1 // SPDX-License-Identifier: GPL-2.0+
3 // drivers/dma/imx-sdma.c
5 // This file contains a driver for the Freescale Smart DMA engine
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
9 // Based on code from Freescale:
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
44 #include "dmaengine.h"
48 #define SDMA_H_C0PTR 0x000
49 #define SDMA_H_INTR 0x004
50 #define SDMA_H_STATSTOP 0x008
51 #define SDMA_H_START 0x00c
52 #define SDMA_H_EVTOVR 0x010
53 #define SDMA_H_DSPOVR 0x014
54 #define SDMA_H_HOSTOVR 0x018
55 #define SDMA_H_EVTPEND 0x01c
56 #define SDMA_H_DSPENBL 0x020
57 #define SDMA_H_RESET 0x024
58 #define SDMA_H_EVTERR 0x028
59 #define SDMA_H_INTRMSK 0x02c
60 #define SDMA_H_PSW 0x030
61 #define SDMA_H_EVTERRDBG 0x034
62 #define SDMA_H_CONFIG 0x038
63 #define SDMA_ONCE_ENB 0x040
64 #define SDMA_ONCE_DATA 0x044
65 #define SDMA_ONCE_INSTR 0x048
66 #define SDMA_ONCE_STAT 0x04c
67 #define SDMA_ONCE_CMD 0x050
68 #define SDMA_EVT_MIRROR 0x054
69 #define SDMA_ILLINSTADDR 0x058
70 #define SDMA_CHN0ADDR 0x05c
71 #define SDMA_ONCE_RTB 0x060
72 #define SDMA_XTRIG_CONF1 0x070
73 #define SDMA_XTRIG_CONF2 0x074
74 #define SDMA_CHNENBL0_IMX35 0x200
75 #define SDMA_CHNENBL0_IMX31 0x080
76 #define SDMA_CHNPRI_0 0x100
79 * Buffer descriptor status values.
90 * Data Node descriptor status values.
92 #define DND_END_OF_FRAME 0x80
93 #define DND_END_OF_XFER 0x40
95 #define DND_UNUSED 0x01
98 * IPCV2 descriptor status values.
100 #define BD_IPCV2_END_OF_FRAME 0x40
102 #define IPCV2_MAX_NODES 50
104 * Error bit set in the CCB status field by the SDMA,
105 * in setbd routine, in case of a transfer error
107 #define DATA_ERROR 0x10000000
110 * Buffer descriptor commands.
115 #define C0_SETCTX 0x07
116 #define C0_GETCTX 0x03
117 #define C0_SETDM 0x01
118 #define C0_SETPM 0x04
119 #define C0_GETDM 0x02
120 #define C0_GETPM 0x08
122 * Change endianness indicator in the BD command field
124 #define CHANGE_ENDIANNESS 0x80
127 * p_2_p watermark_level description
128 * Bits Name Description
129 * 0-7 Lower WML Lower watermark level
130 * 8 PS 1: Pad Swallowing
131 * 0: No Pad Swallowing
134 * 10 SPDIF If this bit is set both source
135 * and destination are on SPBA
136 * 11 Source Bit(SP) 1: Source on SPBA
138 * 12 Destination Bit(DP) 1: Destination on SPBA
139 * 0: Destination on AIPS
140 * 13-15 --------- MUST BE 0
141 * 16-23 Higher WML HWML
142 * 24-27 N Total number of samples after
143 * which Pad adding/Swallowing
144 * must be done. It must be odd.
145 * 28 Lower WML Event(LWE) SDMA events reg to check for
147 * 0: LWE in EVENTS register
148 * 1: LWE in EVENTS2 register
149 * 29 Higher WML Event(HWE) SDMA events reg to check for
151 * 0: HWE in EVENTS register
152 * 1: HWE in EVENTS2 register
153 * 30 --------- MUST BE 0
154 * 31 CONT 1: Amount of samples to be
155 * transferred is unknown and
156 * script will keep on
157 * transferring samples as long as
158 * both events are detected and
159 * script must be manually stopped
161 * 0: The amount of samples to be
162 * transferred is equal to the
163 * count field of mode word
165 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
166 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
176 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
180 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
181 BIT(DMA_MEM_TO_DEV) | \
185 * Mode/Count of data node descriptors - IPCv2
187 struct sdma_mode_count
{
188 #define SDMA_BD_MAX_CNT 0xffff
189 u32 count
: 16; /* size of the buffer pointed by this BD */
190 u32 status
: 8; /* E,R,I,C,W,D status bits stored here */
191 u32 command
: 8; /* command mostly used for channel 0 */
197 struct sdma_buffer_descriptor
{
198 struct sdma_mode_count mode
;
199 u32 buffer_addr
; /* address of the buffer described */
200 u32 ext_buffer_addr
; /* extended buffer address */
201 } __attribute__ ((packed
));
204 * struct sdma_channel_control - Channel control Block
206 * @current_bd_ptr: current buffer descriptor processed
207 * @base_bd_ptr: first element of buffer descriptor array
208 * @unused: padding. The SDMA engine expects an array of 128 byte
211 struct sdma_channel_control
{
215 } __attribute__ ((packed
));
218 * struct sdma_state_registers - SDMA context for a channel
220 * @pc: program counter
222 * @t: test bit: status of arithmetic & test instruction
223 * @rpc: return program counter
225 * @sf: source fault while loading data
226 * @spc: loop start program counter
228 * @df: destination fault while storing data
229 * @epc: loop end program counter
232 struct sdma_state_registers
{
244 } __attribute__ ((packed
));
247 * struct sdma_context_data - sdma context specific to a channel
249 * @channel_state: channel state bits
250 * @gReg: general registers
251 * @mda: burst dma destination address register
252 * @msa: burst dma source address register
253 * @ms: burst dma status register
254 * @md: burst dma data register
255 * @pda: peripheral dma destination address register
256 * @psa: peripheral dma source address register
257 * @ps: peripheral dma status register
258 * @pd: peripheral dma data register
259 * @ca: CRC polynomial register
260 * @cs: CRC accumulator register
261 * @dda: dedicated core destination address register
262 * @dsa: dedicated core source address register
263 * @ds: dedicated core status register
264 * @dd: dedicated core data register
265 * @scratch0: 1st word of dedicated ram for context switch
266 * @scratch1: 2nd word of dedicated ram for context switch
267 * @scratch2: 3rd word of dedicated ram for context switch
268 * @scratch3: 4th word of dedicated ram for context switch
269 * @scratch4: 5th word of dedicated ram for context switch
270 * @scratch5: 6th word of dedicated ram for context switch
271 * @scratch6: 7th word of dedicated ram for context switch
272 * @scratch7: 8th word of dedicated ram for context switch
274 struct sdma_context_data
{
275 struct sdma_state_registers channel_state
;
299 } __attribute__ ((packed
));
305 * struct sdma_desc - descriptor structor for one transfer
306 * @vd: descriptor for virt dma
307 * @num_bd: number of descriptors currently handling
308 * @bd_phys: physical address of bd
309 * @buf_tail: ID of the buffer that was processed
310 * @buf_ptail: ID of the previous buffer that was processed
311 * @period_len: period length, used in cyclic.
312 * @chn_real_count: the real count updated from bd->mode.count
313 * @chn_count: the transfer count set
314 * @sdmac: sdma_channel pointer
315 * @bd: pointer of allocate bd
318 struct virt_dma_desc vd
;
321 unsigned int buf_tail
;
322 unsigned int buf_ptail
;
323 unsigned int period_len
;
324 unsigned int chn_real_count
;
325 unsigned int chn_count
;
326 struct sdma_channel
*sdmac
;
327 struct sdma_buffer_descriptor
*bd
;
331 * struct sdma_channel - housekeeping for a SDMA channel
333 * @vc: virt_dma base structure
334 * @desc: sdma description including vd and other special member
335 * @sdma: pointer to the SDMA engine for this channel
336 * @channel: the channel number, matches dmaengine chan_id + 1
337 * @direction: transfer type. Needed for setting SDMA script
338 * @slave_config Slave configuration
339 * @peripheral_type: Peripheral type. Needed for setting SDMA script
340 * @event_id0: aka dma request line
341 * @event_id1: for channels that use 2 events
342 * @word_size: peripheral access size
343 * @pc_from_device: script address for those device_2_memory
344 * @pc_to_device: script address for those memory_2_device
345 * @device_to_device: script address for those device_2_device
346 * @pc_to_pc: script address for those memory_2_memory
347 * @flags: loop mode or not
348 * @per_address: peripheral source or destination address in common case
349 * destination address in p_2_p case
350 * @per_address2: peripheral source address in p_2_p case
351 * @event_mask: event mask used in p_2_p script
352 * @watermark_level: value for gReg[7], some script will extend it from
353 * basic watermark such as p_2_p
354 * @shp_addr: value for gReg[6]
355 * @per_addr: value for gReg[2]
356 * @status: status of dma channel
357 * @data: specific sdma interface structure
358 * @bd_pool: dma_pool for bd
360 struct sdma_channel
{
361 struct virt_dma_chan vc
;
362 struct sdma_desc
*desc
;
363 struct sdma_engine
*sdma
;
364 unsigned int channel
;
365 enum dma_transfer_direction direction
;
366 struct dma_slave_config slave_config
;
367 enum sdma_peripheral_type peripheral_type
;
368 unsigned int event_id0
;
369 unsigned int event_id1
;
370 enum dma_slave_buswidth word_size
;
371 unsigned int pc_from_device
, pc_to_device
;
372 unsigned int device_to_device
;
373 unsigned int pc_to_pc
;
375 dma_addr_t per_address
, per_address2
;
376 unsigned long event_mask
[2];
377 unsigned long watermark_level
;
378 u32 shp_addr
, per_addr
;
379 enum dma_status status
;
381 struct imx_dma_data data
;
382 struct work_struct terminate_worker
;
385 #define IMX_DMA_SG_LOOP BIT(0)
387 #define MAX_DMA_CHANNELS 32
388 #define MXC_SDMA_DEFAULT_PRIORITY 1
389 #define MXC_SDMA_MIN_PRIORITY 1
390 #define MXC_SDMA_MAX_PRIORITY 7
392 #define SDMA_FIRMWARE_MAGIC 0x414d4453
395 * struct sdma_firmware_header - Layout of the firmware image
398 * @version_major: increased whenever layout of struct
399 * sdma_script_start_addrs changes.
