net: macb: fix phy interrupt parsing
[linux/fpc-iii.git] / include / rdma / ib_verbs.h
blobb567e4452a4733de98b720e2c0d9060f21cc92e2
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
59 #include <linux/if_link.h>
60 #include <linux/atomic.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/uaccess.h>
64 extern struct workqueue_struct *ib_wq;
65 extern struct workqueue_struct *ib_comp_wq;
67 union ib_gid {
68 u8 raw[16];
69 struct {
70 __be64 subnet_prefix;
71 __be64 interface_id;
72 } global;
75 extern union ib_gid zgid;
77 enum ib_gid_type {
78 /* If link layer is Ethernet, this is RoCE V1 */
79 IB_GID_TYPE_IB = 0,
80 IB_GID_TYPE_ROCE = 0,
81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
82 IB_GID_TYPE_SIZE
85 #define ROCE_V2_UDP_DPORT 4791
86 struct ib_gid_attr {
87 enum ib_gid_type gid_type;
88 struct net_device *ndev;
91 enum rdma_node_type {
92 /* IB values map to NodeInfo:NodeType. */
93 RDMA_NODE_IB_CA = 1,
94 RDMA_NODE_IB_SWITCH,
95 RDMA_NODE_IB_ROUTER,
96 RDMA_NODE_RNIC,
97 RDMA_NODE_USNIC,
98 RDMA_NODE_USNIC_UDP,
101 enum {
102 /* set the local administered indication */
103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
106 enum rdma_transport_type {
107 RDMA_TRANSPORT_IB,
108 RDMA_TRANSPORT_IWARP,
109 RDMA_TRANSPORT_USNIC,
110 RDMA_TRANSPORT_USNIC_UDP
113 enum rdma_protocol_type {
114 RDMA_PROTOCOL_IB,
115 RDMA_PROTOCOL_IBOE,
116 RDMA_PROTOCOL_IWARP,
117 RDMA_PROTOCOL_USNIC_UDP
120 __attribute_const__ enum rdma_transport_type
121 rdma_node_get_transport(enum rdma_node_type node_type);
123 enum rdma_network_type {
124 RDMA_NETWORK_IB,
125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
126 RDMA_NETWORK_IPV4,
127 RDMA_NETWORK_IPV6
130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
132 if (network_type == RDMA_NETWORK_IPV4 ||
133 network_type == RDMA_NETWORK_IPV6)
134 return IB_GID_TYPE_ROCE_UDP_ENCAP;
136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
137 return IB_GID_TYPE_IB;
140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
141 union ib_gid *gid)
143 if (gid_type == IB_GID_TYPE_IB)
144 return RDMA_NETWORK_IB;
146 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
147 return RDMA_NETWORK_IPV4;
148 else
149 return RDMA_NETWORK_IPV6;
152 enum rdma_link_layer {
153 IB_LINK_LAYER_UNSPECIFIED,
154 IB_LINK_LAYER_INFINIBAND,
155 IB_LINK_LAYER_ETHERNET,
158 enum ib_device_cap_flags {
159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
162 IB_DEVICE_RAW_MULTI = (1 << 3),
163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
168 IB_DEVICE_INIT_TYPE = (1 << 9),
169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
172 IB_DEVICE_SRQ_RESIZE = (1 << 13),
173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
176 * This device supports a per-device lkey or stag that can be
177 * used without performing a memory registration for the local
178 * memory. Note that ULPs should never check this flag, but
179 * instead of use the local_dma_lkey flag in the ib_pd structure,
180 * which will always contain a usable lkey.
182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
184 IB_DEVICE_MEM_WINDOW = (1 << 17),
186 * Devices should set IB_DEVICE_UD_IP_SUM if they support
187 * insertion of UDP and TCP checksum on outgoing UD IPoIB
188 * messages and can verify the validity of checksum for
189 * incoming messages. Setting this flag implies that the
190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
192 IB_DEVICE_UD_IP_CSUM = (1 << 18),
193 IB_DEVICE_UD_TSO = (1 << 19),
194 IB_DEVICE_XRC = (1 << 20),
197 * This device supports the IB "base memory management extension",
198 * which includes support for fast registrations (IB_WR_REG_MR,
199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
200 * also be set by any iWarp device which must support FRs to comply
201 * to the iWarp verbs spec. iWarp devices also support the
202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
203 * stag.
205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
209 IB_DEVICE_RC_IP_CSUM = (1 << 25),
210 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
213 * support execution of WQEs that involve synchronization
214 * of I/O operations with single completion queue managed
215 * by hardware.
217 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
220 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
222 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
223 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
226 enum ib_signature_prot_cap {
227 IB_PROT_T10DIF_TYPE_1 = 1,
228 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
229 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
232 enum ib_signature_guard_cap {
233 IB_GUARD_T10DIF_CRC = 1,
234 IB_GUARD_T10DIF_CSUM = 1 << 1,
237 enum ib_atomic_cap {
238 IB_ATOMIC_NONE,
239 IB_ATOMIC_HCA,
240 IB_ATOMIC_GLOB
243 enum ib_odp_general_cap_bits {
244 IB_ODP_SUPPORT = 1 << 0,
247 enum ib_odp_transport_cap_bits {
248 IB_ODP_SUPPORT_SEND = 1 << 0,
249 IB_ODP_SUPPORT_RECV = 1 << 1,
250 IB_ODP_SUPPORT_WRITE = 1 << 2,
251 IB_ODP_SUPPORT_READ = 1 << 3,
252 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
255 struct ib_odp_caps {
256 uint64_t general_caps;
257 struct {
258 uint32_t rc_odp_caps;
259 uint32_t uc_odp_caps;
260 uint32_t ud_odp_caps;
261 } per_transport_caps;
264 struct ib_rss_caps {
265 /* Corresponding bit will be set if qp type from
266 * 'enum ib_qp_type' is supported, e.g.
267 * supported_qpts |= 1 << IB_QPT_UD
269 u32 supported_qpts;
270 u32 max_rwq_indirection_tables;
271 u32 max_rwq_indirection_table_size;
274 enum ib_cq_creation_flags {
275 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
276 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
279 struct ib_cq_init_attr {
280 unsigned int cqe;
281 int comp_vector;
282 u32 flags;
285 struct ib_device_attr {
286 u64 fw_ver;
287 __be64 sys_image_guid;
288 u64 max_mr_size;
289 u64 page_size_cap;
290 u32 vendor_id;
291 u32 vendor_part_id;
292 u32 hw_ver;
293 int max_qp;
294 int max_qp_wr;
295 u64 device_cap_flags;
296 int max_sge;
297 int max_sge_rd;
298 int max_cq;
299 int max_cqe;
300 int max_mr;
301 int max_pd;
302 int max_qp_rd_atom;
303 int max_ee_rd_atom;
304 int max_res_rd_atom;
305 int max_qp_init_rd_atom;
306 int max_ee_init_rd_atom;
307 enum ib_atomic_cap atomic_cap;
308 enum ib_atomic_cap masked_atomic_cap;
309 int max_ee;
310 int max_rdd;
311 int max_mw;
312 int max_raw_ipv6_qp;
313 int max_raw_ethy_qp;
314 int max_mcast_grp;
315 int max_mcast_qp_attach;
316 int max_total_mcast_qp_attach;
317 int max_ah;
318 int max_fmr;
319 int max_map_per_fmr;
320 int max_srq;
321 int max_srq_wr;
322 int max_srq_sge;
323 unsigned int max_fast_reg_page_list_len;
324 u16 max_pkeys;
325 u8 local_ca_ack_delay;
326 int sig_prot_cap;
327 int sig_guard_cap;
328 struct ib_odp_caps odp_caps;
329 uint64_t timestamp_mask;
330 uint64_t hca_core_clock; /* in KHZ */
331 struct ib_rss_caps rss_caps;
332 u32 max_wq_type_rq;
335 enum ib_mtu {
336 IB_MTU_256 = 1,
337 IB_MTU_512 = 2,
338 IB_MTU_1024 = 3,
339 IB_MTU_2048 = 4,
340 IB_MTU_4096 = 5
343 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
345 switch (mtu) {
346 case IB_MTU_256: return 256;
347 case IB_MTU_512: return 512;
348 case IB_MTU_1024: return 1024;
349 case IB_MTU_2048: return 2048;
350 case IB_MTU_4096: return 4096;
351 default: return -1;
355 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
357 if (mtu >= 4096)
358 return IB_MTU_4096;
359 else if (mtu >= 2048)
360 return IB_MTU_2048;
361 else if (mtu >= 1024)
362 return IB_MTU_1024;
363 else if (mtu >= 512)
364 return IB_MTU_512;
365 else
366 return IB_MTU_256;
369 enum ib_port_state {
370 IB_PORT_NOP = 0,
371 IB_PORT_DOWN = 1,
372 IB_PORT_INIT = 2,
373 IB_PORT_ARMED = 3,
374 IB_PORT_ACTIVE = 4,
375 IB_PORT_ACTIVE_DEFER = 5
378 enum ib_port_cap_flags {
379 IB_PORT_SM = 1 << 1,
380 IB_PORT_NOTICE_SUP = 1 << 2,
381 IB_PORT_TRAP_SUP = 1 << 3,
382 IB_PORT_OPT_IPD_SUP = 1 << 4,
383 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
384 IB_PORT_SL_MAP_SUP = 1 << 6,
385 IB_PORT_MKEY_NVRAM = 1 << 7,
386 IB_PORT_PKEY_NVRAM = 1 << 8,
387 IB_PORT_LED_INFO_SUP = 1 << 9,
388 IB_PORT_SM_DISABLED = 1 << 10,
389 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
390 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
391 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
392 IB_PORT_CM_SUP = 1 << 16,
393 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
394 IB_PORT_REINIT_SUP = 1 << 18,
395 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
396 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
397 IB_PORT_DR_NOTICE_SUP = 1 << 21,
398 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
399 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
400 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
401 IB_PORT_CLIENT_REG_SUP = 1 << 25,
402 IB_PORT_IP_BASED_GIDS = 1 << 26,
405 enum ib_port_width {
406 IB_WIDTH_1X = 1,
407 IB_WIDTH_4X = 2,
408 IB_WIDTH_8X = 4,
409 IB_WIDTH_12X = 8
412 static inline int ib_width_enum_to_int(enum ib_port_width width)
414 switch (width) {
415 case IB_WIDTH_1X: return 1;
416 case IB_WIDTH_4X: return 4;
417 case IB_WIDTH_8X: return 8;
418 case IB_WIDTH_12X: return 12;
419 default: return -1;
423 enum ib_port_speed {
424 IB_SPEED_SDR = 1,
425 IB_SPEED_DDR = 2,
426 IB_SPEED_QDR = 4,
427 IB_SPEED_FDR10 = 8,
428 IB_SPEED_FDR = 16,
429 IB_SPEED_EDR = 32
433 * struct rdma_hw_stats
434 * @timestamp - Used by the core code to track when the last update was
435 * @lifespan - Used by the core code to determine how old the counters
436 * should be before being updated again. Stored in jiffies, defaults
437 * to 10 milliseconds, drivers can override the default be specifying
438 * their own value during their allocation routine.
439 * @name - Array of pointers to static names used for the counters in
440 * directory.
441 * @num_counters - How many hardware counters there are. If name is
442 * shorter than this number, a kernel oops will result. Driver authors
443 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
444 * in their code to prevent this.
445 * @value - Array of u64 counters that are accessed by the sysfs code and
446 * filled in by the drivers get_stats routine
448 struct rdma_hw_stats {
449 unsigned long timestamp;
450 unsigned long lifespan;
451 const char * const *names;
452 int num_counters;
453 u64 value[];
456 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
458 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
459 * for drivers.
460 * @names - Array of static const char *
461 * @num_counters - How many elements in array
462 * @lifespan - How many milliseconds between updates
464 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
465 const char * const *names, int num_counters,
466 unsigned long lifespan)
468 struct rdma_hw_stats *stats;
470 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
471 GFP_KERNEL);
472 if (!stats)
473 return NULL;
474 stats->names = names;
475 stats->num_counters = num_counters;
476 stats->lifespan = msecs_to_jiffies(lifespan);
478 return stats;
482 /* Define bits for the various functionality this port needs to be supported by
483 * the core.
