2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
29 * ratelimit state to be used in DMXXX_LIMIT().
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state
,
32 DEFAULT_RATELIMIT_INTERVAL
,
33 DEFAULT_RATELIMIT_BURST
);
34 EXPORT_SYMBOL(dm_ratelimit_state
);
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
44 static const char *_name
= DM_NAME
;
46 static unsigned int major
= 0;
47 static unsigned int _major
= 0;
49 static DEFINE_IDR(_minor_idr
);
51 static DEFINE_SPINLOCK(_minor_lock
);
54 * One of these is allocated per bio.
57 struct mapped_device
*md
;
61 unsigned long start_time
;
62 spinlock_t endio_lock
;
67 * One of these is allocated per target within a bio. Hopefully
68 * this will be simplified out one day.
77 * For request-based dm.
78 * One of these is allocated per request.
80 struct dm_rq_target_io
{
81 struct mapped_device
*md
;
83 struct request
*orig
, clone
;
89 * For request-based dm.
90 * One of these is allocated per bio.
92 struct dm_rq_clone_bio_info
{
94 struct dm_rq_target_io
*tio
;
97 union map_info
*dm_get_mapinfo(struct bio
*bio
)
99 if (bio
&& bio
->bi_private
)
100 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
104 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
106 if (rq
&& rq
->end_io_data
)
107 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
112 #define MINOR_ALLOCED ((void *)-1)
115 * Bits for the md->flags field.
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
126 * Work processed by per-device workqueue.
128 struct mapped_device
{
129 struct rw_semaphore io_lock
;
130 struct mutex suspend_lock
;
137 struct request_queue
*queue
;
139 /* Protect queue and type against concurrent access. */
140 struct mutex type_lock
;
142 struct target_type
*immutable_target_type
;
144 struct gendisk
*disk
;
150 * A list of ios that arrived while we were suspended.
153 wait_queue_head_t wait
;
154 struct work_struct work
;
155 struct bio_list deferred
;
156 spinlock_t deferred_lock
;
159 * Processing queue (flush)
161 struct workqueue_struct
*wq
;
164 * The current mapping.
166 struct dm_table
*map
;
169 * io objects are allocated from here.
180 wait_queue_head_t eventq
;
182 struct list_head uevent_list
;
183 spinlock_t uevent_lock
; /* Protect access to uevent_list */
186 * freeze/thaw support require holding onto a super block
188 struct super_block
*frozen_sb
;
189 struct block_device
*bdev
;
191 /* forced geometry settings */
192 struct hd_geometry geometry
;
197 /* zero-length flush that will be cloned and submitted to targets */
198 struct bio flush_bio
;
202 * For mempools pre-allocation at the table loading time.
204 struct dm_md_mempools
{
211 static struct kmem_cache
*_io_cache
;
212 static struct kmem_cache
*_tio_cache
;
213 static struct kmem_cache
*_rq_tio_cache
;
214 static struct kmem_cache
*_rq_bio_info_cache
;
216 static int __init
local_init(void)
220 /* allocate a slab for the dm_ios */
221 _io_cache
= KMEM_CACHE(dm_io
, 0);
225 /* allocate a slab for the target ios */
226 _tio_cache
= KMEM_CACHE(dm_target_io
, 0);
228 goto out_free_io_cache
;
230 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
232 goto out_free_tio_cache
;
234 _rq_bio_info_cache
= KMEM_CACHE(dm_rq_clone_bio_info
, 0);
235 if (!_rq_bio_info_cache
)
236 goto out_free_rq_tio_cache
;
238 r
= dm_uevent_init();
240 goto out_free_rq_bio_info_cache
;
243 r
= register_blkdev(_major
, _name
);
245 goto out_uevent_exit
;
254 out_free_rq_bio_info_cache
:
255 kmem_cache_destroy(_rq_bio_info_cache
);
256 out_free_rq_tio_cache
:
257 kmem_cache_destroy(_rq_tio_cache
);
259 kmem_cache_destroy(_tio_cache
);
261 kmem_cache_destroy(_io_cache
);
266 static void local_exit(void)
268 kmem_cache_destroy(_rq_bio_info_cache
);
269 kmem_cache_destroy(_rq_tio_cache
);
270 kmem_cache_destroy(_tio_cache
);
271 kmem_cache_destroy(_io_cache
);
272 unregister_blkdev(_major
, _name
);
277 DMINFO("cleaned up");
280 static int (*_inits
[])(void) __initdata
= {
290 static void (*_exits
[])(void) = {
300 static int __init
dm_init(void)
302 const int count
= ARRAY_SIZE(_inits
);
306 for (i
= 0; i
< count
; i
++) {
321 static void __exit
dm_exit(void)
323 int i
= ARRAY_SIZE(_exits
);
329 * Should be empty by this point.
331 idr_remove_all(&_minor_idr
);
332 idr_destroy(&_minor_idr
);
336 * Block device functions
338 int dm_deleting_md(struct mapped_device
*md
)
340 return test_bit(DMF_DELETING
, &md
->flags
);
343 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
345 struct mapped_device
*md
;
347 spin_lock(&_minor_lock
);
349 md
= bdev
->bd_disk
->private_data
;
353 if (test_bit(DMF_FREEING
, &md
->flags
) ||
354 dm_deleting_md(md
)) {
360 atomic_inc(&md
->open_count
);
363 spin_unlock(&_minor_lock
);
365 return md
? 0 : -ENXIO
;
368 static int dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
370 struct mapped_device
*md
= disk
->private_data
;
372 spin_lock(&_minor_lock
);
374 atomic_dec(&md
->open_count
);
377 spin_unlock(&_minor_lock
);
382 int dm_open_count(struct mapped_device
*md
)
384 return atomic_read(&md
->open_count
);
388 * Guarantees nothing is using the device before it's deleted.
390 int dm_lock_for_deletion(struct mapped_device
*md
)
394 spin_lock(&_minor_lock
);
396 if (dm_open_count(md
))
399 set_bit(DMF_DELETING
, &md
->flags
);
401 spin_unlock(&_minor_lock
);
406 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
408 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
410 return dm_get_geometry(md
, geo
);
413 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
414 unsigned int cmd
, unsigned long arg
)
416 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
417 struct dm_table
*map
= dm_get_live_table(md
);
418 struct dm_target
*tgt
;
421 if (!map
|| !dm_table_get_size(map
))
424 /* We only support devices that have a single target */
425 if (dm_table_get_num_targets(map
) != 1)
428 tgt
= dm_table_get_target(map
, 0);
430 if (dm_suspended_md(md
)) {
435 if (tgt
->type
->ioctl
)
436 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
444 static struct dm_io
*alloc_io(struct mapped_device
*md
)
446 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
449 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
451 mempool_free(io
, md
->io_pool
);
454 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
456 mempool_free(tio
, md
->tio_pool
);
459 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
,
462 return mempool_alloc(md
->tio_pool
, gfp_mask
);
465 static void free_rq_tio(struct dm_rq_target_io
*tio
)
467 mempool_free(tio
, tio
->md
->tio_pool
);
470 static struct dm_rq_clone_bio_info
*alloc_bio_info(struct mapped_device
*md
)
472 return mempool_alloc(md
->io_pool
, GFP_ATOMIC
);
475 static void free_bio_info(struct dm_rq_clone_bio_info
*info
)
477 mempool_free(info
, info
->tio
->md
->io_pool
);
480 static int md_in_flight(struct mapped_device
*md
)
482 return atomic_read(&md
->pending
[READ
]) +
483 atomic_read(&md
->pending
[WRITE
]);
486 static void start_io_acct(struct dm_io
*io
)
488 struct mapped_device
*md
= io
->md
;
490 int rw
= bio_data_dir(io
->bio
);
492 io
->start_time
= jiffies
;
494 cpu
= part_stat_lock();
495 part_round_stats(cpu
, &dm_disk(md
)->part0
);
497 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
498 atomic_inc_return(&md
->pending
[rw
]));
501 static void end_io_acct(struct dm_io
*io
)
503 struct mapped_device
*md
= io
->md
;
504 struct bio
*bio
= io
->bio
;
505 unsigned long duration
= jiffies
- io
->start_time
;
507 int rw
= bio_data_dir(bio
);
509 cpu
= part_stat_lock();
510 part_round_stats(cpu
, &dm_disk(md
)->part0
);
511 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
515 * After this is decremented the bio must not be touched if it is
518 pending
= atomic_dec_return(&md
->pending
[rw
]);
519 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
520 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
522 /* nudge anyone waiting on suspend queue */
528 * Add the bio to the list of deferred io.
