regulator: s2mps11: Adjust supported buck voltages to real values
[linux/fpc-iii.git] / drivers / dma / imx-sdma.c
blob5f3c1378b90ebf242334cee0130630e32af037e3
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
44 #include "dmaengine.h"
45 #include "virt-dma.h"
47 /* SDMA registers */
48 #define SDMA_H_C0PTR 0x000
49 #define SDMA_H_INTR 0x004
50 #define SDMA_H_STATSTOP 0x008
51 #define SDMA_H_START 0x00c
52 #define SDMA_H_EVTOVR 0x010
53 #define SDMA_H_DSPOVR 0x014
54 #define SDMA_H_HOSTOVR 0x018
55 #define SDMA_H_EVTPEND 0x01c
56 #define SDMA_H_DSPENBL 0x020
57 #define SDMA_H_RESET 0x024
58 #define SDMA_H_EVTERR 0x028
59 #define SDMA_H_INTRMSK 0x02c
60 #define SDMA_H_PSW 0x030
61 #define SDMA_H_EVTERRDBG 0x034
62 #define SDMA_H_CONFIG 0x038
63 #define SDMA_ONCE_ENB 0x040
64 #define SDMA_ONCE_DATA 0x044
65 #define SDMA_ONCE_INSTR 0x048
66 #define SDMA_ONCE_STAT 0x04c
67 #define SDMA_ONCE_CMD 0x050
68 #define SDMA_EVT_MIRROR 0x054
69 #define SDMA_ILLINSTADDR 0x058
70 #define SDMA_CHN0ADDR 0x05c
71 #define SDMA_ONCE_RTB 0x060
72 #define SDMA_XTRIG_CONF1 0x070
73 #define SDMA_XTRIG_CONF2 0x074
74 #define SDMA_CHNENBL0_IMX35 0x200
75 #define SDMA_CHNENBL0_IMX31 0x080
76 #define SDMA_CHNPRI_0 0x100
79 * Buffer descriptor status values.
81 #define BD_DONE 0x01
82 #define BD_WRAP 0x02
83 #define BD_CONT 0x04
84 #define BD_INTR 0x08
85 #define BD_RROR 0x10
86 #define BD_LAST 0x20
87 #define BD_EXTD 0x80
90 * Data Node descriptor status values.
92 #define DND_END_OF_FRAME 0x80
93 #define DND_END_OF_XFER 0x40
94 #define DND_DONE 0x20
95 #define DND_UNUSED 0x01
98 * IPCV2 descriptor status values.
100 #define BD_IPCV2_END_OF_FRAME 0x40
102 #define IPCV2_MAX_NODES 50
104 * Error bit set in the CCB status field by the SDMA,
105 * in setbd routine, in case of a transfer error
107 #define DATA_ERROR 0x10000000
110 * Buffer descriptor commands.
112 #define C0_ADDR 0x01
113 #define C0_LOAD 0x02
114 #define C0_DUMP 0x03
115 #define C0_SETCTX 0x07
116 #define C0_GETCTX 0x03
117 #define C0_SETDM 0x01
118 #define C0_SETPM 0x04
119 #define C0_GETDM 0x02
120 #define C0_GETPM 0x08
122 * Change endianness indicator in the BD command field
124 #define CHANGE_ENDIANNESS 0x80
127 * p_2_p watermark_level description
128 * Bits Name Description
129 * 0-7 Lower WML Lower watermark level
130 * 8 PS 1: Pad Swallowing
131 * 0: No Pad Swallowing
132 * 9 PA 1: Pad Adding
133 * 0: No Pad Adding
134 * 10 SPDIF If this bit is set both source
135 * and destination are on SPBA
136 * 11 Source Bit(SP) 1: Source on SPBA
137 * 0: Source on AIPS
138 * 12 Destination Bit(DP) 1: Destination on SPBA
139 * 0: Destination on AIPS
140 * 13-15 --------- MUST BE 0
141 * 16-23 Higher WML HWML
142 * 24-27 N Total number of samples after
143 * which Pad adding/Swallowing
144 * must be done. It must be odd.
145 * 28 Lower WML Event(LWE) SDMA events reg to check for
146 * LWML event mask
147 * 0: LWE in EVENTS register
148 * 1: LWE in EVENTS2 register
149 * 29 Higher WML Event(HWE) SDMA events reg to check for
150 * HWML event mask
151 * 0: HWE in EVENTS register
152 * 1: HWE in EVENTS2 register
153 * 30 --------- MUST BE 0
154 * 31 CONT 1: Amount of samples to be
155 * transferred is unknown and
156 * script will keep on
157 * transferring samples as long as
158 * both events are detected and
159 * script must be manually stopped
160 * by the application
161 * 0: The amount of samples to be
162 * transferred is equal to the
163 * count field of mode word
165 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
166 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
176 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
180 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
181 BIT(DMA_MEM_TO_DEV) | \
182 BIT(DMA_DEV_TO_DEV))
185 * Mode/Count of data node descriptors - IPCv2
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT 0xffff
189 u32 count : 16; /* size of the buffer pointed by this BD */
190 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
191 u32 command : 8; /* command mostly used for channel 0 */
195 * Buffer descriptor
197 struct sdma_buffer_descriptor {
198 struct sdma_mode_count mode;
199 u32 buffer_addr; /* address of the buffer described */
200 u32 ext_buffer_addr; /* extended buffer address */
201 } __attribute__ ((packed));
204 * struct sdma_channel_control - Channel control Block
206 * @current_bd_ptr: current buffer descriptor processed
207 * @base_bd_ptr: first element of buffer descriptor array
208 * @unused: padding. The SDMA engine expects an array of 128 byte
209 * control blocks
211 struct sdma_channel_control {
212 u32 current_bd_ptr;
213 u32 base_bd_ptr;
214 u32 unused[2];
215 } __attribute__ ((packed));
218 * struct sdma_state_registers - SDMA context for a channel
220 * @pc: program counter
221 * @unused1: unused
222 * @t: test bit: status of arithmetic & test instruction
223 * @rpc: return program counter
224 * @unused0: unused
225 * @sf: source fault while loading data
226 * @spc: loop start program counter
227 * @unused2: unused
228 * @df: destination fault while storing data
229 * @epc: loop end program counter
230 * @lm: loop mode
232 struct sdma_state_registers {
233 u32 pc :14;
234 u32 unused1: 1;
235 u32 t : 1;
236 u32 rpc :14;
237 u32 unused0: 1;
238 u32 sf : 1;
239 u32 spc :14;
240 u32 unused2: 1;
241 u32 df : 1;
242 u32 epc :14;
243 u32 lm : 2;
244 } __attribute__ ((packed));
247 * struct sdma_context_data - sdma context specific to a channel
249 * @channel_state: channel state bits
250 * @gReg: general registers
251 * @mda: burst dma destination address register
252 * @msa: burst dma source address register
253 * @ms: burst dma status register
254 * @md: burst dma data register
255 * @pda: peripheral dma destination address register
256 * @psa: peripheral dma source address register
257 * @ps: peripheral dma status register
258 * @pd: peripheral dma data register
259 * @ca: CRC polynomial register
260 * @cs: CRC accumulator register
261 * @dda: dedicated core destination address register
262 * @dsa: dedicated core source address register
263 * @ds: dedicated core status register
264 * @dd: dedicated core data register
265 * @scratch0: 1st word of dedicated ram for context switch
266 * @scratch1: 2nd word of dedicated ram for context switch
267 * @scratch2: 3rd word of dedicated ram for context switch
268 * @scratch3: 4th word of dedicated ram for context switch
269 * @scratch4: 5th word of dedicated ram for context switch
270 * @scratch5: 6th word of dedicated ram for context switch
271 * @scratch6: 7th word of dedicated ram for context switch
272 * @scratch7: 8th word of dedicated ram for context switch
274 struct sdma_context_data {
275 struct sdma_state_registers channel_state;
276 u32 gReg[8];
277 u32 mda;
278 u32 msa;
279 u32 ms;
280 u32 md;
281 u32 pda;
282 u32 psa;
283 u32 ps;
284 u32 pd;
285 u32 ca;
286 u32 cs;
287 u32 dda;
288 u32 dsa;
289 u32 ds;
290 u32 dd;
291 u32 scratch0;
292 u32 scratch1;
293 u32 scratch2;
294 u32 scratch3;
295 u32 scratch4;
296 u32 scratch5;
297 u32 scratch6;
298 u32 scratch7;
299 } __attribute__ ((packed));
302 struct sdma_engine;
305 * struct sdma_desc - descriptor structor for one transfer
306 * @vd: descriptor for virt dma
307 * @num_bd: number of descriptors currently handling
308 * @bd_phys: physical address of bd
309 * @buf_tail: ID of the buffer that was processed
310 * @buf_ptail: ID of the previous buffer that was processed
311 * @period_len: period length, used in cyclic.
