1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
24 * Pavel Emelianov <xemul@openvz.org>
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
91 #include <linux/uaccess.h>
94 /* One semaphore structure for each semaphore in the system. */
96 int semval
; /* current value */
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
105 spinlock_t lock
; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter
; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const
; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
110 time64_t sem_otime
; /* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp
;
113 /* One sem_array data structure for each set of semaphores in the system. */
115 struct kern_ipc_perm sem_perm
; /* permissions .. see ipc.h */
116 time64_t sem_ctime
; /* create/last semctl() time */
117 struct list_head pending_alter
; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const
; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id
; /* undo requests on this array */
122 int sem_nsems
; /* no. of semaphores in array */
123 int complex_count
; /* pending complex operations */
124 unsigned int use_global_lock
;/* >0: global lock required */
127 } __randomize_layout
;
129 /* One queue for each sleeping process in the system. */
131 struct list_head list
; /* queue of pending operations */
132 struct task_struct
*sleeper
; /* this process */
133 struct sem_undo
*undo
; /* undo structure */
134 struct pid
*pid
; /* process id of requesting process */
135 int status
; /* completion status of operation */
136 struct sembuf
*sops
; /* array of pending operations */
137 struct sembuf
*blocking
; /* the operation that blocked */
138 int nsops
; /* number of operations */
139 bool alter
; /* does *sops alter the array? */
140 bool dupsop
; /* sops on more than one sem_num */
143 /* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
147 struct list_head list_proc
; /* per-process list: *
148 * all undos from one process
150 struct rcu_head rcu
; /* rcu struct for sem_undo */
151 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
152 struct list_head list_id
; /* per semaphore array list:
153 * all undos for one array */
154 int semid
; /* semaphore set identifier */
155 short *semadj
; /* array of adjustments */
156 /* one per semaphore */
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
162 struct sem_undo_list
{
165 struct list_head list_proc
;
169 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
171 static int newary(struct ipc_namespace
*, struct ipc_params
*);
172 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
177 #define SEMMSL_FAST 256 /* 512 bytes on stack */
178 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
185 #define USE_GLOBAL_LOCK_HYSTERESIS 10
189 * a) global sem_lock() for read/write
191 * sem_array.complex_count,
192 * sem_array.pending{_alter,_const},
195 * b) global or semaphore sem_lock() for read/write:
196 * sem_array.sems[i].pending_{const,alter}:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
208 * The special case is use_global_lock:
209 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
210 * using smp_store_release().
211 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
212 * smp_load_acquire().
213 * Setting it from 0 to non-zero must be ordered with regards to
214 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
215 * is inside a spin_lock() and after a write from 0 to non-zero a
216 * spin_lock()+spin_unlock() is done.
219 #define sc_semmsl sem_ctls[0]
220 #define sc_semmns sem_ctls[1]
221 #define sc_semopm sem_ctls[2]
222 #define sc_semmni sem_ctls[3]
224 void sem_init_ns(struct ipc_namespace
*ns
)
226 ns
->sc_semmsl
= SEMMSL
;
227 ns
->sc_semmns
= SEMMNS
;
228 ns
->sc_semopm
= SEMOPM
;
229 ns
->sc_semmni
= SEMMNI
;
231 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
235 void sem_exit_ns(struct ipc_namespace
*ns
)
237 free_ipcs(ns
, &sem_ids(ns
), freeary
);
238 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
239 rhashtable_destroy(&ns
->ids
[IPC_SEM_IDS
].key_ht
);
243 void __init
sem_init(void)
245 sem_init_ns(&init_ipc_ns
);
246 ipc_init_proc_interface("sysvipc/sem",
247 " key semid perms nsems uid gid cuid cgid otime ctime\n",
248 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
252 * unmerge_queues - unmerge queues, if possible.
253 * @sma: semaphore array
255 * The function unmerges the wait queues if complex_count is 0.
256 * It must be called prior to dropping the global semaphore array lock.
258 static void unmerge_queues(struct sem_array
*sma
)
260 struct sem_queue
*q
, *tq
;
262 /* complex operations still around? */
263 if (sma
->complex_count
)
266 * We will switch back to simple mode.
267 * Move all pending operation back into the per-semaphore
270 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
272 curr
= &sma
->sems
[q
->sops
[0].sem_num
];
274 list_add_tail(&q
->list
, &curr
->pending_alter
);
276 INIT_LIST_HEAD(&sma
->pending_alter
);
280 * merge_queues - merge single semop queues into global queue
281 * @sma: semaphore array
283 * This function merges all per-semaphore queues into the global queue.
284 * It is necessary to achieve FIFO ordering for the pending single-sop
285 * operations when a multi-semop operation must sleep.
286 * Only the alter operations must be moved, the const operations can stay.
288 static void merge_queues(struct sem_array
*sma
)
291 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
292 struct sem
*sem
= &sma
->sems
[i
];
294 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
298 static void sem_rcu_free(struct rcu_head
*head
)
300 struct kern_ipc_perm
*p
= container_of(head
, struct kern_ipc_perm
, rcu
);
301 struct sem_array
*sma
= container_of(p
, struct sem_array
, sem_perm
);
303 security_sem_free(&sma
->sem_perm
);
308 * Enter the mode suitable for non-simple operations:
309 * Caller must own sem_perm.lock.
311 static void complexmode_enter(struct sem_array
*sma
)
316 if (sma
->use_global_lock
> 0) {
318 * We are already in global lock mode.
319 * Nothing to do, just reset the
320 * counter until we return to simple mode.
322 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
325 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
327 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
329 spin_lock(&sem
->lock
);
330 spin_unlock(&sem
->lock
);
335 * Try to leave the mode that disallows simple operations:
336 * Caller must own sem_perm.lock.
338 static void complexmode_tryleave(struct sem_array
*sma
)
340 if (sma
->complex_count
) {
341 /* Complex ops are sleeping.
342 * We must stay in complex mode
346 if (sma
->use_global_lock
== 1) {
348 * Immediately after setting use_global_lock to 0,
349 * a simple op can start. Thus: all memory writes
350 * performed by the current operation must be visible
351 * before we set use_global_lock to 0.
353 smp_store_release(&sma
->use_global_lock
, 0);
355 sma
->use_global_lock
--;
359 #define SEM_GLOBAL_LOCK (-1)
361 * If the request contains only one semaphore operation, and there are
362 * no complex transactions pending, lock only the semaphore involved.
363 * Otherwise, lock the entire semaphore array, since we either have
364 * multiple semaphores in our own semops, or we need to look at
365 * semaphores from other pending complex operations.
367 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
374 /* Complex operation - acquire a full lock */
375 ipc_lock_object(&sma
->sem_perm
);
377 /* Prevent parallel simple ops */
378 complexmode_enter(sma
);
379 return SEM_GLOBAL_LOCK
;
383 * Only one semaphore affected - try to optimize locking.
384 * Optimized locking is possible if no complex operation
385 * is either enqueued or processed right now.