530 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
534 spin_lock_irqsave(&md
->deferred_lock
, flags
);
535 bio_list_add(&md
->deferred
, bio
);
536 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
537 queue_work(md
->wq
, &md
->work
);
541 * Everyone (including functions in this file), should use this
542 * function to access the md->map field, and make sure they call
543 * dm_table_put() when finished.
545 struct dm_table
*dm_get_live_table(struct mapped_device
*md
)
550 read_lock_irqsave(&md
->map_lock
, flags
);
554 read_unlock_irqrestore(&md
->map_lock
, flags
);
560 * Get the geometry associated with a dm device
562 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
570 * Set the geometry of a device.
572 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
574 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
576 if (geo
->start
> sz
) {
577 DMWARN("Start sector is beyond the geometry limits.");
586 /*-----------------------------------------------------------------
588 * A more elegant soln is in the works that uses the queue
589 * merge fn, unfortunately there are a couple of changes to
590 * the block layer that I want to make for this. So in the
591 * interests of getting something for people to use I give
592 * you this clearly demarcated crap.
593 *---------------------------------------------------------------*/
595 static int __noflush_suspending(struct mapped_device
*md
)
597 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
601 * Decrements the number of outstanding ios that a bio has been
602 * cloned into, completing the original io if necc.
604 static void dec_pending(struct dm_io
*io
, int error
)
609 struct mapped_device
*md
= io
->md
;
611 /* Push-back supersedes any I/O errors */
612 if (unlikely(error
)) {
613 spin_lock_irqsave(&io
->endio_lock
, flags
);
614 if (!(io
->error
> 0 && __noflush_suspending(md
)))
616 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
619 if (atomic_dec_and_test(&io
->io_count
)) {
620 if (io
->error
== DM_ENDIO_REQUEUE
) {
622 * Target requested pushing back the I/O.
624 spin_lock_irqsave(&md
->deferred_lock
, flags
);
625 if (__noflush_suspending(md
))
626 bio_list_add_head(&md
->deferred
, io
->bio
);
628 /* noflush suspend was interrupted. */
630 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
633 io_error
= io
->error
;
638 if (io_error
== DM_ENDIO_REQUEUE
)
641 if ((bio
->bi_rw
& REQ_FLUSH
) && bio
->bi_size
) {
643 * Preflush done for flush with data, reissue
646 bio
->bi_rw
&= ~REQ_FLUSH
;
649 /* done with normal IO or empty flush */
650 trace_block_bio_complete(md
->queue
, bio
, io_error
);
651 bio_endio(bio
, io_error
);
656 static void clone_endio(struct bio
*bio
, int error
)
659 struct dm_target_io
*tio
= bio
->bi_private
;
660 struct dm_io
*io
= tio
->io
;
661 struct mapped_device
*md
= tio
->io
->md
;
662 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
664 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
668 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
669 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
671 * error and requeue request are handled
675 else if (r
== DM_ENDIO_INCOMPLETE
)
676 /* The target will handle the io */
679 DMWARN("unimplemented target endio return value: %d", r
);
685 * Store md for cleanup instead of tio which is about to get freed.
687 bio
->bi_private
= md
->bs
;
691 dec_pending(io
, error
);
695 * Partial completion handling for request-based dm
697 static void end_clone_bio(struct bio
*clone
, int error
)
699 struct dm_rq_clone_bio_info
*info
= clone
->bi_private
;
700 struct dm_rq_target_io
*tio
= info
->tio
;
701 struct bio
*bio
= info
->orig
;
702 unsigned int nr_bytes
= info
->orig
->bi_size
;
708 * An error has already been detected on the request.
709 * Once error occurred, just let clone->end_io() handle
715 * Don't notice the error to the upper layer yet.
716 * The error handling decision is made by the target driver,
717 * when the request is completed.
724 * I/O for the bio successfully completed.
725 * Notice the data completion to the upper layer.
729 * bios are processed from the head of the list.
730 * So the completing bio should always be rq->bio.
731 * If it's not, something wrong is happening.
733 if (tio
->orig
->bio
!= bio
)
734 DMERR("bio completion is going in the middle of the request");
737 * Update the original request.
738 * Do not use blk_end_request() here, because it may complete
739 * the original request before the clone, and break the ordering.
741 blk_update_request(tio
->orig
, 0, nr_bytes
);
745 * Don't touch any member of the md after calling this function because
746 * the md may be freed in dm_put() at the end of this function.
747 * Or do dm_get() before calling this function and dm_put() later.
749 static void rq_completed(struct mapped_device
*md
, int rw
, int run_queue
)
751 atomic_dec(&md
->pending
[rw
]);
753 /* nudge anyone waiting on suspend queue */
754 if (!md_in_flight(md
))
758 blk_run_queue(md
->queue
);
761 * dm_put() must be at the end of this function. See the comment above
766 static void free_rq_clone(struct request
*clone
)
768 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
770 blk_rq_unprep_clone(clone
);
775 * Complete the clone and the original request.
776 * Must be called without queue lock.
778 static void dm_end_request(struct request
*clone
, int error
)
780 int rw
= rq_data_dir(clone
);
781 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
782 struct mapped_device
*md
= tio
->md
;
783 struct request
*rq
= tio
->orig
;
785 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
786 rq
->errors
= clone
->errors
;
787 rq
->resid_len
= clone
->resid_len
;
791 * We are using the sense buffer of the original
793 * So setting the length of the sense data is enough.
795 rq
->sense_len
= clone
->sense_len
;
798 free_rq_clone(clone
);
799 blk_end_request_all(rq
, error
);
800 rq_completed(md
, rw
, true);
803 static void dm_unprep_request(struct request
*rq
)
805 struct request
*clone
= rq
->special
;
808 rq
->cmd_flags
&= ~REQ_DONTPREP
;
810 free_rq_clone(clone
);
814 * Requeue the original request of a clone.