312 * @chn_real_count: the real count updated from bd->mode.count
313 * @chn_count: the transfer count set
314 * @sdmac: sdma_channel pointer
315 * @bd: pointer of allocate bd
317 struct sdma_desc {
318 struct virt_dma_desc vd;
319 unsigned int num_bd;
320 dma_addr_t bd_phys;
321 unsigned int buf_tail;
322 unsigned int buf_ptail;
323 unsigned int period_len;
324 unsigned int chn_real_count;
325 unsigned int chn_count;
326 struct sdma_channel *sdmac;
327 struct sdma_buffer_descriptor *bd;
331 * struct sdma_channel - housekeeping for a SDMA channel
333 * @vc: virt_dma base structure
334 * @desc: sdma description including vd and other special member
335 * @sdma: pointer to the SDMA engine for this channel
336 * @channel: the channel number, matches dmaengine chan_id + 1
337 * @direction: transfer type. Needed for setting SDMA script
338 * @slave_config Slave configuration
339 * @peripheral_type: Peripheral type. Needed for setting SDMA script
340 * @event_id0: aka dma request line
341 * @event_id1: for channels that use 2 events
342 * @word_size: peripheral access size
343 * @pc_from_device: script address for those device_2_memory
344 * @pc_to_device: script address for those memory_2_device
345 * @device_to_device: script address for those device_2_device
346 * @pc_to_pc: script address for those memory_2_memory
347 * @flags: loop mode or not
348 * @per_address: peripheral source or destination address in common case
349 * destination address in p_2_p case
350 * @per_address2: peripheral source address in p_2_p case
351 * @event_mask: event mask used in p_2_p script
352 * @watermark_level: value for gReg[7], some script will extend it from
353 * basic watermark such as p_2_p
354 * @shp_addr: value for gReg[6]
355 * @per_addr: value for gReg[2]
356 * @status: status of dma channel
357 * @data: specific sdma interface structure
358 * @bd_pool: dma_pool for bd
360 struct sdma_channel {
361 struct virt_dma_chan vc;
362 struct sdma_desc *desc;
363 struct sdma_engine *sdma;
364 unsigned int channel;
365 enum dma_transfer_direction direction;
366 struct dma_slave_config slave_config;
367 enum sdma_peripheral_type peripheral_type;
368 unsigned int event_id0;
369 unsigned int event_id1;
370 enum dma_slave_buswidth word_size;
371 unsigned int pc_from_device, pc_to_device;
372 unsigned int device_to_device;
373 unsigned int pc_to_pc;
374 unsigned long flags;
375 dma_addr_t per_address, per_address2;
376 unsigned long event_mask[2];
377 unsigned long watermark_level;
378 u32 shp_addr, per_addr;
379 enum dma_status status;
380 bool context_loaded;
381 struct imx_dma_data data;
382 struct work_struct terminate_worker;
385 #define IMX_DMA_SG_LOOP BIT(0)
387 #define MAX_DMA_CHANNELS 32
388 #define MXC_SDMA_DEFAULT_PRIORITY 1
389 #define MXC_SDMA_MIN_PRIORITY 1
390 #define MXC_SDMA_MAX_PRIORITY 7
392 #define SDMA_FIRMWARE_MAGIC 0x414d4453
395 * struct sdma_firmware_header - Layout of the firmware image
397 * @magic: "SDMA"
398 * @version_major: increased whenever layout of struct
399 * sdma_script_start_addrs changes.
400 * @version_minor: firmware minor version (for binary compatible changes)
401 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
402 * @num_script_addrs: Number of script addresses in this image
403 * @ram_code_start: offset of SDMA ram image in this firmware image
404 * @ram_code_size: size of SDMA ram image
405 * @script_addrs: Stores the start address of the SDMA scripts
406 * (in SDMA memory space)
408 struct sdma_firmware_header {
409 u32 magic;
410 u32 version_major;
411 u32 version_minor;
412 u32 script_addrs_start;
413 u32 num_script_addrs;
414 u32 ram_code_start;
415 u32 ram_code_size;
418 struct sdma_driver_data {
419 int chnenbl0;
420 int num_events;
421 struct sdma_script_start_addrs *script_addrs;
424 struct sdma_engine {
425 struct device *dev;
426 struct device_dma_parameters dma_parms;
427 struct sdma_channel channel[MAX_DMA_CHANNELS];
428 struct sdma_channel_control *channel_control;
429 void __iomem *regs;
430 struct sdma_context_data *context;
431 dma_addr_t context_phys;
432 struct dma_device dma_device;
433 struct clk *clk_ipg;
434 struct clk *clk_ahb;
435 spinlock_t channel_0_lock;
436 u32 script_number;
437 struct sdma_script_start_addrs *script_addrs;
438 const struct sdma_driver_data *drvdata;
439 u32 spba_start_addr;
440 u32 spba_end_addr;
441 unsigned int irq;
442 dma_addr_t bd0_phys;
443 struct sdma_buffer_descriptor *bd0;
444 /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
445 bool clk_ratio;
448 static int sdma_config_write(struct dma_chan *chan,
449 struct dma_slave_config *dmaengine_cfg,
450 enum dma_transfer_direction direction);
452 static struct sdma_driver_data sdma_imx31 = {
453 .chnenbl0 = SDMA_CHNENBL0_IMX31,
454 .num_events = 32,
457 static struct sdma_script_start_addrs sdma_script_imx25 = {
458 .ap_2_ap_addr = 729,
459 .uart_2_mcu_addr = 904,
460 .per_2_app_addr = 1255,
461 .mcu_2_app_addr = 834,
462 .uartsh_2_mcu_addr = 1120,
463 .per_2_shp_addr = 1329,
464 .mcu_2_shp_addr = 1048,
465 .ata_2_mcu_addr = 1560,
466 .mcu_2_ata_addr = 1479,
467 .app_2_per_addr = 1189,
468 .app_2_mcu_addr = 770,
469 .shp_2_per_addr = 1407,
470 .shp_2_mcu_addr = 979,
473 static struct sdma_driver_data sdma_imx25 = {
474 .chnenbl0 = SDMA_CHNENBL0_IMX35,
475 .num_events = 48,
476 .script_addrs = &sdma_script_imx25,
479 static struct sdma_driver_data sdma_imx35 = {
480 .chnenbl0 = SDMA_CHNENBL0_IMX35,
481 .num_events = 48,
484 static struct sdma_script_start_addrs sdma_script_imx51 = {
485 .ap_2_ap_addr = 642,
486 .uart_2_mcu_addr = 817,
487 .mcu_2_app_addr = 747,
488 .mcu_2_shp_addr = 961,
489 .ata_2_mcu_addr = 1473,
490 .mcu_2_ata_addr = 1392,
491 .app_2_per_addr = 1033,
492 .app_2_mcu_addr = 683,
493 .shp_2_per_addr = 1251,
494 .shp_2_mcu_addr = 892,
497 static struct sdma_driver_data sdma_imx51 = {
498 .chnenbl0 = SDMA_CHNENBL0_IMX35,
499 .num_events = 48,
500 .script_addrs = &sdma_script_imx51,
503 static struct sdma_script_start_addrs sdma_script_imx53 = {
504 .ap_2_ap_addr = 642,
505 .app_2_mcu_addr = 683,
506 .mcu_2_app_addr = 747,
507 .uart_2_mcu_addr = 817,
508 .shp_2_mcu_addr = 891,
509 .mcu_2_shp_addr = 960,
510 .uartsh_2_mcu_addr = 1032,
511 .spdif_2_mcu_addr = 1100,
512 .mcu_2_spdif_addr = 1134,
513 .firi_2_mcu_addr = 1193,
514 .mcu_2_firi_addr = 1290,
517 static struct sdma_driver_data sdma_imx53 = {
518 .chnenbl0 = SDMA_CHNENBL0_IMX35,
519 .num_events = 48,
520 .script_addrs = &sdma_script_imx53,
523 static struct sdma_script_start_addrs sdma_script_imx6q = {
524 .ap_2_ap_addr = 642,
525 .uart_2_mcu_addr = 817,
526 .mcu_2_app_addr = 747,