387 * Both facts are tracked by use_global_mode.
389 idx
= array_index_nospec(sops
->sem_num
, sma
->sem_nsems
);
390 sem
= &sma
->sems
[idx
];
393 * Initial check for use_global_lock. Just an optimization,
394 * no locking, no memory barrier.
396 if (!sma
->use_global_lock
) {
398 * It appears that no complex operation is around.
399 * Acquire the per-semaphore lock.
401 spin_lock(&sem
->lock
);
403 /* pairs with smp_store_release() */
404 if (!smp_load_acquire(&sma
->use_global_lock
)) {
405 /* fast path successful! */
406 return sops
->sem_num
;
408 spin_unlock(&sem
->lock
);
411 /* slow path: acquire the full lock */
412 ipc_lock_object(&sma
->sem_perm
);
414 if (sma
->use_global_lock
== 0) {
416 * The use_global_lock mode ended while we waited for
417 * sma->sem_perm.lock. Thus we must switch to locking
419 * Unlike in the fast path, there is no need to recheck
420 * sma->use_global_lock after we have acquired sem->lock:
421 * We own sma->sem_perm.lock, thus use_global_lock cannot
424 spin_lock(&sem
->lock
);
426 ipc_unlock_object(&sma
->sem_perm
);
427 return sops
->sem_num
;
430 * Not a false alarm, thus continue to use the global lock
431 * mode. No need for complexmode_enter(), this was done by
432 * the caller that has set use_global_mode to non-zero.
434 return SEM_GLOBAL_LOCK
;
438 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
440 if (locknum
== SEM_GLOBAL_LOCK
) {
442 complexmode_tryleave(sma
);
443 ipc_unlock_object(&sma
->sem_perm
);
445 struct sem
*sem
= &sma
->sems
[locknum
];
446 spin_unlock(&sem
->lock
);
451 * sem_lock_(check_) routines are called in the paths where the rwsem
454 * The caller holds the RCU read lock.
456 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
458 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
461 return ERR_CAST(ipcp
);
463 return container_of(ipcp
, struct sem_array
, sem_perm
);
466 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
469 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
472 return ERR_CAST(ipcp
);
474 return container_of(ipcp
, struct sem_array
, sem_perm
);
477 static inline void sem_lock_and_putref(struct sem_array
*sma
)
479 sem_lock(sma
, NULL
, -1);
480 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
483 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
485 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
488 static struct sem_array
*sem_alloc(size_t nsems
)
490 struct sem_array
*sma
;
492 if (nsems
> (INT_MAX
- sizeof(*sma
)) / sizeof(sma
->sems
[0]))
495 sma
= kvzalloc(struct_size(sma
, sems
, nsems
), GFP_KERNEL
);
503 * newary - Create a new semaphore set
505 * @params: ptr to the structure that contains key, semflg and nsems
507 * Called with sem_ids.rwsem held (as a writer)
509 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
512 struct sem_array
*sma
;
513 key_t key
= params
->key
;
514 int nsems
= params
->u
.nsems
;
515 int semflg
= params
->flg
;
520 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
523 sma
= sem_alloc(nsems
);
527 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
528 sma
->sem_perm
.key
= key
;
530 sma
->sem_perm
.security
= NULL
;
531 retval
= security_sem_alloc(&sma
->sem_perm
);
537 for (i
= 0; i
< nsems
; i
++) {
538 INIT_LIST_HEAD(&sma
->sems
[i
].pending_alter
);
539 INIT_LIST_HEAD(&sma
->sems
[i
].pending_const
);
540 spin_lock_init(&sma
->sems
[i
].lock
);
543 sma
->complex_count
= 0;
544 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
545 INIT_LIST_HEAD(&sma
->pending_alter
);
546 INIT_LIST_HEAD(&sma
->pending_const
);
547 INIT_LIST_HEAD(&sma
->list_id
);
548 sma
->sem_nsems
= nsems
;
549 sma
->sem_ctime
= ktime_get_real_seconds();
551 /* ipc_addid() locks sma upon success. */
552 retval
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
554 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
557 ns
->used_sems
+= nsems
;
562 return sma
->sem_perm
.id
;
567 * Called with sem_ids.rwsem and ipcp locked.
569 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
570 struct ipc_params
*params
)
572 struct sem_array
*sma
;
574 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
575 if (params
->u
.nsems
> sma
->sem_nsems
)
581 long ksys_semget(key_t key
, int nsems
, int semflg
)
583 struct ipc_namespace
*ns
;
584 static const struct ipc_ops sem_ops
= {
586 .associate
= security_sem_associate
,
587 .more_checks
= sem_more_checks
,
589 struct ipc_params sem_params
;
591 ns
= current
->nsproxy
->ipc_ns
;
593 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
596 sem_params
.key
= key
;
597 sem_params
.flg
= semflg
;
598 sem_params
.u
.nsems
= nsems
;
600 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
603 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
605 return ksys_semget(key
, nsems
, semflg
);
609 * perform_atomic_semop[_slow] - Attempt to perform semaphore
610 * operations on a given array.
611 * @sma: semaphore array
612 * @q: struct sem_queue that describes the operation
614 * Caller blocking are as follows, based the value
615 * indicated by the semaphore operation (sem_op):
617 * (1) >0 never blocks.
618 * (2) 0 (wait-for-zero operation): semval is non-zero.
619 * (3) <0 attempting to decrement semval to a value smaller than zero.
621 * Returns 0 if the operation was possible.
622 * Returns 1 if the operation is impossible, the caller must sleep.
623 * Returns <0 for error codes.
625 static int perform_atomic_semop_slow(struct sem_array
*sma
, struct sem_queue
*q
)
627 int result
, sem_op
, nsops
;
638 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
639 int idx
= array_index_nospec(sop
->sem_num
, sma
->sem_nsems
);
640 curr
= &sma
->sems
[idx
];
641 sem_op
= sop
->sem_op
;
642 result
= curr
->semval
;
644 if (!sem_op
&& result
)
653 if (sop
->sem_flg
& SEM_UNDO
) {
654 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
655 /* Exceeding the undo range is an error. */
656 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
658 un
->semadj
[sop
->sem_num
] = undo
;
661 curr
->semval
= result
;
666 while (sop
>= sops
) {
667 ipc_update_pid(&sma
->sems
[sop
->sem_num
].sempid
, pid
);
680 if (sop
->sem_flg
& IPC_NOWAIT
)
687 while (sop
>= sops
) {
688 sem_op
= sop
->sem_op
;
689 sma
->sems
[sop
->sem_num
].semval
-= sem_op
;
690 if (sop
->sem_flg
& SEM_UNDO
)
691 un
->semadj
[sop
->sem_num
] += sem_op
;
698 static int perform_atomic_semop(struct sem_array
*sma
, struct sem_queue
*q
)
700 int result
, sem_op
, nsops
;
710 if (unlikely(q
->dupsop
))
711 return perform_atomic_semop_slow(sma
, q
);
714 * We scan the semaphore set twice, first to ensure that the entire
715 * operation can succeed, therefore avoiding any pointless writes
716 * to shared memory and having to undo such changes in order to block
717 * until the operations can go through.