485 /* Management 0x00000FFF */
486 #define RDMA_CORE_CAP_IB_MAD 0x00000001
487 #define RDMA_CORE_CAP_IB_SMI 0x00000002
488 #define RDMA_CORE_CAP_IB_CM 0x00000004
489 #define RDMA_CORE_CAP_IW_CM 0x00000008
490 #define RDMA_CORE_CAP_IB_SA 0x00000010
491 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
493 /* Address format 0x000FF000 */
494 #define RDMA_CORE_CAP_AF_IB 0x00001000
495 #define RDMA_CORE_CAP_ETH_AH 0x00002000
497 /* Protocol 0xFFF00000 */
498 #define RDMA_CORE_CAP_PROT_IB 0x00100000
499 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
500 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
501 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
503 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
504 | RDMA_CORE_CAP_IB_MAD \
505 | RDMA_CORE_CAP_IB_SMI \
506 | RDMA_CORE_CAP_IB_CM \
507 | RDMA_CORE_CAP_IB_SA \
508 | RDMA_CORE_CAP_AF_IB)
509 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
510 | RDMA_CORE_CAP_IB_MAD \
511 | RDMA_CORE_CAP_IB_CM \
512 | RDMA_CORE_CAP_AF_IB \
513 | RDMA_CORE_CAP_ETH_AH)
514 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
515 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
516 | RDMA_CORE_CAP_IB_MAD \
517 | RDMA_CORE_CAP_IB_CM \
518 | RDMA_CORE_CAP_AF_IB \
519 | RDMA_CORE_CAP_ETH_AH)
520 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
521 | RDMA_CORE_CAP_IW_CM)
522 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
523 | RDMA_CORE_CAP_OPA_MAD)
525 struct ib_port_attr {
526 u64 subnet_prefix;
527 enum ib_port_state state;
528 enum ib_mtu max_mtu;
529 enum ib_mtu active_mtu;
530 int gid_tbl_len;
531 u32 port_cap_flags;
532 u32 max_msg_sz;
533 u32 bad_pkey_cntr;
534 u32 qkey_viol_cntr;
535 u16 pkey_tbl_len;
536 u16 lid;
537 u16 sm_lid;
538 u8 lmc;
539 u8 max_vl_num;
540 u8 sm_sl;
541 u8 subnet_timeout;
542 u8 init_type_reply;
543 u8 active_width;
544 u8 active_speed;
545 u8 phys_state;
546 bool grh_required;
549 enum ib_device_modify_flags {
550 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
551 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
554 #define IB_DEVICE_NODE_DESC_MAX 64
556 struct ib_device_modify {
557 u64 sys_image_guid;
558 char node_desc[IB_DEVICE_NODE_DESC_MAX];
561 enum ib_port_modify_flags {
562 IB_PORT_SHUTDOWN = 1,
563 IB_PORT_INIT_TYPE = (1<<2),
564 IB_PORT_RESET_QKEY_CNTR = (1<<3)
567 struct ib_port_modify {
568 u32 set_port_cap_mask;
569 u32 clr_port_cap_mask;
570 u8 init_type;
573 enum ib_event_type {
574 IB_EVENT_CQ_ERR,
575 IB_EVENT_QP_FATAL,
576 IB_EVENT_QP_REQ_ERR,
577 IB_EVENT_QP_ACCESS_ERR,
578 IB_EVENT_COMM_EST,
579 IB_EVENT_SQ_DRAINED,
580 IB_EVENT_PATH_MIG,
581 IB_EVENT_PATH_MIG_ERR,
582 IB_EVENT_DEVICE_FATAL,
583 IB_EVENT_PORT_ACTIVE,
584 IB_EVENT_PORT_ERR,
585 IB_EVENT_LID_CHANGE,
586 IB_EVENT_PKEY_CHANGE,
587 IB_EVENT_SM_CHANGE,
588 IB_EVENT_SRQ_ERR,
589 IB_EVENT_SRQ_LIMIT_REACHED,
590 IB_EVENT_QP_LAST_WQE_REACHED,
591 IB_EVENT_CLIENT_REREGISTER,
592 IB_EVENT_GID_CHANGE,
593 IB_EVENT_WQ_FATAL,
596 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
598 struct ib_event {
599 struct ib_device *device;
600 union {
601 struct ib_cq *cq;
602 struct ib_qp *qp;
603 struct ib_srq *srq;
604 struct ib_wq *wq;
605 u8 port_num;
606 } element;
607 enum ib_event_type event;
610 struct ib_event_handler {
611 struct ib_device *device;
612 void (*handler)(struct ib_event_handler *, struct ib_event *);
613 struct list_head list;
616 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
617 do { \
618 (_ptr)->device = _device; \
619 (_ptr)->handler = _handler; \
620 INIT_LIST_HEAD(&(_ptr)->list); \
621 } while (0)
623 struct ib_global_route {
624 union ib_gid dgid;
625 u32 flow_label;
626 u8 sgid_index;
627 u8 hop_limit;
628 u8 traffic_class;
631 struct ib_grh {
632 __be32 version_tclass_flow;
633 __be16 paylen;
634 u8 next_hdr;
635 u8 hop_limit;
636 union ib_gid sgid;
637 union ib_gid dgid;
640 union rdma_network_hdr {
641 struct ib_grh ibgrh;
642 struct {
643 /* The IB spec states that if it's IPv4, the header
644 * is located in the last 20 bytes of the header.
646 u8 reserved[20];
647 struct iphdr roce4grh;
651 enum {
652 IB_MULTICAST_QPN = 0xffffff
655 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
656 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
658 enum ib_ah_flags {
659 IB_AH_GRH = 1
662 enum ib_rate {
663 IB_RATE_PORT_CURRENT = 0,
664 IB_RATE_2_5_GBPS = 2,
665 IB_RATE_5_GBPS = 5,
666 IB_RATE_10_GBPS = 3,
667 IB_RATE_20_GBPS = 6,
668 IB_RATE_30_GBPS = 4,
669 IB_RATE_40_GBPS = 7,
670 IB_RATE_60_GBPS = 8,
671 IB_RATE_80_GBPS = 9,
672 IB_RATE_120_GBPS = 10,
673 IB_RATE_14_GBPS = 11,
674 IB_RATE_56_GBPS = 12,
675 IB_RATE_112_GBPS = 13,
676 IB_RATE_168_GBPS = 14,
677 IB_RATE_25_GBPS = 15,
678 IB_RATE_100_GBPS = 16,
679 IB_RATE_200_GBPS = 17,
680 IB_RATE_300_GBPS = 18
684 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
685 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
686 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
687 * @rate: rate to convert.
689 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
692 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
693 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
694 * @rate: rate to convert.
696 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
700 * enum ib_mr_type - memory region type
701 * @IB_MR_TYPE_MEM_REG: memory region that is used for
702 * normal registration
703 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
704 * signature operations (data-integrity
705 * capable regions)
706 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
707 * register any arbitrary sg lists (without
708 * the normal mr constraints - see
709 * ib_map_mr_sg)
711 enum ib_mr_type {
712 IB_MR_TYPE_MEM_REG,
713 IB_MR_TYPE_SIGNATURE,
714 IB_MR_TYPE_SG_GAPS,
718 * Signature types
719 * IB_SIG_TYPE_NONE: Unprotected.
720 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
722 enum ib_signature_type {
723 IB_SIG_TYPE_NONE,
724 IB_SIG_TYPE_T10_DIF,
728 * Signature T10-DIF block-guard types
729 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
730 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
732 enum ib_t10_dif_bg_type {
733 IB_T10DIF_CRC,
734 IB_T10DIF_CSUM
738 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
739 * domain.
740 * @bg_type: T10-DIF block guard type (CRC|CSUM)
741 * @pi_interval: protection information interval.
742 * @bg: seed of guard computation.
743 * @app_tag: application tag of guard block
744 * @ref_tag: initial guard block reference tag.
745 * @ref_remap: Indicate wethear the reftag increments each block
746 * @app_escape: Indicate to skip block check if apptag=0xffff
747 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
748 * @apptag_check_mask: check bitmask of application tag.
750 struct ib_t10_dif_domain {
751 enum ib_t10_dif_bg_type bg_type;
752 u16 pi_interval;
753 u16 bg;
754 u16 app_tag;
755 u32 ref_tag;
756 bool ref_remap;
757 bool app_escape;
758 bool ref_escape;
759 u16 apptag_check_mask;
763 * struct ib_sig_domain - Parameters for signature domain
764 * @sig_type: specific signauture type
765 * @sig: union of all signature domain attributes that may
766 * be used to set domain layout.
768 struct ib_sig_domain {
769 enum ib_signature_type sig_type;
770 union {
771 struct ib_t10_dif_domain dif;
772 } sig;
776 * struct ib_sig_attrs - Parameters for signature handover operation
777 * @check_mask: bitmask for signature byte check (8 bytes)
778 * @mem: memory domain layout desciptor.
779 * @wire: wire domain layout desciptor.
781 struct ib_sig_attrs {
782 u8 check_mask;
783 struct ib_sig_domain mem;
784 struct ib_sig_domain wire;
787 enum ib_sig_err_type {
788 IB_SIG_BAD_GUARD,
789 IB_SIG_BAD_REFTAG,
790 IB_SIG_BAD_APPTAG,
794 * struct ib_sig_err - signature error descriptor
796 struct ib_sig_err {
797 enum ib_sig_err_type err_type;
798 u32 expected;
799 u32 actual;
800 u64 sig_err_offset;
801 u32 key;
804 enum ib_mr_status_check {
805 IB_MR_CHECK_SIG_STATUS = 1,
809 * struct ib_mr_status - Memory region status container
811 * @fail_status: Bitmask of MR checks status. For each
812 * failed check a corresponding status bit is set.
813 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
814 * failure.
816 struct ib_mr_status {
817 u32 fail_status;
818 struct ib_sig_err sig_err;
822 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
823 * enum.
824 * @mult: multiple to convert.
826 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
828 struct ib_ah_attr {
829 struct ib_global_route grh;
830 u16 dlid;
831 u8 sl;
832 u8 src_path_bits;
833 u8 static_rate;
834 u8 ah_flags;
835 u8 port_num;
836 u8 dmac[ETH_ALEN];
839 enum ib_wc_status {
840 IB_WC_SUCCESS,
841 IB_WC_LOC_LEN_ERR,
842 IB_WC_LOC_QP_OP_ERR,
843 IB_WC_LOC_EEC_OP_ERR,
844 IB_WC_LOC_PROT_ERR,
845 IB_WC_WR_FLUSH_ERR,
846 IB_WC_MW_BIND_ERR,
847 IB_WC_BAD_RESP_ERR,
848 IB_WC_LOC_ACCESS_ERR,
849 IB_WC_REM_INV_REQ_ERR,
850 IB_WC_REM_ACCESS_ERR,
851 IB_WC_REM_OP_ERR,
852 IB_WC_RETRY_EXC_ERR,
853 IB_WC_RNR_RETRY_EXC_ERR,
854 IB_WC_LOC_RDD_VIOL_ERR,
855 IB_WC_REM_INV_RD_REQ_ERR,
856 IB_WC_REM_ABORT_ERR,
857 IB_WC_INV_EECN_ERR,
858 IB_WC_INV_EEC_STATE_ERR,
859 IB_WC_FATAL_ERR,
860 IB_WC_RESP_TIMEOUT_ERR,
861 IB_WC_GENERAL_ERR
864 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
866 enum ib_wc_opcode {
867 IB_WC_SEND,
868 IB_WC_RDMA_WRITE,
869 IB_WC_RDMA_READ,
870 IB_WC_COMP_SWAP,
871 IB_WC_FETCH_ADD,
872 IB_WC_LSO,
873 IB_WC_LOCAL_INV,
874 IB_WC_REG_MR,
875 IB_WC_MASKED_COMP_SWAP,
876 IB_WC_MASKED_FETCH_ADD,
878 * Set value of IB_WC_RECV so consumers can test if a completion is a
879 * receive by testing (opcode & IB_WC_RECV).