527 .per_2_per_addr = 6331,
528 .uartsh_2_mcu_addr = 1032,
529 .mcu_2_shp_addr = 960,
530 .app_2_mcu_addr = 683,
531 .shp_2_mcu_addr = 891,
532 .spdif_2_mcu_addr = 1100,
533 .mcu_2_spdif_addr = 1134,
536 static struct sdma_driver_data sdma_imx6q = {
537 .chnenbl0 = SDMA_CHNENBL0_IMX35,
538 .num_events = 48,
539 .script_addrs = &sdma_script_imx6q,
542 static struct sdma_script_start_addrs sdma_script_imx7d = {
543 .ap_2_ap_addr = 644,
544 .uart_2_mcu_addr = 819,
545 .mcu_2_app_addr = 749,
546 .uartsh_2_mcu_addr = 1034,
547 .mcu_2_shp_addr = 962,
548 .app_2_mcu_addr = 685,
549 .shp_2_mcu_addr = 893,
550 .spdif_2_mcu_addr = 1102,
551 .mcu_2_spdif_addr = 1136,
554 static struct sdma_driver_data sdma_imx7d = {
555 .chnenbl0 = SDMA_CHNENBL0_IMX35,
556 .num_events = 48,
557 .script_addrs = &sdma_script_imx7d,
560 static const struct platform_device_id sdma_devtypes[] = {
562 .name = "imx25-sdma",
563 .driver_data = (unsigned long)&sdma_imx25,
564 }, {
565 .name = "imx31-sdma",
566 .driver_data = (unsigned long)&sdma_imx31,
567 }, {
568 .name = "imx35-sdma",
569 .driver_data = (unsigned long)&sdma_imx35,
570 }, {
571 .name = "imx51-sdma",
572 .driver_data = (unsigned long)&sdma_imx51,
573 }, {
574 .name = "imx53-sdma",
575 .driver_data = (unsigned long)&sdma_imx53,
576 }, {
577 .name = "imx6q-sdma",
578 .driver_data = (unsigned long)&sdma_imx6q,
579 }, {
580 .name = "imx7d-sdma",
581 .driver_data = (unsigned long)&sdma_imx7d,
582 }, {
583 /* sentinel */
586 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
588 static const struct of_device_id sdma_dt_ids[] = {
589 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
590 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
591 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
592 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
593 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
594 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
595 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
596 { /* sentinel */ }
598 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
600 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
601 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
602 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
603 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
605 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
607 u32 chnenbl0 = sdma->drvdata->chnenbl0;
608 return chnenbl0 + event * 4;
611 static int sdma_config_ownership(struct sdma_channel *sdmac,
612 bool event_override, bool mcu_override, bool dsp_override)
614 struct sdma_engine *sdma = sdmac->sdma;
615 int channel = sdmac->channel;
616 unsigned long evt, mcu, dsp;
618 if (event_override && mcu_override && dsp_override)
619 return -EINVAL;
621 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
622 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
623 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
625 if (dsp_override)
626 __clear_bit(channel, &dsp);
627 else
628 __set_bit(channel, &dsp);
630 if (event_override)
631 __clear_bit(channel, &evt);
632 else
633 __set_bit(channel, &evt);
635 if (mcu_override)
636 __clear_bit(channel, &mcu);
637 else
638 __set_bit(channel, &mcu);
640 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
641 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
642 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
644 return 0;
647 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
649 writel(BIT(channel), sdma->regs + SDMA_H_START);
653 * sdma_run_channel0 - run a channel and wait till it's done
655 static int sdma_run_channel0(struct sdma_engine *sdma)
657 int ret;
658 u32 reg;
660 sdma_enable_channel(sdma, 0);
662 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
663 reg, !(reg & 1), 1, 500);
664 if (ret)
665 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
667 /* Set bits of CONFIG register with dynamic context switching */
668 reg = readl(sdma->regs + SDMA_H_CONFIG);
669 if ((reg & SDMA_H_CONFIG_CSM) == 0) {
670 reg |= SDMA_H_CONFIG_CSM;
671 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
674 return ret;
677 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
678 u32 address)
680 struct sdma_buffer_descriptor *bd0 = sdma->bd0;
681 void *buf_virt;
682 dma_addr_t buf_phys;
683 int ret;
684 unsigned long flags;
686 buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
687 if (!buf_virt) {
688 return -ENOMEM;
691 spin_lock_irqsave(&sdma->channel_0_lock, flags);
693 bd0->mode.command = C0_SETPM;
694 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
695 bd0->mode.count = size / 2;
696 bd0->buffer_addr = buf_phys;
697 bd0->ext_buffer_addr = address;
699 memcpy(buf_virt, buf, size);
701 ret = sdma_run_channel0(sdma);
703 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
705 dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
707 return ret;
710 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
712 struct sdma_engine *sdma = sdmac->sdma;
713 int channel = sdmac->channel;
714 unsigned long val;
715 u32 chnenbl = chnenbl_ofs(sdma, event);
717 val = readl_relaxed(sdma->regs + chnenbl);
718 __set_bit(channel, &val);
719 writel_relaxed(val, sdma->regs + chnenbl);
722 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
724 struct sdma_engine *sdma = sdmac->sdma;
725 int channel = sdmac->channel;
726 u32 chnenbl = chnenbl_ofs(sdma, event);
727 unsigned long val;
729 val = readl_relaxed(sdma->regs + chnenbl);
730 __clear_bit(channel, &val);
731 writel_relaxed(val, sdma->regs + chnenbl);
734 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
736 return container_of(t, struct sdma_desc, vd.tx);
739 static void sdma_start_desc(struct sdma_channel *sdmac)
741 struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
742 struct sdma_desc *desc;
743 struct sdma_engine *sdma = sdmac->sdma;
744 int channel = sdmac->channel;
746 if (!vd) {
747 sdmac->desc = NULL;
748 return;
750 sdmac->desc = desc = to_sdma_desc(&vd->tx);
752 * Do not delete the node in desc_issued list in cyclic mode, otherwise
753 * the desc allocated will never be freed in vchan_dma_desc_free_list
755 if (!(sdmac->flags & IMX_DMA_SG_LOOP))
756 list_del(&vd->node);
758 sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
759 sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
760 sdma_enable_channel(sdma, sdmac->channel);
763 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
765 struct sdma_buffer_descriptor *bd;
766 int error = 0;
767 enum dma_status old_status = sdmac->status;
770 * loop mode. Iterate over descriptors, re-setup them and
771 * call callback function.