719 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
720 int idx
= array_index_nospec(sop
->sem_num
, sma
->sem_nsems
);
722 curr
= &sma
->sems
[idx
];
723 sem_op
= sop
->sem_op
;
724 result
= curr
->semval
;
726 if (!sem_op
&& result
)
727 goto would_block
; /* wait-for-zero */
736 if (sop
->sem_flg
& SEM_UNDO
) {
737 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
739 /* Exceeding the undo range is an error. */
740 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
745 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
746 curr
= &sma
->sems
[sop
->sem_num
];
747 sem_op
= sop
->sem_op
;
748 result
= curr
->semval
;
750 if (sop
->sem_flg
& SEM_UNDO
) {
751 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
753 un
->semadj
[sop
->sem_num
] = undo
;
755 curr
->semval
+= sem_op
;
756 ipc_update_pid(&curr
->sempid
, q
->pid
);
763 return sop
->sem_flg
& IPC_NOWAIT
? -EAGAIN
: 1;
766 static inline void wake_up_sem_queue_prepare(struct sem_queue
*q
, int error
,
767 struct wake_q_head
*wake_q
)
769 wake_q_add(wake_q
, q
->sleeper
);
771 * Rely on the above implicit barrier, such that we can
772 * ensure that we hold reference to the task before setting
773 * q->status. Otherwise we could race with do_exit if the
774 * task is awoken by an external event before calling
777 WRITE_ONCE(q
->status
, error
);
780 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
784 sma
->complex_count
--;
787 /** check_restart(sma, q)
788 * @sma: semaphore array
789 * @q: the operation that just completed
791 * update_queue is O(N^2) when it restarts scanning the whole queue of
792 * waiting operations. Therefore this function checks if the restart is
793 * really necessary. It is called after a previously waiting operation
794 * modified the array.
795 * Note that wait-for-zero operations are handled without restart.
797 static inline int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
799 /* pending complex alter operations are too difficult to analyse */
800 if (!list_empty(&sma
->pending_alter
))
803 /* we were a sleeping complex operation. Too difficult */
807 /* It is impossible that someone waits for the new value:
808 * - complex operations always restart.
809 * - wait-for-zero are handled seperately.
810 * - q is a previously sleeping simple operation that
811 * altered the array. It must be a decrement, because
812 * simple increments never sleep.
813 * - If there are older (higher priority) decrements
814 * in the queue, then they have observed the original
815 * semval value and couldn't proceed. The operation
816 * decremented to value - thus they won't proceed either.
822 * wake_const_ops - wake up non-alter tasks
823 * @sma: semaphore array.
824 * @semnum: semaphore that was modified.
825 * @wake_q: lockless wake-queue head.
827 * wake_const_ops must be called after a semaphore in a semaphore array
828 * was set to 0. If complex const operations are pending, wake_const_ops must
829 * be called with semnum = -1, as well as with the number of each modified
831 * The tasks that must be woken up are added to @wake_q. The return code
832 * is stored in q->pid.
833 * The function returns 1 if at least one operation was completed successfully.
835 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
836 struct wake_q_head
*wake_q
)
838 struct sem_queue
*q
, *tmp
;
839 struct list_head
*pending_list
;
840 int semop_completed
= 0;
843 pending_list
= &sma
->pending_const
;
845 pending_list
= &sma
->sems
[semnum
].pending_const
;
847 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
848 int error
= perform_atomic_semop(sma
, q
);
852 /* operation completed, remove from queue & wakeup */
853 unlink_queue(sma
, q
);
855 wake_up_sem_queue_prepare(q
, error
, wake_q
);
860 return semop_completed
;
864 * do_smart_wakeup_zero - wakeup all wait for zero tasks
865 * @sma: semaphore array
866 * @sops: operations that were performed
867 * @nsops: number of operations
868 * @wake_q: lockless wake-queue head
870 * Checks all required queue for wait-for-zero operations, based
871 * on the actual changes that were performed on the semaphore array.
872 * The function returns 1 if at least one operation was completed successfully.
874 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
875 int nsops
, struct wake_q_head
*wake_q
)
878 int semop_completed
= 0;
881 /* first: the per-semaphore queues, if known */
883 for (i
= 0; i
< nsops
; i
++) {
884 int num
= sops
[i
].sem_num
;
886 if (sma
->sems
[num
].semval
== 0) {
888 semop_completed
|= wake_const_ops(sma
, num
, wake_q
);
893 * No sops means modified semaphores not known.
894 * Assume all were changed.
896 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
897 if (sma
->sems
[i
].semval
== 0) {
899 semop_completed
|= wake_const_ops(sma
, i
, wake_q
);
904 * If one of the modified semaphores got 0,
905 * then check the global queue, too.
908 semop_completed
|= wake_const_ops(sma
, -1, wake_q
);
910 return semop_completed
;
915 * update_queue - look for tasks that can be completed.
916 * @sma: semaphore array.
917 * @semnum: semaphore that was modified.
918 * @wake_q: lockless wake-queue head.
920 * update_queue must be called after a semaphore in a semaphore array
921 * was modified. If multiple semaphores were modified, update_queue must
922 * be called with semnum = -1, as well as with the number of each modified
924 * The tasks that must be woken up are added to @wake_q. The return code
925 * is stored in q->pid.
926 * The function internally checks if const operations can now succeed.
928 * The function return 1 if at least one semop was completed successfully.
930 static int update_queue(struct sem_array
*sma
, int semnum
, struct wake_q_head
*wake_q
)
932 struct sem_queue
*q
, *tmp
;
933 struct list_head
*pending_list
;
934 int semop_completed
= 0;
937 pending_list
= &sma
->pending_alter
;
939 pending_list
= &sma
->sems
[semnum
].pending_alter
;
942 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
945 /* If we are scanning the single sop, per-semaphore list of
946 * one semaphore and that semaphore is 0, then it is not
947 * necessary to scan further: simple increments
948 * that affect only one entry succeed immediately and cannot
949 * be in the per semaphore pending queue, and decrements
950 * cannot be successful if the value is already 0.
952 if (semnum
!= -1 && sma
->sems
[semnum
].semval
== 0)
955 error
= perform_atomic_semop(sma
, q
);
957 /* Does q->sleeper still need to sleep? */
961 unlink_queue(sma
, q
);
967 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, wake_q
);
968 restart
= check_restart(sma
, q
);
971 wake_up_sem_queue_prepare(q
, error
, wake_q
);
975 return semop_completed
;
979 * set_semotime - set sem_otime
980 * @sma: semaphore array
981 * @sops: operations that modified the array, may be NULL
983 * sem_otime is replicated to avoid cache line trashing.
