);
908 if (r)
909 return r;
912 * Insert it into the main mapping tree.
914 value = cpu_to_le64(dev_root);
915 __dm_bless_for_disk(&value);
916 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
917 if (r) {
918 dm_btree_del(&pmd->bl_info, dev_root);
919 return r;
922 r = __open_device(pmd, dev, 1, &td);
923 if (r) {
924 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
925 dm_btree_del(&pmd->bl_info, dev_root);
926 return r;
928 __close_device(td);
930 return r;
933 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
935 int r;
937 down_write(&pmd->root_lock);
938 r = __create_thin(pmd, dev);
939 up_write(&pmd->root_lock);
941 return r;
944 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
945 struct dm_thin_device *snap,
946 dm_thin_id origin, uint32_t time)
948 int r;
949 struct dm_thin_device *td;
951 r = __open_device(pmd, origin, 0, &td);
952 if (r)
953 return r;
955 td->changed = 1;
956 td->snapshotted_time = time;
958 snap->mapped_blocks = td->mapped_blocks;
959 snap->snapshotted_time = time;
960 __close_device(td);
962 return 0;
965 static int __create_snap(struct dm_pool_metadata *pmd,
966 dm_thin_id dev, dm_thin_id origin)
968 int r;
969 dm_block_t origin_root;
970 uint64_t key = origin, dev_key = dev;
971 struct dm_thin_device *td;
972 struct disk_device_details details_le;
973 __le64 value;
975 /* check this device is unused */
976 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
977 &dev_key, &details_le);
978 if (!r)
979 return -EEXIST;
981 /* find the mapping tree for the origin */
982 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
983 if (r)
984 return r;
985 origin_root = le64_to_cpu(value);
987 /* clone the origin, an inc will do */
988 dm_tm_inc(pmd->tm, origin_root);
990 /* insert into the main mapping tree */
991 value = cpu_to_le64(origin_root);
992 __dm_bless_for_disk(&value);
993 key = dev;
994 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
995 if (r) {
996 dm_tm_dec(pmd->tm, origin_root);
997 return r;
1000 pmd->time++;
1002 r = __open_device(pmd, dev, 1, &td);
1003 if (r)
1004 goto bad;
1006 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1007 __close_device(td);
1009 if (r)
1010 goto bad;
1012 return 0;
1014 bad:
1015 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1016 dm_btree_remove(&pmd->details_info, pmd->details_root,
1017 &key, &pmd->details_root);
1018 return r;
1021 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1022 dm_thin_id dev,
1023 dm_thin_id origin)
1025 int r;
1027 down_write(&pmd->root_lock);
1028 r = __create_snap(pmd, dev, origin);
1029 up_write(&pmd->root_lock);
1031 return r;
1034 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1036 int r;
1037 uint64_t key = dev;
1038 struct dm_thin_device *td;
1040 /* TODO: failure should mark the transaction invalid */
1041 r = __open_device(pmd, dev, 0, &td);
1042 if (r)
1043 return r;
1045 if (td->open_count > 1) {
1046 __close_device(td);
1047 return -EBUSY;
1050 list_del(&td->list);
1051 kfree(td);
1052 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1053 &key, &pmd->details_root);
1054 if (r)
1055 return r;
1057 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1058 if (r)
1059 return r;
1061 return 0;
1064 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1065 dm_thin_id dev)
1067 int r;
1069 down_write(&pmd->root_lock);
1070 r = __delete_device(pmd, dev);
1071 up_write(&pmd->root_lock);
1073 return r;
1076 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1077 uint64_t current_id,
1078 uint64_t new_id)
1080 down_write(&pmd->root_lock);
1081 if (pmd->trans_id != current_id) {
1082 up_write(&pmd->root_lock);
1083 DMERR("mismatched transaction id");
1084 return -EINVAL;
1087 pmd->trans_id = new_id;
1088 up_write(&pmd->root_lock);
1090 return 0;
1093 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1094 uint64_t *result)
1096 down_read(&pmd->root_lock);
1097 *result = pmd->trans_id;
1098 up_read(&pmd->root_lock);
1100 return 0;
1103 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1105 int r, inc;
1106 struct thin_disk_superblock *disk_super;
1107 struct dm_block *copy, *sblock;
1108 dm_block_t held_root;
1111 * Copy the superblock.