773 while (sdmac->desc) {
774 struct sdma_desc *desc = sdmac->desc;
776 bd = &desc->bd[desc->buf_tail];
778 if (bd->mode.status & BD_DONE)
779 break;
781 if (bd->mode.status & BD_RROR) {
782 bd->mode.status &= ~BD_RROR;
783 sdmac->status = DMA_ERROR;
784 error = -EIO;
788 * We use bd->mode.count to calculate the residue, since contains
789 * the number of bytes present in the current buffer descriptor.
792 desc->chn_real_count = bd->mode.count;
793 bd->mode.status |= BD_DONE;
794 bd->mode.count = desc->period_len;
795 desc->buf_ptail = desc->buf_tail;
796 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
799 * The callback is called from the interrupt context in order
800 * to reduce latency and to avoid the risk of altering the
801 * SDMA transaction status by the time the client tasklet is
802 * executed.
804 spin_unlock(&sdmac->vc.lock);
805 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
806 spin_lock(&sdmac->vc.lock);
808 if (error)
809 sdmac->status = old_status;
813 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
815 struct sdma_channel *sdmac = (struct sdma_channel *) data;
816 struct sdma_buffer_descriptor *bd;
817 int i, error = 0;
819 sdmac->desc->chn_real_count = 0;
821 * non loop mode. Iterate over all descriptors, collect
822 * errors and call callback function
824 for (i = 0; i < sdmac->desc->num_bd; i++) {
825 bd = &sdmac->desc->bd[i];
827 if (bd->mode.status & (BD_DONE | BD_RROR))
828 error = -EIO;
829 sdmac->desc->chn_real_count += bd->mode.count;
832 if (error)
833 sdmac->status = DMA_ERROR;
834 else
835 sdmac->status = DMA_COMPLETE;
838 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
840 struct sdma_engine *sdma = dev_id;
841 unsigned long stat;
843 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
844 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
845 /* channel 0 is special and not handled here, see run_channel0() */
846 stat &= ~1;
848 while (stat) {
849 int channel = fls(stat) - 1;
850 struct sdma_channel *sdmac = &sdma->channel[channel];
851 struct sdma_desc *desc;
853 spin_lock(&sdmac->vc.lock);
854 desc = sdmac->desc;
855 if (desc) {
856 if (sdmac->flags & IMX_DMA_SG_LOOP) {
857 sdma_update_channel_loop(sdmac);
858 } else {
859 mxc_sdma_handle_channel_normal(sdmac);
860 vchan_cookie_complete(&desc->vd);
861 sdma_start_desc(sdmac);
865 spin_unlock(&sdmac->vc.lock);
866 __clear_bit(channel, &stat);
869 return IRQ_HANDLED;
873 * sets the pc of SDMA script according to the peripheral type
875 static void sdma_get_pc(struct sdma_channel *sdmac,
876 enum sdma_peripheral_type peripheral_type)
878 struct sdma_engine *sdma = sdmac->sdma;
879 int per_2_emi = 0, emi_2_per = 0;
881 * These are needed once we start to support transfers between
882 * two peripherals or memory-to-memory transfers
884 int per_2_per = 0, emi_2_emi = 0;
886 sdmac->pc_from_device = 0;
887 sdmac->pc_to_device = 0;
888 sdmac->device_to_device = 0;
889 sdmac->pc_to_pc = 0;
891 switch (peripheral_type) {
892 case IMX_DMATYPE_MEMORY:
893 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
894 break;
895 case IMX_DMATYPE_DSP:
896 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
897 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
898 break;
899 case IMX_DMATYPE_FIRI:
900 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
901 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
902 break;
903 case IMX_DMATYPE_UART:
904 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
905 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
906 break;
907 case IMX_DMATYPE_UART_SP:
908 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
909 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
910 break;
911 case IMX_DMATYPE_ATA:
912 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
913 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
914 break;
915 case IMX_DMATYPE_CSPI:
916 case IMX_DMATYPE_EXT:
917 case IMX_DMATYPE_SSI:
918 case IMX_DMATYPE_SAI:
919 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
920 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
921 break;
922 case IMX_DMATYPE_SSI_DUAL:
923 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
924 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
925 break;
926 case IMX_DMATYPE_SSI_SP:
927 case IMX_DMATYPE_MMC:
928 case IMX_DMATYPE_SDHC:
929 case IMX_DMATYPE_CSPI_SP:
930 case IMX_DMATYPE_ESAI:
931 case IMX_DMATYPE_MSHC_SP:
932 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
933 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
934 break;
935 case IMX_DMATYPE_ASRC:
936 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
937 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
938 per_2_per = sdma->script_addrs->per_2_per_addr;
939 break;
940 case IMX_DMATYPE_ASRC_SP:
941 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
942 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
943 per_2_per = sdma->script_addrs->per_2_per_addr;
944 break;
945 case IMX_DMATYPE_MSHC:
946 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
947 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
948 break;
949 case IMX_DMATYPE_CCM:
950 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
951 break;
952 case IMX_DMATYPE_SPDIF:
953 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
954 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
955 break;
956 case IMX_DMATYPE_IPU_MEMORY:
957 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
958 break;
959 default:
960 break;
963 sdmac->pc_from_device = per_2_emi;
964 sdmac->pc_to_device = emi_2_per;
965 sdmac->device_to_device = per_2_per;
966 sdmac->pc_to_pc = emi_2_emi;
969 static int sdma_load_context(struct sdma_channel *sdmac)
971 struct sdma_engine *sdma = sdmac->sdma;
972 int channel = sdmac->channel;
973 int load_address;
974 struct sdma_context_data *context = sdma->context;
975 struct sdma_buffer_descriptor *bd0 = sdma->bd0;
976 int ret;
977 unsigned long flags;
979 if (sdmac->context_loaded)
980 return 0;
982 if (sdmac->direction == DMA_DEV_TO_MEM)
983 load_address = sdmac->pc_from_device;
984 else if (sdmac->direction == DMA_DEV_TO_DEV)
985 load_address = sdmac->device_to_device;
986 else if (sdmac->direction == DMA_MEM_TO_MEM)
987 load_address = sdmac->pc_to_pc;
988 else
989 load_address = sdmac->pc_to_device;
991 if (load_address < 0)
992 return load_address;
994 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
995 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
996 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
997 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
998 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
999 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1001 spin_lock_irqsave(&sdma->channel_0_lock, flags);
1003 memset(context, 0, sizeof(*context));
1004 context->channel_state.pc = load_address;
1006 /* Send by context the event mask,base address for peripheral
1007 * and watermark level
1009 context->gReg[0] = sdmac->event_mask[1];
1010 context->gReg[1] = sdmac->event_mask[0];
1011 context->gReg[2] = sdmac->per_addr;
1012 context->gReg[6] = sdmac->shp_addr;
1013 context->gReg[7] = sdmac->watermark_level;
1015 bd0->mode.command = C0_SETDM;
1016 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
1017 bd0->mode.count = sizeof(*context) / 4;
1018 bd0->buffer_addr = sdma->context_phys;
1019 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1020 ret = sdma_run_channel0(sdma);
1022 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1024 sdmac->context_loaded = true;
1026 return ret;
1029 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1031 return container_of(chan, struct sdma_channel, vc.chan);
1034 static int sdma_disable_channel(struct dma_chan *chan)
1036 struct sdma_channel *sdmac = to_sdma_chan(chan);
1037 struct sdma_engine *sdma = sdmac->sdma;
1038 int channel = sdmac->channel;
1040 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1041 sdmac->status = DMA_ERROR;
1043 return 0;
1045 static void sdma_channel_terminate_work(struct work_struct *work)
1047 struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1048 terminate_worker);
1049 unsigned long flags;
1050 LIST_HEAD(head);
1053 * According to NXP R&D team a delay of one BD SDMA cost time
1054 * (maximum is 1ms) should be added after disable of the channel
1055 * bit, to ensure SDMA core has really been stopped after SDMA
1056 * clients call .device_terminate_all.