881 IB_WC_RECV = 1 << 7,
882 IB_WC_RECV_RDMA_WITH_IMM
885 enum ib_wc_flags {
886 IB_WC_GRH = 1,
887 IB_WC_WITH_IMM = (1<<1),
888 IB_WC_WITH_INVALIDATE = (1<<2),
889 IB_WC_IP_CSUM_OK = (1<<3),
890 IB_WC_WITH_SMAC = (1<<4),
891 IB_WC_WITH_VLAN = (1<<5),
892 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
895 struct ib_wc {
896 union {
897 u64 wr_id;
898 struct ib_cqe *wr_cqe;
900 enum ib_wc_status status;
901 enum ib_wc_opcode opcode;
902 u32 vendor_err;
903 u32 byte_len;
904 struct ib_qp *qp;
905 union {
906 __be32 imm_data;
907 u32 invalidate_rkey;
908 } ex;
909 u32 src_qp;
910 int wc_flags;
911 u16 pkey_index;
912 u16 slid;
913 u8 sl;
914 u8 dlid_path_bits;
915 u8 port_num; /* valid only for DR SMPs on switches */
916 u8 smac[ETH_ALEN];
917 u16 vlan_id;
918 u8 network_hdr_type;
921 enum ib_cq_notify_flags {
922 IB_CQ_SOLICITED = 1 << 0,
923 IB_CQ_NEXT_COMP = 1 << 1,
924 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
925 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
928 enum ib_srq_type {
929 IB_SRQT_BASIC,
930 IB_SRQT_XRC
933 enum ib_srq_attr_mask {
934 IB_SRQ_MAX_WR = 1 << 0,
935 IB_SRQ_LIMIT = 1 << 1,
938 struct ib_srq_attr {
939 u32 max_wr;
940 u32 max_sge;
941 u32 srq_limit;
944 struct ib_srq_init_attr {
945 void (*event_handler)(struct ib_event *, void *);
946 void *srq_context;
947 struct ib_srq_attr attr;
948 enum ib_srq_type srq_type;
950 union {
951 struct {
952 struct ib_xrcd *xrcd;
953 struct ib_cq *cq;
954 } xrc;
955 } ext;
958 struct ib_qp_cap {
959 u32 max_send_wr;
960 u32 max_recv_wr;
961 u32 max_send_sge;
962 u32 max_recv_sge;
963 u32 max_inline_data;
966 * Maximum number of rdma_rw_ctx structures in flight at a time.
967 * ib_create_qp() will calculate the right amount of neededed WRs
968 * and MRs based on this.
970 u32 max_rdma_ctxs;
973 enum ib_sig_type {
974 IB_SIGNAL_ALL_WR,
975 IB_SIGNAL_REQ_WR
978 enum ib_qp_type {
980 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
981 * here (and in that order) since the MAD layer uses them as
982 * indices into a 2-entry table.
984 IB_QPT_SMI,
985 IB_QPT_GSI,
987 IB_QPT_RC,
988 IB_QPT_UC,
989 IB_QPT_UD,
990 IB_QPT_RAW_IPV6,
991 IB_QPT_RAW_ETHERTYPE,
992 IB_QPT_RAW_PACKET = 8,
993 IB_QPT_XRC_INI = 9,
994 IB_QPT_XRC_TGT,
995 IB_QPT_MAX,
996 /* Reserve a range for qp types internal to the low level driver.
997 * These qp types will not be visible at the IB core layer, so the
998 * IB_QPT_MAX usages should not be affected in the core layer
1000 IB_QPT_RESERVED1 = 0x1000,
1001 IB_QPT_RESERVED2,
1002 IB_QPT_RESERVED3,
1003 IB_QPT_RESERVED4,
1004 IB_QPT_RESERVED5,
1005 IB_QPT_RESERVED6,
1006 IB_QPT_RESERVED7,
1007 IB_QPT_RESERVED8,
1008 IB_QPT_RESERVED9,
1009 IB_QPT_RESERVED10,
1012 enum ib_qp_create_flags {
1013 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1014 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1015 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1016 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1017 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1018 IB_QP_CREATE_NETIF_QP = 1 << 5,
1019 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1020 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
1021 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1022 /* reserve bits 26-31 for low level drivers' internal use */
1023 IB_QP_CREATE_RESERVED_START = 1 << 26,
1024 IB_QP_CREATE_RESERVED_END = 1 << 31,
1028 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1029 * callback to destroy the passed in QP.
1032 struct ib_qp_init_attr {
1033 void (*event_handler)(struct ib_event *, void *);
1034 void *qp_context;
1035 struct ib_cq *send_cq;
1036 struct ib_cq *recv_cq;
1037 struct ib_srq *srq;
1038 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1039 struct ib_qp_cap cap;
1040 enum ib_sig_type sq_sig_type;
1041 enum ib_qp_type qp_type;
1042 enum ib_qp_create_flags create_flags;
1045 * Only needed for special QP types, or when using the RW API.
1047 u8 port_num;
1048 struct ib_rwq_ind_table *rwq_ind_tbl;
1051 struct ib_qp_open_attr {
1052 void (*event_handler)(struct ib_event *, void *);
1053 void *qp_context;
1054 u32 qp_num;
1055 enum ib_qp_type qp_type;
1058 enum ib_rnr_timeout {
1059 IB_RNR_TIMER_655_36 = 0,
1060 IB_RNR_TIMER_000_01 = 1,
1061 IB_RNR_TIMER_000_02 = 2,
1062 IB_RNR_TIMER_000_03 = 3,
1063 IB_RNR_TIMER_000_04 = 4,
1064 IB_RNR_TIMER_000_06 = 5,
1065 IB_RNR_TIMER_000_08 = 6,
1066 IB_RNR_TIMER_000_12 = 7,
1067 IB_RNR_TIMER_000_16 = 8,
1068 IB_RNR_TIMER_000_24 = 9,
1069 IB_RNR_TIMER_000_32 = 10,
1070 IB_RNR_TIMER_000_48 = 11,
1071 IB_RNR_TIMER_000_64 = 12,
1072 IB_RNR_TIMER_000_96 = 13,
1073 IB_RNR_TIMER_001_28 = 14,
1074 IB_RNR_TIMER_001_92 = 15,
1075 IB_RNR_TIMER_002_56 = 16,
1076 IB_RNR_TIMER_003_84 = 17,
1077 IB_RNR_TIMER_005_12 = 18,
1078 IB_RNR_TIMER_007_68 = 19,
1079 IB_RNR_TIMER_010_24 = 20,
1080 IB_RNR_TIMER_015_36 = 21,
1081 IB_RNR_TIMER_020_48 = 22,
1082 IB_RNR_TIMER_030_72 = 23,
1083 IB_RNR_TIMER_040_96 = 24,
1084 IB_RNR_TIMER_061_44 = 25,
1085 IB_RNR_TIMER_081_92 = 26,
1086 IB_RNR_TIMER_122_88 = 27,
1087 IB_RNR_TIMER_163_84 = 28,
1088 IB_RNR_TIMER_245_76 = 29,
1089 IB_RNR_TIMER_327_68 = 30,
1090 IB_RNR_TIMER_491_52 = 31
1093 enum ib_qp_attr_mask {
1094 IB_QP_STATE = 1,
1095 IB_QP_CUR_STATE = (1<<1),
1096 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1097 IB_QP_ACCESS_FLAGS = (1<<3),
1098 IB_QP_PKEY_INDEX = (1<<4),
1099 IB_QP_PORT = (1<<5),
1100 IB_QP_QKEY = (1<<6),
1101 IB_QP_AV = (1<<7),
1102 IB_QP_PATH_MTU = (1<<8),
1103 IB_QP_TIMEOUT = (1<<9),
1104 IB_QP_RETRY_CNT = (1<<10),
1105 IB_QP_RNR_RETRY = (1<<11),
1106 IB_QP_RQ_PSN = (1<<12),
1107 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1108 IB_QP_ALT_PATH = (1<<14),
1109 IB_QP_MIN_RNR_TIMER = (1<<15),
1110 IB_QP_SQ_PSN = (1<<16),
1111 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1112 IB_QP_PATH_MIG_STATE = (1<<18),
1113 IB_QP_CAP = (1<<19),
1114 IB_QP_DEST_QPN = (1<<20),
1115 IB_QP_RESERVED1 = (1<<21),
1116 IB_QP_RESERVED2 = (1<<22),
1117 IB_QP_RESERVED3 = (1<<23),
1118 IB_QP_RESERVED4 = (1<<24),
1119 IB_QP_RATE_LIMIT = (1<<25),
1122 enum ib_qp_state {
1123 IB_QPS_RESET,
1124 IB_QPS_INIT,
1125 IB_QPS_RTR,
1126 IB_QPS_RTS,
1127 IB_QPS_SQD,
1128 IB_QPS_SQE,
1129 IB_QPS_ERR
1132 enum ib_mig_state {
1133 IB_MIG_MIGRATED,
1134 IB_MIG_REARM,
1135 IB_MIG_ARMED
1138 enum ib_mw_type {
1139 IB_MW_TYPE_1 = 1,
1140 IB_MW_TYPE_2 = 2
1143 struct ib_qp_attr {
1144 enum ib_qp_state qp_state;
1145 enum ib_qp_state cur_qp_state;
1146 enum ib_mtu path_mtu;
1147 enum ib_mig_state path_mig_state;
1148 u32 qkey;
1149 u32 rq_psn;
1150 u32 sq_psn;
1151 u32 dest_qp_num;
1152 int qp_access_flags;
1153 struct ib_qp_cap cap;
1154 struct ib_ah_attr ah_attr;
1155 struct ib_ah_attr alt_ah_attr;
1156 u16 pkey_index;
1157 u16 alt_pkey_index;
1158 u8 en_sqd_async_notify;
1159 u8 sq_draining;
1160 u8 max_rd_atomic;
1161 u8 max_dest_rd_atomic;
1162 u8 min_rnr_timer;
1163 u8 port_num;
1164 u8 timeout;
1165 u8 retry_cnt;
1166 u8 rnr_retry;
1167 u8 alt_port_num;
1168 u8 alt_timeout;
1169 u32 rate_limit;
1172 enum ib_wr_opcode {
1173 IB_WR_RDMA_WRITE,
1174 IB_WR_RDMA_WRITE_WITH_IMM,
1175 IB_WR_SEND,
1176 IB_WR_SEND_WITH_IMM,
1177 IB_WR_RDMA_READ,
1178 IB_WR_ATOMIC_CMP_AND_SWP,
1179 IB_WR_ATOMIC_FETCH_AND_ADD,
1180 IB_WR_LSO,
1181 IB_WR_SEND_WITH_INV,
1182 IB_WR_RDMA_READ_WITH_INV,
1183 IB_WR_LOCAL_INV,
1184 IB_WR_REG_MR,
1185 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1186 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1187 IB_WR_REG_SIG_MR,
1188 /* reserve values for low level drivers' internal use.
1189 * These values will not be used at all in the ib core layer.
1191 IB_WR_RESERVED1 = 0xf0,
1192 IB_WR_RESERVED2,
1193 IB_WR_RESERVED3,
1194 IB_WR_RESERVED4,
1195 IB_WR_RESERVED5,
1196 IB_WR_RESERVED6,
1197 IB_WR_RESERVED7,
1198 IB_WR_RESERVED8,
1199 IB_WR_RESERVED9,
1200 IB_WR_RESERVED10,
1203 enum ib_send_flags {
1204 IB_SEND_FENCE = 1,
1205 IB_SEND_SIGNALED = (1<<1),
1206 IB_SEND_SOLICITED = (1<<2),
1207 IB_SEND_INLINE = (1<<3),
1208 IB_SEND_IP_CSUM = (1<<4),
1210 /* reserve bits 26-31 for low level drivers' internal use */
1211 IB_SEND_RESERVED_START = (1 << 26),
1212 IB_SEND_RESERVED_END = (1 << 31),
1215 struct ib_sge {
1216 u64 addr;
1217 u32 length;
1218 u32 lkey;
1221 struct ib_cqe {
1222 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1225 struct ib_send_wr {
1226 struct ib_send_wr *next;
1227 union {
1228 u64 wr_id;
1229 struct ib_cqe *wr_cqe;
1231 struct ib_sge *sg_list;
1232 int num_sge;
1233 enum ib_wr_opcode opcode;
1234 int send_flags;
1235 union {
1236 __be32 imm_data;
1237 u32 invalidate_rkey;
1238 } ex;
1241 struct ib_rdma_wr {
1242 struct ib_send_wr wr;
1243 u64 remote_addr;
1244 u32 rkey;
1247 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1249 return container_of(wr, struct ib_rdma_wr, wr);
1252 struct ib_atomic_wr {
1253 struct ib_send_wr wr;
1254 u64 remote_addr;
1255 u64 compare_add;
1256 u64 swap;
1257 u64 compare_add_mask;
1258 u64 swap_mask;
1259 u32 rkey;
1262 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1264 return container_of(wr, struct ib_atomic_wr, wr);
1267 struct ib_ud_wr {
1268 struct ib_send_wr wr;
1269 struct ib_ah *ah;
1270 void *header;
1271 int hlen;
1272 int mss;
1273 u32 remote_qpn;
1274 u32 remote_qkey;
1275 u16 pkey_index; /* valid for GSI only */
1276 u8 port_num; /* valid for DR SMPs on switch only */
1279 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1281 return container_of(wr, struct ib_ud_wr, wr);
1284 struct ib_reg_wr {
1285 struct ib_send_wr wr;
1286 struct ib_mr *mr;
1287 u32 key;
1288 int access;
1291 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1293 return container_of(wr, struct ib_reg_wr, wr);
1296 struct ib_sig_handover_wr {
1297 struct ib_send_wr wr;
1298 struct ib_sig_attrs *sig_attrs;
1299 struct ib_mr *sig_mr;
1300 int access_flags;
1301 struct ib_sge *prot;
1304 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1306 return container_of(wr, struct ib_sig_handover_wr, wr);
1309 struct ib_recv_wr {
1310 struct ib_recv_wr *next;
1311 union {
1312 u64 wr_id;
1313 struct ib_cqe *wr_cqe;
1315 struct ib_sge *sg_list;
1316 int num_sge;
1319 enum ib_access_flags {
1320 IB_ACCESS_LOCAL_WRITE = 1,
1321 IB_ACCESS_REMOTE_WRITE = (1<<1),
1322 IB_ACCESS_REMOTE_READ = (1<<2),
1323 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1324 IB_ACCESS_MW_BIND = (1<<4),
1325 IB_ZERO_BASED = (1<<5),
1326 IB_ACCESS_ON_DEMAND = (1<<6),
1330 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1331 * are hidden here instead of a uapi header!