816 void dm_requeue_unmapped_request(struct request
*clone
)
818 int rw
= rq_data_dir(clone
);
819 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
820 struct mapped_device
*md
= tio
->md
;
821 struct request
*rq
= tio
->orig
;
822 struct request_queue
*q
= rq
->q
;
825 dm_unprep_request(rq
);
827 spin_lock_irqsave(q
->queue_lock
, flags
);
828 blk_requeue_request(q
, rq
);
829 spin_unlock_irqrestore(q
->queue_lock
, flags
);
831 rq_completed(md
, rw
, 0);
833 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request
);
835 static void __stop_queue(struct request_queue
*q
)
840 static void stop_queue(struct request_queue
*q
)
844 spin_lock_irqsave(q
->queue_lock
, flags
);
846 spin_unlock_irqrestore(q
->queue_lock
, flags
);
849 static void __start_queue(struct request_queue
*q
)
851 if (blk_queue_stopped(q
))
855 static void start_queue(struct request_queue
*q
)
859 spin_lock_irqsave(q
->queue_lock
, flags
);
861 spin_unlock_irqrestore(q
->queue_lock
, flags
);
864 static void dm_done(struct request
*clone
, int error
, bool mapped
)
867 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
868 dm_request_endio_fn rq_end_io
= tio
->ti
->type
->rq_end_io
;
870 if (mapped
&& rq_end_io
)
871 r
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
874 /* The target wants to complete the I/O */
875 dm_end_request(clone
, r
);
876 else if (r
== DM_ENDIO_INCOMPLETE
)
877 /* The target will handle the I/O */
879 else if (r
== DM_ENDIO_REQUEUE
)
880 /* The target wants to requeue the I/O */
881 dm_requeue_unmapped_request(clone
);
883 DMWARN("unimplemented target endio return value: %d", r
);
889 * Request completion handler for request-based dm
891 static void dm_softirq_done(struct request
*rq
)
894 struct request
*clone
= rq
->completion_data
;
895 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
897 if (rq
->cmd_flags
& REQ_FAILED
)
900 dm_done(clone
, tio
->error
, mapped
);
904 * Complete the clone and the original request with the error status
905 * through softirq context.
907 static void dm_complete_request(struct request
*clone
, int error
)
909 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
910 struct request
*rq
= tio
->orig
;
913 rq
->completion_data
= clone
;
914 blk_complete_request(rq
);
918 * Complete the not-mapped clone and the original request with the error status
919 * through softirq context.
920 * Target's rq_end_io() function isn't called.
921 * This may be used when the target's map_rq() function fails.
923 void dm_kill_unmapped_request(struct request
*clone
, int error
)
925 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
926 struct request
*rq
= tio
->orig
;
928 rq
->cmd_flags
|= REQ_FAILED
;
929 dm_complete_request(clone
, error
);
931 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request
);
934 * Called with the queue lock held
936 static void end_clone_request(struct request
*clone
, int error
)
939 * For just cleaning up the information of the queue in which
940 * the clone was dispatched.
941 * The clone is *NOT* freed actually here because it is alloced from
942 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
944 __blk_put_request(clone
->q
, clone
);
947 * Actual request completion is done in a softirq context which doesn't
948 * hold the queue lock. Otherwise, deadlock could occur because:
949 * - another request may be submitted by the upper level driver
950 * of the stacking during the completion
951 * - the submission which requires queue lock may be done
954 dm_complete_request(clone
, error
);
958 * Return maximum size of I/O possible at the supplied sector up to the current
961 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
963 sector_t target_offset
= dm_target_offset(ti
, sector
);
965 return ti
->len
- target_offset
;
968 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
970 sector_t len
= max_io_len_target_boundary(sector
, ti
);
971 sector_t offset
, max_len
;
974 * Does the target need to split even further?
976 if (ti
->max_io_len
) {
977 offset
= dm_target_offset(ti
, sector
);
978 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
979 max_len
= sector_div(offset
, ti
->max_io_len
);
981 max_len
= offset
& (ti
->max_io_len
- 1);
982 max_len
= ti
->max_io_len
- max_len
;
991 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
993 if (len
> UINT_MAX
) {
994 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
995 (unsigned long long)len
, UINT_MAX
);
996 ti
->error
= "Maximum size of target IO is too large";
1000 ti
->max_io_len
= (uint32_t) len
;
1004 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
1006 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
1007 struct dm_target_io
*tio
)
1011 struct mapped_device
*md
;
1013 clone
->bi_end_io
= clone_endio
;
1014 clone
->bi_private
= tio
;
1017 * Map the clone. If r == 0 we don't need to do
1018 * anything, the target has assumed ownership of
1021 atomic_inc(&tio
->io
->io_count
);
1022 sector
= clone
->bi_sector
;
1023 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
1024 if (r
== DM_MAPIO_REMAPPED
) {
1025 /* the bio has been remapped so dispatch it */
1027 trace_block_bio_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
1028 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
1030 generic_make_request(clone
);
1031 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
1032 /* error the io and bail out, or requeue it if needed */
1034 dec_pending(tio
->io
, r
);
1036 * Store bio_set for cleanup.
1038 clone
->bi_end_io
= NULL
;
1039 clone
->bi_private
= md
->bs
;
1043 DMWARN("unimplemented target map return value: %d", r
);
1049 struct mapped_device
*md
;
1050 struct dm_table
*map
;
1054 sector_t sector_count
;
1058 static void dm_bio_destructor(struct bio
*bio
)
1060 struct bio_set
*bs
= bio
->bi_private
;
1066 * Creates a little bio that just does part of a bvec.
1068 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
1069 unsigned short idx
, unsigned int offset
,
1070 unsigned int len
, struct bio_set
*bs
)
1073 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
1075 clone
= bio_alloc_bioset(GFP_NOIO
, 1, bs
);
1076 clone
->bi_destructor
= dm_bio_destructor
;
1077 *clone
->bi_io_vec
= *bv
;
1079 clone
->bi_sector
= sector
;
1080 clone
->bi_bdev
= bio
->bi_bdev
;
1081 clone
->bi_rw
= bio
->bi_rw
;
1083 clone
->bi_size
= to_bytes(len
);
1084 clone
->bi_io_vec
->bv_offset
= offset
;
1085 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
1086 clone
->bi_flags
|= 1 << BIO_CLONED
;
1088 if (bio_integrity(bio
)) {
1089 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1090 bio_integrity_trim(clone
,
1091 bio_sector_offset(bio
, idx
, offset
), len
);
1098 * Creates a bio that consists of range of complete bvecs.
1100 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
1101 unsigned short idx
, unsigned short bv_count
,
1102 unsigned int len
, struct bio_set
*bs
)
1106 clone
= bio_alloc_bioset(GFP_NOIO
, bio
->bi_max_vecs
, bs
);
1107 __bio_clone(clone
, bio
);
1108 clone
->bi_destructor
= dm_bio_destructor
;
1109 clone
->bi_sector
= sector
;
1110 clone
->bi_idx
= idx
;
1111 clone
->bi_vcnt
= idx
+ bv_count
;
1112 clone
->bi_size
= to_bytes(len
);
1113 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
1115 if (bio_integrity(bio
)) {
1116 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1118 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
1119 bio_integrity_trim(clone
,
1120 bio_sector_offset(bio
, idx
, 0), len
);
1126 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1127 struct dm_target
*ti
)
1129 struct dm_target_io
*tio
= mempool_alloc(ci
->md
->tio_pool
, GFP_NOIO
);
1133 memset(&tio
->info
, 0, sizeof(tio
->info
));
1138 static void __issue_target_request(struct clone_info
*ci
, struct dm_target
*ti
,
1139 unsigned request_nr
, sector_t len
)
1141 struct dm_target_io
*tio
= alloc_tio(ci
, ti
);
1144 tio
->info
.target_request_nr
= request_nr
;
1147 * Discard requests require the bio's inline iovecs be initialized.