1058 usleep_range(1000, 2000);
1060 spin_lock_irqsave(&sdmac->vc.lock, flags);
1061 vchan_get_all_descriptors(&sdmac->vc, &head);
1062 sdmac->desc = NULL;
1063 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1064 vchan_dma_desc_free_list(&sdmac->vc, &head);
1065 sdmac->context_loaded = false;
1068 static int sdma_disable_channel_async(struct dma_chan *chan)
1070 struct sdma_channel *sdmac = to_sdma_chan(chan);
1072 sdma_disable_channel(chan);
1074 if (sdmac->desc)
1075 schedule_work(&sdmac->terminate_worker);
1077 return 0;
1080 static void sdma_channel_synchronize(struct dma_chan *chan)
1082 struct sdma_channel *sdmac = to_sdma_chan(chan);
1084 vchan_synchronize(&sdmac->vc);
1086 flush_work(&sdmac->terminate_worker);
1089 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1091 struct sdma_engine *sdma = sdmac->sdma;
1093 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1094 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1096 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1097 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1099 if (sdmac->event_id0 > 31)
1100 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1102 if (sdmac->event_id1 > 31)
1103 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1106 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1107 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1108 * r0(event_mask[1]) and r1(event_mask[0]).
1110 if (lwml > hwml) {
1111 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1112 SDMA_WATERMARK_LEVEL_HWML);
1113 sdmac->watermark_level |= hwml;
1114 sdmac->watermark_level |= lwml << 16;
1115 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1118 if (sdmac->per_address2 >= sdma->spba_start_addr &&
1119 sdmac->per_address2 <= sdma->spba_end_addr)
1120 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1122 if (sdmac->per_address >= sdma->spba_start_addr &&
1123 sdmac->per_address <= sdma->spba_end_addr)
1124 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1126 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1129 static int sdma_config_channel(struct dma_chan *chan)
1131 struct sdma_channel *sdmac = to_sdma_chan(chan);
1132 int ret;
1134 sdma_disable_channel(chan);
1136 sdmac->event_mask[0] = 0;
1137 sdmac->event_mask[1] = 0;
1138 sdmac->shp_addr = 0;
1139 sdmac->per_addr = 0;
1141 switch (sdmac->peripheral_type) {
1142 case IMX_DMATYPE_DSP:
1143 sdma_config_ownership(sdmac, false, true, true);
1144 break;
1145 case IMX_DMATYPE_MEMORY:
1146 sdma_config_ownership(sdmac, false, true, false);
1147 break;
1148 default:
1149 sdma_config_ownership(sdmac, true, true, false);
1150 break;
1153 sdma_get_pc(sdmac, sdmac->peripheral_type);
1155 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1156 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1157 /* Handle multiple event channels differently */
1158 if (sdmac->event_id1) {
1159 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1160 sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1161 sdma_set_watermarklevel_for_p2p(sdmac);
1162 } else
1163 __set_bit(sdmac->event_id0, sdmac->event_mask);
1165 /* Address */
1166 sdmac->shp_addr = sdmac->per_address;
1167 sdmac->per_addr = sdmac->per_address2;
1168 } else {
1169 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1172 ret = sdma_load_context(sdmac);
1174 return ret;
1177 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1178 unsigned int priority)
1180 struct sdma_engine *sdma = sdmac->sdma;
1181 int channel = sdmac->channel;
1183 if (priority < MXC_SDMA_MIN_PRIORITY
1184 || priority > MXC_SDMA_MAX_PRIORITY) {
1185 return -EINVAL;
1188 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1190 return 0;
1193 static int sdma_request_channel0(struct sdma_engine *sdma)
1195 int ret = -EBUSY;
1197 sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1198 GFP_NOWAIT);
1199 if (!sdma->bd0) {
1200 ret = -ENOMEM;
1201 goto out;
1204 sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1205 sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1207 sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1208 return 0;
1209 out:
1211 return ret;
1215 static int sdma_alloc_bd(struct sdma_desc *desc)
1217 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1218 int ret = 0;
1220 desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1221 &desc->bd_phys, GFP_NOWAIT);
1222 if (!desc->bd) {
1223 ret = -ENOMEM;
1224 goto out;
1226 out:
1227 return ret;
1230 static void sdma_free_bd(struct sdma_desc *desc)
1232 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1234 dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1235 desc->bd_phys);
1238 static void sdma_desc_free(struct virt_dma_desc *vd)
1240 struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1242 sdma_free_bd(desc);
1243 kfree(desc);
1246 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1248 struct sdma_channel *sdmac = to_sdma_chan(chan);
1249 struct imx_dma_data *data = chan->private;
1250 struct imx_dma_data mem_data;
1251 int prio, ret;
1254 * MEMCPY may never setup chan->private by filter function such as
1255 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1256 * Please note in any other slave case, you have to setup chan->private
1257 * with 'struct imx_dma_data' in your own filter function if you want to
1258 * request dma channel by dma_request_channel() rather than
1259 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1260 * to warn you to correct your filter function.
1262 if (!data) {
1263 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1264 mem_data.priority = 2;
1265 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1266 mem_data.dma_request = 0;
1267 mem_data.dma_request2 = 0;
1268 data = &mem_data;
1270 sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1273 switch (data->priority) {
1274 case DMA_PRIO_HIGH:
1275 prio = 3;
1276 break;
1277 case DMA_PRIO_MEDIUM:
1278 prio = 2;
1279 break;
1280 case DMA_PRIO_LOW:
1281 default:
1282 prio = 1;
1283 break;
1286 sdmac->peripheral_type = data->peripheral_type;
1287 sdmac->event_id0 = data->dma_request;
1288 sdmac->event_id1 = data->dma_request2;
1290 ret = clk_enable(sdmac->sdma->clk_ipg);
1291 if (ret)
1292 return ret;
1293 ret = clk_enable(sdmac->sdma->clk_ahb);
1294 if (ret)
1295 goto disable_clk_ipg;
1297 ret = sdma_set_channel_priority(sdmac, prio);
1298 if (ret)
1299 goto disable_clk_ahb;
1301 return 0;
1303 disable_clk_ahb:
1304 clk_disable(sdmac->sdma->clk_ahb);
1305 disable_clk_ipg:
1306 clk_disable(sdmac->sdma->clk_ipg);
1307 return ret;
1310 static void sdma_free_chan_resources(struct dma_chan *chan)
1312 struct sdma_channel *sdmac = to_sdma_chan(chan);
1313 struct sdma_engine *sdma = sdmac->sdma;
1315 sdma_disable_channel_async(chan);
1317 sdma_channel_synchronize(chan);
1319 if (sdmac->event_id0)
1320 sdma_event_disable(sdmac, sdmac->event_id0);
1321 if (sdmac->event_id1)
1322 sdma_event_disable(sdmac, sdmac->event_id1);
1324 sdmac->event_id0 = 0;
1325 sdmac->event_id1 = 0;
1327 sdma_set_channel_priority(sdmac, 0);
1329 clk_disable(sdma->clk_ipg);
1330 clk_disable(sdma->clk_ahb);
1333 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1334 enum dma_transfer_direction direction, u32 bds)
1336 struct sdma_desc *desc;
1338 desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1339 if (!desc)
1340 goto err_out;
1342 sdmac->status = DMA_IN_PROGRESS;
1343 sdmac->direction = direction;
1344 sdmac->flags = 0;
1346 desc->chn_count = 0;
1347 desc->chn_real_count = 0;
1348 desc->buf_tail = 0;
1349 desc->buf_ptail = 0;
1350 desc->sdmac = sdmac;
1351 desc->num_bd = bds;
1353 if (sdma_alloc_bd(desc))
1354 goto err_desc_out;
1356 /* No slave_config called in MEMCPY case, so do here */
1357 if (direction == DMA_MEM_TO_MEM)
1358 sdma_config_ownership(sdmac, false, true, false);
1360 if (sdma_load_context(sdmac))
1361 goto err_desc_out;
1363 return desc;
1365 err_desc_out:
1366 kfree(desc);
1367 err_out:
1368 return NULL;
1371 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1372 struct dma_chan *chan, dma_addr_t dma_dst,