984 * This function sets one instance to the current time.
986 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
989 sma
->sems
[0].sem_otime
= ktime_get_real_seconds();
991 sma
->sems
[sops
[0].sem_num
].sem_otime
=
992 ktime_get_real_seconds();
997 * do_smart_update - optimized update_queue
998 * @sma: semaphore array
999 * @sops: operations that were performed
1000 * @nsops: number of operations
1001 * @otime: force setting otime
1002 * @wake_q: lockless wake-queue head
1004 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1005 * based on the actual changes that were performed on the semaphore array.
1006 * Note that the function does not do the actual wake-up: the caller is
1007 * responsible for calling wake_up_q().
1008 * It is safe to perform this call after dropping all locks.
1010 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
1011 int otime
, struct wake_q_head
*wake_q
)
1015 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, wake_q
);
1017 if (!list_empty(&sma
->pending_alter
)) {
1018 /* semaphore array uses the global queue - just process it. */
1019 otime
|= update_queue(sma
, -1, wake_q
);
1023 * No sops, thus the modified semaphores are not
1026 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1027 otime
|= update_queue(sma
, i
, wake_q
);
1030 * Check the semaphores that were increased:
1031 * - No complex ops, thus all sleeping ops are
1033 * - if we decreased the value, then any sleeping
1034 * semaphore ops wont be able to run: If the
1035 * previous value was too small, then the new
1036 * value will be too small, too.
1038 for (i
= 0; i
< nsops
; i
++) {
1039 if (sops
[i
].sem_op
> 0) {
1040 otime
|= update_queue(sma
,
1041 sops
[i
].sem_num
, wake_q
);
1047 set_semotime(sma
, sops
);
1051 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1053 static int check_qop(struct sem_array
*sma
, int semnum
, struct sem_queue
*q
,
1056 struct sembuf
*sop
= q
->blocking
;
1059 * Linux always (since 0.99.10) reported a task as sleeping on all
1060 * semaphores. This violates SUS, therefore it was changed to the
1061 * standard compliant behavior.
1062 * Give the administrators a chance to notice that an application
1063 * might misbehave because it relies on the Linux behavior.
1065 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1066 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1067 current
->comm
, task_pid_nr(current
));
1069 if (sop
->sem_num
!= semnum
)
1072 if (count_zero
&& sop
->sem_op
== 0)
1074 if (!count_zero
&& sop
->sem_op
< 0)
1080 /* The following counts are associated to each semaphore:
1081 * semncnt number of tasks waiting on semval being nonzero
1082 * semzcnt number of tasks waiting on semval being zero
1084 * Per definition, a task waits only on the semaphore of the first semop
1085 * that cannot proceed, even if additional operation would block, too.
1087 static int count_semcnt(struct sem_array
*sma
, ushort semnum
,
1090 struct list_head
*l
;
1091 struct sem_queue
*q
;
1095 /* First: check the simple operations. They are easy to evaluate */
1097 l
= &sma
->sems
[semnum
].pending_const
;
1099 l
= &sma
->sems
[semnum
].pending_alter
;
1101 list_for_each_entry(q
, l
, list
) {
1102 /* all task on a per-semaphore list sleep on exactly
1108 /* Then: check the complex operations. */
1109 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1110 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1113 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1114 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1120 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1121 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1122 * remains locked on exit.
1124 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1126 struct sem_undo
*un
, *tu
;
1127 struct sem_queue
*q
, *tq
;
1128 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1130 DEFINE_WAKE_Q(wake_q
);
1132 /* Free the existing undo structures for this semaphore set. */
1133 ipc_assert_locked_object(&sma
->sem_perm
);
1134 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1135 list_del(&un
->list_id
);
1136 spin_lock(&un
->ulp
->lock
);
1138 list_del_rcu(&un
->list_proc
);
1139 spin_unlock(&un
->ulp
->lock
);
1143 /* Wake up all pending processes and let them fail with EIDRM. */
1144 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1145 unlink_queue(sma
, q
);
1146 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1149 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1150 unlink_queue(sma
, q
);
1151 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1153 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1154 struct sem
*sem
= &sma
->sems
[i
];
1155 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1156 unlink_queue(sma
, q
);
1157 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1159 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1160 unlink_queue(sma
, q
);
1161 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1163 ipc_update_pid(&sem
->sempid
, NULL
);
1166 /* Remove the semaphore set from the IDR */
1168 sem_unlock(sma
, -1);
1172 ns
->used_sems
-= sma
->sem_nsems
;
1173 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1176 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1180 return copy_to_user(buf
, in
, sizeof(*in
));
1183 struct semid_ds out
;
1185 memset(&out
, 0, sizeof(out
));
1187 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1189 out
.sem_otime
= in
->sem_otime
;
1190 out
.sem_ctime
= in
->sem_ctime
;
1191 out
.sem_nsems
= in
->sem_nsems
;
1193 return copy_to_user(buf
, &out
, sizeof(out
));
1200 static time64_t
get_semotime(struct sem_array
*sma
)
1205 res
= sma
->sems
[0].sem_otime
;
1206 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1207 time64_t to
= sma
->sems
[i
].sem_otime
;
1215 static int semctl_stat(struct ipc_namespace
*ns
, int semid
,
1216 int cmd
, struct semid64_ds
*semid64
)
1218 struct sem_array
*sma
;
1222 memset(semid64
, 0, sizeof(*semid64
));
1225 if (cmd
== SEM_STAT
|| cmd
== SEM_STAT_ANY
) {
1226 sma
= sem_obtain_object(ns
, semid
);
1231 } else { /* IPC_STAT */
1232 sma
= sem_obtain_object_check(ns
, semid
);
1239 /* see comment for SHM_STAT_ANY */