1113 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1114 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1115 &sb_validator, &copy, &inc);
1116 if (r)
1117 return r;
1119 BUG_ON(!inc);
1121 held_root = dm_block_location(copy);
1122 disk_super = dm_block_data(copy);
1124 if (le64_to_cpu(disk_super->held_root)) {
1125 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1127 dm_tm_dec(pmd->tm, held_root);
1128 dm_tm_unlock(pmd->tm, copy);
1129 return -EBUSY;
1133 * Wipe the spacemap since we're not publishing this.
1135 memset(&disk_super->data_space_map_root, 0,
1136 sizeof(disk_super->data_space_map_root));
1137 memset(&disk_super->metadata_space_map_root, 0,
1138 sizeof(disk_super->metadata_space_map_root));
1141 * Increment the data structures that need to be preserved.
1143 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1144 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1145 dm_tm_unlock(pmd->tm, copy);
1148 * Write the held root into the superblock.
1150 r = superblock_lock(pmd, &sblock);
1151 if (r) {
1152 dm_tm_dec(pmd->tm, held_root);
1153 return r;
1156 disk_super = dm_block_data(sblock);
1157 disk_super->held_root = cpu_to_le64(held_root);
1158 dm_bm_unlock(sblock);
1159 return 0;
1162 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1164 int r;
1166 down_write(&pmd->root_lock);
1167 r = __reserve_metadata_snap(pmd);
1168 up_write(&pmd->root_lock);
1170 return r;
1173 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1175 int r;
1176 struct thin_disk_superblock *disk_super;
1177 struct dm_block *sblock, *copy;
1178 dm_block_t held_root;
1180 r = superblock_lock(pmd, &sblock);
1181 if (r)
1182 return r;
1184 disk_super = dm_block_data(sblock);
1185 held_root = le64_to_cpu(disk_super->held_root);
1186 disk_super->held_root = cpu_to_le64(0);
1188 dm_bm_unlock(sblock);
1190 if (!held_root) {
1191 DMWARN("No pool metadata snapshot found: nothing to release.");
1192 return -EINVAL;
1195 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1196 if (r)
1197 return r;
1199 disk_super = dm_block_data(copy);
1200 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
1201 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
1202 dm_sm_dec_block(pmd->metadata_sm, held_root);
1204 return dm_tm_unlock(pmd->tm, copy);
1207 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1209 int r;
1211 down_write(&pmd->root_lock);
1212 r = __release_metadata_snap(pmd);
1213 up_write(&pmd->root_lock);
1215 return r;
1218 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1219 dm_block_t *result)
1221 int r;
1222 struct thin_disk_superblock *disk_super;
1223 struct dm_block *sblock;
1225 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1226 &sb_validator, &sblock);
1227 if (r)
1228 return r;
1230 disk_super = dm_block_data(sblock);
1231 *result = le64_to_cpu(disk_super->held_root);
1233 return dm_bm_unlock(sblock);
1236 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1237 dm_block_t *result)
1239 int r;
1241 down_read(&pmd->root_lock);
1242 r = __get_metadata_snap(pmd, result);
1243 up_read(&pmd->root_lock);
1245 return r;
1248 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1249 struct dm_thin_device **td)
1251 int r;
1253 down_write(&pmd->root_lock);
1254 r = __open_device(pmd, dev, 0, td);
1255 up_write(&pmd->root_lock);
1257 return r;
1260 int dm_pool_close_thin_device(struct dm_thin_device *td)
1262 down_write(&td->pmd->root_lock);
1263 __close_device(td);
1264 up_write(&td->pmd->root_lock);
1266 return 0;
1269 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1271 return td->id;
1274 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1276 return td->snapshotted_time > time;
1279 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1280 int can_block, struct dm_thin_lookup_result *result)
1282 int r;
1283 uint64_t block_time = 0;
1284 __le64 value;
1285 struct dm_pool_metadata *pmd = td->pmd;
1286 dm_block_t keys[2] = { td->id, block };
1288 if (can_block) {
1289 down_read(&pmd->root_lock);
1290 r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
1291 if (!r)
1292 block_time = le64_to_cpu(value);
1293 up_read(&pmd->root_lock);
1295 } else if (down_read_trylock(&pmd->root_lock)) {
1296 r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
1297 if (!r)
1298 block_time = le64_to_cpu(value);
1299 up_read(&pmd->root_lock);
1301 } else
1302 return -EWOULDBLOCK;
1304 if (!r) {
1305 dm_block_t exception_block;