1373 dma_addr_t dma_src, size_t len, unsigned long flags)
1375 struct sdma_channel *sdmac = to_sdma_chan(chan);
1376 struct sdma_engine *sdma = sdmac->sdma;
1377 int channel = sdmac->channel;
1378 size_t count;
1379 int i = 0, param;
1380 struct sdma_buffer_descriptor *bd;
1381 struct sdma_desc *desc;
1383 if (!chan || !len)
1384 return NULL;
1386 dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1387 &dma_src, &dma_dst, len, channel);
1389 desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1390 len / SDMA_BD_MAX_CNT + 1);
1391 if (!desc)
1392 return NULL;
1394 do {
1395 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1396 bd = &desc->bd[i];
1397 bd->buffer_addr = dma_src;
1398 bd->ext_buffer_addr = dma_dst;
1399 bd->mode.count = count;
1400 desc->chn_count += count;
1401 bd->mode.command = 0;
1403 dma_src += count;
1404 dma_dst += count;
1405 len -= count;
1406 i++;
1408 param = BD_DONE | BD_EXTD | BD_CONT;
1409 /* last bd */
1410 if (!len) {
1411 param |= BD_INTR;
1412 param |= BD_LAST;
1413 param &= ~BD_CONT;
1416 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1417 i, count, bd->buffer_addr,
1418 param & BD_WRAP ? "wrap" : "",
1419 param & BD_INTR ? " intr" : "");
1421 bd->mode.status = param;
1422 } while (len);
1424 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1427 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1428 struct dma_chan *chan, struct scatterlist *sgl,
1429 unsigned int sg_len, enum dma_transfer_direction direction,
1430 unsigned long flags, void *context)
1432 struct sdma_channel *sdmac = to_sdma_chan(chan);
1433 struct sdma_engine *sdma = sdmac->sdma;
1434 int i, count;
1435 int channel = sdmac->channel;
1436 struct scatterlist *sg;
1437 struct sdma_desc *desc;
1439 sdma_config_write(chan, &sdmac->slave_config, direction);
1441 desc = sdma_transfer_init(sdmac, direction, sg_len);
1442 if (!desc)
1443 goto err_out;
1445 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1446 sg_len, channel);
1448 for_each_sg(sgl, sg, sg_len, i) {
1449 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1450 int param;
1452 bd->buffer_addr = sg->dma_address;
1454 count = sg_dma_len(sg);
1456 if (count > SDMA_BD_MAX_CNT) {
1457 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1458 channel, count, SDMA_BD_MAX_CNT);
1459 goto err_bd_out;
1462 bd->mode.count = count;
1463 desc->chn_count += count;
1465 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1466 goto err_bd_out;
1468 switch (sdmac->word_size) {
1469 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1470 bd->mode.command = 0;
1471 if (count & 3 || sg->dma_address & 3)
1472 goto err_bd_out;
1473 break;
1474 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1475 bd->mode.command = 2;
1476 if (count & 1 || sg->dma_address & 1)
1477 goto err_bd_out;
1478 break;
1479 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1480 bd->mode.command = 1;
1481 break;
1482 default:
1483 goto err_bd_out;
1486 param = BD_DONE | BD_EXTD | BD_CONT;
1488 if (i + 1 == sg_len) {
1489 param |= BD_INTR;
1490 param |= BD_LAST;
1491 param &= ~BD_CONT;
1494 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1495 i, count, (u64)sg->dma_address,
1496 param & BD_WRAP ? "wrap" : "",
1497 param & BD_INTR ? " intr" : "");
1499 bd->mode.status = param;
1502 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1503 err_bd_out:
1504 sdma_free_bd(desc);
1505 kfree(desc);
1506 err_out:
1507 sdmac->status = DMA_ERROR;
1508 return NULL;
1511 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1512 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1513 size_t period_len, enum dma_transfer_direction direction,
1514 unsigned long flags)
1516 struct sdma_channel *sdmac = to_sdma_chan(chan);
1517 struct sdma_engine *sdma = sdmac->sdma;
1518 int num_periods = buf_len / period_len;
1519 int channel = sdmac->channel;
1520 int i = 0, buf = 0;
1521 struct sdma_desc *desc;
1523 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1525 sdma_config_write(chan, &sdmac->slave_config, direction);
1527 desc = sdma_transfer_init(sdmac, direction, num_periods);
1528 if (!desc)
1529 goto err_out;
1531 desc->period_len = period_len;
1533 sdmac->flags |= IMX_DMA_SG_LOOP;
1535 if (period_len > SDMA_BD_MAX_CNT) {
1536 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1537 channel, period_len, SDMA_BD_MAX_CNT);
1538 goto err_bd_out;
1541 while (buf < buf_len) {
1542 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1543 int param;
1545 bd->buffer_addr = dma_addr;
1547 bd->mode.count = period_len;
1549 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1550 goto err_bd_out;
1551 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1552 bd->mode.command = 0;
1553 else
1554 bd->mode.command = sdmac->word_size;
1556 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1557 if (i + 1 == num_periods)
1558 param |= BD_WRAP;
1560 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1561 i, period_len, (u64)dma_addr,
1562 param & BD_WRAP ? "wrap" : "",
1563 param & BD_INTR ? " intr" : "");
1565 bd->mode.status = param;
1567 dma_addr += period_len;
1568 buf += period_len;
1570 i++;
1573 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1574 err_bd_out:
1575 sdma_free_bd(desc);
1576 kfree(desc);
1577 err_out:
1578 sdmac->status = DMA_ERROR;
1579 return NULL;
1582 static int sdma_config_write(struct dma_chan *chan,
1583 struct dma_slave_config *dmaengine_cfg,
1584 enum dma_transfer_direction direction)
1586 struct sdma_channel *sdmac = to_sdma_chan(chan);
1588 if (direction == DMA_DEV_TO_MEM) {
1589 sdmac->per_address = dmaengine_cfg->src_addr;
1590 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1591 dmaengine_cfg->src_addr_width;
1592 sdmac->word_size = dmaengine_cfg->src_addr_width;
1593 } else if (direction == DMA_DEV_TO_DEV) {
1594 sdmac->per_address2 = dmaengine_cfg->src_addr;
1595 sdmac->per_address = dmaengine_cfg->dst_addr;
1596 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1597 SDMA_WATERMARK_LEVEL_LWML;
1598 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1599 SDMA_WATERMARK_LEVEL_HWML;
1600 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1601 } else {
1602 sdmac->per_address = dmaengine_cfg->dst_addr;
1603 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1604 dmaengine_cfg->dst_addr_width;
1605 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1607 sdmac->direction = direction;
1608 return sdma_config_channel(chan);
1611 static int sdma_config(struct dma_chan *chan,
1612 struct dma_slave_config *dmaengine_cfg)
1614 struct sdma_channel *sdmac = to_sdma_chan(chan);
1616 memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1618 /* Set ENBLn earlier to make sure dma request triggered after that */
1619 if (sdmac->event_id0) {
1620 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1621 return -EINVAL;
1622 sdma_event_enable(sdmac, sdmac->event_id0);
1625 if (sdmac->event_id1) {
1626 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1627 return -EINVAL;
1628 sdma_event_enable(sdmac, sdmac->event_id1);
1631 return 0;
1634 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1635 dma_cookie_t cookie,
1636 struct dma_tx_state *txstate)
1638 struct sdma_channel *sdmac = to_sdma_chan(chan);
1639 struct sdma_desc *desc;
1640 u32 residue;
1641 struct virt_dma_desc *vd;
1642 enum dma_status ret;
1643 unsigned long flags;
1645 ret = dma_cookie_status(chan, cookie, txstate);
1646 if (ret == DMA_COMPLETE || !txstate)
1647 return ret;
1649 spin_lock_irqsave(&sdmac->vc.lock, flags);
1650 vd = vchan_find_desc(&sdmac->vc, cookie);
1651 if (vd) {
1652 desc = to_sdma_desc(&vd->tx);
1653 if (sdmac->flags & IMX_DMA_SG_LOOP)
1654 residue = (desc->num_bd - desc->buf_ptail) *
1655 desc->period_len - desc->chn_real_count;
1656 else
1657 residue = desc->chn_count - desc->chn_real_count;
1658 } else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
1659 residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
1660 } else {
1661 residue = 0;