1148 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1149 * and discard, so no need for concern about wasted bvec allocations.
1151 clone
= bio_alloc_bioset(GFP_NOIO
, ci
->bio
->bi_max_vecs
, ci
->md
->bs
);
1152 __bio_clone(clone
, ci
->bio
);
1153 clone
->bi_destructor
= dm_bio_destructor
;
1155 clone
->bi_sector
= ci
->sector
;
1156 clone
->bi_size
= to_bytes(len
);
1159 __map_bio(ti
, clone
, tio
);
1162 static void __issue_target_requests(struct clone_info
*ci
, struct dm_target
*ti
,
1163 unsigned num_requests
, sector_t len
)
1165 unsigned request_nr
;
1167 for (request_nr
= 0; request_nr
< num_requests
; request_nr
++)
1168 __issue_target_request(ci
, ti
, request_nr
, len
);
1171 static int __clone_and_map_empty_flush(struct clone_info
*ci
)
1173 unsigned target_nr
= 0;
1174 struct dm_target
*ti
;
1176 BUG_ON(bio_has_data(ci
->bio
));
1177 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1178 __issue_target_requests(ci
, ti
, ti
->num_flush_requests
, 0);
1184 * Perform all io with a single clone.
1186 static void __clone_and_map_simple(struct clone_info
*ci
, struct dm_target
*ti
)
1188 struct bio
*clone
, *bio
= ci
->bio
;
1189 struct dm_target_io
*tio
;
1191 tio
= alloc_tio(ci
, ti
);
1192 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
1193 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
,
1195 __map_bio(ti
, clone
, tio
);
1196 ci
->sector_count
= 0;
1199 static int __clone_and_map_discard(struct clone_info
*ci
)
1201 struct dm_target
*ti
;
1205 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1206 if (!dm_target_is_valid(ti
))
1210 * Even though the device advertised discard support,
1211 * that does not mean every target supports it, and
1212 * reconfiguration might also have changed that since the
1213 * check was performed.
1215 if (!ti
->num_discard_requests
)
1218 if (!ti
->split_discard_requests
)
1219 len
= min(ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1221 len
= min(ci
->sector_count
, max_io_len(ci
->sector
, ti
));
1223 __issue_target_requests(ci
, ti
, ti
->num_discard_requests
, len
);
1226 } while (ci
->sector_count
-= len
);
1231 static int __clone_and_map(struct clone_info
*ci
)
1233 struct bio
*clone
, *bio
= ci
->bio
;
1234 struct dm_target
*ti
;
1235 sector_t len
= 0, max
;
1236 struct dm_target_io
*tio
;
1238 if (unlikely(bio
->bi_rw
& REQ_DISCARD
))
1239 return __clone_and_map_discard(ci
);
1241 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1242 if (!dm_target_is_valid(ti
))
1245 max
= max_io_len(ci
->sector
, ti
);
1247 if (ci
->sector_count
<= max
) {
1249 * Optimise for the simple case where we can do all of
1250 * the remaining io with a single clone.
1252 __clone_and_map_simple(ci
, ti
);
1254 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
1256 * There are some bvecs that don't span targets.
1257 * Do as many of these as possible.
1260 sector_t remaining
= max
;
1263 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
1264 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
1266 if (bv_len
> remaining
)
1269 remaining
-= bv_len
;
1273 tio
= alloc_tio(ci
, ti
);
1274 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
,
1276 __map_bio(ti
, clone
, tio
);
1279 ci
->sector_count
-= len
;
1284 * Handle a bvec that must be split between two or more targets.
1286 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
1287 sector_t remaining
= to_sector(bv
->bv_len
);
1288 unsigned int offset
= 0;
1292 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1293 if (!dm_target_is_valid(ti
))
1296 max
= max_io_len(ci
->sector
, ti
);
1299 len
= min(remaining
, max
);
1301 tio
= alloc_tio(ci
, ti
);
1302 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
1303 bv
->bv_offset
+ offset
, len
,
1306 __map_bio(ti
, clone
, tio
);
1309 ci
->sector_count
-= len
;
1310 offset
+= to_bytes(len
);
1311 } while (remaining
-= len
);
1320 * Split the bio into several clones and submit it to targets.
1322 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
1324 struct clone_info ci
;
1327 ci
.map
= dm_get_live_table(md
);
1328 if (unlikely(!ci
.map
)) {
1334 ci
.io
= alloc_io(md
);
1336 atomic_set(&ci
.io
->io_count
, 1);
1339 spin_lock_init(&ci
.io
->endio_lock
);
1340 ci
.sector
= bio
->bi_sector
;
1341 ci
.idx
= bio
->bi_idx
;
1343 start_io_acct(ci
.io
);
1344 if (bio
->bi_rw
& REQ_FLUSH
) {
1345 ci
.bio
= &ci
.md
->flush_bio
;
1346 ci
.sector_count
= 0;
1347 error
= __clone_and_map_empty_flush(&ci
);
1348 /* dec_pending submits any data associated with flush */
1351 ci
.sector_count
= bio_sectors(bio
);
1352 while (ci
.sector_count
&& !error
)
1353 error
= __clone_and_map(&ci
);
1356 /* drop the extra reference count */
1357 dec_pending(ci
.io
, error
);
1358 dm_table_put(ci
.map
);
1360 /*-----------------------------------------------------------------
1362 *---------------------------------------------------------------*/
1364 static int dm_merge_bvec(struct request_queue
*q
,
1365 struct bvec_merge_data
*bvm
,
1366 struct bio_vec
*biovec
)
1368 struct mapped_device
*md
= q
->queuedata
;
1369 struct dm_table
*map
= dm_get_live_table(md
);
1370 struct dm_target
*ti
;
1371 sector_t max_sectors
;
1377 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1378 if (!dm_target_is_valid(ti
))
1382 * Find maximum amount of I/O that won't need splitting
1384 max_sectors
= min(max_io_len(bvm
->bi_sector
, ti
),
1385 (sector_t
) BIO_MAX_SECTORS
);
1386 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1391 * merge_bvec_fn() returns number of bytes
1392 * it can accept at this offset
1393 * max is precomputed maximal io size
1395 if (max_size
&& ti
->type
->merge
)
1396 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
1398 * If the target doesn't support merge method and some of the devices
1399 * provided their merge_bvec method (we know this by looking at
1400 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1401 * entries. So always set max_size to 0, and the code below allows
1404 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1413 * Always allow an entire first page
1415 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1416 max_size
= biovec
->bv_len
;
1422 * The request function that just remaps the bio built up by
1425 static void _dm_request(struct request_queue
*q
, struct bio
*bio
)
1427 int rw
= bio_data_dir(bio
);
1428 struct mapped_device
*md
= q
->queuedata
;
1431 down_read(&md
->io_lock
);
1433 cpu
= part_stat_lock();
1434 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
1435 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
1438 /* if we're suspended, we have to queue this io for later */
1439 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1440 up_read(&md
->io_lock
);
1442 if (bio_rw(bio
) != READA
)
1449 __split_and_process_bio(md
, bio
);
1450 up_read(&md
->io_lock
);
1454 static int dm_request_based(struct mapped_device
*md
)
1456 return blk_queue_stackable(md
->queue