400 * @version_minor: firmware minor version (for binary compatible changes)
401 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
402 * @num_script_addrs: Number of script addresses in this image
403 * @ram_code_start: offset of SDMA ram image in this firmware image
404 * @ram_code_size: size of SDMA ram image
405 * @script_addrs: Stores the start address of the SDMA scripts
406 * (in SDMA memory space)
408 struct sdma_firmware_header
{
412 u32 script_addrs_start
;
413 u32 num_script_addrs
;
418 struct sdma_driver_data
{
421 struct sdma_script_start_addrs
*script_addrs
;
426 struct device_dma_parameters dma_parms
;
427 struct sdma_channel channel
[MAX_DMA_CHANNELS
];
428 struct sdma_channel_control
*channel_control
;
430 struct sdma_context_data
*context
;
431 dma_addr_t context_phys
;
432 struct dma_device dma_device
;
435 spinlock_t channel_0_lock
;
437 struct sdma_script_start_addrs
*script_addrs
;
438 const struct sdma_driver_data
*drvdata
;
443 struct sdma_buffer_descriptor
*bd0
;
444 /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
448 static int sdma_config_write(struct dma_chan
*chan
,
449 struct dma_slave_config
*dmaengine_cfg
,
450 enum dma_transfer_direction direction
);
452 static struct sdma_driver_data sdma_imx31
= {
453 .chnenbl0
= SDMA_CHNENBL0_IMX31
,
457 static struct sdma_script_start_addrs sdma_script_imx25
= {
459 .uart_2_mcu_addr
= 904,
460 .per_2_app_addr
= 1255,
461 .mcu_2_app_addr
= 834,
462 .uartsh_2_mcu_addr
= 1120,
463 .per_2_shp_addr
= 1329,
464 .mcu_2_shp_addr
= 1048,
465 .ata_2_mcu_addr
= 1560,
466 .mcu_2_ata_addr
= 1479,
467 .app_2_per_addr
= 1189,
468 .app_2_mcu_addr
= 770,
469 .shp_2_per_addr
= 1407,
470 .shp_2_mcu_addr
= 979,
473 static struct sdma_driver_data sdma_imx25
= {
474 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
476 .script_addrs
= &sdma_script_imx25
,
479 static struct sdma_driver_data sdma_imx35
= {
480 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
484 static struct sdma_script_start_addrs sdma_script_imx51
= {
486 .uart_2_mcu_addr
= 817,
487 .mcu_2_app_addr
= 747,
488 .mcu_2_shp_addr
= 961,
489 .ata_2_mcu_addr
= 1473,
490 .mcu_2_ata_addr
= 1392,
491 .app_2_per_addr
= 1033,
492 .app_2_mcu_addr
= 683,
493 .shp_2_per_addr
= 1251,
494 .shp_2_mcu_addr
= 892,
497 static struct sdma_driver_data sdma_imx51
= {
498 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
500 .script_addrs
= &sdma_script_imx51
,
503 static struct sdma_script_start_addrs sdma_script_imx53
= {
505 .app_2_mcu_addr
= 683,
506 .mcu_2_app_addr
= 747,
507 .uart_2_mcu_addr
= 817,
508 .shp_2_mcu_addr
= 891,
509 .mcu_2_shp_addr
= 960,
510 .uartsh_2_mcu_addr
= 1032,
511 .spdif_2_mcu_addr
= 1100,
512 .mcu_2_spdif_addr
= 1134,
513 .firi_2_mcu_addr
= 1193,
514 .mcu_2_firi_addr
= 1290,
517 static struct sdma_driver_data sdma_imx53
= {
518 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
520 .script_addrs
= &sdma_script_imx53
,
523 static struct sdma_script_start_addrs sdma_script_imx6q
= {
525 .uart_2_mcu_addr
= 817,
526 .mcu_2_app_addr
= 747,
527 .per_2_per_addr
= 6331,
528 .uartsh_2_mcu_addr
= 1032,
529 .mcu_2_shp_addr
= 960,
530 .app_2_mcu_addr
= 683,
531 .shp_2_mcu_addr
= 891,
532 .spdif_2_mcu_addr
= 1100,
533 .mcu_2_spdif_addr
= 1134,
536 static struct sdma_driver_data sdma_imx6q
= {
537 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
539 .script_addrs
= &sdma_script_imx6q
,
542 static struct sdma_script_start_addrs sdma_script_imx7d
= {
544 .uart_2_mcu_addr
= 819,
545 .mcu_2_app_addr
= 749,
546 .uartsh_2_mcu_addr
= 1034,
547 .mcu_2_shp_addr
= 962,
548 .app_2_mcu_addr
= 685,
549 .shp_2_mcu_addr
= 893,
550 .spdif_2_mcu_addr
= 1102,
551 .mcu_2_spdif_addr
= 1136,
554 static struct sdma_driver_data sdma_imx7d
= {
555 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
557 .script_addrs
= &sdma_script_imx7d
,
560 static const struct platform_device_id sdma_devtypes
[] = {
562 .name
= "imx25-sdma",
563 .driver_data
= (unsigned long)&sdma_imx25
,
565 .name
= "imx31-sdma",
566 .driver_data
= (unsigned long)&sdma_imx31
,
568 .name
= "imx35-sdma",
569 .driver_data
= (unsigned long)&sdma_imx35
,
571 .name
= "imx51-sdma",
572 .driver_data
= (unsigned long)&sdma_imx51
,
574 .name
= "imx53-sdma",
575 .driver_data
= (unsigned long)&sdma_imx53
,
577 .name
= "imx6q-sdma",
578 .driver_data
= (unsigned long)&sdma_imx6q
,
580 .name
= "imx7d-sdma",
581 .driver_data
= (unsigned long)&sdma_imx7d
,
586 MODULE_DEVICE_TABLE(platform
, sdma_devtypes
);
588 static const struct of_device_id sdma_dt_ids
[] = {
589 { .compatible
= "fsl,imx6q-sdma", .data
= &sdma_imx6q
, },
590 { .compatible
= "fsl,imx53-sdma", .data
= &sdma_imx53
, },
591 { .compatible
= "fsl,imx51-sdma", .data
= &sdma_imx51
, },
592 { .compatible
= "fsl,imx35-sdma", .data
= &sdma_imx35
, },
593 { .compatible
= "fsl,imx31-sdma", .data
= &sdma_imx31
, },
594 { .compatible
= "fsl,imx25-sdma", .data
= &sdma_imx25
, },
595 { .compatible
= "fsl,imx7d-sdma", .data
= &sdma_imx7d
, },
598 MODULE_DEVICE_TABLE(of
, sdma_dt_ids
);
600 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
601 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
602 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
603 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
605 static inline u32
chnenbl_ofs(struct sdma_engine
*sdma
, unsigned int event
)
607 u32 chnenbl0
= sdma
->drvdata
->chnenbl0
;
608 return chnenbl0
+ event
* 4;
611 static int sdma_config_ownership(struct sdma_channel
*sdmac
,
612 bool event_override
, bool mcu_override
, bool dsp_override
)
614 struct sdma_engine
*sdma
= sdmac
->sdma
;
615 int channel
= sdmac
->channel
;
616 unsigned long evt
, mcu
, dsp
;
618 if (event_override
&& mcu_override
&& dsp_override
)
621 evt
= readl_relaxed(sdma
->regs
+ SDMA_H_EVTOVR
);
622 mcu
= readl_relaxed(sdma
->regs
+ SDMA_H_HOSTOVR
);
623 dsp
= readl_relaxed(sdma
->regs
+ SDMA_H_DSPOVR
);
626 __clear_bit(channel
, &dsp
);
628 __set_bit(channel
, &dsp
);
631 __clear_bit(channel
, &evt
);
633 __set_bit(channel
, &evt
);
636 __clear_bit(channel
, &mcu
);
638 __set_bit(channel
, &mcu
);
640 writel_relaxed(evt
, sdma
->regs
+ SDMA_H_EVTOVR
);
641 writel_relaxed(mcu
, sdma
->regs
+ SDMA_H_HOSTOVR
);
642 writel_relaxed(dsp
, sdma
->regs
+ SDMA_H_DSPOVR
);
647 static void sdma_enable_channel(struct sdma_engine
*sdma