1663 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1665 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1666 residue);
1668 return sdmac->status;
1671 static void sdma_issue_pending(struct dma_chan *chan)
1673 struct sdma_channel *sdmac = to_sdma_chan(chan);
1674 unsigned long flags;
1676 spin_lock_irqsave(&sdmac->vc.lock, flags);
1677 if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1678 sdma_start_desc(sdmac);
1679 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1682 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1683 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1684 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1685 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1687 static void sdma_add_scripts(struct sdma_engine *sdma,
1688 const struct sdma_script_start_addrs *addr)
1690 s32 *addr_arr = (u32 *)addr;
1691 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1692 int i;
1694 /* use the default firmware in ROM if missing external firmware */
1695 if (!sdma->script_number)
1696 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1698 for (i = 0; i < sdma->script_number; i++)
1699 if (addr_arr[i] > 0)
1700 saddr_arr[i] = addr_arr[i];
1703 static void sdma_load_firmware(const struct firmware *fw, void *context)
1705 struct sdma_engine *sdma = context;
1706 const struct sdma_firmware_header *header;
1707 const struct sdma_script_start_addrs *addr;
1708 unsigned short *ram_code;
1710 if (!fw) {
1711 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1712 /* In this case we just use the ROM firmware. */
1713 return;
1716 if (fw->size < sizeof(*header))
1717 goto err_firmware;
1719 header = (struct sdma_firmware_header *)fw->data;
1721 if (header->magic != SDMA_FIRMWARE_MAGIC)
1722 goto err_firmware;
1723 if (header->ram_code_start + header->ram_code_size > fw->size)
1724 goto err_firmware;
1725 switch (header->version_major) {
1726 case 1:
1727 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1728 break;
1729 case 2:
1730 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1731 break;
1732 case 3:
1733 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1734 break;
1735 case 4:
1736 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1737 break;
1738 default:
1739 dev_err(sdma->dev, "unknown firmware version\n");
1740 goto err_firmware;
1743 addr = (void *)header + header->script_addrs_start;
1744 ram_code = (void *)header + header->ram_code_start;
1746 clk_enable(sdma->clk_ipg);
1747 clk_enable(sdma->clk_ahb);
1748 /* download the RAM image for SDMA */
1749 sdma_load_script(sdma, ram_code,
1750 header->ram_code_size,
1751 addr->ram_code_start_addr);
1752 clk_disable(sdma->clk_ipg);
1753 clk_disable(sdma->clk_ahb);
1755 sdma_add_scripts(sdma, addr);
1757 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1758 header->version_major,
1759 header->version_minor);
1761 err_firmware:
1762 release_firmware(fw);
1765 #define EVENT_REMAP_CELLS 3
1767 static int sdma_event_remap(struct sdma_engine *sdma)
1769 struct device_node *np = sdma->dev->of_node;
1770 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1771 struct property *event_remap;
1772 struct regmap *gpr;
1773 char propname[] = "fsl,sdma-event-remap";
1774 u32 reg, val, shift, num_map, i;
1775 int ret = 0;
1777 if (IS_ERR(np) || IS_ERR(gpr_np))
1778 goto out;
1780 event_remap = of_find_property(np, propname, NULL);
1781 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1782 if (!num_map) {
1783 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1784 goto out;
1785 } else if (num_map % EVENT_REMAP_CELLS) {
1786 dev_err(sdma->dev, "the property %s must modulo %d\n",
1787 propname, EVENT_REMAP_CELLS);
1788 ret = -EINVAL;
1789 goto out;
1792 gpr = syscon_node_to_regmap(gpr_np);
1793 if (IS_ERR(gpr)) {
1794 dev_err(sdma->dev, "failed to get gpr regmap\n");
1795 ret = PTR_ERR(gpr);
1796 goto out;
1799 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1800 ret = of_property_read_u32_index(np, propname, i, &reg);
1801 if (ret) {
1802 dev_err(sdma->dev, "failed to read property %s index %d\n",
1803 propname, i);
1804 goto out;
1807 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1808 if (ret) {
1809 dev_err(sdma->dev, "failed to read property %s index %d\n",
1810 propname, i + 1);
1811 goto out;
1814 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1815 if (ret) {
1816 dev_err(sdma->dev, "failed to read property %s index %d\n",
1817 propname, i + 2);
1818 goto out;
1821 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1824 out:
1825 if (!IS_ERR(gpr_np))
1826 of_node_put(gpr_np);
1828 return ret;
1831 static int sdma_get_firmware(struct sdma_engine *sdma,
1832 const char *fw_name)
1834 int ret;
1836 ret = request_firmware_nowait(THIS_MODULE,
1837 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1838 GFP_KERNEL, sdma, sdma_load_firmware);
1840 return ret;
1843 static int sdma_init(struct sdma_engine *sdma)
1845 int i, ret;
1846 dma_addr_t ccb_phys;
1848 ret = clk_enable(sdma->clk_ipg);
1849 if (ret)
1850 return ret;
1851 ret = clk_enable(sdma->clk_ahb);
1852 if (ret)
1853 goto disable_clk_ipg;
1855 if (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg))
1856 sdma->clk_ratio = 1;
1858 /* Be sure SDMA has not started yet */
1859 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1861 sdma->channel_control = dma_alloc_coherent(sdma->dev,
1862 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1863 sizeof(struct sdma_context_data),
1864 &ccb_phys, GFP_KERNEL);
1866 if (!sdma->channel_control) {
1867 ret = -ENOMEM;
1868 goto err_dma_alloc;
1871 sdma->context = (void *)sdma->channel_control +
1872 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1873 sdma->context_phys = ccb_phys +
1874 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1876 /* Zero-out the CCB structures array just allocated */
1877 memset(sdma->channel_control, 0,
1878 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1880 /* disable all channels */
1881 for (i = 0; i < sdma->drvdata->num_events; i++)
1882 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1884 /* All channels have priority 0 */
1885 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1886 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1888 ret = sdma_request_channel0(sdma);
1889 if (ret)
1890 goto err_dma_alloc;
1892 sdma_config_ownership(&sdma->channel[0], false, true, false);
1894 /* Set Command Channel (Channel Zero) */
1895 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1897 /* Set bits of CONFIG register but with static context switching */
1898 if (sdma->clk_ratio)
1899 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1900 else
1901 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1903 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1905 /* Initializes channel's priorities */
1906 sdma_set_channel_priority(&sdma->channel[0], 7);
1908 clk_disable(sdma->clk_ipg);
1909 clk_disable(sdma->clk_ahb);
1911 return 0;
1913 err_dma_alloc:
1914 clk_disable(sdma->clk_ahb);
1915 disable_clk_ipg:
1916 clk_disable(sdma->clk_ipg);
1917 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1918 return ret;
1921 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1923 struct sdma_channel *sdmac = to_sdma_chan(chan);
1924 struct sdma_engine *sdma = sdmac->sdma;
1925 struct imx_dma_data *data = fn_param;
1927 if (!imx_dma_is_general_purpose(chan))
1928 return false;
1930 /* return false if it's not the right device */
1931 if (sdma->dev->of_node != data->of_node)
1932 return false;
1934 sdmac->data = *data;
1935 chan->private = &sdmac->data;
1937 return true;
1940 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1941 struct of_dma *ofdma)
1943 struct sdma_engine *sdma = ofdma->of_dma_data;
1944 dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1945 struct imx_dma_data data;
1947 if (dma_spec->args_count != 3)
1948 return NULL;
1950 data.dma_request = dma_spec->args[0];
1951 data.peripheral_type = dma_spec->args[1];
1952 data.priority = dma_spec->args[2];
1954 * init dma_request2 to zero, which is not used by the dts.