);
1459 static void dm_request(struct request_queue
*q
, struct bio
*bio
)
1461 struct mapped_device
*md
= q
->queuedata
;
1463 if (dm_request_based(md
))
1464 blk_queue_bio(q
, bio
);
1466 _dm_request(q
, bio
);
1469 void dm_dispatch_request(struct request
*rq
)
1473 if (blk_queue_io_stat(rq
->q
))
1474 rq
->cmd_flags
|= REQ_IO_STAT
;
1476 rq
->start_time
= jiffies
;
1477 r
= blk_insert_cloned_request(rq
->q
, rq
);
1479 dm_complete_request(rq
, r
);
1481 EXPORT_SYMBOL_GPL(dm_dispatch_request
);
1483 static void dm_rq_bio_destructor(struct bio
*bio
)
1485 struct dm_rq_clone_bio_info
*info
= bio
->bi_private
;
1486 struct mapped_device
*md
= info
->tio
->md
;
1488 free_bio_info(info
);
1489 bio_free(bio
, md
->bs
);
1492 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1495 struct dm_rq_target_io
*tio
= data
;
1496 struct mapped_device
*md
= tio
->md
;
1497 struct dm_rq_clone_bio_info
*info
= alloc_bio_info(md
);
1502 info
->orig
= bio_orig
;
1504 bio
->bi_end_io
= end_clone_bio
;
1505 bio
->bi_private
= info
;
1506 bio
->bi_destructor
= dm_rq_bio_destructor
;
1511 static int setup_clone(struct request
*clone
, struct request
*rq
,
1512 struct dm_rq_target_io
*tio
)
1516 r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, GFP_ATOMIC
,
1517 dm_rq_bio_constructor
, tio
);
1521 clone
->cmd
= rq
->cmd
;
1522 clone
->cmd_len
= rq
->cmd_len
;
1523 clone
->sense
= rq
->sense
;
1524 clone
->buffer
= rq
->buffer
;
1525 clone
->end_io
= end_clone_request
;
1526 clone
->end_io_data
= tio
;
1531 static struct request
*clone_rq(struct request
*rq
, struct mapped_device
*md
,
1534 struct request
*clone
;
1535 struct dm_rq_target_io
*tio
;
1537 tio
= alloc_rq_tio(md
, gfp_mask
);
1545 memset(&tio
->info
, 0, sizeof(tio
->info
));
1547 clone
= &tio
->clone
;
1548 if (setup_clone(clone
, rq
, tio
)) {
1558 * Called with the queue lock held.
1560 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1562 struct mapped_device
*md
= q
->queuedata
;
1563 struct request
*clone
;
1565 if (unlikely(rq
->special
)) {
1566 DMWARN("Already has something in rq->special.");
1567 return BLKPREP_KILL
;
1570 clone
= clone_rq(rq
, md
, GFP_ATOMIC
);
1572 return BLKPREP_DEFER
;
1574 rq
->special
= clone
;
1575 rq
->cmd_flags
|= REQ_DONTPREP
;
1582 * 0 : the request has been processed (not requeued)
1583 * !0 : the request has been requeued
1585 static int map_request(struct dm_target
*ti
, struct request
*clone
,
1586 struct mapped_device
*md
)
1588 int r
, requeued
= 0;
1589 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1592 * Hold the md reference here for the in-flight I/O.
1593 * We can't rely on the reference count by device opener,
1594 * because the device may be closed during the request completion
1595 * when all bios are completed.
1596 * See the comment in rq_completed() too.
1601 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1603 case DM_MAPIO_SUBMITTED
:
1604 /* The target has taken the I/O to submit by itself later */
1606 case DM_MAPIO_REMAPPED
:
1607 /* The target has remapped the I/O so dispatch it */
1608 trace_block_rq_remap(clone
->q
, clone
, disk_devt(dm_disk(md
)),
1609 blk_rq_pos(tio
->orig
));
1610 dm_dispatch_request(clone
);
1612 case DM_MAPIO_REQUEUE
:
1613 /* The target wants to requeue the I/O */
1614 dm_requeue_unmapped_request(clone
);
1619 DMWARN("unimplemented target map return value: %d", r
);
1623 /* The target wants to complete the I/O */
1624 dm_kill_unmapped_request(clone
, r
);
1632 * q->request_fn for request-based dm.
1633 * Called with the queue lock held.
1635 static void dm_request_fn(struct request_queue
*q
)
1637 struct mapped_device
*md
= q
->queuedata
;
1638 struct dm_table
*map
= dm_get_live_table(md
);
1639 struct dm_target
*ti
;
1640 struct request
*rq
, *clone
;
1644 * For suspend, check blk_queue_stopped() and increment
1645 * ->pending within a single queue_lock not to increment the
1646 * number of in-flight I/Os after the queue is stopped in
1649 while (!blk_queue_stopped(q
)) {
1650 rq
= blk_peek_request(q
);
1654 /* always use block 0 to find the target for flushes for now */
1656 if (!(rq
->cmd_flags
& REQ_FLUSH
))
1657 pos
= blk_rq_pos(rq
);
1659 ti
= dm_table_find_target(map
, pos
);
1660 BUG_ON(!dm_target_is_valid(ti
));
1662 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1665 blk_start_request(rq
);
1666 clone
= rq
->special
;
1667 atomic_inc(&md
->pending
[rq_data_dir(clone
)]);
1669 spin_unlock(q
->queue_lock
);
1670 if (map_request(ti
, clone
, md
))
1673 BUG_ON(!irqs_disabled());
1674 spin_lock(q
->queue_lock
);
1680 BUG_ON(!irqs_disabled());
1681 spin_lock(q
->queue_lock
);
1684 blk_delay_queue(q
, HZ
/ 10);
1691 int dm_underlying_device_busy(struct request_queue
*q
)
1693 return blk_lld_busy(q
);
1695 EXPORT_SYMBOL_GPL(dm_underlying_device_busy
);
1697 static int dm_lld_busy(struct request_queue
*q
)
1700 struct mapped_device
*md
= q
->queuedata
;
1701 struct dm_table
*map
= dm_get_live_table(md
);
1703 if (!map
|| test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))
1706 r
= dm_table_any_busy_target(map
);
1713 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1716 struct mapped_device
*md
= congested_data
;
1717 struct dm_table
*map
;
1719 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1720 map
= dm_get_live_table(md
);
1723 * Request-based dm cares about only own queue for
1724 * the query about congestion status of request_queue
1726 if (dm_request_based(md
))
1727 r
= md
->queue
->backing_dev_info
.state
&
1730 r
= dm_table_any_congested(map
, bdi_bits
);
1739 /*-----------------------------------------------------------------
1740 * An IDR is used to keep track of allocated minor numbers.
1741 *---------------------------------------------------------------*/
1742 static void free_minor(int minor
)
1744 spin_lock(&_minor_lock
);
1745 idr_remove(&_minor_idr
, minor
);
1746 spin_unlock(&_minor_lock
);
1750 * See if the device with a specific minor # is free.
1752 static int specific_minor(int minor
)
1756 if (minor
>= (1 << MINORBITS
))
1759 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1763 spin_lock(&_minor_lock
);
1765 if (idr_find(&_minor_idr
, minor
)) {
1770 r
= idr_get_new_above(&_minor_idr
, MINOR_ALLOCED
, minor
, &m
);
1775 idr_remove(&_minor_idr
, m
);
1781 spin_unlock(&_minor_lock
);
1785 static int next_free_minor(int *minor
)
1789 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1793 spin_lock(&_minor_lock
);
1795 r
= idr_get_new(&_minor_idr
, MINOR_ALLOCED
, &m
);
1799 if (m
>= (1 << MINORBITS
)) {
1800 idr_remove(&_minor_idr
, m
);
1808 spin_unlock(&_minor_lock
);
1812 static const struct block_device_operations dm_blk_dops
;
1814 static void dm_wq_work(struct work_struct
*work
);
1816 static void dm_init_md_queue(struct mapped_device
*md
)
1819 * Request-based dm devices cannot be stacked on top of bio-based dm
1820 * devices. The type of this dm device has not been decided yet.