1333 enum ib_mr_rereg_flags {
1334 IB_MR_REREG_TRANS = 1,
1335 IB_MR_REREG_PD = (1<<1),
1336 IB_MR_REREG_ACCESS = (1<<2),
1337 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1340 struct ib_fmr_attr {
1341 int max_pages;
1342 int max_maps;
1343 u8 page_shift;
1346 struct ib_umem;
1348 struct ib_ucontext {
1349 struct ib_device *device;
1350 struct list_head pd_list;
1351 struct list_head mr_list;
1352 struct list_head mw_list;
1353 struct list_head cq_list;
1354 struct list_head qp_list;
1355 struct list_head srq_list;
1356 struct list_head ah_list;
1357 struct list_head xrcd_list;
1358 struct list_head rule_list;
1359 struct list_head wq_list;
1360 struct list_head rwq_ind_tbl_list;
1361 int closing;
1363 struct pid *tgid;
1364 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1365 struct rb_root umem_tree;
1367 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1368 * mmu notifiers registration.
1370 struct rw_semaphore umem_rwsem;
1371 void (*invalidate_range)(struct ib_umem *umem,
1372 unsigned long start, unsigned long end);
1374 struct mmu_notifier mn;
1375 atomic_t notifier_count;
1376 /* A list of umems that don't have private mmu notifier counters yet. */
1377 struct list_head no_private_counters;
1378 int odp_mrs_count;
1379 #endif
1382 struct ib_uobject {
1383 u64 user_handle; /* handle given to us by userspace */
1384 struct ib_ucontext *context; /* associated user context */
1385 void *object; /* containing object */
1386 struct list_head list; /* link to context's list */
1387 int id; /* index into kernel idr */
1388 struct kref ref;
1389 struct rw_semaphore mutex; /* protects .live */
1390 struct rcu_head rcu; /* kfree_rcu() overhead */
1391 int live;
1394 struct ib_udata {
1395 const void __user *inbuf;
1396 void __user *outbuf;
1397 size_t inlen;
1398 size_t outlen;
1401 struct ib_pd {
1402 u32 local_dma_lkey;
1403 u32 flags;
1404 struct ib_device *device;
1405 struct ib_uobject *uobject;
1406 atomic_t usecnt; /* count all resources */
1408 u32 unsafe_global_rkey;
1411 * Implementation details of the RDMA core, don't use in drivers:
1413 struct ib_mr *__internal_mr;
1416 struct ib_xrcd {
1417 struct ib_device *device;
1418 atomic_t usecnt; /* count all exposed resources */
1419 struct inode *inode;
1421 struct mutex tgt_qp_mutex;
1422 struct list_head tgt_qp_list;
1425 struct ib_ah {
1426 struct ib_device *device;
1427 struct ib_pd *pd;
1428 struct ib_uobject *uobject;
1431 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1433 enum ib_poll_context {
1434 IB_POLL_DIRECT, /* caller context, no hw completions */
1435 IB_POLL_SOFTIRQ, /* poll from softirq context */
1436 IB_POLL_WORKQUEUE, /* poll from workqueue */
1439 struct ib_cq {
1440 struct ib_device *device;
1441 struct ib_uobject *uobject;
1442 ib_comp_handler comp_handler;
1443 void (*event_handler)(struct ib_event *, void *);
1444 void *cq_context;
1445 int cqe;
1446 atomic_t usecnt; /* count number of work queues */
1447 enum ib_poll_context poll_ctx;
1448 struct ib_wc *wc;
1449 union {
1450 struct irq_poll iop;
1451 struct work_struct work;
1455 struct ib_srq {
1456 struct ib_device *device;
1457 struct ib_pd *pd;
1458 struct ib_uobject *uobject;
1459 void (*event_handler)(struct ib_event *, void *);
1460 void *srq_context;
1461 enum ib_srq_type srq_type;
1462 atomic_t usecnt;
1464 union {
1465 struct {
1466 struct ib_xrcd *xrcd;
1467 struct ib_cq *cq;
1468 u32 srq_num;
1469 } xrc;
1470 } ext;
1473 enum ib_wq_type {
1474 IB_WQT_RQ
1477 enum ib_wq_state {
1478 IB_WQS_RESET,
1479 IB_WQS_RDY,
1480 IB_WQS_ERR
1483 struct ib_wq {
1484 struct ib_device *device;
1485 struct ib_uobject *uobject;
1486 void *wq_context;
1487 void (*event_handler)(struct ib_event *, void *);
1488 struct ib_pd *pd;
1489 struct ib_cq *cq;
1490 u32 wq_num;
1491 enum ib_wq_state state;
1492 enum ib_wq_type wq_type;
1493 atomic_t usecnt;
1496 struct ib_wq_init_attr {
1497 void *wq_context;
1498 enum ib_wq_type wq_type;
1499 u32 max_wr;
1500 u32 max_sge;
1501 struct ib_cq *cq;
1502 void (*event_handler)(struct ib_event *, void *);
1505 enum ib_wq_attr_mask {
1506 IB_WQ_STATE = 1 << 0,
1507 IB_WQ_CUR_STATE = 1 << 1,
1510 struct ib_wq_attr {
1511 enum ib_wq_state wq_state;
1512 enum ib_wq_state curr_wq_state;
1515 struct ib_rwq_ind_table {
1516 struct ib_device *device;
1517 struct ib_uobject *uobject;
1518 atomic_t usecnt;
1519 u32 ind_tbl_num;
1520 u32 log_ind_tbl_size;
1521 struct ib_wq **ind_tbl;
1524 struct ib_rwq_ind_table_init_attr {
1525 u32 log_ind_tbl_size;
1526 /* Each entry is a pointer to Receive Work Queue */
1527 struct ib_wq **ind_tbl;
1531 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1532 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1534 struct ib_qp {
1535 struct ib_device *device;
1536 struct ib_pd *pd;
1537 struct ib_cq *send_cq;
1538 struct ib_cq *recv_cq;
1539 spinlock_t mr_lock;
1540 int mrs_used;
1541 struct list_head rdma_mrs;
1542 struct list_head sig_mrs;
1543 struct ib_srq *srq;
1544 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1545 struct list_head xrcd_list;
1547 /* count times opened, mcast attaches, flow attaches */
1548 atomic_t usecnt;
1549 struct list_head open_list;
1550 struct ib_qp *real_qp;
1551 struct ib_uobject *uobject;
1552 void (*event_handler)(struct ib_event *, void *);
1553 void *qp_context;
1554 u32 qp_num;
1555 u32 max_write_sge;
1556 u32 max_read_sge;
1557 enum ib_qp_type qp_type;
1558 struct ib_rwq_ind_table *rwq_ind_tbl;
1561 struct ib_mr {
1562 struct ib_device *device;
1563 struct ib_pd *pd;
1564 u32 lkey;
1565 u32 rkey;
1566 u64 iova;
1567 u32 length;
1568 unsigned int page_size;
1569 bool need_inval;
1570 union {
1571 struct ib_uobject *uobject; /* user */
1572 struct list_head qp_entry; /* FR */
1576 struct ib_mw {
1577 struct ib_device *device;
1578 struct ib_pd *pd;
1579 struct ib_uobject *uobject;
1580 u32 rkey;
1581 enum ib_mw_type type;
1584 struct ib_fmr {
1585 struct ib_device *device;
1586 struct ib_pd *pd;
1587 struct list_head list;
1588 u32 lkey;
1589 u32 rkey;
1592 /* Supported steering options */
1593 enum ib_flow_attr_type {
1594 /* steering according to rule specifications */
1595 IB_FLOW_ATTR_NORMAL = 0x0,
1596 /* default unicast and multicast rule -
1597 * receive all Eth traffic which isn't steered to any QP
1599 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1600 /* default multicast rule -
1601 * receive all Eth multicast traffic which isn't steered to any QP
1603 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1604 /* sniffer rule - receive all port traffic */
1605 IB_FLOW_ATTR_SNIFFER = 0x3
1608 /* Supported steering header types */
1609 enum ib_flow_spec_type {
1610 /* L2 headers*/
1611 IB_FLOW_SPEC_ETH = 0x20,
1612 IB_FLOW_SPEC_IB = 0x22,
1613 /* L3 header*/
1614 IB_FLOW_SPEC_IPV4 = 0x30,
1615 IB_FLOW_SPEC_IPV6 = 0x31,
1616 /* L4 headers*/
1617 IB_FLOW_SPEC_TCP = 0x40,
1618 IB_FLOW_SPEC_UDP = 0x41,
1619 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1620 IB_FLOW_SPEC_INNER = 0x100,
1622 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1623 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1625 /* Flow steering rule priority is set according to it's domain.
1626 * Lower domain value means higher priority.