, int channel
)
649 writel(BIT(channel
), sdma
->regs
+ SDMA_H_START
);
653 * sdma_run_channel0 - run a channel and wait till it's done
655 static int sdma_run_channel0(struct sdma_engine
*sdma
)
660 sdma_enable_channel(sdma
, 0);
662 ret
= readl_relaxed_poll_timeout_atomic(sdma
->regs
+ SDMA_H_STATSTOP
,
663 reg
, !(reg
& 1), 1, 500);
665 dev_err(sdma
->dev
, "Timeout waiting for CH0 ready\n");
667 /* Set bits of CONFIG register with dynamic context switching */
668 reg
= readl(sdma
->regs
+ SDMA_H_CONFIG
);
669 if ((reg
& SDMA_H_CONFIG_CSM
) == 0) {
670 reg
|= SDMA_H_CONFIG_CSM
;
671 writel_relaxed(reg
, sdma
->regs
+ SDMA_H_CONFIG
);
677 static int sdma_load_script(struct sdma_engine
*sdma
, void *buf
, int size
,
680 struct sdma_buffer_descriptor
*bd0
= sdma
->bd0
;
686 buf_virt
= dma_alloc_coherent(sdma
->dev
, size
, &buf_phys
, GFP_KERNEL
);
691 spin_lock_irqsave(&sdma
->channel_0_lock
, flags
);
693 bd0
->mode
.command
= C0_SETPM
;
694 bd0
->mode
.status
= BD_DONE
| BD_INTR
| BD_WRAP
| BD_EXTD
;
695 bd0
->mode
.count
= size
/ 2;
696 bd0
->buffer_addr
= buf_phys
;
697 bd0
->ext_buffer_addr
= address
;
699 memcpy(buf_virt
, buf
, size
);
701 ret
= sdma_run_channel0(sdma
);
703 spin_unlock_irqrestore(&sdma
->channel_0_lock
, flags
);
705 dma_free_coherent(sdma
->dev
, size
, buf_virt
, buf_phys
);
710 static void sdma_event_enable(struct sdma_channel
*sdmac
, unsigned int event
)
712 struct sdma_engine
*sdma
= sdmac
->sdma
;
713 int channel
= sdmac
->channel
;
715 u32 chnenbl
= chnenbl_ofs(sdma
, event
);
717 val
= readl_relaxed(sdma
->regs
+ chnenbl
);
718 __set_bit(channel
, &val
);
719 writel_relaxed(val
, sdma
->regs
+ chnenbl
);
722 static void sdma_event_disable(struct sdma_channel
*sdmac
, unsigned int event
)
724 struct sdma_engine
*sdma
= sdmac
->sdma
;
725 int channel
= sdmac
->channel
;
726 u32 chnenbl
= chnenbl_ofs(sdma
, event
);
729 val
= readl_relaxed(sdma
->regs
+ chnenbl
);
730 __clear_bit(channel
, &val
);
731 writel_relaxed(val
, sdma
->regs
+ chnenbl
);
734 static struct sdma_desc
*to_sdma_desc(struct dma_async_tx_descriptor
*t
)
736 return container_of(t
, struct sdma_desc
, vd
.tx
);
739 static void sdma_start_desc(struct sdma_channel
*sdmac
)
741 struct virt_dma_desc
*vd
= vchan_next_desc(&sdmac
->vc
);
742 struct sdma_desc
*desc
;
743 struct sdma_engine
*sdma
= sdmac
->sdma
;
744 int channel
= sdmac
->channel
;
750 sdmac
->desc
= desc
= to_sdma_desc(&vd
->tx
);
752 * Do not delete the node in desc_issued list in cyclic mode, otherwise
753 * the desc allocated will never be freed in vchan_dma_desc_free_list
755 if (!(sdmac
->flags
& IMX_DMA_SG_LOOP
))
758 sdma
->channel_control
[channel
].base_bd_ptr
= desc
->bd_phys
;
759 sdma
->channel_control
[channel
].current_bd_ptr
= desc
->bd_phys
;
760 sdma_enable_channel(sdma
, sdmac
->channel
);
763 static void sdma_update_channel_loop(struct sdma_channel
*sdmac
)
765 struct sdma_buffer_descriptor
*bd
;
767 enum dma_status old_status
= sdmac
->status
;
770 * loop mode. Iterate over descriptors, re-setup them and
771 * call callback function.
773 while (sdmac
->desc
) {
774 struct sdma_desc
*desc
= sdmac
->desc
;
776 bd
= &desc
->bd
[desc
->buf_tail
];
778 if (bd
->mode
.status
& BD_DONE
)
781 if (bd
->mode
.status
& BD_RROR
) {
782 bd
->mode
.status
&= ~BD_RROR
;
783 sdmac
->status
= DMA_ERROR
;
788 * We use bd->mode.count to calculate the residue, since contains
789 * the number of bytes present in the current buffer descriptor.
792 desc
->chn_real_count
= bd
->mode
.count
;
793 bd
->mode
.status
|= BD_DONE
;
794 bd
->mode
.count
= desc
->period_len
;
795 desc
->buf_ptail
= desc
->buf_tail
;
796 desc
->buf_tail
= (desc
->buf_tail
+ 1) % desc
->num_bd
;
799 * The callback is called from the interrupt context in order
800 * to reduce latency and to avoid the risk of altering the
801 * SDMA transaction status by the time the client tasklet is
804 spin_unlock(&sdmac
->vc
.lock
);
805 dmaengine_desc_get_callback_invoke(&desc
->vd
.tx
, NULL
);
806 spin_lock(&sdmac
->vc
.lock
);
809 sdmac
->status
= old_status
;
813 static void mxc_sdma_handle_channel_normal(struct sdma_channel
*data
)
815 struct sdma_channel
*sdmac
= (struct sdma_channel
*) data
;
816 struct sdma_buffer_descriptor
*bd
;
819 sdmac
->desc
->chn_real_count
= 0;
821 * non loop mode. Iterate over all descriptors, collect
822 * errors and call callback function
824 for (i
= 0; i
< sdmac
->desc
->num_bd
; i
++) {
825 bd
= &sdmac
->desc
->bd
[i
];
827 if (bd
->mode
.status
& (BD_DONE
| BD_RROR
))
829 sdmac
->desc
->chn_real_count
+= bd
->mode
.count
;
833 sdmac
->status
= DMA_ERROR
;
835 sdmac
->status
= DMA_COMPLETE
;
838 static irqreturn_t
sdma_int_handler(int irq
, void *dev_id
)
840 struct sdma_engine
*sdma
= dev_id
;
843 stat
= readl_relaxed(sdma
->regs
+ SDMA_H_INTR
);
844 writel_relaxed(stat
, sdma
->regs
+ SDMA_H_INTR
);
845 /* channel 0 is special and not handled here, see run_channel0() */
849 int channel
= fls(stat
) - 1;
850 struct sdma_channel
*sdmac
= &sdma
->channel
[channel
];
851 struct sdma_desc
*desc
;
853 spin_lock(&sdmac
->vc
.lock
);
856 if (sdmac
->flags
& IMX_DMA_SG_LOOP
) {
857 sdma_update_channel_loop(sdmac
);
859 mxc_sdma_handle_channel_normal(sdmac
);
860 vchan_cookie_complete(&desc
->vd
);
861 sdma_start_desc(sdmac
);
865 spin_unlock(&sdmac
->vc
.lock
);
866 __clear_bit(channel
, &stat
);
873 * sets the pc of SDMA script according to the peripheral type
875 static void sdma_get_pc(struct sdma_channel
*sdmac
,
876 enum sdma_peripheral_type peripheral_type
)
878 struct sdma_engine
*sdma
= sdmac
->sdma
;
879 int per_2_emi
= 0, emi_2_per
= 0;
881 * These are needed once we start to support transfers between
882 * two peripherals or memory-to-memory transfers
884 int per_2_per
= 0, emi_2_emi
= 0;
886 sdmac
->pc_from_device
= 0;
887 sdmac
->pc_to_device
= 0;
888 sdmac
->device_to_device
= 0;
891 switch (peripheral_type
) {
892 case IMX_DMATYPE_MEMORY
:
893 emi_2_emi
= sdma
->script_addrs
->ap_2_ap_addr
;
895 case IMX_DMATYPE_DSP
:
896 emi_2_per
= sdma
->script_addrs
->bp_2_ap_addr
;
897 per_2_emi
= sdma
->script_addrs
->ap_2_bp_addr
;
899 case IMX_DMATYPE_FIRI
:
900 per_2_emi
= sdma
->script_addrs
->firi_2_mcu_addr
;
901 emi_2_per
= sdma
->script_addrs
->mcu_2_firi_addr
;
903 case IMX_DMATYPE_UART
:
904 per_2_emi
= sdma
->script_addrs