1821 * The type is decided at the first table loading time.
1822 * To prevent problematic device stacking, clear the queue flag
1823 * for request stacking support until then.
1825 * This queue is new, so no concurrency on the queue_flags.
1827 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1829 md
->queue
->queuedata
= md
;
1830 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1831 md
->queue
->backing_dev_info
.congested_data
= md
;
1832 blk_queue_make_request(md
->queue
, dm_request
);
1833 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1834 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1838 * Allocate and initialise a blank device with a given minor.
1840 static struct mapped_device
*alloc_dev(int minor
)
1843 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1847 DMWARN("unable to allocate device, out of memory.");
1851 if (!try_module_get(THIS_MODULE
))
1852 goto bad_module_get
;
1854 /* get a minor number for the dev */
1855 if (minor
== DM_ANY_MINOR
)
1856 r
= next_free_minor(&minor
);
1858 r
= specific_minor(minor
);
1862 md
->type
= DM_TYPE_NONE
;
1863 init_rwsem(&md
->io_lock
);
1864 mutex_init(&md
->suspend_lock
);
1865 mutex_init(&md
->type_lock
);
1866 spin_lock_init(&md
->deferred_lock
);
1867 rwlock_init(&md
->map_lock
);
1868 atomic_set(&md
->holders
, 1);
1869 atomic_set(&md
->open_count
, 0);
1870 atomic_set(&md
->event_nr
, 0);
1871 atomic_set(&md
->uevent_seq
, 0);
1872 INIT_LIST_HEAD(&md
->uevent_list
);
1873 spin_lock_init(&md
->uevent_lock
);
1875 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1879 dm_init_md_queue(md
);
1881 md
->disk
= alloc_disk(1);
1885 atomic_set(&md
->pending
[0], 0);
1886 atomic_set(&md
->pending
[1], 0);
1887 init_waitqueue_head(&md
->wait
);
1888 INIT_WORK(&md
->work
, dm_wq_work
);
1889 init_waitqueue_head(&md
->eventq
);
1891 md
->disk
->major
= _major
;
1892 md
->disk
->first_minor
= minor
;
1893 md
->disk
->fops
= &dm_blk_dops
;
1894 md
->disk
->queue
= md
->queue
;
1895 md
->disk
->private_data
= md
;
1896 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1898 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1900 md
->wq
= alloc_workqueue("kdmflush",
1901 WQ_NON_REENTRANT
| WQ_MEM_RECLAIM
, 0);
1905 md
->bdev
= bdget_disk(md
->disk
, 0);
1909 bio_init(&md
->flush_bio
);
1910 md
->flush_bio
.bi_bdev
= md
->bdev
;
1911 md
->flush_bio
.bi_rw
= WRITE_FLUSH
;
1913 /* Populate the mapping, nobody knows we exist yet */
1914 spin_lock(&_minor_lock
);
1915 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1916 spin_unlock(&_minor_lock
);
1918 BUG_ON(old_md
!= MINOR_ALLOCED
);
1923 destroy_workqueue(md
->wq
);
1925 del_gendisk(md
->disk
);
1928 blk_cleanup_queue(md
->queue
);
1932 module_put(THIS_MODULE
);
1938 static void unlock_fs(struct mapped_device
*md
);
1940 static void free_dev(struct mapped_device
*md
)
1942 int minor
= MINOR(disk_devt(md
->disk
));
1946 destroy_workqueue(md
->wq
);
1948 mempool_destroy(md
->tio_pool
);
1950 mempool_destroy(md
->io_pool
);
1952 bioset_free(md
->bs
);
1953 blk_integrity_unregister(md
->disk
);
1954 del_gendisk(md
->disk
);
1957 spin_lock(&_minor_lock
);
1958 md
->disk
->private_data
= NULL
;
1959 spin_unlock(&_minor_lock
);
1962 blk_cleanup_queue(md
->queue
);
1963 module_put(THIS_MODULE
);
1967 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1969 struct dm_md_mempools
*p
;
1971 if (md
->io_pool
&& md
->tio_pool
&& md
->bs
)
1972 /* the md already has necessary mempools */
1975 p
= dm_table_get_md_mempools(t
);
1976 BUG_ON(!p
|| md
->io_pool
|| md
->tio_pool
|| md
->bs
);
1978 md
->io_pool
= p
->io_pool
;
1980 md
->tio_pool
= p
->tio_pool
;
1986 /* mempool bind completed, now no need any mempools in the table */
1987 dm_table_free_md_mempools(t
);
1991 * Bind a table to the device.
1993 static void event_callback(void *context
)
1995 unsigned long flags
;
1997 struct mapped_device
*md
= (struct mapped_device
*) context
;
1999 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2000 list_splice_init(&md
->uevent_list
, &uevents
);
2001 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2003 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
2005 atomic_inc(&md
->event_nr
);
2006 wake_up(&md
->eventq
);
2010 * Protected by md->suspend_lock obtained by dm_swap_table().
2012 static void __set_size(struct mapped_device
*md
, sector_t size
)
2014 set_capacity(md
->disk
, size
);
2016 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2020 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2022 * If this function returns 0, then the device is either a non-dm
2023 * device without a merge_bvec_fn, or it is a dm device that is
2024 * able to split any bios it receives that are too big.
2026 int dm_queue_merge_is_compulsory(struct request_queue
*q
)
2028 struct mapped_device
*dev_md
;
2030 if (!q
->merge_bvec_fn
)
2033 if (q
->make_request_fn
== dm_request
) {
2034 dev_md
= q
->queuedata
;
2035 if (test_bit(DMF_MERGE_IS_OPTIONAL
, &dev_md
->flags
))
2042 static int dm_device_merge_is_compulsory(struct dm_target
*ti
,
2043 struct dm_dev
*dev
, sector_t start
,
2044 sector_t len
, void *data
)
2046 struct block_device
*bdev
= dev
->bdev
;
2047 struct request_queue
*q
= bdev_get_queue(bdev
);
2049 return dm_queue_merge_is_compulsory(q
);
2053 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2054 * on the properties of the underlying devices.
2056 static int dm_table_merge_is_optional(struct dm_table
*table
)
2059 struct dm_target
*ti
;
2061 while (i
< dm_table_get_num_targets(table
)) {
2062 ti
= dm_table_get_target(table
, i
++);
2064 if (ti
->type
->iterate_devices
&&
2065 ti
->type
->iterate_devices(ti
, dm_device_merge_is_compulsory
, NULL
))
2073 * Returns old map, which caller must destroy.
2075 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2076 struct queue_limits
*limits
)
2078 struct dm_table
*old_map
;
2079 struct request_queue
*q
= md
->queue
;
2081 unsigned long flags
;
2082 int merge_is_optional
;
2084 size
= dm_table_get_size(t
);
2087 * Wipe any geometry if the size of the table changed.
2089 if (size
!= get_capacity(md
->disk
))
2090 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2092 __set_size(md
, size
);
2094 dm_table_event_callback(t
, event_callback
, md
);
2097 * The queue hasn't been stopped yet, if the old table type wasn't
2098 * for request-based during suspension. So stop it to prevent
2099 * I/O mapping before resume.