1628 enum ib_flow_domain {
1629 IB_FLOW_DOMAIN_USER,
1630 IB_FLOW_DOMAIN_ETHTOOL,
1631 IB_FLOW_DOMAIN_RFS,
1632 IB_FLOW_DOMAIN_NIC,
1633 IB_FLOW_DOMAIN_NUM /* Must be last */
1636 enum ib_flow_flags {
1637 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1638 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1641 struct ib_flow_eth_filter {
1642 u8 dst_mac[6];
1643 u8 src_mac[6];
1644 __be16 ether_type;
1645 __be16 vlan_tag;
1646 /* Must be last */
1647 u8 real_sz[0];
1650 struct ib_flow_spec_eth {
1651 u32 type;
1652 u16 size;
1653 struct ib_flow_eth_filter val;
1654 struct ib_flow_eth_filter mask;
1657 struct ib_flow_ib_filter {
1658 __be16 dlid;
1659 __u8 sl;
1660 /* Must be last */
1661 u8 real_sz[0];
1664 struct ib_flow_spec_ib {
1665 u32 type;
1666 u16 size;
1667 struct ib_flow_ib_filter val;
1668 struct ib_flow_ib_filter mask;
1671 /* IPv4 header flags */
1672 enum ib_ipv4_flags {
1673 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1674 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1675 last have this flag set */
1678 struct ib_flow_ipv4_filter {
1679 __be32 src_ip;
1680 __be32 dst_ip;
1681 u8 proto;
1682 u8 tos;
1683 u8 ttl;
1684 u8 flags;
1685 /* Must be last */
1686 u8 real_sz[0];
1689 struct ib_flow_spec_ipv4 {
1690 u32 type;
1691 u16 size;
1692 struct ib_flow_ipv4_filter val;
1693 struct ib_flow_ipv4_filter mask;
1696 struct ib_flow_ipv6_filter {
1697 u8 src_ip[16];
1698 u8 dst_ip[16];
1699 __be32 flow_label;
1700 u8 next_hdr;
1701 u8 traffic_class;
1702 u8 hop_limit;
1703 /* Must be last */
1704 u8 real_sz[0];
1707 struct ib_flow_spec_ipv6 {
1708 u32 type;
1709 u16 size;
1710 struct ib_flow_ipv6_filter val;
1711 struct ib_flow_ipv6_filter mask;
1714 struct ib_flow_tcp_udp_filter {
1715 __be16 dst_port;
1716 __be16 src_port;
1717 /* Must be last */
1718 u8 real_sz[0];
1721 struct ib_flow_spec_tcp_udp {
1722 u32 type;
1723 u16 size;
1724 struct ib_flow_tcp_udp_filter val;
1725 struct ib_flow_tcp_udp_filter mask;
1728 struct ib_flow_tunnel_filter {
1729 __be32 tunnel_id;
1730 u8 real_sz[0];
1733 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1734 * the tunnel_id from val has the vni value
1736 struct ib_flow_spec_tunnel {
1737 u32 type;
1738 u16 size;
1739 struct ib_flow_tunnel_filter val;
1740 struct ib_flow_tunnel_filter mask;
1743 union ib_flow_spec {
1744 struct {
1745 u32 type;
1746 u16 size;
1748 struct ib_flow_spec_eth eth;
1749 struct ib_flow_spec_ib ib;
1750 struct ib_flow_spec_ipv4 ipv4;
1751 struct ib_flow_spec_tcp_udp tcp_udp;
1752 struct ib_flow_spec_ipv6 ipv6;
1753 struct ib_flow_spec_tunnel tunnel;
1756 struct ib_flow_attr {
1757 enum ib_flow_attr_type type;
1758 u16 size;
1759 u16 priority;
1760 u32 flags;
1761 u8 num_of_specs;
1762 u8 port;
1763 /* Following are the optional layers according to user request
1764 * struct ib_flow_spec_xxx
1765 * struct ib_flow_spec_yyy
1769 struct ib_flow {
1770 struct ib_qp *qp;
1771 struct ib_uobject *uobject;
1774 struct ib_mad_hdr;
1775 struct ib_grh;
1777 enum ib_process_mad_flags {
1778 IB_MAD_IGNORE_MKEY = 1,
1779 IB_MAD_IGNORE_BKEY = 2,
1780 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1783 enum ib_mad_result {
1784 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1785 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1786 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1787 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1790 #define IB_DEVICE_NAME_MAX 64
1792 struct ib_cache {
1793 rwlock_t lock;
1794 struct ib_event_handler event_handler;
1795 struct ib_pkey_cache **pkey_cache;
1796 struct ib_gid_table **gid_cache;
1797 u8 *lmc_cache;
1800 struct ib_dma_mapping_ops {
1801 int (*mapping_error)(struct ib_device *dev,
1802 u64 dma_addr);
1803 u64 (*map_single)(struct ib_device *dev,
1804 void *ptr, size_t size,
1805 enum dma_data_direction direction);
1806 void (*unmap_single)(struct ib_device *dev,
1807 u64 addr, size_t size,
1808 enum dma_data_direction direction);
1809 u64 (*map_page)(struct ib_device *dev,
1810 struct page *page, unsigned long offset,
1811 size_t size,
1812 enum dma_data_direction direction);
1813 void (*unmap_page)(struct ib_device *dev,
1814 u64 addr, size_t size,
1815 enum dma_data_direction direction);
1816 int (*map_sg)(struct ib_device *dev,
1817 struct scatterlist *sg, int nents,
1818 enum dma_data_direction direction);
1819 void (*unmap_sg)(struct ib_device *dev,
1820 struct scatterlist *sg, int nents,
1821 enum dma_data_direction direction);
1822 int (*map_sg_attrs)(struct ib_device *dev,
1823 struct scatterlist *sg, int nents,
1824 enum dma_data_direction direction,
1825 unsigned long attrs);
1826 void (*unmap_sg_attrs)(struct ib_device *dev,
1827 struct scatterlist *sg, int nents,
1828 enum dma_data_direction direction,
1829 unsigned long attrs);
1830 void (*sync_single_for_cpu)(struct ib_device *dev,
1831 u64 dma_handle,
1832 size_t size,
1833 enum dma_data_direction dir);
1834 void (*sync_single_for_device)(struct ib_device *dev,
1835 u64 dma_handle,
1836 size_t size,
1837 enum dma_data_direction dir);
1838 void *(*alloc_coherent)(struct ib_device *dev,
1839 size_t size,
1840 u64 *dma_handle,
1841 gfp_t flag);
1842 void (*free_coherent)(struct ib_device *dev,
1843 size_t size, void *cpu_addr,
1844 u64 dma_handle);
1847 struct iw_cm_verbs;
1849 struct ib_port_immutable {
1850 int pkey_tbl_len;
1851 int gid_tbl_len;
1852 u32 core_cap_flags;
1853 u32 max_mad_size;
1856 struct ib_device {
1857 struct device *dma_device;
1859 char name[IB_DEVICE_NAME_MAX];
1861 struct list_head event_handler_list;
1862 spinlock_t event_handler_lock;
1864 spinlock_t client_data_lock;
1865 struct list_head core_list;
1866 /* Access to the client_data_list is protected by the client_data_lock
1867 * spinlock and the lists_rwsem read-write semaphore */
1868 struct list_head client_data_list;
1870 struct ib_cache cache;
1872 * port_immutable is indexed by port number
1874 struct ib_port_immutable *port_immutable;
1876 int num_comp_vectors;
1878 struct iw_cm_verbs *iwcm;
1881 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1882 * driver initialized data. The struct is kfree()'ed by the sysfs
1883 * core when the device is removed. A lifespan of -1 in the return
1884 * struct tells the core to set a default lifespan.
1886 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
1887 u8 port_num);
1889 * get_hw_stats - Fill in the counter value(s) in the stats struct.
1890 * @index - The index in the value array we wish to have updated, or
1891 * num_counters if we want all stats updated
1892 * Return codes -
1893 * < 0 - Error, no counters updated
1894 * index - Updated the single counter pointed to by index
1895 * num_counters - Updated all counters (will reset the timestamp
1896 * and prevent further calls for lifespan milliseconds)
1897 * Drivers are allowed to update all counters in leiu of just the
1898 * one given in index at their option
1900 int (*get_hw_stats)(struct ib_device *device,
1901 struct rdma_hw_stats *stats,
1902 u8 port, int index);
1903 int (*query_device)(struct ib_device *device,
1904 struct ib_device_attr *device_attr,
1905 struct ib_udata *udata);
1906 int (*query_port)(struct ib_device *device,
1907 u8 port_num,
1908 struct ib_port_attr *port_attr);
1909 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1910 u8 port_num);
1911 /* When calling get_netdev, the HW vendor's driver should return the
1912 * net device of device @device at port @port_num or NULL if such
1913 * a net device doesn't exist. The vendor driver should call dev_hold
1914 * on this net device. The HW vendor's device driver must guarantee
1915 * that this function returns NULL before the net device reaches
1916 * NETDEV_UNREGISTER_FINAL state.
1918 struct net_device *(*get_netdev)(struct ib_device *device,
1919 u8 port_num);
1920 int (*query_gid)(struct ib_device *device,
1921 u8 port_num, int index,
1922 union ib_gid *gid);
1923 /* When calling add_gid, the HW vendor's driver should
1924 * add the gid of device @device at gid index @index of
1925 * port @port_num to be @gid. Meta-info of that gid (for example,
1926 * the network device related to this gid is available
1927 * at @attr. @context allows the HW vendor driver to store extra
1928 * information together with a GID entry. The HW vendor may allocate
1929 * memory to contain this information and store it in @context when a
1930 * new GID entry is written to. Params are consistent until the next
1931 * call of add_gid or delete_gid. The function should return 0 on
1932 * success or error otherwise. The function could be called
1933 * concurrently for different ports. This function is only called
1934 * when roce_gid_table is used.
1936 int (*add_gid)(struct ib_device *device,
1937 u8 port_num,
1938 unsigned int index,
1939 const union ib_gid *gid,
1940 const struct ib_gid_attr *attr,
1941 void **context);
1942 /* When calling del_gid, the HW vendor's driver should delete the
1943 * gid of device @device at gid index @index of port @port_num.
1944 * Upon the deletion of a GID entry, the HW vendor must free any
1945 * allocated memory. The caller will clear @context afterwards.
1946 * This function is only called when roce_gid_table is used.
1948 int (*del_gid)(struct ib_device *device,
1949 u8 port_num,
1950 unsigned int index,
1951 void **context);
1952 int (*query_pkey)(struct ib_device *device,
1953 u8 port_num, u16 index, u16 *pkey);
1954 int (*modify_device)(struct ib_device *device,
1955 int device_modify_mask,
1956 struct ib_device_modify *device_modify);
1957 int (*modify_port)(struct ib_device *device,
1958 u8 port_num, int port_modify_mask,
1959 struct ib_port_modify *port_modify);
1960 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1961 struct ib_udata *udata);
1962 int (*dealloc_ucontext)(struct ib_ucontext *context);
1963 int (*mmap)(struct ib_ucontext *context,
1964 struct vm_area_struct *vma);
1965 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1966 struct ib_ucontext *context,
1967 struct ib_udata *udata);
1968 int (*dealloc_pd)(struct ib_pd *pd);
1969 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1970 struct ib_ah_attr *ah_attr,
1971 struct ib_udata *udata);
1972 int (*modify_ah)(struct ib_ah *ah,
1973 struct ib_ah_attr *ah_attr);
1974 int (*query_ah)(struct ib_ah *ah,
1975 struct ib_ah_attr *ah_attr);
1976 int (*destroy_ah)(struct ib_ah *ah);
1977 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1978 struct ib_srq_init_attr *srq_init_attr,
1979 struct ib_udata *udata);
1980 int (*modify_srq)(struct ib_srq *srq,
1981 struct ib_srq_attr *srq_attr,
1982 enum ib_srq_attr_mask srq_attr_mask,
1983 struct ib_udata *udata);
1984 int (*query_srq)(struct ib_srq *srq,
1985 struct ib_srq_attr *srq_attr);
1986 int (*destroy_srq)(struct ib_srq *srq);
1987 int (*post_srq_recv)(struct ib_srq *srq,
1988 struct ib_recv_wr *recv_wr,
1989 struct ib_recv_wr **bad_recv_wr);
1990 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1991 struct ib_qp_init_attr *qp_init_attr,
1992 struct ib_udata *udata);
1993 int (*modify_qp)(struct ib_qp *qp,
1994 struct ib_qp_attr *qp_attr,
1995 int qp_attr_mask,
1996 struct ib_udata *udata);
1997 int (*query_qp)(struct ib_qp *qp,
1998 struct ib_qp_attr *qp_attr,
1999 int qp_attr_mask,
2000 struct ib_qp_init_attr *qp_init_attr);
2001 int (*destroy_qp)(struct ib_qp *qp);
2002 int (*post_send)(struct ib_qp *qp,
2003 struct ib_send_wr *send_wr,
2004 struct ib_send_wr **bad_send_wr);
2005 int (*post_recv)(struct ib_qp *qp,
2006 struct ib_recv_wr *recv_wr,
2007 struct ib_recv_wr **bad_recv_wr);
2008 struct ib_cq * (*create_cq)(struct ib_device *device,
2009 const struct ib_cq_init_attr *attr,
2010 struct ib_ucontext *context,
2011 struct ib_udata *udata);
2012 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2013 u16 cq_period);
2014 int (*destroy_cq)(struct ib_cq *cq);
2015 int (*resize_cq)(struct ib_cq *cq, int cqe,
2016 struct ib_udata *udata);
2017 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2018 struct ib_wc *wc);
2019 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2020 int (*req_notify_cq)(struct ib_cq *cq,
2021 enum ib_cq_notify_flags flags);
2022 int (*req_ncomp_notif)(struct ib_cq *cq,
2023 int wc_cnt);
2024 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2025 int mr_access_flags);
2026 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
2027 u64 start, u64 length,
2028 u64 virt_addr,
2029 int mr_access_flags,
2030 struct ib_udata *udata);
2031 int (*rereg_user_mr)(struct ib_mr *mr,
2032 int flags,
2033 u64 start, u64 length,
2034 u64 virt_addr,
2035 int mr_access_flags,
2036 struct ib_pd *pd,
2037 struct ib_udata *udata);
2038 int (*dereg_mr)(struct ib_mr *mr);
2039 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2040 enum ib_mr_type mr_type,
2041 u32 max_num_sg);
2042 int (*map_mr_sg)(struct ib_mr *mr,
2043 struct scatterlist *sg,
2044 int sg_nents,
2045 unsigned int *sg_offset);
2046 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2047 enum ib_mw_type type,
2048 struct ib_udata *udata);
2049 int (*dealloc_mw)(struct ib_mw *mw);
2050 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2051 int mr_access_flags,
2052 struct ib_fmr_attr *fmr_attr);
2053 int (*map_phys_fmr)(struct ib_fmr *fmr,
2054 u64 *page_list, int list_len,
2055 u64 iova);
2056 int (*unmap_fmr)(struct list_head *fmr_list);
2057 int (*dealloc_fmr)(struct ib_fmr *fmr);
2058 int (*attach_mcast)(struct ib_qp *qp,
2059 union ib_gid *gid,
2060 u16 lid);
2061 int (*detach_mcast)(struct ib_qp *qp,
2062 union ib_gid *gid,
2063 u16 lid);
2064 int (*process_mad)(struct ib_device *device,
2065 int process_mad_flags,
2066 u8 port_num,
2067 const struct ib_wc *in_wc,
2068 const struct ib_grh *in_grh,
2069 const struct ib_mad_hdr *in_mad,
2070 size_t in_mad_size,
2071 struct ib_mad_hdr *out_mad,
2072 size_t *out_mad_size,
2073 u16 *out_mad_pkey_index);
2074 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2075 struct ib_ucontext *ucontext,
2076 struct ib_udata *udata);
2077 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2078 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2079 struct ib_flow_attr
2080 *flow_attr,
2081 int domain);
2082 int (*destroy_flow)(struct ib_flow *flow_id);
2083 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2084 struct ib_mr_status *mr_status);
2085 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2086 void (*drain_rq)(struct ib_qp *qp);
2087 void (*drain_sq)(struct ib_qp *qp);
2088 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2089 int state);
2090 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2091 struct ifla_vf_info *ivf);
2092 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2093 struct ifla_vf_stats *stats);
2094 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2095 int type);
2096 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2097 struct ib_wq_init_attr *init_attr,
2098 struct ib_udata *udata);
2099 int (*destroy_wq)(struct ib_wq *wq);
2100 int (*modify_wq)(struct ib_wq *wq,
2101 struct ib_wq_attr *attr,
2102 u32 wq_attr_mask,
2103 struct ib_udata *udata);
2104 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2105 struct ib_rwq_ind_table_init_attr *init_attr,
2106 struct ib_udata *udata);
2107 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2108 struct ib_dma_mapping_ops *dma_ops;
2110 struct module *owner;
2111 struct device dev;
2112 struct kobject *ports_parent;
2113 struct list_head port_list;
2115 enum {
2116 IB_DEV_UNINITIALIZED,
2117 IB_DEV_REGISTERED,
2118 IB_DEV_UNREGISTERED
2119 } reg_state;
2121 int uverbs_abi_ver;
2122 u64 uverbs_cmd_mask;
2123 u64 uverbs_ex_cmd_mask;
2125 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2126 __be64 node_guid;
2127 u32 local_dma_lkey;
2128 u16 is_switch:1;
2129 u8 node_type;
2130 u8 phys_port_cnt;
2131 struct ib_device_attr attrs;
2132 struct attribute_group *hw_stats_ag;
2133 struct rdma_hw_stats *hw_stats;
2136 * The following mandatory functions are used only at device
2137 * registration. Keep functions such as these at the end of this
2138 * structure to avoid cache line misses when accessing struct ib_device
2139 * in fast paths.