->uart_2_mcu_addr
;
905 emi_2_per
= sdma
->script_addrs
->mcu_2_app_addr
;
907 case IMX_DMATYPE_UART_SP
:
908 per_2_emi
= sdma
->script_addrs
->uartsh_2_mcu_addr
;
909 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
911 case IMX_DMATYPE_ATA
:
912 per_2_emi
= sdma
->script_addrs
->ata_2_mcu_addr
;
913 emi_2_per
= sdma
->script_addrs
->mcu_2_ata_addr
;
915 case IMX_DMATYPE_CSPI
:
916 case IMX_DMATYPE_EXT
:
917 case IMX_DMATYPE_SSI
:
918 case IMX_DMATYPE_SAI
:
919 per_2_emi
= sdma
->script_addrs
->app_2_mcu_addr
;
920 emi_2_per
= sdma
->script_addrs
->mcu_2_app_addr
;
922 case IMX_DMATYPE_SSI_DUAL
:
923 per_2_emi
= sdma
->script_addrs
->ssish_2_mcu_addr
;
924 emi_2_per
= sdma
->script_addrs
->mcu_2_ssish_addr
;
926 case IMX_DMATYPE_SSI_SP
:
927 case IMX_DMATYPE_MMC
:
928 case IMX_DMATYPE_SDHC
:
929 case IMX_DMATYPE_CSPI_SP
:
930 case IMX_DMATYPE_ESAI
:
931 case IMX_DMATYPE_MSHC_SP
:
932 per_2_emi
= sdma
->script_addrs
->shp_2_mcu_addr
;
933 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
935 case IMX_DMATYPE_ASRC
:
936 per_2_emi
= sdma
->script_addrs
->asrc_2_mcu_addr
;
937 emi_2_per
= sdma
->script_addrs
->asrc_2_mcu_addr
;
938 per_2_per
= sdma
->script_addrs
->per_2_per_addr
;
940 case IMX_DMATYPE_ASRC_SP
:
941 per_2_emi
= sdma
->script_addrs
->shp_2_mcu_addr
;
942 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
943 per_2_per
= sdma
->script_addrs
->per_2_per_addr
;
945 case IMX_DMATYPE_MSHC
:
946 per_2_emi
= sdma
->script_addrs
->mshc_2_mcu_addr
;
947 emi_2_per
= sdma
->script_addrs
->mcu_2_mshc_addr
;
949 case IMX_DMATYPE_CCM
:
950 per_2_emi
= sdma
->script_addrs
->dptc_dvfs_addr
;
952 case IMX_DMATYPE_SPDIF
:
953 per_2_emi
= sdma
->script_addrs
->spdif_2_mcu_addr
;
954 emi_2_per
= sdma
->script_addrs
->mcu_2_spdif_addr
;
956 case IMX_DMATYPE_IPU_MEMORY
:
957 emi_2_per
= sdma
->script_addrs
->ext_mem_2_ipu_addr
;
963 sdmac
->pc_from_device
= per_2_emi
;
964 sdmac
->pc_to_device
= emi_2_per
;
965 sdmac
->device_to_device
= per_2_per
;
966 sdmac
->pc_to_pc
= emi_2_emi
;
969 static int sdma_load_context(struct sdma_channel
*sdmac
)
971 struct sdma_engine
*sdma
= sdmac
->sdma
;
972 int channel
= sdmac
->channel
;
974 struct sdma_context_data
*context
= sdma
->context
;
975 struct sdma_buffer_descriptor
*bd0
= sdma
->bd0
;
979 if (sdmac
->context_loaded
)
982 if (sdmac
->direction
== DMA_DEV_TO_MEM
)
983 load_address
= sdmac
->pc_from_device
;
984 else if (sdmac
->direction
== DMA_DEV_TO_DEV
)
985 load_address
= sdmac
->device_to_device
;
986 else if (sdmac
->direction
== DMA_MEM_TO_MEM
)
987 load_address
= sdmac
->pc_to_pc
;
989 load_address
= sdmac
->pc_to_device
;
991 if (load_address
< 0)
994 dev_dbg(sdma
->dev
, "load_address = %d\n", load_address
);
995 dev_dbg(sdma
->dev
, "wml = 0x%08x\n", (u32
)sdmac
->watermark_level
);
996 dev_dbg(sdma
->dev
, "shp_addr = 0x%08x\n", sdmac
->shp_addr
);
997 dev_dbg(sdma
->dev
, "per_addr = 0x%08x\n", sdmac
->per_addr
);
998 dev_dbg(sdma
->dev
, "event_mask0 = 0x%08x\n", (u32
)sdmac
->event_mask
[0]);
999 dev_dbg(sdma
->dev
, "event_mask1 = 0x%08x\n", (u32
)sdmac
->event_mask
[1]);
1001 spin_lock_irqsave(&sdma
->channel_0_lock
, flags
);
1003 memset(context
, 0, sizeof(*context
));
1004 context
->channel_state
.pc
= load_address
;
1006 /* Send by context the event mask,base address for peripheral
1007 * and watermark level
1009 context
->gReg
[0] = sdmac
->event_mask
[1];
1010 context
->gReg
[1] = sdmac
->event_mask
[0];
1011 context
->gReg
[2] = sdmac
->per_addr
;
1012 context
->gReg
[6] = sdmac
->shp_addr
;
1013 context
->gReg
[7] = sdmac
->watermark_level
;
1015 bd0
->mode
.command
= C0_SETDM
;
1016 bd0
->mode
.status
= BD_DONE
| BD_INTR
| BD_WRAP
| BD_EXTD
;
1017 bd0
->mode
.count
= sizeof(*context
) / 4;
1018 bd0
->buffer_addr
= sdma
->context_phys
;
1019 bd0
->ext_buffer_addr
= 2048 + (sizeof(*context
) / 4) * channel
;
1020 ret
= sdma_run_channel0(sdma
);
1022 spin_unlock_irqrestore(&sdma
->channel_0_lock
, flags
);
1024 sdmac
->context_loaded
= true;
1029 static struct sdma_channel
*to_sdma_chan(struct dma_chan
*chan
)
1031 return container_of(chan
, struct sdma_channel
, vc
.chan
);
1034 static int sdma_disable_channel(struct dma_chan
*chan
)
1036 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1037 struct sdma_engine
*sdma
= sdmac
->sdma
;
1038 int channel
= sdmac
->channel
;
1040 writel_relaxed(BIT(channel
), sdma
->regs
+ SDMA_H_STATSTOP
);
1041 sdmac
->status
= DMA_ERROR
;
1045 static void sdma_channel_terminate_work(struct work_struct
*work
)
1047 struct sdma_channel
*sdmac
= container_of(work
, struct sdma_channel
,
1049 unsigned long flags
;
1053 * According to NXP R&D team a delay of one BD SDMA cost time
1054 * (maximum is 1ms) should be added after disable of the channel
1055 * bit, to ensure SDMA core has really been stopped after SDMA
1056 * clients call .device_terminate_all.
1058 usleep_range(1000, 2000);
1060 spin_lock_irqsave(&sdmac
->vc
.lock
, flags
);
1061 vchan_get_all_descriptors(&sdmac
->vc
, &head
);
1063 spin_unlock_irqrestore(&sdmac
->vc
.lock
, flags
);
1064 vchan_dma_desc_free_list(&sdmac
->vc
, &head
);
1065 sdmac
->context_loaded
= false;
1068 static int sdma_disable_channel_async(struct dma_chan
*chan
)
1070 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1072 sdma_disable_channel(chan
);
1075 schedule_work(&sdmac
->terminate_worker
);
1080 static void sdma_channel_synchronize(struct dma_chan
*chan
)
1082 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1084 vchan_synchronize(&sdmac
->vc
);
1086 flush_work(&sdmac
->terminate_worker
);
1089 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel
*sdmac
)
1091 struct sdma_engine
*sdma
= sdmac
->sdma
;
1093 int lwml
= sdmac
->watermark_level
& SDMA_WATERMARK_LEVEL_LWML
;
1094 int hwml
= (sdmac
->watermark_level
& SDMA_WATERMARK_LEVEL_HWML
) >> 16;
1096 set_bit(sdmac
->event_id0
% 32, &sdmac
->event_mask
[1]);
1097 set_bit(sdmac
->event_id1
% 32, &sdmac
->event_mask
[0]);
1099 if (sdmac
->event_id0
> 31)
1100 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_LWE
;
1102 if (sdmac
->event_id1
> 31)
1103 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_HWE
;
1106 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1107 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1108 * r0(event_mask[1]) and r1(event_mask[0]).