1306 uint32_t exception_time;
1307 unpack_block_time(block_time, &exception_block,
1308 &exception_time);
1309 result->block = exception_block;
1310 result->shared = __snapshotted_since(td, exception_time);
1313 return r;
1316 static int __insert(struct dm_thin_device *td, dm_block_t block,
1317 dm_block_t data_block)
1319 int r, inserted;
1320 __le64 value;
1321 struct dm_pool_metadata *pmd = td->pmd;
1322 dm_block_t keys[2] = { td->id, block };
1324 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1325 __dm_bless_for_disk(&value);
1327 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1328 &pmd->root, &inserted);
1329 if (r)
1330 return r;
1332 if (inserted) {
1333 td->mapped_blocks++;
1334 td->changed = 1;
1337 return 0;
1340 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1341 dm_block_t data_block)
1343 int r;
1345 down_write(&td->pmd->root_lock);
1346 r = __insert(td, block, data_block);
1347 up_write(&td->pmd->root_lock);
1349 return r;
1352 static int __remove(struct dm_thin_device *td, dm_block_t block)
1354 int r;
1355 struct dm_pool_metadata *pmd = td->pmd;
1356 dm_block_t keys[2] = { td->id, block };
1358 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1359 if (r)
1360 return r;
1362 td->mapped_blocks--;
1363 td->changed = 1;
1365 return 0;
1368 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1370 int r;
1372 down_write(&td->pmd->root_lock);
1373 r = __remove(td, block);
1374 up_write(&td->pmd->root_lock);
1376 return r;
1379 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1381 int r;
1383 down_write(&pmd->root_lock);
1384 r = dm_sm_new_block(pmd->data_sm, result);
1385 up_write(&pmd->root_lock);
1387 return r;
1390 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1392 int r;
1394 down_write(&pmd->root_lock);
1396 r = __commit_transaction(pmd);
1397 if (r <= 0)
1398 goto out;
1401 * Open the next transaction.
1403 r = __begin_transaction(pmd);
1404 out:
1405 up_write(&pmd->root_lock);
1406 return r;
1409 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1411 int r;
1413 down_read(&pmd->root_lock);
1414 r = dm_sm_get_nr_free(pmd->data_sm, result);
1415 up_read(&pmd->root_lock);
1417 return r;
1420 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1421 dm_block_t *result)
1423 int r;
1425 down_read(&pmd->root_lock);
1426 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1427 up_read(&pmd->root_lock);
1429 return r;
1432 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1433 dm_block_t *result)
1435 int r;
1437 down_read(&pmd->root_lock);
1438 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1439 up_read(&pmd->root_lock);
1441 return r;
1444 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1446 down_read(&pmd->root_lock);
1447 *result = pmd->data_block_size;
1448 up_read(&pmd->root_lock);
1450 return 0;
1453 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1455 int r;
1457 down_read(&pmd->root_lock);
1458 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1459 up_read(&pmd->root_lock);
1461 return r;
1464 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1466 struct dm_pool_metadata *pmd = td->pmd;
1468 down_read(&pmd->root_lock);
1469 *result = td->mapped_blocks;
1470 up_read(&pmd->root_lock);
1472 return 0;
1475 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1477 int r;
1478 __le64 value_le;
1479 dm_block_t thin_root;
1480 struct dm_pool_metadata *pmd = td->pmd;
1482 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1483 if (r)
1484 return r;
1486 thin_root = le64_to_cpu(value_le);
1488 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1491 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1492 dm_block_t *result)
1494 int r;
1495 struct dm_pool_metadata *pmd = td->pmd;
1497 down_read(&pmd->root_lock);
1498 r = __highest_block(td, result);
1499 up_read(&pmd->root_lock);
1501 return r;
1504 static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1506 int r;
1507 dm_block_t old_count;
1509 r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
1510 if (r)
1511 return r;
1513 if (new_count == old_count)
1514 return 0;
1516 if (new_count < old_count) {
1517 DMERR("cannot reduce size of data device");
1518 return -EINVAL;
1521 return dm_sm_extend(pmd->data_sm, new_count - old_count);
1524 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1526 int r;
1528 down_write(&pmd->root_lock);
1529 r = __resize_data_dev(pmd, new_count);
1530 up_write(&pmd->root_lock);
1532 return r;