2141 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2142 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2145 struct ib_client {
2146 char *name;
2147 void (*add) (struct ib_device *);
2148 void (*remove)(struct ib_device *, void *client_data);
2150 /* Returns the net_dev belonging to this ib_client and matching the
2151 * given parameters.
2152 * @dev: An RDMA device that the net_dev use for communication.
2153 * @port: A physical port number on the RDMA device.
2154 * @pkey: P_Key that the net_dev uses if applicable.
2155 * @gid: A GID that the net_dev uses to communicate.
2156 * @addr: An IP address the net_dev is configured with.
2157 * @client_data: The device's client data set by ib_set_client_data().
2159 * An ib_client that implements a net_dev on top of RDMA devices
2160 * (such as IP over IB) should implement this callback, allowing the
2161 * rdma_cm module to find the right net_dev for a given request.
2163 * The caller is responsible for calling dev_put on the returned
2164 * netdev. */
2165 struct net_device *(*get_net_dev_by_params)(
2166 struct ib_device *dev,
2167 u8 port,
2168 u16 pkey,
2169 const union ib_gid *gid,
2170 const struct sockaddr *addr,
2171 void *client_data);
2172 struct list_head list;
2175 struct ib_device *ib_alloc_device(size_t size);
2176 void ib_dealloc_device(struct ib_device *device);
2178 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2180 int ib_register_device(struct ib_device *device,
2181 int (*port_callback)(struct ib_device *,
2182 u8, struct kobject *));
2183 void ib_unregister_device(struct ib_device *device);
2185 int ib_register_client (struct ib_client *client);
2186 void ib_unregister_client(struct ib_client *client);
2188 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2189 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2190 void *data);
2192 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2194 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2197 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2199 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2202 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2203 size_t offset,
2204 size_t len)
2206 const void __user *p = udata->inbuf + offset;
2207 bool ret;
2208 u8 *buf;
2210 if (len > USHRT_MAX)
2211 return false;
2213 buf = memdup_user(p, len);
2214 if (IS_ERR(buf))
2215 return false;
2217 ret = !memchr_inv(buf, 0, len);
2218 kfree(buf);
2219 return ret;
2223 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2224 * contains all required attributes and no attributes not allowed for
2225 * the given QP state transition.
2226 * @cur_state: Current QP state
2227 * @next_state: Next QP state
2228 * @type: QP type
2229 * @mask: Mask of supplied QP attributes
2230 * @ll : link layer of port
2232 * This function is a helper function that a low-level driver's
2233 * modify_qp method can use to validate the consumer's input. It
2234 * checks that cur_state and next_state are valid QP states, that a
2235 * transition from cur_state to next_state is allowed by the IB spec,
2236 * and that the attribute mask supplied is allowed for the transition.
2238 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2239 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2240 enum rdma_link_layer ll);
2242 int ib_register_event_handler (struct ib_event_handler *event_handler);
2243 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2244 void ib_dispatch_event(struct ib_event *event);
2246 int ib_query_port(struct ib_device *device,
2247 u8 port_num, struct ib_port_attr *port_attr);
2249 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2250 u8 port_num);
2253 * rdma_cap_ib_switch - Check if the device is IB switch
2254 * @device: Device to check
2256 * Device driver is responsible for setting is_switch bit on
2257 * in ib_device structure at init time.
2259 * Return: true if the device is IB switch.
2261 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2263 return device->is_switch;
2267 * rdma_start_port - Return the first valid port number for the device
2268 * specified
2270 * @device: Device to be checked
2272 * Return start port number
2274 static inline u8 rdma_start_port(const struct ib_device *device)
2276 return rdma_cap_ib_switch(device) ? 0 : 1;
2280 * rdma_end_port - Return the last valid port number for the device
2281 * specified
2283 * @device: Device to be checked
2285 * Return last port number
2287 static inline u8 rdma_end_port(const struct ib_device *device)
2289 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2292 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2294 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2297 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2299 return device->port_immutable[port_num].core_cap_flags &
2300 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2303 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2305 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2308 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2310 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2313 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2315 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2318 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2320 return rdma_protocol_ib(device, port_num) ||
2321 rdma_protocol_roce(device, port_num);
2325 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2326 * Management Datagrams.
2327 * @device: Device to check
2328 * @port_num: Port number to check
2330 * Management Datagrams (MAD) are a required part of the InfiniBand
2331 * specification and are supported on all InfiniBand devices. A slightly
2332 * extended version are also supported on OPA interfaces.
2334 * Return: true if the port supports sending/receiving of MAD packets.
2336 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2338 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2342 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2343 * Management Datagrams.
2344 * @device: Device to check
2345 * @port_num: Port number to check
2347 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2348 * datagrams with their own versions. These OPA MADs share many but not all of
2349 * the characteristics of InfiniBand MADs.
2351 * OPA MADs differ in the following ways:
2353 * 1) MADs are variable size up to 2K
2354 * IBTA defined MADs remain fixed at 256 bytes
2355 * 2) OPA SMPs must carry valid PKeys
2356 * 3) OPA SMP packets are a different format
2358 * Return: true if the port supports OPA MAD packet formats.
2360 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2362 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2363 == RDMA_CORE_CAP_OPA_MAD;
2367 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2368 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2369 * @device: Device to check
2370 * @port_num: Port number to check
2372 * Each InfiniBand node is required to provide a Subnet Management Agent
2373 * that the subnet manager can access. Prior to the fabric being fully
2374 * configured by the subnet manager, the SMA is accessed via a well known
2375 * interface called the Subnet Management Interface (SMI). This interface
2376 * uses directed route packets to communicate with the SM to get around the
2377 * chicken and egg problem of the SM needing to know what's on the fabric
2378 * in order to configure the fabric, and needing to configure the fabric in
2379 * order to send packets to the devices on the fabric. These directed
2380 * route packets do not need the fabric fully configured in order to reach
2381 * their destination. The SMI is the only method allowed to send
2382 * directed route packets on an InfiniBand fabric.
2384 * Return: true if the port provides an SMI.
2386 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2388 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2392 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2393 * Communication Manager.
2394 * @device: Device to check
2395 * @port_num: Port number to check
2397 * The InfiniBand Communication Manager is one of many pre-defined General
2398 * Service Agents (GSA) that are accessed via the General Service
2399 * Interface (GSI). It's role is to facilitate establishment of connections
2400 * between nodes as well as other management related tasks for established
2401 * connections.
2403 * Return: true if the port supports an IB CM (this does not guarantee that
2404 * a CM is actually running however).
2406 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2408 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2412 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2413 * Communication Manager.
2414 * @device: Device to check
2415 * @port_num: Port number to check
2417 * Similar to above, but specific to iWARP connections which have a different
2418 * managment protocol than InfiniBand.
2420 * Return: true if the port supports an iWARP CM (this does not guarantee that
2421 * a CM is actually running however).
2423 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2425 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2429 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2430 * Subnet Administration.
2431 * @device: Device to check
2432 * @port_num: Port number to check
2434 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2435 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2436 * fabrics, devices should resolve routes to other hosts by contacting the
2437 * SA to query the proper route.
2439 * Return: true if the port should act as a client to the fabric Subnet
2440 * Administration interface. This does not imply that the SA service is
2441 * running locally.
2443 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2445 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2449 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2450 * Multicast.
2451 * @device: Device to check
2452 * @port_num: Port number to check
2454 * InfiniBand multicast registration is more complex than normal IPv4 or
2455 * IPv6 multicast registration. Each Host Channel Adapter must register
2456 * with the Subnet Manager when it wishes to join a multicast group. It
2457 * should do so only once regardless of how many queue pairs it subscribes
2458 * to this group. And it should leave the group only after all queue pairs
2459 * attached to the group have been detached.
2461 * Return: true if the port must undertake the additional adminstrative
2462 * overhead of registering/unregistering with the SM and tracking of the
2463 * total number of queue pairs attached to the multicast group.
2465 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2467 return rdma_cap_ib_sa(device, port_num);
2471 * rdma_cap_af_ib - Check if the port of device has the capability
2472 * Native Infiniband Address.
2473 * @device: Device to check
2474 * @port_num: Port number to check
2476 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2477 * GID. RoCE uses a different mechanism, but still generates a GID via
2478 * a prescribed mechanism and port specific data.
2480 * Return: true if the port uses a GID address to identify devices on the
2481 * network.
2483 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2485 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2489 * rdma_cap_eth_ah - Check if the port of device has the capability
2490 * Ethernet Address Handle.
2491 * @device: Device to check
2492 * @port_num: Port number to check
2494 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2495 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2496 * port. Normally, packet headers are generated by the sending host
2497 * adapter, but when sending connectionless datagrams, we must manually
2498 * inject the proper headers for the fabric we are communicating over.
2500 * Return: true if we are running as a RoCE port and must force the
2501 * addition of a Global Route Header built from our Ethernet Address
2502 * Handle into our header list for connectionless packets.
2504 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2506 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2510 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2512 * @device: Device
2513 * @port_num: Port number
2515 * This MAD size includes the MAD headers and MAD payload. No other headers
2516 * are included.
2518 * Return the max MAD size required by the Port. Will return 0 if the port
2519 * does not support MADs
2521 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2523 return device->port_immutable[port_num].max_mad_size;
2527 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2528 * @device: Device to check
2529 * @port_num: Port number to check
2531 * RoCE GID table mechanism manages the various GIDs for a device.