1240 if (cmd
== SEM_STAT_ANY
)
1241 audit_ipc_obj(&sma
->sem_perm
);
1244 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1248 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1252 ipc_lock_object(&sma
->sem_perm
);
1254 if (!ipc_valid_object(&sma
->sem_perm
)) {
1255 ipc_unlock_object(&sma
->sem_perm
);
1260 kernel_to_ipc64_perm(&sma
->sem_perm
, &semid64
->sem_perm
);
1261 semotime
= get_semotime(sma
);
1262 semid64
->sem_otime
= semotime
;
1263 semid64
->sem_ctime
= sma
->sem_ctime
;
1264 #ifndef CONFIG_64BIT
1265 semid64
->sem_otime_high
= semotime
>> 32;
1266 semid64
->sem_ctime_high
= sma
->sem_ctime
>> 32;
1268 semid64
->sem_nsems
= sma
->sem_nsems
;
1270 if (cmd
== IPC_STAT
) {
1272 * As defined in SUS:
1273 * Return 0 on success
1278 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1279 * Return the full id, including the sequence number
1281 err
= sma
->sem_perm
.id
;
1283 ipc_unlock_object(&sma
->sem_perm
);
1289 static int semctl_info(struct ipc_namespace
*ns
, int semid
,
1290 int cmd
, void __user
*p
)
1292 struct seminfo seminfo
;
1296 err
= security_sem_semctl(NULL
, cmd
);
1300 memset(&seminfo
, 0, sizeof(seminfo
));
1301 seminfo
.semmni
= ns
->sc_semmni
;
1302 seminfo
.semmns
= ns
->sc_semmns
;
1303 seminfo
.semmsl
= ns
->sc_semmsl
;
1304 seminfo
.semopm
= ns
->sc_semopm
;
1305 seminfo
.semvmx
= SEMVMX
;
1306 seminfo
.semmnu
= SEMMNU
;
1307 seminfo
.semmap
= SEMMAP
;
1308 seminfo
.semume
= SEMUME
;
1309 down_read(&sem_ids(ns
).rwsem
);
1310 if (cmd
== SEM_INFO
) {
1311 seminfo
.semusz
= sem_ids(ns
).in_use
;
1312 seminfo
.semaem
= ns
->used_sems
;
1314 seminfo
.semusz
= SEMUSZ
;
1315 seminfo
.semaem
= SEMAEM
;
1317 max_idx
= ipc_get_maxidx(&sem_ids(ns
));
1318 up_read(&sem_ids(ns
).rwsem
);
1319 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1321 return (max_idx
< 0) ? 0 : max_idx
;
1324 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1327 struct sem_undo
*un
;
1328 struct sem_array
*sma
;
1331 DEFINE_WAKE_Q(wake_q
);
1333 if (val
> SEMVMX
|| val
< 0)
1337 sma
= sem_obtain_object_check(ns
, semid
);
1340 return PTR_ERR(sma
);
1343 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1349 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1354 err
= security_sem_semctl(&sma
->sem_perm
, SETVAL
);
1360 sem_lock(sma
, NULL
, -1);
1362 if (!ipc_valid_object(&sma
->sem_perm
)) {
1363 sem_unlock(sma
, -1);
1368 semnum
= array_index_nospec(semnum
, sma
->sem_nsems
);
1369 curr
= &sma
->sems
[semnum
];
1371 ipc_assert_locked_object(&sma
->sem_perm
);
1372 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1373 un
->semadj
[semnum
] = 0;
1376 ipc_update_pid(&curr
->sempid
, task_tgid(current
));
1377 sma
->sem_ctime
= ktime_get_real_seconds();
1378 /* maybe some queued-up processes were waiting for this */
1379 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1380 sem_unlock(sma
, -1);
1386 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1387 int cmd
, void __user
*p
)
1389 struct sem_array
*sma
;
1392 ushort fast_sem_io
[SEMMSL_FAST
];
1393 ushort
*sem_io
= fast_sem_io
;
1394 DEFINE_WAKE_Q(wake_q
);
1397 sma
= sem_obtain_object_check(ns
, semid
);
1400 return PTR_ERR(sma
);
1403 nsems
= sma
->sem_nsems
;
1406 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1407 goto out_rcu_wakeup
;
1409 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1411 goto out_rcu_wakeup
;
1417 ushort __user
*array
= p
;
1420 sem_lock(sma
, NULL
, -1);
1421 if (!ipc_valid_object(&sma
->sem_perm
)) {
1425 if (nsems
> SEMMSL_FAST
) {
1426 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1430 sem_unlock(sma
, -1);
1432 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1434 if (sem_io
== NULL
) {
1435 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1440 sem_lock_and_putref(sma
);
1441 if (!ipc_valid_object(&sma
->sem_perm
)) {
1446 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1447 sem_io
[i
] = sma
->sems
[i
].semval
;
1448 sem_unlock(sma
, -1);
1451 if (copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1458 struct sem_undo
*un
;
1460 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1462 goto out_rcu_wakeup
;
1466 if (nsems
> SEMMSL_FAST
) {
1467 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1469 if (sem_io
== NULL
) {
1470 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1475 if (copy_from_user(sem_io
, p
, nsems
*sizeof(ushort
))) {
1476 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1481 for (i
= 0; i
< nsems
; i
++) {
1482 if (sem_io
[i
] > SEMVMX
) {
1483 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1489 sem_lock_and_putref(sma
);
1490 if (!ipc_valid_object(&sma
->sem_perm
)) {
1495 for (i
= 0; i
< nsems
; i
++) {
1496 sma
->sems
[i
].semval
= sem_io
[i
];
1497 ipc_update_pid(&sma
->sems
[i
].sempid
, task_tgid(current
));
1500 ipc_assert_locked_object(&sma
->sem_perm
);
1501 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1502 for (i
= 0; i
< nsems
; i
++)
1505 sma
->sem_ctime
= ktime_get_real_seconds();
1506 /* maybe some queued-up processes were waiting for this */
1507 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1511 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1514 if (semnum
< 0 || semnum
>= nsems
)
1515 goto out_rcu_wakeup
;
1517 sem_lock(sma
, NULL
, -1);
1518 if (!ipc_valid_object(&sma
->sem_perm
)) {
1523 semnum
= array_index_nospec(semnum
, nsems
);
1524 curr
= &sma
->sems
[semnum
];
1531 err
= pid_vnr(curr
->sempid
);
1534 err
= count_semcnt(sma
, semnum
, 0);
1537 err
= count_semcnt(sma
, semnum
, 1);
1542 sem_unlock(sma
, -1);
1547 if (sem_io
!= fast_sem_io
)
1552 static inline unsigned long
1553 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1557 if (copy_from_user(out
, buf
, sizeof(*out
)))
1562 struct semid_ds tbuf_old
;
1564 if (copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1567 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1568 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1569 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1579 * This function handles some semctl commands which require the rwsem
1580 * to be held in write mode.
1581 * NOTE: no locks must be held, the rwsem is taken inside this function.