1111 sdmac
->watermark_level
&= ~(SDMA_WATERMARK_LEVEL_LWML
|
1112 SDMA_WATERMARK_LEVEL_HWML
);
1113 sdmac
->watermark_level
|= hwml
;
1114 sdmac
->watermark_level
|= lwml
<< 16;
1115 swap(sdmac
->event_mask
[0], sdmac
->event_mask
[1]);
1118 if (sdmac
->per_address2
>= sdma
->spba_start_addr
&&
1119 sdmac
->per_address2
<= sdma
->spba_end_addr
)
1120 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_SP
;
1122 if (sdmac
->per_address
>= sdma
->spba_start_addr
&&
1123 sdmac
->per_address
<= sdma
->spba_end_addr
)
1124 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_DP
;
1126 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_CONT
;
1129 static int sdma_config_channel(struct dma_chan
*chan
)
1131 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1134 sdma_disable_channel(chan
);
1136 sdmac
->event_mask
[0] = 0;
1137 sdmac
->event_mask
[1] = 0;
1138 sdmac
->shp_addr
= 0;
1139 sdmac
->per_addr
= 0;
1141 switch (sdmac
->peripheral_type
) {
1142 case IMX_DMATYPE_DSP
:
1143 sdma_config_ownership(sdmac
, false, true, true);
1145 case IMX_DMATYPE_MEMORY
:
1146 sdma_config_ownership(sdmac
, false, true, false);
1149 sdma_config_ownership(sdmac
, true, true, false);
1153 sdma_get_pc(sdmac
, sdmac
->peripheral_type
);
1155 if ((sdmac
->peripheral_type
!= IMX_DMATYPE_MEMORY
) &&
1156 (sdmac
->peripheral_type
!= IMX_DMATYPE_DSP
)) {
1157 /* Handle multiple event channels differently */
1158 if (sdmac
->event_id1
) {
1159 if (sdmac
->peripheral_type
== IMX_DMATYPE_ASRC_SP
||
1160 sdmac
->peripheral_type
== IMX_DMATYPE_ASRC
)
1161 sdma_set_watermarklevel_for_p2p(sdmac
);
1163 __set_bit(sdmac
->event_id0
, sdmac
->event_mask
);
1166 sdmac
->shp_addr
= sdmac
->per_address
;
1167 sdmac
->per_addr
= sdmac
->per_address2
;
1169 sdmac
->watermark_level
= 0; /* FIXME: M3_BASE_ADDRESS */
1172 ret
= sdma_load_context(sdmac
);
1177 static int sdma_set_channel_priority(struct sdma_channel
*sdmac
,
1178 unsigned int priority
)
1180 struct sdma_engine
*sdma
= sdmac
->sdma
;
1181 int channel
= sdmac
->channel
;
1183 if (priority
< MXC_SDMA_MIN_PRIORITY
1184 || priority
> MXC_SDMA_MAX_PRIORITY
) {
1188 writel_relaxed(priority
, sdma
->regs
+ SDMA_CHNPRI_0
+ 4 * channel
);
1193 static int sdma_request_channel0(struct sdma_engine
*sdma
)
1197 sdma
->bd0
= dma_alloc_coherent(sdma
->dev
, PAGE_SIZE
, &sdma
->bd0_phys
,
1204 sdma
->channel_control
[0].base_bd_ptr
= sdma
->bd0_phys
;
1205 sdma
->channel_control
[0].current_bd_ptr
= sdma
->bd0_phys
;
1207 sdma_set_channel_priority(&sdma
->channel
[0], MXC_SDMA_DEFAULT_PRIORITY
);
1215 static int sdma_alloc_bd(struct sdma_desc
*desc
)
1217 u32 bd_size
= desc
->num_bd
* sizeof(struct sdma_buffer_descriptor
);
1220 desc
->bd
= dma_alloc_coherent(desc
->sdmac
->sdma
->dev
, bd_size
,
1221 &desc
->bd_phys
, GFP_NOWAIT
);
1230 static void sdma_free_bd(struct sdma_desc
*desc
)
1232 u32 bd_size
= desc
->num_bd
* sizeof(struct sdma_buffer_descriptor
);
1234 dma_free_coherent(desc
->sdmac
->sdma
->dev
, bd_size
, desc
->bd
,
1238 static void sdma_desc_free(struct virt_dma_desc
*vd
)
1240 struct sdma_desc
*desc
= container_of(vd
, struct sdma_desc
, vd
);
1246 static int sdma_alloc_chan_resources(struct dma_chan
*chan
)
1248 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1249 struct imx_dma_data
*data
= chan
->private;
1250 struct imx_dma_data mem_data
;
1254 * MEMCPY may never setup chan->private by filter function such as
1255 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1256 * Please note in any other slave case, you have to setup chan->private
1257 * with 'struct imx_dma_data' in your own filter function if you want to
1258 * request dma channel by dma_request_channel() rather than
1259 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1260 * to warn you to correct your filter function.
1263 dev_dbg(sdmac
->sdma
->dev
, "MEMCPY in case?\n");
1264 mem_data
.priority
= 2;
1265 mem_data
.peripheral_type
= IMX_DMATYPE_MEMORY
;
1266 mem_data
.dma_request
= 0;
1267 mem_data
.dma_request2
= 0;
1270 sdma_get_pc(sdmac
, IMX_DMATYPE_MEMORY
);
1273 switch (data
->priority
) {
1277 case DMA_PRIO_MEDIUM
:
1286 sdmac
->peripheral_type
= data
->peripheral_type
;
1287 sdmac
->event_id0
= data
->dma_request
;
1288 sdmac
->event_id1
= data
->dma_request2
;
1290 ret
= clk_enable(sdmac
->sdma
->clk_ipg
);
1293 ret
= clk_enable(sdmac
->sdma
->clk_ahb
);
1295 goto disable_clk_ipg
;
1297 ret
= sdma_set_channel_priority(sdmac
, prio
);
1299 goto disable_clk_ahb
;
1304 clk_disable(sdmac
->sdma
->clk_ahb
);
1306 clk_disable(sdmac
->sdma
->clk_ipg
);
1310 static void sdma_free_chan_resources(struct dma_chan
*chan
)
1312 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1313 struct sdma_engine
*sdma
= sdmac
->sdma
;
1315 sdma_disable_channel_async(chan
);
1317 sdma_channel_synchronize(chan
);
1319 if (sdmac
->event_id0
)
1320 sdma_event_disable(sdmac
, sdmac
->event_id0
);
1321 if (sdmac
->event_id1
)
1322 sdma_event_disable(sdmac
, sdmac
->event_id1
);
1324 sdmac
->event_id0
= 0;
1325 sdmac
->event_id1
= 0;
1327 sdma_set_channel_priority(sdmac
, 0);
1329 clk_disable(sdma
->clk_ipg
);
1330 clk_disable(sdma
->clk_ahb
);
1333 static struct sdma_desc
*sdma_transfer_init(struct sdma_channel
*sdmac
,
1334 enum dma_transfer_direction direction
, u32 bds
)
1336 struct sdma_desc
*desc
;
1338 desc
= kzalloc((sizeof(*desc
)), GFP_NOWAIT
);
1342 sdmac
->status
= DMA_IN_PROGRESS
;
1343 sdmac
->direction
= direction
;
1346 desc
->chn_count
= 0;
1347 desc
->chn_real_count
= 0;
1349 desc
->buf_ptail
= 0;
1350 desc
->sdmac
= sdmac
;
1353 if (sdma_alloc_bd(desc
))
1356 /* No slave_config called in MEMCPY case, so do here */
1357 if (direction
== DMA_MEM_TO_MEM
)
1358 sdma_config_ownership(sdmac
, false, true, false);
1360 if (sdma_load_context(sdmac
))
1371 static struct dma_async_tx_descriptor
*sdma_prep_memcpy(
1372 struct dma_chan
*chan
, dma_addr_t dma_dst
,
1373 dma_addr_t dma_src
, size_t len
, unsigned long flags
)
1375 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1376 struct sdma_engine
*sdma
= sdmac
->sdma
;
1377 int channel
= sdmac
->channel
;
1380 struct sdma_buffer_descriptor
*bd
;
1381 struct sdma_desc
*desc
;
1386 dev_dbg(sdma
->dev
, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1387 &dma_src
, &dma_dst
, len
, channel
);
1389 desc
= sdma_transfer_init(sdmac
, DMA_MEM_TO_MEM
,
1390 len
/ SDMA_BD_MAX_CNT
+ 1);
1395 count
= min_t(size_t, len
, SDMA_BD_MAX_CNT
);
1397 bd
->buffer_addr
= dma_src
;
1398 bd
->ext_buffer_addr
= dma_dst
;
1399 bd
->mode
.count
= count
;
1400 desc
->chn_count
+= count
;
1401 bd
->mode
.command
= 0;
1408 param
= BD_DONE
| BD_EXTD
| BD_CONT
;
1416 dev_dbg(sdma
->dev
, "entry %d: count: %zd dma: 0x%x %s%s\n",
1417 i
, count
, bd
->buffer_addr
,
1418 param
& BD_WRAP
? "wrap" : "",
1419 param
& BD_INTR
? " intr" : "");
1421 bd
->mode
.status
= param
;