2533 * NOTE: if allocating the port's GID table has failed, this call will still
2534 * return true, but any RoCE GID table API will fail.
2536 * Return: true if the port uses RoCE GID table mechanism in order to manage
2537 * its GIDs.
2539 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2540 u8 port_num)
2542 return rdma_protocol_roce(device, port_num) &&
2543 device->add_gid && device->del_gid;
2547 * Check if the device supports READ W/ INVALIDATE.
2549 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2552 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2553 * has support for it yet.
2555 return rdma_protocol_iwarp(dev, port_num);
2558 int ib_query_gid(struct ib_device *device,
2559 u8 port_num, int index, union ib_gid *gid,
2560 struct ib_gid_attr *attr);
2562 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2563 int state);
2564 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2565 struct ifla_vf_info *info);
2566 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2567 struct ifla_vf_stats *stats);
2568 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2569 int type);
2571 int ib_query_pkey(struct ib_device *device,
2572 u8 port_num, u16 index, u16 *pkey);
2574 int ib_modify_device(struct ib_device *device,
2575 int device_modify_mask,
2576 struct ib_device_modify *device_modify);
2578 int ib_modify_port(struct ib_device *device,
2579 u8 port_num, int port_modify_mask,
2580 struct ib_port_modify *port_modify);
2582 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2583 enum ib_gid_type gid_type, struct net_device *ndev,
2584 u8 *port_num, u16 *index);
2586 int ib_find_pkey(struct ib_device *device,
2587 u8 port_num, u16 pkey, u16 *index);
2589 enum ib_pd_flags {
2591 * Create a memory registration for all memory in the system and place
2592 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2593 * ULPs to avoid the overhead of dynamic MRs.
2595 * This flag is generally considered unsafe and must only be used in
2596 * extremly trusted environments. Every use of it will log a warning
2597 * in the kernel log.
2599 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2602 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2603 const char *caller);
2604 #define ib_alloc_pd(device, flags) \
2605 __ib_alloc_pd((device), (flags), __func__)
2606 void ib_dealloc_pd(struct ib_pd *pd);
2609 * ib_create_ah - Creates an address handle for the given address vector.
2610 * @pd: The protection domain associated with the address handle.
2611 * @ah_attr: The attributes of the address vector.
2613 * The address handle is used to reference a local or global destination
2614 * in all UD QP post sends.
2616 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2619 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2620 * work completion.
2621 * @hdr: the L3 header to parse
2622 * @net_type: type of header to parse
2623 * @sgid: place to store source gid
2624 * @dgid: place to store destination gid
2626 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2627 enum rdma_network_type net_type,
2628 union ib_gid *sgid, union ib_gid *dgid);
2631 * ib_get_rdma_header_version - Get the header version
2632 * @hdr: the L3 header to parse
2634 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2637 * ib_init_ah_from_wc - Initializes address handle attributes from a
2638 * work completion.
2639 * @device: Device on which the received message arrived.
2640 * @port_num: Port on which the received message arrived.
2641 * @wc: Work completion associated with the received message.
2642 * @grh: References the received global route header. This parameter is
2643 * ignored unless the work completion indicates that the GRH is valid.
2644 * @ah_attr: Returned attributes that can be used when creating an address
2645 * handle for replying to the message.
2647 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2648 const struct ib_wc *wc, const struct ib_grh *grh,
2649 struct ib_ah_attr *ah_attr);
2652 * ib_create_ah_from_wc - Creates an address handle associated with the
2653 * sender of the specified work completion.
2654 * @pd: The protection domain associated with the address handle.
2655 * @wc: Work completion information associated with a received message.
2656 * @grh: References the received global route header. This parameter is
2657 * ignored unless the work completion indicates that the GRH is valid.
2658 * @port_num: The outbound port number to associate with the address.
2660 * The address handle is used to reference a local or global destination
2661 * in all UD QP post sends.
2663 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2664 const struct ib_grh *grh, u8 port_num);
2667 * ib_modify_ah - Modifies the address vector associated with an address
2668 * handle.
2669 * @ah: The address handle to modify.
2670 * @ah_attr: The new address vector attributes to associate with the
2671 * address handle.
2673 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2676 * ib_query_ah - Queries the address vector associated with an address
2677 * handle.
2678 * @ah: The address handle to query.
2679 * @ah_attr: The address vector attributes associated with the address
2680 * handle.
2682 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2685 * ib_destroy_ah - Destroys an address handle.
2686 * @ah: The address handle to destroy.
2688 int ib_destroy_ah(struct ib_ah *ah);
2691 * ib_create_srq - Creates a SRQ associated with the specified protection
2692 * domain.
2693 * @pd: The protection domain associated with the SRQ.
2694 * @srq_init_attr: A list of initial attributes required to create the
2695 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2696 * the actual capabilities of the created SRQ.
2698 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2699 * requested size of the SRQ, and set to the actual values allocated
2700 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2701 * will always be at least as large as the requested values.
2703 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2704 struct ib_srq_init_attr *srq_init_attr);
2707 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2708 * @srq: The SRQ to modify.
2709 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2710 * the current values of selected SRQ attributes are returned.
2711 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2712 * are being modified.
2714 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2715 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2716 * the number of receives queued drops below the limit.
2718 int ib_modify_srq(struct ib_srq *srq,
2719 struct ib_srq_attr *srq_attr,
2720 enum ib_srq_attr_mask srq_attr_mask);
2723 * ib_query_srq - Returns the attribute list and current values for the
2724 * specified SRQ.
2725 * @srq: The SRQ to query.
2726 * @srq_attr: The attributes of the specified SRQ.
2728 int ib_query_srq(struct ib_srq *srq,
2729 struct ib_srq_attr *srq_attr);
2732 * ib_destroy_srq - Destroys the specified SRQ.
2733 * @srq: The SRQ to destroy.
2735 int ib_destroy_srq(struct ib_srq *srq);
2738 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2739 * @srq: The SRQ to post the work request on.
2740 * @recv_wr: A list of work requests to post on the receive queue.
2741 * @bad_recv_wr: On an immediate failure, this parameter will reference
2742 * the work request that failed to be posted on the QP.
2744 static inline int ib_post_srq_recv(struct ib_srq *srq,
2745 struct ib_recv_wr *recv_wr,
2746 struct ib_recv_wr **bad_recv_wr)
2748 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2752 * ib_create_qp - Creates a QP associated with the specified protection
2753 * domain.
2754 * @pd: The protection domain associated with the QP.
2755 * @qp_init_attr: A list of initial attributes required to create the
2756 * QP. If QP creation succeeds, then the attributes are updated to
2757 * the actual capabilities of the created QP.
2759 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2760 struct ib_qp_init_attr *qp_init_attr);
2763 * ib_modify_qp - Modifies the attributes for the specified QP and then
2764 * transitions the QP to the given state.
2765 * @qp: The QP to modify.
2766 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2767 * the current values of selected QP attributes are returned.
2768 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2769 * are being modified.
2771 int ib_modify_qp(struct ib_qp *qp,
2772 struct ib_qp_attr *qp_attr,
2773 int qp_attr_mask);
2776 * ib_query_qp - Returns the attribute list and current values for the
2777 * specified QP.
2778 * @qp: The QP to query.
2779 * @qp_attr: The attributes of the specified QP.
2780 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2781 * @qp_init_attr: Additional attributes of the selected QP.
2783 * The qp_attr_mask may be used to limit the query to gathering only the
2784 * selected attributes.
2786 int ib_query_qp(struct ib_qp *qp,
2787 struct ib_qp_attr *qp_attr,
2788 int qp_attr_mask,
2789 struct ib_qp_init_attr *qp_init_attr);
2792 * ib_destroy_qp - Destroys the specified QP.
2793 * @qp: The QP to destroy.
2795 int ib_destroy_qp(struct ib_qp *qp);
2798 * ib_open_qp - Obtain a reference to an existing sharable QP.
2799 * @xrcd - XRC domain
2800 * @qp_open_attr: Attributes identifying the QP to open.
2802 * Returns a reference to a sharable QP.
2804 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2805 struct ib_qp_open_attr *qp_open_attr);
2808 * ib_close_qp - Release an external reference to a QP.
2809 * @qp: The QP handle to release
2811 * The opened QP handle is released by the caller. The underlying
2812 * shared QP is not destroyed until all internal references are released.
2814 int ib_close_qp(struct ib_qp *qp);
2817 * ib_post_send - Posts a list of work requests to the send queue of
2818 * the specified QP.
2819 * @qp: The QP to post the work request on.
2820 * @send_wr: A list of work requests to post on the send queue.
2821 * @bad_send_wr: On an immediate failure, this parameter will reference
2822 * the work request that failed to be posted on the QP.
2824 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2825 * error is returned, the QP state shall not be affected,
2826 * ib_post_send() will return an immediate error after queueing any
2827 * earlier work requests in the list.
2829 static inline int ib_post_send(struct ib_qp *qp,
2830 struct ib_send_wr *send_wr,
2831 struct ib_send_wr **bad_send_wr)
2833 return qp->device->post_send(qp, send_wr, bad_send_wr);
2837 * ib_post_recv - Posts a list of work requests to the receive queue of
2838 * the specified QP.
2839 * @qp: The QP to post the work request on.
2840 * @recv_wr: A list of work requests to post on the receive queue.
2841 * @bad_recv_wr: On an immediate failure, this parameter will reference
2842 * the work request that failed to be posted on the QP.
2844 static inline int ib_post_recv(struct ib_qp *qp,
2845 struct ib_recv_wr *recv_wr,
2846 struct ib_recv_wr **bad_recv_wr)
2848 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2851 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2852 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2853 void ib_free_cq(struct ib_cq *cq);
2854 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2857 * ib_create_cq - Creates a CQ on the specified device.
2858 * @device: The device on which to create the CQ.
2859 * @comp_handler: A user-specified callback that is invoked when a
2860 * completion event occurs on the CQ.
2861 * @event_handler: A user-specified callback that is invoked when an
2862 * asynchronous event not associated with a completion occurs on the CQ.
2863 * @cq_context: Context associated with the CQ returned to the user via
2864 * the associated completion and event handlers.
2865 * @cq_attr: The attributes the CQ should be created upon.
2867 * Users can examine the cq structure to determine the actual CQ size.
2869 struct ib_cq *ib_create_cq(struct ib_device *device,
2870 ib_comp_handler comp_handler,
2871 void (*event_handler)(struct ib_event *, void *),
2872 void *cq_context,
2873 const struct ib_cq_init_attr *cq_attr);
2876 * ib_resize_cq - Modifies the capacity of the CQ.
2877 * @cq: The CQ to resize.
2878 * @cqe: The minimum size of the CQ.
2880 * Users can examine the cq structure to determine the actual CQ size.
2882 int ib_resize_cq(struct ib_cq *cq, int cqe);
2885 * ib_modify_cq - Modifies moderation params of the CQ
2886 * @cq: The CQ to modify.
2887 * @cq_count: number of CQEs that will trigger an event
2888 * @cq_period: max period of time in usec before triggering an event
2891 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2894 * ib_destroy_cq - Destroys the specified CQ.
2895 * @cq: The CQ to destroy.
2897 int ib_destroy_cq(struct ib_cq *cq);
2900 * ib_poll_cq - poll a CQ for completion(s)
2901 * @cq:the CQ being polled
2902 * @num_entries:maximum number of completions to return
2903 * @wc:array of at least @num_entries &struct ib_wc where completions
2904 * will be returned
2906 * Poll a CQ for (possibly multiple) completions. If the return value
2907 * is < 0, an error occurred. If the return value is >= 0, it is the
2908 * number of completions returned. If the return value is
2909 * non-negative and < num_entries, then the CQ was emptied.
2911 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2912 struct ib_wc *wc)
2914 return cq->device->poll_cq(cq, num_entries, wc);
2918 * ib_peek_cq - Returns the number of unreaped completions currently
2919 * on the specified CQ.
2920 * @cq: The CQ to peek.
2921 * @wc_cnt: A minimum number of unreaped completions to check for.
2923 * If the number of unreaped completions is greater than or equal to wc_cnt,
2924 * this function returns wc_cnt, otherwise, it returns the actual number of
2925 * unreaped completions.
2927 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2930 * ib_req_notify_cq - Request completion notification on a CQ.
2931 * @cq: The CQ to generate an event for.
2932 * @flags:
2933 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2934 * to request an event on the next solicited event or next work
2935 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2936 * may also be |ed in to request a hint about missed events, as
2937 * described below.