1583 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1584 int cmd
, struct semid64_ds
*semid64
)
1586 struct sem_array
*sma
;
1588 struct kern_ipc_perm
*ipcp
;
1590 down_write(&sem_ids(ns
).rwsem
);
1593 ipcp
= ipcctl_obtain_check(ns
, &sem_ids(ns
), semid
, cmd
,
1594 &semid64
->sem_perm
, 0);
1596 err
= PTR_ERR(ipcp
);
1600 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1602 err
= security_sem_semctl(&sma
->sem_perm
, cmd
);
1608 sem_lock(sma
, NULL
, -1);
1609 /* freeary unlocks the ipc object and rcu */
1613 sem_lock(sma
, NULL
, -1);
1614 err
= ipc_update_perm(&semid64
->sem_perm
, ipcp
);
1617 sma
->sem_ctime
= ktime_get_real_seconds();
1625 sem_unlock(sma
, -1);
1629 up_write(&sem_ids(ns
).rwsem
);
1633 static long ksys_semctl(int semid
, int semnum
, int cmd
, unsigned long arg
, int version
)
1635 struct ipc_namespace
*ns
;
1636 void __user
*p
= (void __user
*)arg
;
1637 struct semid64_ds semid64
;
1643 ns
= current
->nsproxy
->ipc_ns
;
1648 return semctl_info(ns
, semid
, cmd
, p
);
1652 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1655 if (copy_semid_to_user(p
, &semid64
, version
))
1664 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1667 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1668 /* big-endian 64bit */
1671 /* 32bit or little-endian 64bit */
1674 return semctl_setval(ns
, semid
, semnum
, val
);
1677 if (copy_semid_from_user(&semid64
, p
, version
))
1681 return semctl_down(ns
, semid
, cmd
, &semid64
);
1687 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1689 return ksys_semctl(semid
, semnum
, cmd
, arg
, IPC_64
);
1692 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1693 long ksys_old_semctl(int semid
, int semnum
, int cmd
, unsigned long arg
)
1695 int version
= ipc_parse_version(&cmd
);
1697 return ksys_semctl(semid
, semnum
, cmd
, arg
, version
);
1700 SYSCALL_DEFINE4(old_semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1702 return ksys_old_semctl(semid
, semnum
, cmd
, arg
);
1706 #ifdef CONFIG_COMPAT
1708 struct compat_semid_ds
{
1709 struct compat_ipc_perm sem_perm
;
1710 old_time32_t sem_otime
;
1711 old_time32_t sem_ctime
;
1712 compat_uptr_t sem_base
;
1713 compat_uptr_t sem_pending
;
1714 compat_uptr_t sem_pending_last
;
1716 unsigned short sem_nsems
;
1719 static int copy_compat_semid_from_user(struct semid64_ds
*out
, void __user
*buf
,
1722 memset(out
, 0, sizeof(*out
));
1723 if (version
== IPC_64
) {
1724 struct compat_semid64_ds __user
*p
= buf
;
1725 return get_compat_ipc64_perm(&out
->sem_perm
, &p
->sem_perm
);
1727 struct compat_semid_ds __user
*p
= buf
;
1728 return get_compat_ipc_perm(&out
->sem_perm
, &p
->sem_perm
);
1732 static int copy_compat_semid_to_user(void __user
*buf
, struct semid64_ds
*in
,
1735 if (version
== IPC_64
) {
1736 struct compat_semid64_ds v
;
1737 memset(&v
, 0, sizeof(v
));
1738 to_compat_ipc64_perm(&v
.sem_perm
, &in
->sem_perm
);
1739 v
.sem_otime
= lower_32_bits(in
->sem_otime
);
1740 v
.sem_otime_high
= upper_32_bits(in
->sem_otime
);
1741 v
.sem_ctime
= lower_32_bits(in
->sem_ctime
);
1742 v
.sem_ctime_high
= upper_32_bits(in
->sem_ctime
);
1743 v
.sem_nsems
= in
->sem_nsems
;
1744 return copy_to_user(buf
, &v
, sizeof(v
));
1746 struct compat_semid_ds v
;
1747 memset(&v
, 0, sizeof(v
));
1748 to_compat_ipc_perm(&v
.sem_perm
, &in
->sem_perm
);
1749 v
.sem_otime
= in
->sem_otime
;
1750 v
.sem_ctime
= in
->sem_ctime
;
1751 v
.sem_nsems
= in
->sem_nsems
;
1752 return copy_to_user(buf
, &v
, sizeof(v
));
1756 static long compat_ksys_semctl(int semid
, int semnum
, int cmd
, int arg
, int version
)
1758 void __user
*p
= compat_ptr(arg
);
1759 struct ipc_namespace
*ns
;
1760 struct semid64_ds semid64
;
1763 ns
= current
->nsproxy
->ipc_ns
;
1768 switch (cmd
& (~IPC_64
)) {
1771 return semctl_info(ns
, semid
, cmd
, p
);
1775 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1778 if (copy_compat_semid_to_user(p
, &semid64
, version
))
1787 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1789 return semctl_setval(ns
, semid
, semnum
, arg
);
1791 if (copy_compat_semid_from_user(&semid64
, p
, version
))
1795 return semctl_down(ns
, semid
, cmd
, &semid64
);
1801 COMPAT_SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, int, arg
)
1803 return compat_ksys_semctl(semid
, semnum
, cmd
, arg
, IPC_64
);
1806 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1807 long compat_ksys_old_semctl(int semid
, int semnum
, int cmd
, int arg
)
1809 int version
= compat_ipc_parse_version(&cmd
);
1811 return compat_ksys_semctl(semid
, semnum
, cmd
, arg
, version
);
1814 COMPAT_SYSCALL_DEFINE4(old_semctl
, int, semid
, int, semnum
, int, cmd
, int, arg
)
1816 return compat_ksys_old_semctl(semid
, semnum
, cmd
, arg
);
1821 /* If the task doesn't already have a undo_list, then allocate one
1822 * here. We guarantee there is only one thread using this undo list,
1823 * and current is THE ONE
1825 * If this allocation and assignment succeeds, but later
1826 * portions of this code fail, there is no need to free the sem_undo_list.
1827 * Just let it stay associated with the task, and it'll be freed later
1830 * This can block, so callers must hold no locks.
1832 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1834 struct sem_undo_list
*undo_list
;
1836 undo_list
= current
->sysvsem
.undo_list
;
1838 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1839 if (undo_list
== NULL
)
1841 spin_lock_init(&undo_list
->lock
);
1842 refcount_set(&undo_list
->refcnt
, 1);
1843 INIT_LIST_HEAD(&undo_list
->list_proc
);
1845 current
->sysvsem
.undo_list
= undo_list
;
1847 *undo_listp
= undo_list
;
1851 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1853 struct sem_undo
*un
;
1855 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
,
1856 spin_is_locked(&ulp
->lock
)) {
1857 if (un
->semid
== semid
)
1863 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1865 struct sem_undo
*un
;
1867 assert_spin_locked(&ulp
->lock
);
1869 un
= __lookup_undo(ulp
, semid
);
1871 list_del_rcu(&un
->list_proc
);
1872 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1878 * find_alloc_undo - lookup (and if not present create) undo array
1880 * @semid: semaphore array id
1882 * The function looks up (and if not present creates) the undo structure.
1883 * The size of the undo structure depends on the size of the semaphore
1884 * array, thus the alloc path is not that straightforward.
1885 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1886 * performs a rcu_read_lock().