2100 * This must be done before setting the queue restrictions,
2101 * because request-based dm may be run just after the setting.
2103 if (dm_table_request_based(t
) && !blk_queue_stopped(q
))
2106 __bind_mempools(md
, t
);
2108 merge_is_optional
= dm_table_merge_is_optional(t
);
2110 write_lock_irqsave(&md
->map_lock
, flags
);
2113 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2115 dm_table_set_restrictions(t
, q
, limits
);
2116 if (merge_is_optional
)
2117 set_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2119 clear_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2120 write_unlock_irqrestore(&md
->map_lock
, flags
);
2126 * Returns unbound table for the caller to free.
2128 static struct dm_table
*__unbind(struct mapped_device
*md
)
2130 struct dm_table
*map
= md
->map
;
2131 unsigned long flags
;
2136 dm_table_event_callback(map
, NULL
, NULL
);
2137 write_lock_irqsave(&md
->map_lock
, flags
);
2139 write_unlock_irqrestore(&md
->map_lock
, flags
);
2145 * Constructor for a new device.
2147 int dm_create(int minor
, struct mapped_device
**result
)
2149 struct mapped_device
*md
;
2151 md
= alloc_dev(minor
);
2162 * Functions to manage md->type.
2163 * All are required to hold md->type_lock.
2165 void dm_lock_md_type(struct mapped_device
*md
)
2167 mutex_lock(&md
->type_lock
);
2170 void dm_unlock_md_type(struct mapped_device
*md
)
2172 mutex_unlock(&md
->type_lock
);
2175 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
2180 unsigned dm_get_md_type(struct mapped_device
*md
)
2185 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2187 return md
->immutable_target_type
;
2191 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2193 static int dm_init_request_based_queue(struct mapped_device
*md
)
2195 struct request_queue
*q
= NULL
;
2197 if (md
->queue
->elevator
)
2200 /* Fully initialize the queue */
2201 q
= blk_init_allocated_queue(md
->queue
, dm_request_fn
, NULL
);
2206 dm_init_md_queue(md
);
2207 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
2208 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
2209 blk_queue_lld_busy(md
->queue
, dm_lld_busy
);
2211 elv_register_queue(md
->queue
);
2217 * Setup the DM device's queue based on md's type
2219 int dm_setup_md_queue(struct mapped_device
*md
)
2221 if ((dm_get_md_type(md
) == DM_TYPE_REQUEST_BASED
) &&
2222 !dm_init_request_based_queue(md
)) {
2223 DMWARN("Cannot initialize queue for request-based mapped device");
2230 static struct mapped_device
*dm_find_md(dev_t dev
)
2232 struct mapped_device
*md
;
2233 unsigned minor
= MINOR(dev
);
2235 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2238 spin_lock(&_minor_lock
);
2240 md
= idr_find(&_minor_idr
, minor
);
2241 if (md
&& (md
== MINOR_ALLOCED
||
2242 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2243 dm_deleting_md(md
) ||
2244 test_bit(DMF_FREEING
, &md
->flags
))) {
2250 spin_unlock(&_minor_lock
);
2255 struct mapped_device
*dm_get_md(dev_t dev
)
2257 struct mapped_device
*md
= dm_find_md(dev
);
2264 EXPORT_SYMBOL_GPL(dm_get_md
);
2266 void *dm_get_mdptr(struct mapped_device
*md
)
2268 return md
->interface_ptr
;
2271 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2273 md
->interface_ptr
= ptr
;
2276 void dm_get(struct mapped_device
*md
)
2278 atomic_inc(&md
->holders
);
2279 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2282 const char *dm_device_name(struct mapped_device
*md
)
2286 EXPORT_SYMBOL_GPL(dm_device_name
);
2288 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2290 struct dm_table
*map
;
2294 spin_lock(&_minor_lock
);
2295 map
= dm_get_live_table(md
);
2296 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2297 set_bit(DMF_FREEING
, &md
->flags
);
2298 spin_unlock(&_minor_lock
);
2300 if (!dm_suspended_md(md
)) {
2301 dm_table_presuspend_targets(map
);
2302 dm_table_postsuspend_targets(map
);
2306 * Rare, but there may be I/O requests still going to complete,
2307 * for example. Wait for all references to disappear.
2308 * No one should increment the reference count of the mapped_device,
2309 * after the mapped_device state becomes DMF_FREEING.
2312 while (atomic_read(&md
->holders
))
2314 else if (atomic_read(&md
->holders
))
2315 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2316 dm_device_name(md
), atomic_read(&md
->holders
));
2320 dm_table_destroy(__unbind(md
));
2324 void dm_destroy(struct mapped_device
*md
)
2326 __dm_destroy(md
, true);
2329 void dm_destroy_immediate(struct mapped_device
*md
)
2331 __dm_destroy(md
, false);
2334 void dm_put(struct mapped_device
*md
)
2336 atomic_dec(&md
->holders
);
2338 EXPORT_SYMBOL_GPL(dm_put
);
2340 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2343 DECLARE_WAITQUEUE(wait
, current
);
2345 add_wait_queue(&md
->wait
, &wait
);
2348 set_current_state(interruptible
);
2350 if (!md_in_flight(md
))
2353 if (interruptible
== TASK_INTERRUPTIBLE
&&
2354 signal_pending(current
)) {
2361 set_current_state(TASK_RUNNING
);
2363 remove_wait_queue(&md
->wait
, &wait
);
2369 * Process the deferred bios
2371 static void dm_wq_work(struct work_struct
*work
)
2373 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2377 down_read(&md
->io_lock
);
2379 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2380 spin_lock_irq(&md
->deferred_lock
);
2381 c
= bio_list_pop(&md
->deferred
);
2382 spin_unlock_irq(&md
->deferred_lock
);
2387 up_read(&md
->io_lock
);
2389 if (dm_request_based(md
))
2390 generic_make_request(c
);
2392 __split_and_process_bio(md
, c
);
2394 down_read(&md
->io_lock
);
2397 up_read(&md
->io_lock
);
2400 static void dm_queue_flush(struct mapped_device
*md
)
2402 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2403 smp_mb__after_clear_bit();
2404 queue_work(md
->wq
, &md
->work
);
2408 * Swap in a new table, returning the old one for the caller to destroy.
2410 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2412 struct dm_table
*map
= ERR_PTR(-EINVAL
);
2413 struct queue_limits limits
;
2416 mutex_lock(&md
->suspend_lock
);
2418 /* device must be suspended */
2419 if (!dm_suspended_md(md
))
2422 r
= dm_calculate_queue_limits(table
, &limits
);
2428 map
= __bind(md
, table
, &limits
);
2431 mutex_unlock(&md
->suspend_lock
);
2436 * Functions to lock and unlock any filesystem running on the
2439 static int lock_fs(struct mapped_device
*md
)
2443 WARN_ON(md
->frozen_sb
);
2445 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2446 if (IS_ERR(md
->frozen_sb
)) {
2447 r
= PTR_ERR(md
->frozen_sb
);
2448 md
->frozen_sb
= NULL
;
2452 set_bit(DMF_FROZEN
, &md
->flags
);
2457 static void unlock_fs(struct mapped_device
*md
)
2459 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2462 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2463 md
->frozen_sb
= NULL
;
2464 clear_bit(DMF_FROZEN
, &md
->flags
);
2468 * We need to be able to change a mapping table under a mounted
2469 * filesystem. For example we might want to move some data in
2470 * the background. Before the table can be swapped with
2471 * dm_bind_table, dm_suspend must be called to flush any in
2472 * flight bios and ensure that any further io gets deferred.