1424 return vchan_tx_prep(&sdmac
->vc
, &desc
->vd
, flags
);
1427 static struct dma_async_tx_descriptor
*sdma_prep_slave_sg(
1428 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1429 unsigned int sg_len
, enum dma_transfer_direction direction
,
1430 unsigned long flags
, void *context
)
1432 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1433 struct sdma_engine
*sdma
= sdmac
->sdma
;
1435 int channel
= sdmac
->channel
;
1436 struct scatterlist
*sg
;
1437 struct sdma_desc
*desc
;
1439 sdma_config_write(chan
, &sdmac
->slave_config
, direction
);
1441 desc
= sdma_transfer_init(sdmac
, direction
, sg_len
);
1445 dev_dbg(sdma
->dev
, "setting up %d entries for channel %d.\n",
1448 for_each_sg(sgl
, sg
, sg_len
, i
) {
1449 struct sdma_buffer_descriptor
*bd
= &desc
->bd
[i
];
1452 bd
->buffer_addr
= sg
->dma_address
;
1454 count
= sg_dma_len(sg
);
1456 if (count
> SDMA_BD_MAX_CNT
) {
1457 dev_err(sdma
->dev
, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1458 channel
, count
, SDMA_BD_MAX_CNT
);
1462 bd
->mode
.count
= count
;
1463 desc
->chn_count
+= count
;
1465 if (sdmac
->word_size
> DMA_SLAVE_BUSWIDTH_4_BYTES
)
1468 switch (sdmac
->word_size
) {
1469 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1470 bd
->mode
.command
= 0;
1471 if (count
& 3 || sg
->dma_address
& 3)
1474 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1475 bd
->mode
.command
= 2;
1476 if (count
& 1 || sg
->dma_address
& 1)
1479 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1480 bd
->mode
.command
= 1;
1486 param
= BD_DONE
| BD_EXTD
| BD_CONT
;
1488 if (i
+ 1 == sg_len
) {
1494 dev_dbg(sdma
->dev
, "entry %d: count: %d dma: %#llx %s%s\n",
1495 i
, count
, (u64
)sg
->dma_address
,
1496 param
& BD_WRAP
? "wrap" : "",
1497 param
& BD_INTR
? " intr" : "");
1499 bd
->mode
.status
= param
;
1502 return vchan_tx_prep(&sdmac
->vc
, &desc
->vd
, flags
);
1507 sdmac
->status
= DMA_ERROR
;
1511 static struct dma_async_tx_descriptor
*sdma_prep_dma_cyclic(
1512 struct dma_chan
*chan
, dma_addr_t dma_addr
, size_t buf_len
,
1513 size_t period_len
, enum dma_transfer_direction direction
,
1514 unsigned long flags
)
1516 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1517 struct sdma_engine
*sdma
= sdmac
->sdma
;
1518 int num_periods
= buf_len
/ period_len
;
1519 int channel
= sdmac
->channel
;
1521 struct sdma_desc
*desc
;
1523 dev_dbg(sdma
->dev
, "%s channel: %d\n", __func__
, channel
);
1525 sdma_config_write(chan
, &sdmac
->slave_config
, direction
);
1527 desc
= sdma_transfer_init(sdmac
, direction
, num_periods
);
1531 desc
->period_len
= period_len
;
1533 sdmac
->flags
|= IMX_DMA_SG_LOOP
;
1535 if (period_len
> SDMA_BD_MAX_CNT
) {
1536 dev_err(sdma
->dev
, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1537 channel
, period_len
, SDMA_BD_MAX_CNT
);
1541 while (buf
< buf_len
) {
1542 struct sdma_buffer_descriptor
*bd
= &desc
->bd
[i
];
1545 bd
->buffer_addr
= dma_addr
;
1547 bd
->mode
.count
= period_len
;
1549 if (sdmac
->word_size
> DMA_SLAVE_BUSWIDTH_4_BYTES
)
1551 if (sdmac
->word_size
== DMA_SLAVE_BUSWIDTH_4_BYTES
)
1552 bd
->mode
.command
= 0;
1554 bd
->mode
.command
= sdmac
->word_size
;
1556 param
= BD_DONE
| BD_EXTD
| BD_CONT
| BD_INTR
;
1557 if (i
+ 1 == num_periods
)
1560 dev_dbg(sdma
->dev
, "entry %d: count: %zu dma: %#llx %s%s\n",
1561 i
, period_len
, (u64
)dma_addr
,
1562 param
& BD_WRAP
? "wrap" : "",
1563 param
& BD_INTR
? " intr" : "");
1565 bd
->mode
.status
= param
;
1567 dma_addr
+= period_len
;
1573 return vchan_tx_prep(&sdmac
->vc
, &desc
->vd
, flags
);
1578 sdmac
->status
= DMA_ERROR
;
1582 static int sdma_config_write(struct dma_chan
*chan
,
1583 struct dma_slave_config
*dmaengine_cfg
,
1584 enum dma_transfer_direction direction
)
1586 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1588 if (direction
== DMA_DEV_TO_MEM
) {
1589 sdmac
->per_address
= dmaengine_cfg
->src_addr
;
1590 sdmac
->watermark_level
= dmaengine_cfg
->src_maxburst
*
1591 dmaengine_cfg
->src_addr_width
;
1592 sdmac
->word_size
= dmaengine_cfg
->src_addr_width
;
1593 } else if (direction
== DMA_DEV_TO_DEV
) {
1594 sdmac
->per_address2
= dmaengine_cfg
->src_addr
;
1595 sdmac
->per_address
= dmaengine_cfg
->dst_addr
;
1596 sdmac
->watermark_level
= dmaengine_cfg
->src_maxburst
&
1597 SDMA_WATERMARK_LEVEL_LWML
;
1598 sdmac
->watermark_level
|= (dmaengine_cfg
->dst_maxburst
<< 16) &
1599 SDMA_WATERMARK_LEVEL_HWML
;
1600 sdmac
->word_size
= dmaengine_cfg
->dst_addr_width
;
1602 sdmac
->per_address
= dmaengine_cfg
->dst_addr
;
1603 sdmac
->watermark_level
= dmaengine_cfg
->dst_maxburst
*
1604 dmaengine_cfg
->dst_addr_width
;
1605 sdmac
->word_size
= dmaengine_cfg
->dst_addr_width
;
1607 sdmac
->direction
= direction
;
1608 return sdma_config_channel(chan
);
1611 static int sdma_config(struct dma_chan
*chan
,
1612 struct dma_slave_config
*dmaengine_cfg
)
1614 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1616 memcpy(&sdmac
->slave_config
, dmaengine_cfg
, sizeof(*dmaengine_cfg
));
1618 /* Set ENBLn earlier to make sure dma request triggered after that */
1619 if (sdmac
->event_id0
) {
1620 if (sdmac
->event_id0
>= sdmac
->sdma
->drvdata
->num_events
)
1622 sdma_event_enable(sdmac
, sdmac
->event_id0
);
1625 if (sdmac
->event_id1
) {
1626 if (sdmac
->event_id1
>= sdmac
->sdma
->drvdata
->num_events
)
1628 sdma_event_enable(sdmac
, sdmac
->event_id1
);
1634 static enum dma_status
sdma_tx_status(struct dma_chan
*chan
,
1635 dma_cookie_t cookie
,
1636 struct dma_tx_state
*txstate
)
1638 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1639 struct sdma_desc
*desc
;
1641 struct virt_dma_desc
*vd
;
1642 enum dma_status ret
;
1643 unsigned long flags
;
1645 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1646 if (ret
== DMA_COMPLETE
|| !txstate
)
1649 spin_lock_irqsave(&sdmac
->vc
.lock
, flags
);
1650 vd
= vchan_find_desc(&sdmac
->vc
, cookie
);
1652 desc
= to_sdma_desc(&vd
->tx
);
1653 if (sdmac
->flags
& IMX_DMA_SG_LOOP
)
1654 residue
= (desc
->num_bd
- desc
->buf_ptail
) *
1655 desc
->period_len
- desc
->chn_real_count
;
1657 residue
= desc
->chn_count
- desc
->chn_real_count
;
1658 } else if (sdmac
->desc
&& sdmac
->desc
->vd
.tx
.cookie
== cookie
) {
1659 residue
= sdmac
->desc
->chn_count
- sdmac
->desc
->chn_real_count
;
1663 spin_unlock_irqrestore(&sdmac
->vc
.lock
, flags
);
1665 dma_set_tx_state(txstate
, chan
->completed_cookie
, chan
->cookie
,
1668 return sdmac
->status
;
1671 static void sdma_issue_pending(struct dma_chan
*chan
)
1673 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1674 unsigned long flags
;
1676 spin_lock_irqsave(&sdmac
->vc
.lock
, flags
);
1677 if (vchan_issue_pending(&sdmac
->vc
) && !sdmac
->desc
)
1678 sdma_start_desc(sdmac
);
1679 spin_unlock_irqrestore(&sdmac
->vc
.lock
, flags
);