2939 * Return Value:
2940 * < 0 means an error occurred while requesting notification
2941 * == 0 means notification was requested successfully, and if
2942 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2943 * were missed and it is safe to wait for another event. In
2944 * this case is it guaranteed that any work completions added
2945 * to the CQ since the last CQ poll will trigger a completion
2946 * notification event.
2947 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2948 * in. It means that the consumer must poll the CQ again to
2949 * make sure it is empty to avoid missing an event because of a
2950 * race between requesting notification and an entry being
2951 * added to the CQ. This return value means it is possible
2952 * (but not guaranteed) that a work completion has been added
2953 * to the CQ since the last poll without triggering a
2954 * completion notification event.
2956 static inline int ib_req_notify_cq(struct ib_cq *cq,
2957 enum ib_cq_notify_flags flags)
2959 return cq->device->req_notify_cq(cq, flags);
2963 * ib_req_ncomp_notif - Request completion notification when there are
2964 * at least the specified number of unreaped completions on the CQ.
2965 * @cq: The CQ to generate an event for.
2966 * @wc_cnt: The number of unreaped completions that should be on the
2967 * CQ before an event is generated.
2969 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2971 return cq->device->req_ncomp_notif ?
2972 cq->device->req_ncomp_notif(cq, wc_cnt) :
2973 -ENOSYS;
2977 * ib_dma_mapping_error - check a DMA addr for error
2978 * @dev: The device for which the dma_addr was created
2979 * @dma_addr: The DMA address to check
2981 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2983 if (dev->dma_ops)
2984 return dev->dma_ops->mapping_error(dev, dma_addr);
2985 return dma_mapping_error(dev->dma_device, dma_addr);
2989 * ib_dma_map_single - Map a kernel virtual address to DMA address
2990 * @dev: The device for which the dma_addr is to be created
2991 * @cpu_addr: The kernel virtual address
2992 * @size: The size of the region in bytes
2993 * @direction: The direction of the DMA
2995 static inline u64 ib_dma_map_single(struct ib_device *dev,
2996 void *cpu_addr, size_t size,
2997 enum dma_data_direction direction)
2999 if (dev->dma_ops)
3000 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
3001 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3005 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3006 * @dev: The device for which the DMA address was created
3007 * @addr: The DMA address
3008 * @size: The size of the region in bytes
3009 * @direction: The direction of the DMA
3011 static inline void ib_dma_unmap_single(struct ib_device *dev,
3012 u64 addr, size_t size,
3013 enum dma_data_direction direction)
3015 if (dev->dma_ops)
3016 dev->dma_ops->unmap_single(dev, addr, size, direction);
3017 else
3018 dma_unmap_single(dev->dma_device, addr, size, direction);
3021 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
3022 void *cpu_addr, size_t size,
3023 enum dma_data_direction direction,
3024 unsigned long dma_attrs)
3026 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
3027 direction, dma_attrs);
3030 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
3031 u64 addr, size_t size,
3032 enum dma_data_direction direction,
3033 unsigned long dma_attrs)
3035 return dma_unmap_single_attrs(dev->dma_device, addr, size,
3036 direction, dma_attrs);
3040 * ib_dma_map_page - Map a physical page to DMA address
3041 * @dev: The device for which the dma_addr is to be created
3042 * @page: The page to be mapped
3043 * @offset: The offset within the page
3044 * @size: The size of the region in bytes
3045 * @direction: The direction of the DMA
3047 static inline u64 ib_dma_map_page(struct ib_device *dev,
3048 struct page *page,
3049 unsigned long offset,
3050 size_t size,
3051 enum dma_data_direction direction)
3053 if (dev->dma_ops)
3054 return dev->dma_ops->map_page(dev, page, offset, size, direction);
3055 return dma_map_page(dev->dma_device, page, offset, size, direction);
3059 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3060 * @dev: The device for which the DMA address was created
3061 * @addr: The DMA address
3062 * @size: The size of the region in bytes
3063 * @direction: The direction of the DMA
3065 static inline void ib_dma_unmap_page(struct ib_device *dev,
3066 u64 addr, size_t size,
3067 enum dma_data_direction direction)
3069 if (dev->dma_ops)
3070 dev->dma_ops->unmap_page(dev, addr, size, direction);
3071 else
3072 dma_unmap_page(dev->dma_device, addr, size, direction);
3076 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3077 * @dev: The device for which the DMA addresses are to be created
3078 * @sg: The array of scatter/gather entries
3079 * @nents: The number of scatter/gather entries
3080 * @direction: The direction of the DMA
3082 static inline int ib_dma_map_sg(struct ib_device *dev,
3083 struct scatterlist *sg, int nents,
3084 enum dma_data_direction direction)
3086 if (dev->dma_ops)
3087 return dev->dma_ops->map_sg(dev, sg, nents, direction);
3088 return dma_map_sg(dev->dma_device, sg, nents, direction);
3092 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3093 * @dev: The device for which the DMA addresses were created
3094 * @sg: The array of scatter/gather entries
3095 * @nents: The number of scatter/gather entries
3096 * @direction: The direction of the DMA
3098 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3099 struct scatterlist *sg, int nents,
3100 enum dma_data_direction direction)
3102 if (dev->dma_ops)
3103 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
3104 else
3105 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3108 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3109 struct scatterlist *sg, int nents,
3110 enum dma_data_direction direction,
3111 unsigned long dma_attrs)
3113 if (dev->dma_ops)
3114 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction,
3115 dma_attrs);
3116 else
3117 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3118 dma_attrs);
3121 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3122 struct scatterlist *sg, int nents,
3123 enum dma_data_direction direction,
3124 unsigned long dma_attrs)
3126 if (dev->dma_ops)
3127 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction,
3128 dma_attrs);
3129 else
3130 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
3131 dma_attrs);
3134 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3135 * @dev: The device for which the DMA addresses were created
3136 * @sg: The scatter/gather entry
3138 * Note: this function is obsolete. To do: change all occurrences of
3139 * ib_sg_dma_address() into sg_dma_address().
3141 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3142 struct scatterlist *sg)
3144 return sg_dma_address(sg);
3148 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3149 * @dev: The device for which the DMA addresses were created
3150 * @sg: The scatter/gather entry
3152 * Note: this function is obsolete. To do: change all occurrences of
3153 * ib_sg_dma_len() into sg_dma_len().
3155 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3156 struct scatterlist *sg)
3158 return sg_dma_len(sg);
3162 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3163 * @dev: The device for which the DMA address was created
3164 * @addr: The DMA address
3165 * @size: The size of the region in bytes
3166 * @dir: The direction of the DMA
3168 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3169 u64 addr,
3170 size_t size,
3171 enum dma_data_direction dir)
3173 if (dev->dma_ops)
3174 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
3175 else
3176 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3180 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3181 * @dev: The device for which the DMA address was created
3182 * @addr: The DMA address
3183 * @size: The size of the region in bytes
3184 * @dir: The direction of the DMA
3186 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3187 u64 addr,
3188 size_t size,
3189 enum dma_data_direction dir)
3191 if (dev->dma_ops)
3192 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
3193 else
3194 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3198 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3199 * @dev: The device for which the DMA address is requested
3200 * @size: The size of the region to allocate in bytes
3201 * @dma_handle: A pointer for returning the DMA address of the region
3202 * @flag: memory allocator flags
3204 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3205 size_t size,
3206 u64 *dma_handle,
3207 gfp_t flag)
3209 if (dev->dma_ops)
3210 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
3211 else {
3212 dma_addr_t handle;
3213 void *ret;
3215 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3216 *dma_handle = handle;
3217 return ret;
3222 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3223 * @dev: The device for which the DMA addresses were allocated
3224 * @size: The size of the region
3225 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3226 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3228 static inline void ib_dma_free_coherent(struct ib_device *dev,
3229 size_t size, void *cpu_addr,
3230 u64 dma_handle)
3232 if (dev->dma_ops)
3233 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3234 else
3235 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3239 * ib_dereg_mr - Deregisters a memory region and removes it from the
3240 * HCA translation table.
3241 * @mr: The memory region to deregister.
3243 * This function can fail, if the memory region has memory windows bound to it.
3245 int ib_dereg_mr(struct ib_mr *mr);
3247 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3248 enum ib_mr_type mr_type,
3249 u32 max_num_sg);
3252 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3253 * R_Key and L_Key.
3254 * @mr - struct ib_mr pointer to be updated.
3255 * @newkey - new key to be used.
3257 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3259 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3260 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3264 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3265 * for calculating a new rkey for type 2 memory windows.
3266 * @rkey - the rkey to increment.
3268 static inline u32 ib_inc_rkey(u32 rkey)
3270 const u32 mask = 0x000000ff;
3271 return ((rkey + 1) & mask) | (rkey & ~mask);
3275 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3276 * @pd: The protection domain associated with the unmapped region.
3277 * @mr_access_flags: Specifies the memory access rights.
3278 * @fmr_attr: Attributes of the unmapped region.
3280 * A fast memory region must be mapped before it can be used as part of
3281 * a work request.
3283 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3284 int mr_access_flags,
3285 struct ib_fmr_attr *fmr_attr);
3288 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3289 * @fmr: The fast memory region to associate with the pages.
3290 * @page_list: An array of physical pages to map to the fast memory region.
3291 * @list_len: The number of pages in page_list.
3292 * @iova: The I/O virtual address to use with the mapped region.
3294 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3295 u64 *page_list, int list_len,
3296 u64 iova)
3298 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3302 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3303 * @fmr_list: A linked list of fast memory regions to unmap.
3305 int ib_unmap_fmr(struct list_head *fmr_list);
3308 * ib_dealloc_fmr - Deallocates a fast memory region.
3309 * @fmr: The fast memory region to deallocate.
3311 int ib_dealloc_fmr(struct ib_fmr *fmr);
3314 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3315 * @qp: QP to attach to the multicast group. The QP must be type
3316 * IB_QPT_UD.
3317 * @gid: Multicast group GID.
3318 * @lid: Multicast group LID in host byte order.
3320 * In order to send and receive multicast packets, subnet
3321 * administration must have created the multicast group and configured
3322 * the fabric appropriately. The port associated with the specified
3323 * QP must also be a member of the multicast group.
3325 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3328 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3329 * @qp: QP to detach from the multicast group.
3330 * @gid: Multicast group GID.
3331 * @lid: Multicast group LID in host byte order.
3333 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3336 * ib_alloc_xrcd - Allocates an XRC domain.
3337 * @device: The device on which to allocate the XRC domain.
3339 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3342 * ib_dealloc_xrcd - Deallocates an XRC domain.
3343 * @xrcd: The XRC domain to deallocate.
3345 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3347 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3348 struct ib_flow_attr *flow_attr, int domain);
3349 int ib_destroy_flow(struct ib_flow *flow_id);
3351 static inline int ib_check_mr_access(int flags)
3354 * Local write permission is required if remote write or
3355 * remote atomic permission is also requested.
3357 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3358 !(flags & IB_ACCESS_LOCAL_WRITE))
3359 return -EINVAL;
3361 return 0;
3365 * ib_check_mr_status: lightweight check of MR status.
3366 * This routine may provide status checks on a selected
3367 * ib_mr. first use is for signature status check.
3369 * @mr: A memory region.
3370 * @check_mask: Bitmask of which checks to perform from
3371 * ib_mr_status_check enumeration.
3372 * @mr_status: The container of relevant status checks.
3373 * failed checks will be indicated in the status bitmask
3374 * and the relevant info shall be in the error item.
3376 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3377 struct ib_mr_status *mr_status);
3379 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3380 u16 pkey, const union ib_gid *gid,
3381 const struct sockaddr *addr);
3382 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3383 struct ib_wq_init_attr *init_attr);
3384 int ib_destroy_wq(struct ib_wq *wq);
3385 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3386 u32 wq_attr_mask);
3387 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3388 struct ib_rwq_ind_table_init_attr*
3389 wq_ind_table_init_attr);
3390 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3392 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3393 unsigned int *sg_offset, unsigned int page_size);
3395 static inline int
3396 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3397 unsigned int *sg_offset, unsigned int page_size)
3399 int n;
3401 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3402 mr->iova = 0;
3404 return n;
3407 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3408 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3410 void ib_drain_rq(struct ib_qp *qp);
3411 void ib_drain_sq(struct ib_qp *qp);
3412 void ib_drain_qp(struct ib_qp *qp);
3414 int ib_resolve_eth_dmac(struct ib_device *device,
3415 struct ib_ah_attr *ah_attr);
3416 #endif /* IB_VERBS_H */