1955 * For P2P, dma_request2 is init from dma_request_channel(),
1956 * chan->private will point to the imx_dma_data, and in
1957 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1958 * be set to sdmac->event_id1.
1960 data.dma_request2 = 0;
1961 data.of_node = ofdma->of_node;
1963 return dma_request_channel(mask, sdma_filter_fn, &data);
1966 static int sdma_probe(struct platform_device *pdev)
1968 const struct of_device_id *of_id =
1969 of_match_device(sdma_dt_ids, &pdev->dev);
1970 struct device_node *np = pdev->dev.of_node;
1971 struct device_node *spba_bus;
1972 const char *fw_name;
1973 int ret;
1974 int irq;
1975 struct resource *iores;
1976 struct resource spba_res;
1977 struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1978 int i;
1979 struct sdma_engine *sdma;
1980 s32 *saddr_arr;
1981 const struct sdma_driver_data *drvdata = NULL;
1983 if (of_id)
1984 drvdata = of_id->data;
1985 else if (pdev->id_entry)
1986 drvdata = (void *)pdev->id_entry->driver_data;
1988 if (!drvdata) {
1989 dev_err(&pdev->dev, "unable to find driver data\n");
1990 return -EINVAL;
1993 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1994 if (ret)
1995 return ret;
1997 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1998 if (!sdma)
1999 return -ENOMEM;
2001 spin_lock_init(&sdma->channel_0_lock);
2003 sdma->dev = &pdev->dev;
2004 sdma->drvdata = drvdata;
2006 irq = platform_get_irq(pdev, 0);
2007 if (irq < 0)
2008 return irq;
2010 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2011 sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2012 if (IS_ERR(sdma->regs))
2013 return PTR_ERR(sdma->regs);
2015 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2016 if (IS_ERR(sdma->clk_ipg))
2017 return PTR_ERR(sdma->clk_ipg);
2019 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2020 if (IS_ERR(sdma->clk_ahb))
2021 return PTR_ERR(sdma->clk_ahb);
2023 ret = clk_prepare(sdma->clk_ipg);
2024 if (ret)
2025 return ret;
2027 ret = clk_prepare(sdma->clk_ahb);
2028 if (ret)
2029 goto err_clk;
2031 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2032 sdma);
2033 if (ret)
2034 goto err_irq;
2036 sdma->irq = irq;
2038 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2039 if (!sdma->script_addrs) {
2040 ret = -ENOMEM;
2041 goto err_irq;
2044 /* initially no scripts available */
2045 saddr_arr = (s32 *)sdma->script_addrs;
2046 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
2047 saddr_arr[i] = -EINVAL;
2049 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2050 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2051 dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2053 INIT_LIST_HEAD(&sdma->dma_device.channels);
2054 /* Initialize channel parameters */
2055 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2056 struct sdma_channel *sdmac = &sdma->channel[i];
2058 sdmac->sdma = sdma;
2060 sdmac->channel = i;
2061 sdmac->vc.desc_free = sdma_desc_free;
2062 INIT_WORK(&sdmac->terminate_worker,
2063 sdma_channel_terminate_work);
2065 * Add the channel to the DMAC list. Do not add channel 0 though
2066 * because we need it internally in the SDMA driver. This also means
2067 * that channel 0 in dmaengine counting matches sdma channel 1.
2069 if (i)
2070 vchan_init(&sdmac->vc, &sdma->dma_device);
2073 ret = sdma_init(sdma);
2074 if (ret)
2075 goto err_init;
2077 ret = sdma_event_remap(sdma);
2078 if (ret)
2079 goto err_init;
2081 if (sdma->drvdata->script_addrs)
2082 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2083 if (pdata && pdata->script_addrs)
2084 sdma_add_scripts(sdma, pdata->script_addrs);
2086 if (pdata) {
2087 ret = sdma_get_firmware(sdma, pdata->fw_name);
2088 if (ret)
2089 dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2090 } else {
2092 * Because that device tree does not encode ROM script address,
2093 * the RAM script in firmware is mandatory for device tree
2094 * probe, otherwise it fails.
2096 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2097 &fw_name);
2098 if (ret)
2099 dev_warn(&pdev->dev, "failed to get firmware name\n");
2100 else {
2101 ret = sdma_get_firmware(sdma, fw_name);
2102 if (ret)
2103 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2107 sdma->dma_device.dev = &pdev->dev;
2109 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2110 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2111 sdma->dma_device.device_tx_status = sdma_tx_status;
2112 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2113 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2114 sdma->dma_device.device_config = sdma_config;
2115 sdma->dma_device.device_terminate_all = sdma_disable_channel_async;
2116 sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2117 sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2118 sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2119 sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2120 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2121 sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2122 sdma->dma_device.device_issue_pending = sdma_issue_pending;
2123 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2124 sdma->dma_device.copy_align = 2;
2125 dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2127 platform_set_drvdata(pdev, sdma);
2129 ret = dma_async_device_register(&sdma->dma_device);
2130 if (ret) {
2131 dev_err(&pdev->dev, "unable to register\n");
2132 goto err_init;
2135 if (np) {
2136 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2137 if (ret) {
2138 dev_err(&pdev->dev, "failed to register controller\n");
2139 goto err_register;
2142 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2143 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2144 if (!ret) {
2145 sdma->spba_start_addr = spba_res.start;
2146 sdma->spba_end_addr = spba_res.end;
2148 of_node_put(spba_bus);
2151 return 0;
2153 err_register:
2154 dma_async_device_unregister(&sdma->dma_device);
2155 err_init:
2156 kfree(sdma->script_addrs);
2157 err_irq:
2158 clk_unprepare(sdma->clk_ahb);
2159 err_clk:
2160 clk_unprepare(sdma->clk_ipg);
2161 return ret;
2164 static int sdma_remove(struct platform_device *pdev)
2166 struct sdma_engine *sdma = platform_get_drvdata(pdev);
2167 int i;
2169 devm_free_irq(&pdev->dev, sdma->irq, sdma);
2170 dma_async_device_unregister(&sdma->dma_device);
2171 kfree(sdma->script_addrs);
2172 clk_unprepare(sdma->clk_ahb);
2173 clk_unprepare(sdma->clk_ipg);
2174 /* Kill the tasklet */
2175 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2176 struct sdma_channel *sdmac = &sdma->channel[i];
2178 tasklet_kill(&sdmac->vc.task);
2179 sdma_free_chan_resources(&sdmac->vc.chan);
2182 platform_set_drvdata(pdev, NULL);
2183 return 0;
2186 static struct platform_driver sdma_driver = {
2187 .driver = {
2188 .name = "imx-sdma",
2189 .of_match_table = sdma_dt_ids,
2191 .id_table = sdma_devtypes,
2192 .remove = sdma_remove,
2193 .probe = sdma_probe,
2196 module_platform_driver(sdma_driver);
2198 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2199 MODULE_DESCRIPTION("i.MX SDMA driver");
2200 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2201 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2202 #endif
2203 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2204 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2205 #endif
2206 MODULE_LICENSE("GPL");