1682 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1683 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1684 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1685 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1687 static void sdma_add_scripts(struct sdma_engine
*sdma
,
1688 const struct sdma_script_start_addrs
*addr
)
1690 s32
*addr_arr
= (u32
*)addr
;
1691 s32
*saddr_arr
= (u32
*)sdma
->script_addrs
;
1694 /* use the default firmware in ROM if missing external firmware */
1695 if (!sdma
->script_number
)
1696 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1
;
1698 for (i
= 0; i
< sdma
->script_number
; i
++)
1699 if (addr_arr
[i
] > 0)
1700 saddr_arr
[i
] = addr_arr
[i
];
1703 static void sdma_load_firmware(const struct firmware
*fw
, void *context
)
1705 struct sdma_engine
*sdma
= context
;
1706 const struct sdma_firmware_header
*header
;
1707 const struct sdma_script_start_addrs
*addr
;
1708 unsigned short *ram_code
;
1711 dev_info(sdma
->dev
, "external firmware not found, using ROM firmware\n");
1712 /* In this case we just use the ROM firmware. */
1716 if (fw
->size
< sizeof(*header
))
1719 header
= (struct sdma_firmware_header
*)fw
->data
;
1721 if (header
->magic
!= SDMA_FIRMWARE_MAGIC
)
1723 if (header
->ram_code_start
+ header
->ram_code_size
> fw
->size
)
1725 switch (header
->version_major
) {
1727 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1
;
1730 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2
;
1733 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3
;
1736 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4
;
1739 dev_err(sdma
->dev
, "unknown firmware version\n");
1743 addr
= (void *)header
+ header
->script_addrs_start
;
1744 ram_code
= (void *)header
+ header
->ram_code_start
;
1746 clk_enable(sdma
->clk_ipg
);
1747 clk_enable(sdma
->clk_ahb
);
1748 /* download the RAM image for SDMA */
1749 sdma_load_script(sdma
, ram_code
,
1750 header
->ram_code_size
,
1751 addr
->ram_code_start_addr
);
1752 clk_disable(sdma
->clk_ipg
);
1753 clk_disable(sdma
->clk_ahb
);
1755 sdma_add_scripts(sdma
, addr
);
1757 dev_info(sdma
->dev
, "loaded firmware %d.%d\n",
1758 header
->version_major
,
1759 header
->version_minor
);
1762 release_firmware(fw
);
1765 #define EVENT_REMAP_CELLS 3
1767 static int sdma_event_remap(struct sdma_engine
*sdma
)
1769 struct device_node
*np
= sdma
->dev
->of_node
;
1770 struct device_node
*gpr_np
= of_parse_phandle(np
, "gpr", 0);
1771 struct property
*event_remap
;
1773 char propname
[] = "fsl,sdma-event-remap";
1774 u32 reg
, val
, shift
, num_map
, i
;
1777 if (IS_ERR(np
) || IS_ERR(gpr_np
))
1780 event_remap
= of_find_property(np
, propname
, NULL
);
1781 num_map
= event_remap
? (event_remap
->length
/ sizeof(u32
)) : 0;
1783 dev_dbg(sdma
->dev
, "no event needs to be remapped\n");
1785 } else if (num_map
% EVENT_REMAP_CELLS
) {
1786 dev_err(sdma
->dev
, "the property %s must modulo %d\n",
1787 propname
, EVENT_REMAP_CELLS
);
1792 gpr
= syscon_node_to_regmap(gpr_np
);
1794 dev_err(sdma
->dev
, "failed to get gpr regmap\n");
1799 for (i
= 0; i
< num_map
; i
+= EVENT_REMAP_CELLS
) {
1800 ret
= of_property_read_u32_index(np
, propname
, i
, ®
);
1802 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
1807 ret
= of_property_read_u32_index(np
, propname
, i
+ 1, &shift
);
1809 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
1814 ret
= of_property_read_u32_index(np
, propname
, i
+ 2, &val
);
1816 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
1821 regmap_update_bits(gpr
, reg
, BIT(shift
), val
<< shift
);
1825 if (!IS_ERR(gpr_np
))
1826 of_node_put(gpr_np
);
1831 static int sdma_get_firmware(struct sdma_engine
*sdma
,
1832 const char *fw_name
)
1836 ret
= request_firmware_nowait(THIS_MODULE
,
1837 FW_ACTION_HOTPLUG
, fw_name
, sdma
->dev
,
1838 GFP_KERNEL
, sdma
, sdma_load_firmware
);
1843 static int sdma_init(struct sdma_engine
*sdma
)
1846 dma_addr_t ccb_phys
;
1848 ret
= clk_enable(sdma
->clk_ipg
);
1851 ret
= clk_enable(sdma
->clk_ahb
);
1853 goto disable_clk_ipg
;
1855 if (clk_get_rate(sdma
->clk_ahb
) == clk_get_rate(sdma
->clk_ipg
))
1856 sdma
->clk_ratio
= 1;
1858 /* Be sure SDMA has not started yet */
1859 writel_relaxed(0, sdma
->regs
+ SDMA_H_C0PTR
);
1861 sdma
->channel_control
= dma_alloc_coherent(sdma
->dev
,
1862 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
) +
1863 sizeof(struct sdma_context_data
),
1864 &ccb_phys
, GFP_KERNEL
);
1866 if (!sdma
->channel_control
) {
1871 sdma
->context
= (void *)sdma
->channel_control
+
1872 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
);
1873 sdma
->context_phys
= ccb_phys
+
1874 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
);
1876 /* Zero-out the CCB structures array just allocated */
1877 memset(sdma
->channel_control
, 0,
1878 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
));
1880 /* disable all channels */
1881 for (i
= 0; i
< sdma
->drvdata
->num_events
; i
++)
1882 writel_relaxed(0, sdma
->regs
+ chnenbl_ofs(sdma
, i
));
1884 /* All channels have priority 0 */
1885 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++)
1886 writel_relaxed(0, sdma
->regs
+ SDMA_CHNPRI_0
+ i
* 4);
1888 ret
= sdma_request_channel0(sdma
);
1892 sdma_config_ownership(&sdma
->channel
[0], false, true, false);
1894 /* Set Command Channel (Channel Zero) */
1895 writel_relaxed(0x4050, sdma
->regs
+ SDMA_CHN0ADDR
);
1897 /* Set bits of CONFIG register but with static context switching */
1898 if (sdma
->clk_ratio
)
1899 writel_relaxed(SDMA_H_CONFIG_ACR
, sdma
->regs
+ SDMA_H_CONFIG
);
1901 writel_relaxed(0, sdma
->regs
+ SDMA_H_CONFIG
);
1903 writel_relaxed(ccb_phys
, sdma
->regs
+ SDMA_H_C0PTR
);
1905 /* Initializes channel's priorities */
1906 sdma_set_channel_priority(&sdma
->channel
[0], 7);
1908 clk_disable(sdma
->clk_ipg
);
1909 clk_disable(sdma
->clk_ahb
);
1914 clk_disable(sdma
->clk_ahb
);
1916 clk_disable(sdma
->clk_ipg
);
1917 dev_err(sdma
->dev
, "initialisation failed with %d\n", ret
);
1921 static bool sdma_filter_fn(struct dma_chan
*chan
, void *fn_param
)
1923 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1924 struct sdma_engine
*sdma
= sdmac
->sdma
;
1925 struct imx_dma_data
*data
= fn_param
;
1927 if (!imx_dma_is_general_purpose(chan
))
1930 /* return false if it's not the right device */
1931 if (sdma
->dev
->of_node
!= data
->of_node
)
1934 sdmac
->data
= *data
;
1935 chan
->private = &sdmac
->data
;
1940 static struct dma_chan
*sdma_xlate(struct of_phandle_args
*dma_spec
,
1941 struct of_dma
*ofdma
)
1943 struct sdma_engine
*sdma
= ofdma
->of_dma_data
;
1944 dma_cap_mask_t mask
= sdma
->dma_device
.cap_mask
;
1945 struct imx_dma_data data
;
1947 if (dma_spec
->args_count
!= 3)
1950 data
.dma_request
= dma_spec
->args
[0];
1951 data
.peripheral_type
= dma_spec
->args
[1];
1952 data
.priority
= dma_spec
->args
[2];
1954 * init dma_request2 to zero, which is not used by the dts.