1888 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1890 struct sem_array
*sma
;
1891 struct sem_undo_list
*ulp
;
1892 struct sem_undo
*un
, *new;
1895 error
= get_undo_list(&ulp
);
1897 return ERR_PTR(error
);
1900 spin_lock(&ulp
->lock
);
1901 un
= lookup_undo(ulp
, semid
);
1902 spin_unlock(&ulp
->lock
);
1903 if (likely(un
!= NULL
))
1906 /* no undo structure around - allocate one. */
1907 /* step 1: figure out the size of the semaphore array */
1908 sma
= sem_obtain_object_check(ns
, semid
);
1911 return ERR_CAST(sma
);
1914 nsems
= sma
->sem_nsems
;
1915 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1917 un
= ERR_PTR(-EIDRM
);
1922 /* step 2: allocate new undo structure */
1923 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1925 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1926 return ERR_PTR(-ENOMEM
);
1929 /* step 3: Acquire the lock on semaphore array */
1931 sem_lock_and_putref(sma
);
1932 if (!ipc_valid_object(&sma
->sem_perm
)) {
1933 sem_unlock(sma
, -1);
1936 un
= ERR_PTR(-EIDRM
);
1939 spin_lock(&ulp
->lock
);
1942 * step 4: check for races: did someone else allocate the undo struct?
1944 un
= lookup_undo(ulp
, semid
);
1949 /* step 5: initialize & link new undo structure */
1950 new->semadj
= (short *) &new[1];
1953 assert_spin_locked(&ulp
->lock
);
1954 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1955 ipc_assert_locked_object(&sma
->sem_perm
);
1956 list_add(&new->list_id
, &sma
->list_id
);
1960 spin_unlock(&ulp
->lock
);
1961 sem_unlock(sma
, -1);
1966 static long do_semtimedop(int semid
, struct sembuf __user
*tsops
,
1967 unsigned nsops
, const struct timespec64
*timeout
)
1969 int error
= -EINVAL
;
1970 struct sem_array
*sma
;
1971 struct sembuf fast_sops
[SEMOPM_FAST
];
1972 struct sembuf
*sops
= fast_sops
, *sop
;
1973 struct sem_undo
*un
;
1975 bool undos
= false, alter
= false, dupsop
= false;
1976 struct sem_queue queue
;
1977 unsigned long dup
= 0, jiffies_left
= 0;
1978 struct ipc_namespace
*ns
;
1980 ns
= current
->nsproxy
->ipc_ns
;
1982 if (nsops
< 1 || semid
< 0)
1984 if (nsops
> ns
->sc_semopm
)
1986 if (nsops
> SEMOPM_FAST
) {
1987 sops
= kvmalloc_array(nsops
, sizeof(*sops
), GFP_KERNEL
);
1992 if (copy_from_user(sops
, tsops
, nsops
* sizeof(*tsops
))) {
1998 if (timeout
->tv_sec
< 0 || timeout
->tv_nsec
< 0 ||
1999 timeout
->tv_nsec
>= 1000000000L) {
2003 jiffies_left
= timespec64_to_jiffies(timeout
);
2007 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
2008 unsigned long mask
= 1ULL << ((sop
->sem_num
) % BITS_PER_LONG
);
2010 if (sop
->sem_num
>= max
)
2012 if (sop
->sem_flg
& SEM_UNDO
)
2016 * There was a previous alter access that appears
2017 * to have accessed the same semaphore, thus use
2018 * the dupsop logic. "appears", because the detection
2019 * can only check % BITS_PER_LONG.
2023 if (sop
->sem_op
!= 0) {
2030 /* On success, find_alloc_undo takes the rcu_read_lock */
2031 un
= find_alloc_undo(ns
, semid
);
2033 error
= PTR_ERR(un
);
2041 sma
= sem_obtain_object_check(ns
, semid
);
2044 error
= PTR_ERR(sma
);
2049 if (max
>= sma
->sem_nsems
) {
2055 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
)) {
2060 error
= security_sem_semop(&sma
->sem_perm
, sops
, nsops
, alter
);
2067 locknum
= sem_lock(sma
, sops
, nsops
);
2069 * We eventually might perform the following check in a lockless
2070 * fashion, considering ipc_valid_object() locking constraints.
2071 * If nsops == 1 and there is no contention for sem_perm.lock, then
2072 * only a per-semaphore lock is held and it's OK to proceed with the
2073 * check below. More details on the fine grained locking scheme
2074 * entangled here and why it's RMID race safe on comments at sem_lock()
2076 if (!ipc_valid_object(&sma
->sem_perm
))
2077 goto out_unlock_free
;
2079 * semid identifiers are not unique - find_alloc_undo may have
2080 * allocated an undo structure, it was invalidated by an RMID
2081 * and now a new array with received the same id. Check and fail.
2082 * This case can be detected checking un->semid. The existence of
2083 * "un" itself is guaranteed by rcu.
2085 if (un
&& un
->semid
== -1)
2086 goto out_unlock_free
;
2089 queue
.nsops
= nsops
;
2091 queue
.pid
= task_tgid(current
);
2092 queue
.alter
= alter
;
2093 queue
.dupsop
= dupsop
;
2095 error
= perform_atomic_semop(sma
, &queue
);
2096 if (error
== 0) { /* non-blocking succesfull path */
2097 DEFINE_WAKE_Q(wake_q
);
2100 * If the operation was successful, then do
2101 * the required updates.
2104 do_smart_update(sma
, sops
, nsops
, 1, &wake_q
);
2106 set_semotime(sma
, sops
);
2108 sem_unlock(sma
, locknum
);
2114 if (error
< 0) /* non-blocking error path */
2115 goto out_unlock_free
;
2118 * We need to sleep on this operation, so we put the current
2119 * task into the pending queue and go to sleep.
2123 int idx
= array_index_nospec(sops
->sem_num
, sma
->sem_nsems
);
2124 curr
= &sma
->sems
[idx
];
2127 if (sma
->complex_count
) {
2128 list_add_tail(&queue
.list
,
2129 &sma
->pending_alter
);
2132 list_add_tail(&queue
.list
,
2133 &curr
->pending_alter
);
2136 list_add_tail(&queue
.list
, &curr
->pending_const
);
2139 if (!sma
->complex_count
)
2143 list_add_tail(&queue
.list
, &sma
->pending_alter
);
2145 list_add_tail(&queue
.list
, &sma
->pending_const
);
2147 sma
->complex_count
++;
2151 WRITE_ONCE(queue
.status
, -EINTR
);
2152 queue
.sleeper
= current
;
2154 __set_current_state(TASK_INTERRUPTIBLE
);
2155 sem_unlock(sma
, locknum
);
2159 jiffies_left
= schedule_timeout(jiffies_left
);
2164 * fastpath: the semop has completed, either successfully or
2165 * not, from the syscall pov, is quite irrelevant to us at this
2166 * point; we're done.
2168 * We _do_ care, nonetheless, about being awoken by a signal or
2169 * spuriously. The queue.status is checked again in the
2170 * slowpath (aka after taking sem_lock), such that we can detect
2171 * scenarios where we were awakened externally, during the
2172 * window between wake_q_add() and wake_up_q().
2174 error
= READ_ONCE(queue
.status
);
2175 if (error
!= -EINTR
) {
2177 * User space could assume that semop() is a memory
2178 * barrier: Without the mb(), the cpu could
2179 * speculatively read in userspace stale data that was
2180 * overwritten by the previous owner of the semaphore.