2475 * Suspend mechanism in request-based dm.
2477 * 1. Flush all I/Os by lock_fs() if needed.
2478 * 2. Stop dispatching any I/O by stopping the request_queue.
2479 * 3. Wait for all in-flight I/Os to be completed or requeued.
2481 * To abort suspend, start the request_queue.
2483 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2485 struct dm_table
*map
= NULL
;
2487 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
2488 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
2490 mutex_lock(&md
->suspend_lock
);
2492 if (dm_suspended_md(md
)) {
2497 map
= dm_get_live_table(md
);
2500 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2501 * This flag is cleared before dm_suspend returns.
2504 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2506 /* This does not get reverted if there's an error later. */
2507 dm_table_presuspend_targets(map
);
2510 * Flush I/O to the device.
2511 * Any I/O submitted after lock_fs() may not be flushed.
2512 * noflush takes precedence over do_lockfs.
2513 * (lock_fs() flushes I/Os and waits for them to complete.)
2515 if (!noflush
&& do_lockfs
) {
2522 * Here we must make sure that no processes are submitting requests
2523 * to target drivers i.e. no one may be executing
2524 * __split_and_process_bio. This is called from dm_request and
2527 * To get all processes out of __split_and_process_bio in dm_request,
2528 * we take the write lock. To prevent any process from reentering
2529 * __split_and_process_bio from dm_request and quiesce the thread
2530 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2531 * flush_workqueue(md->wq).
2533 down_write(&md
->io_lock
);
2534 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2535 up_write(&md
->io_lock
);
2538 * Stop md->queue before flushing md->wq in case request-based
2539 * dm defers requests to md->wq from md->queue.
2541 if (dm_request_based(md
))
2542 stop_queue(md
->queue
);
2544 flush_workqueue(md
->wq
);
2547 * At this point no more requests are entering target request routines.
2548 * We call dm_wait_for_completion to wait for all existing requests
2551 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
2553 down_write(&md
->io_lock
);
2555 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2556 up_write(&md
->io_lock
);
2558 /* were we interrupted ? */
2562 if (dm_request_based(md
))
2563 start_queue(md
->queue
);
2566 goto out
; /* pushback list is already flushed, so skip flush */
2570 * If dm_wait_for_completion returned 0, the device is completely
2571 * quiescent now. There is no request-processing activity. All new
2572 * requests are being added to md->deferred list.
2575 set_bit(DMF_SUSPENDED
, &md
->flags
);
2577 dm_table_postsuspend_targets(map
);
2583 mutex_unlock(&md
->suspend_lock
);
2587 int dm_resume(struct mapped_device
*md
)
2590 struct dm_table
*map
= NULL
;
2592 mutex_lock(&md
->suspend_lock
);
2593 if (!dm_suspended_md(md
))
2596 map
= dm_get_live_table(md
);
2597 if (!map
|| !dm_table_get_size(map
))
2600 r
= dm_table_resume_targets(map
);
2607 * Flushing deferred I/Os must be done after targets are resumed
2608 * so that mapping of targets can work correctly.
2609 * Request-based dm is queueing the deferred I/Os in its request_queue.
2611 if (dm_request_based(md
))
2612 start_queue(md
->queue
);
2616 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2621 mutex_unlock(&md
->suspend_lock
);
2626 /*-----------------------------------------------------------------
2627 * Event notification.
2628 *---------------------------------------------------------------*/
2629 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2632 char udev_cookie
[DM_COOKIE_LENGTH
];
2633 char *envp
[] = { udev_cookie
, NULL
};
2636 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2638 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2639 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2640 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2645 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2647 return atomic_add_return(1, &md
->uevent_seq
);
2650 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2652 return atomic_read(&md
->event_nr
);
2655 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2657 return wait_event_interruptible(md
->eventq
,
2658 (event_nr
!= atomic_read(&md
->event_nr
)));
2661 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2663 unsigned long flags
;
2665 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2666 list_add(elist
, &md
->uevent_list
);
2667 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2671 * The gendisk is only valid as long as you have a reference
2674 struct gendisk
*dm_disk(struct mapped_device
*md
)
2679 struct kobject
*dm_kobject(struct mapped_device
*md
)
2685 * struct mapped_device should not be exported outside of dm.c
2686 * so use this check to verify that kobj is part of md structure
2688 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2690 struct mapped_device
*md
;
2692 md
= container_of(kobj
, struct mapped_device
, kobj
);
2693 if (&md
->kobj
!= kobj
)
2696 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2704 int dm_suspended_md(struct mapped_device
*md
)
2706 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2709 int dm_suspended(struct dm_target
*ti
)
2711 return dm_suspended_md(dm_table_get_md(ti
->table
));
2713 EXPORT_SYMBOL_GPL(dm_suspended
);
2715 int dm_noflush_suspending(struct dm_target
*ti
)
2717 return __noflush_suspending(dm_table_get_md(ti
->table
));
2719 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2721 struct dm_md_mempools
*dm_alloc_md_mempools(unsigned type
, unsigned integrity
)
2723 struct dm_md_mempools
*pools
= kmalloc(sizeof(*pools
), GFP_KERNEL
);
2724 unsigned int pool_size
= (type
== DM_TYPE_BIO_BASED
) ? 16 : MIN_IOS
;
2729 pools
->io_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2730 mempool_create_slab_pool(MIN_IOS
, _io_cache
) :
2731 mempool_create_slab_pool(MIN_IOS
, _rq_bio_info_cache
);
2732 if (!pools
->io_pool
)
2733 goto free_pools_and_out
;
2735 pools
->tio_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2736 mempool_create_slab_pool(MIN_IOS
, _tio_cache
) :
2737 mempool_create_slab_pool(MIN_IOS
, _rq_tio_cache
);
2738 if (!pools
->tio_pool
)
2739 goto free_io_pool_and_out
;
2741 pools
->bs
= bioset_create(pool_size
, 0);
2743 goto free_tio_pool_and_out
;
2745 if (integrity
&& bioset_integrity_create(pools
->bs
, pool_size
))
2746 goto free_bioset_and_out
;
2750 free_bioset_and_out
:
2751 bioset_free(pools
->bs
);
2753 free_tio_pool_and_out
:
2754 mempool_destroy(pools
->tio_pool
);
2756 free_io_pool_and_out
:
2757 mempool_destroy(pools
->io_pool
);
2765 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2771 mempool_destroy(pools
->io_pool
);
2773 if (pools
->tio_pool
)
2774 mempool_destroy(pools
->tio_pool
);
2777 bioset_free(pools
->bs
);
2782 static const struct block_device_operations dm_blk_dops
= {
2783 .open
= dm_blk_open
,
2784 .release
= dm_blk_close
,
2785 .ioctl
= dm_blk_ioctl
,
2786 .getgeo
= dm_blk_getgeo
,
2787 .owner
= THIS_MODULE
2790 EXPORT_SYMBOL(dm_get_mapinfo
);
2795 module_init(dm_init
);
2796 module_exit(dm_exit
);
2798 module_param(major
, uint
, 0);
2799 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2800 MODULE_DESCRIPTION(DM_NAME
" driver");
2801 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2802 MODULE_LICENSE("GPL");