1955 * For P2P, dma_request2 is init from dma_request_channel(),
1956 * chan->private will point to the imx_dma_data, and in
1957 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1958 * be set to sdmac->event_id1.
1960 data
.dma_request2
= 0;
1961 data
.of_node
= ofdma
->of_node
;
1963 return dma_request_channel(mask
, sdma_filter_fn
, &data
);
1966 static int sdma_probe(struct platform_device
*pdev
)
1968 const struct of_device_id
*of_id
=
1969 of_match_device(sdma_dt_ids
, &pdev
->dev
);
1970 struct device_node
*np
= pdev
->dev
.of_node
;
1971 struct device_node
*spba_bus
;
1972 const char *fw_name
;
1975 struct resource
*iores
;
1976 struct resource spba_res
;
1977 struct sdma_platform_data
*pdata
= dev_get_platdata(&pdev
->dev
);
1979 struct sdma_engine
*sdma
;
1981 const struct sdma_driver_data
*drvdata
= NULL
;
1984 drvdata
= of_id
->data
;
1985 else if (pdev
->id_entry
)
1986 drvdata
= (void *)pdev
->id_entry
->driver_data
;
1989 dev_err(&pdev
->dev
, "unable to find driver data\n");
1993 ret
= dma_coerce_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
1997 sdma
= devm_kzalloc(&pdev
->dev
, sizeof(*sdma
), GFP_KERNEL
);
2001 spin_lock_init(&sdma
->channel_0_lock
);
2003 sdma
->dev
= &pdev
->dev
;
2004 sdma
->drvdata
= drvdata
;
2006 irq
= platform_get_irq(pdev
, 0);
2010 iores
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2011 sdma
->regs
= devm_ioremap_resource(&pdev
->dev
, iores
);
2012 if (IS_ERR(sdma
->regs
))
2013 return PTR_ERR(sdma
->regs
);
2015 sdma
->clk_ipg
= devm_clk_get(&pdev
->dev
, "ipg");
2016 if (IS_ERR(sdma
->clk_ipg
))
2017 return PTR_ERR(sdma
->clk_ipg
);
2019 sdma
->clk_ahb
= devm_clk_get(&pdev
->dev
, "ahb");
2020 if (IS_ERR(sdma
->clk_ahb
))
2021 return PTR_ERR(sdma
->clk_ahb
);
2023 ret
= clk_prepare(sdma
->clk_ipg
);
2027 ret
= clk_prepare(sdma
->clk_ahb
);
2031 ret
= devm_request_irq(&pdev
->dev
, irq
, sdma_int_handler
, 0, "sdma",
2038 sdma
->script_addrs
= kzalloc(sizeof(*sdma
->script_addrs
), GFP_KERNEL
);
2039 if (!sdma
->script_addrs
) {
2044 /* initially no scripts available */
2045 saddr_arr
= (s32
*)sdma
->script_addrs
;
2046 for (i
= 0; i
< SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1
; i
++)
2047 saddr_arr
[i
] = -EINVAL
;
2049 dma_cap_set(DMA_SLAVE
, sdma
->dma_device
.cap_mask
);
2050 dma_cap_set(DMA_CYCLIC
, sdma
->dma_device
.cap_mask
);
2051 dma_cap_set(DMA_MEMCPY
, sdma
->dma_device
.cap_mask
);
2053 INIT_LIST_HEAD(&sdma
->dma_device
.channels
);
2054 /* Initialize channel parameters */
2055 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++) {
2056 struct sdma_channel
*sdmac
= &sdma
->channel
[i
];
2061 sdmac
->vc
.desc_free
= sdma_desc_free
;
2062 INIT_WORK(&sdmac
->terminate_worker
,
2063 sdma_channel_terminate_work
);
2065 * Add the channel to the DMAC list. Do not add channel 0 though
2066 * because we need it internally in the SDMA driver. This also means
2067 * that channel 0 in dmaengine counting matches sdma channel 1.
2070 vchan_init(&sdmac
->vc
, &sdma
->dma_device
);
2073 ret
= sdma_init(sdma
);
2077 ret
= sdma_event_remap(sdma
);
2081 if (sdma
->drvdata
->script_addrs
)
2082 sdma_add_scripts(sdma
, sdma
->drvdata
->script_addrs
);
2083 if (pdata
&& pdata
->script_addrs
)
2084 sdma_add_scripts(sdma
, pdata
->script_addrs
);
2087 ret
= sdma_get_firmware(sdma
, pdata
->fw_name
);
2089 dev_warn(&pdev
->dev
, "failed to get firmware from platform data\n");
2092 * Because that device tree does not encode ROM script address,
2093 * the RAM script in firmware is mandatory for device tree
2094 * probe, otherwise it fails.
2096 ret
= of_property_read_string(np
, "fsl,sdma-ram-script-name",
2099 dev_warn(&pdev
->dev
, "failed to get firmware name\n");
2101 ret
= sdma_get_firmware(sdma
, fw_name
);
2103 dev_warn(&pdev
->dev
, "failed to get firmware from device tree\n");
2107 sdma
->dma_device
.dev
= &pdev
->dev
;
2109 sdma
->dma_device
.device_alloc_chan_resources
= sdma_alloc_chan_resources
;
2110 sdma
->dma_device
.device_free_chan_resources
= sdma_free_chan_resources
;
2111 sdma
->dma_device
.device_tx_status
= sdma_tx_status
;
2112 sdma
->dma_device
.device_prep_slave_sg
= sdma_prep_slave_sg
;
2113 sdma
->dma_device
.device_prep_dma_cyclic
= sdma_prep_dma_cyclic
;
2114 sdma
->dma_device
.device_config
= sdma_config
;
2115 sdma
->dma_device
.device_terminate_all
= sdma_disable_channel_async
;
2116 sdma
->dma_device
.device_synchronize
= sdma_channel_synchronize
;
2117 sdma
->dma_device
.src_addr_widths
= SDMA_DMA_BUSWIDTHS
;
2118 sdma
->dma_device
.dst_addr_widths
= SDMA_DMA_BUSWIDTHS
;
2119 sdma
->dma_device
.directions
= SDMA_DMA_DIRECTIONS
;
2120 sdma
->dma_device
.residue_granularity
= DMA_RESIDUE_GRANULARITY_SEGMENT
;
2121 sdma
->dma_device
.device_prep_dma_memcpy
= sdma_prep_memcpy
;
2122 sdma
->dma_device
.device_issue_pending
= sdma_issue_pending
;
2123 sdma
->dma_device
.dev
->dma_parms
= &sdma
->dma_parms
;
2124 sdma
->dma_device
.copy_align
= 2;
2125 dma_set_max_seg_size(sdma
->dma_device
.dev
, SDMA_BD_MAX_CNT
);
2127 platform_set_drvdata(pdev
, sdma
);
2129 ret
= dma_async_device_register(&sdma
->dma_device
);
2131 dev_err(&pdev
->dev
, "unable to register\n");
2136 ret
= of_dma_controller_register(np
, sdma_xlate
, sdma
);
2138 dev_err(&pdev
->dev
, "failed to register controller\n");
2142 spba_bus
= of_find_compatible_node(NULL
, NULL
, "fsl,spba-bus");
2143 ret
= of_address_to_resource(spba_bus
, 0, &spba_res
);
2145 sdma
->spba_start_addr
= spba_res
.start
;
2146 sdma
->spba_end_addr
= spba_res
.end
;
2148 of_node_put(spba_bus
);
2154 dma_async_device_unregister(&sdma
->dma_device
);
2156 kfree(sdma
->script_addrs
);
2158 clk_unprepare(sdma
->clk_ahb
);
2160 clk_unprepare(sdma
->clk_ipg
);
2164 static int sdma_remove(struct platform_device
*pdev
)
2166 struct sdma_engine
*sdma
= platform_get_drvdata(pdev
);
2169 devm_free_irq(&pdev
->dev
, sdma
->irq
, sdma
);
2170 dma_async_device_unregister(&sdma
->dma_device
);
2171 kfree(sdma
->script_addrs
);
2172 clk_unprepare(sdma
->clk_ahb
);
2173 clk_unprepare(sdma
->clk_ipg
);
2174 /* Kill the tasklet */
2175 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++) {
2176 struct sdma_channel
*sdmac
= &sdma
->channel
[i
];
2178 tasklet_kill(&sdmac
->vc
.task
);
2179 sdma_free_chan_resources(&sdmac
->vc
.chan
);
2182 platform_set_drvdata(pdev
, NULL
);
2186 static struct platform_driver sdma_driver
= {
2189 .of_match_table
= sdma_dt_ids
,
2191 .id_table
= sdma_devtypes
,
2192 .remove
= sdma_remove
,
2193 .probe
= sdma_probe
,
2196 module_platform_driver(sdma_driver
);
2198 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2199 MODULE_DESCRIPTION("i.MX SDMA driver");
2200 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2201 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2203 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2204 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2206 MODULE_LICENSE("GPL");