2187 locknum
= sem_lock(sma
, sops
, nsops
);
2189 if (!ipc_valid_object(&sma
->sem_perm
))
2190 goto out_unlock_free
;
2192 error
= READ_ONCE(queue
.status
);
2195 * If queue.status != -EINTR we are woken up by another process.
2196 * Leave without unlink_queue(), but with sem_unlock().
2198 if (error
!= -EINTR
)
2199 goto out_unlock_free
;
2202 * If an interrupt occurred we have to clean up the queue.
2204 if (timeout
&& jiffies_left
== 0)
2206 } while (error
== -EINTR
&& !signal_pending(current
)); /* spurious */
2208 unlink_queue(sma
, &queue
);
2211 sem_unlock(sma
, locknum
);
2214 if (sops
!= fast_sops
)
2219 long ksys_semtimedop(int semid
, struct sembuf __user
*tsops
,
2220 unsigned int nsops
, const struct __kernel_timespec __user
*timeout
)
2223 struct timespec64 ts
;
2224 if (get_timespec64(&ts
, timeout
))
2226 return do_semtimedop(semid
, tsops
, nsops
, &ts
);
2228 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2231 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
2232 unsigned int, nsops
, const struct __kernel_timespec __user
*, timeout
)
2234 return ksys_semtimedop(semid
, tsops
, nsops
, timeout
);
2237 #ifdef CONFIG_COMPAT_32BIT_TIME
2238 long compat_ksys_semtimedop(int semid
, struct sembuf __user
*tsems
,
2240 const struct old_timespec32 __user
*timeout
)
2243 struct timespec64 ts
;
2244 if (get_old_timespec32(&ts
, timeout
))
2246 return do_semtimedop(semid
, tsems
, nsops
, &ts
);
2248 return do_semtimedop(semid
, tsems
, nsops
, NULL
);
2251 SYSCALL_DEFINE4(semtimedop_time32
, int, semid
, struct sembuf __user
*, tsems
,
2252 unsigned int, nsops
,
2253 const struct old_timespec32 __user
*, timeout
)
2255 return compat_ksys_semtimedop(semid
, tsems
, nsops
, timeout
);
2259 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2262 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2265 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2266 * parent and child tasks.
2269 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2271 struct sem_undo_list
*undo_list
;
2274 if (clone_flags
& CLONE_SYSVSEM
) {
2275 error
= get_undo_list(&undo_list
);
2278 refcount_inc(&undo_list
->refcnt
);
2279 tsk
->sysvsem
.undo_list
= undo_list
;
2281 tsk
->sysvsem
.undo_list
= NULL
;
2287 * add semadj values to semaphores, free undo structures.
2288 * undo structures are not freed when semaphore arrays are destroyed
2289 * so some of them may be out of date.
2290 * IMPLEMENTATION NOTE: There is some confusion over whether the
2291 * set of adjustments that needs to be done should be done in an atomic
2292 * manner or not. That is, if we are attempting to decrement the semval
2293 * should we queue up and wait until we can do so legally?
2294 * The original implementation attempted to do this (queue and wait).
2295 * The current implementation does not do so. The POSIX standard
2296 * and SVID should be consulted to determine what behavior is mandated.
2298 void exit_sem(struct task_struct
*tsk
)
2300 struct sem_undo_list
*ulp
;
2302 ulp
= tsk
->sysvsem
.undo_list
;
2305 tsk
->sysvsem
.undo_list
= NULL
;
2307 if (!refcount_dec_and_test(&ulp
->refcnt
))
2311 struct sem_array
*sma
;
2312 struct sem_undo
*un
;
2314 DEFINE_WAKE_Q(wake_q
);
2319 un
= list_entry_rcu(ulp
->list_proc
.next
,
2320 struct sem_undo
, list_proc
);
2321 if (&un
->list_proc
== &ulp
->list_proc
) {
2323 * We must wait for freeary() before freeing this ulp,
2324 * in case we raced with last sem_undo. There is a small
2325 * possibility where we exit while freeary() didn't
2326 * finish unlocking sem_undo_list.
2328 spin_lock(&ulp
->lock
);
2329 spin_unlock(&ulp
->lock
);
2333 spin_lock(&ulp
->lock
);
2335 spin_unlock(&ulp
->lock
);
2337 /* exit_sem raced with IPC_RMID, nothing to do */
2343 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, semid
);
2344 /* exit_sem raced with IPC_RMID, nothing to do */
2350 sem_lock(sma
, NULL
, -1);
2351 /* exit_sem raced with IPC_RMID, nothing to do */
2352 if (!ipc_valid_object(&sma
->sem_perm
)) {
2353 sem_unlock(sma
, -1);
2357 un
= __lookup_undo(ulp
, semid
);
2359 /* exit_sem raced with IPC_RMID+semget() that created
2360 * exactly the same semid. Nothing to do.
2362 sem_unlock(sma
, -1);
2367 /* remove un from the linked lists */
2368 ipc_assert_locked_object(&sma
->sem_perm
);
2369 list_del(&un
->list_id
);
2371 /* we are the last process using this ulp, acquiring ulp->lock
2372 * isn't required. Besides that, we are also protected against
2373 * IPC_RMID as we hold sma->sem_perm lock now
2375 list_del_rcu(&un
->list_proc
);
2377 /* perform adjustments registered in un */
2378 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2379 struct sem
*semaphore
= &sma
->sems
[i
];
2380 if (un
->semadj
[i
]) {
2381 semaphore
->semval
+= un
->semadj
[i
];
2383 * Range checks of the new semaphore value,
2384 * not defined by sus:
2385 * - Some unices ignore the undo entirely
2386 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2387 * - some cap the value (e.g. FreeBSD caps
2388 * at 0, but doesn't enforce SEMVMX)
2390 * Linux caps the semaphore value, both at 0
2393 * Manfred <manfred@colorfullife.com>
2395 if (semaphore
->semval
< 0)
2396 semaphore
->semval
= 0;
2397 if (semaphore
->semval
> SEMVMX
)
2398 semaphore
->semval
= SEMVMX
;
2399 ipc_update_pid(&semaphore
->sempid
, task_tgid(current
));
2402 /* maybe some queued-up processes were waiting for this */
2403 do_smart_update(sma
, NULL
, 0, 1, &wake_q
);
2404 sem_unlock(sma
, -1);
2413 #ifdef CONFIG_PROC_FS
2414 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2416 struct user_namespace
*user_ns
= seq_user_ns(s
);
2417 struct kern_ipc_perm
*ipcp
= it
;
2418 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
2422 * The proc interface isn't aware of sem_lock(), it calls
2423 * ipc_lock_object() directly (in sysvipc_find_ipc).
2424 * In order to stay compatible with sem_lock(), we must
2425 * enter / leave complex_mode.
2427 complexmode_enter(sma
);
2429 sem_otime
= get_semotime(sma
);
2432 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2437 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2438 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2439 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2440 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),
2444 complexmode_tryleave(sma
);