2 * RTC subsystem, interface functions
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 * based on arch/arm/common/rtctime.c
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/rtc.h>
23 static int rtc_timer_enqueue(struct rtc_device
*rtc
, struct rtc_timer
*timer
);
24 static void rtc_timer_remove(struct rtc_device
*rtc
, struct rtc_timer
*timer
);
26 static void rtc_add_offset(struct rtc_device
*rtc
, struct rtc_time
*tm
)
30 if (!rtc
->offset_secs
)
33 secs
= rtc_tm_to_time64(tm
);
36 * Since the reading time values from RTC device are always in the RTC
37 * original valid range, but we need to skip the overlapped region
38 * between expanded range and original range, which is no need to add
41 if ((rtc
->start_secs
> rtc
->range_min
&& secs
>= rtc
->start_secs
) ||
42 (rtc
->start_secs
< rtc
->range_min
&&
43 secs
<= (rtc
->start_secs
+ rtc
->range_max
- rtc
->range_min
)))
46 rtc_time64_to_tm(secs
+ rtc
->offset_secs
, tm
);
49 static void rtc_subtract_offset(struct rtc_device
*rtc
, struct rtc_time
*tm
)
53 if (!rtc
->offset_secs
)
56 secs
= rtc_tm_to_time64(tm
);
59 * If the setting time values are in the valid range of RTC hardware
60 * device, then no need to subtract the offset when setting time to RTC
61 * device. Otherwise we need to subtract the offset to make the time
62 * values are valid for RTC hardware device.
64 if (secs
>= rtc
->range_min
&& secs
<= rtc
->range_max
)
67 rtc_time64_to_tm(secs
- rtc
->offset_secs
, tm
);
70 static int rtc_valid_range(struct rtc_device
*rtc
, struct rtc_time
*tm
)
72 if (rtc
->range_min
!= rtc
->range_max
) {
73 time64_t time
= rtc_tm_to_time64(tm
);
74 time64_t range_min
= rtc
->set_start_time
? rtc
->start_secs
:
76 time64_t range_max
= rtc
->set_start_time
?
77 (rtc
->start_secs
+ rtc
->range_max
- rtc
->range_min
) :
80 if (time
< range_min
|| time
> range_max
)
87 static int __rtc_read_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
92 else if (!rtc
->ops
->read_time
)
95 memset(tm
, 0, sizeof(struct rtc_time
));
96 err
= rtc
->ops
->read_time(rtc
->dev
.parent
, tm
);
98 dev_dbg(&rtc
->dev
, "read_time: fail to read: %d\n",
103 rtc_add_offset(rtc
, tm
);
105 err
= rtc_valid_tm(tm
);
107 dev_dbg(&rtc
->dev
, "read_time: rtc_time isn't valid\n");
112 int rtc_read_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
116 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
120 err
= __rtc_read_time(rtc
, tm
);
121 mutex_unlock(&rtc
->ops_lock
);
123 trace_rtc_read_time(rtc_tm_to_time64(tm
), err
);
126 EXPORT_SYMBOL_GPL(rtc_read_time
);
128 int rtc_set_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
132 err
= rtc_valid_tm(tm
);
136 err
= rtc_valid_range(rtc
, tm
);
140 rtc_subtract_offset(rtc
, tm
);
142 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
148 else if (rtc
->ops
->set_time
)
149 err
= rtc
->ops
->set_time(rtc
->dev
.parent
, tm
);
150 else if (rtc
->ops
->set_mmss64
) {
151 time64_t secs64
= rtc_tm_to_time64(tm
);
153 err
= rtc
->ops
->set_mmss64(rtc
->dev
.parent
, secs64
);
154 } else if (rtc
->ops
->set_mmss
) {
155 time64_t secs64
= rtc_tm_to_time64(tm
);
156 err
= rtc
->ops
->set_mmss(rtc
->dev
.parent
, secs64
);
160 pm_stay_awake(rtc
->dev
.parent
);
161 mutex_unlock(&rtc
->ops_lock
);
162 /* A timer might have just expired */
163 schedule_work(&rtc
->irqwork
);
165 trace_rtc_set_time(rtc_tm_to_time64(tm
), err
);
168 EXPORT_SYMBOL_GPL(rtc_set_time
);
170 static int rtc_read_alarm_internal(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
174 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
178 if (rtc
->ops
== NULL
)
180 else if (!rtc
->ops
->read_alarm
)
185 alarm
->time
.tm_sec
= -1;
186 alarm
->time
.tm_min
= -1;
187 alarm
->time
.tm_hour
= -1;
188 alarm
->time
.tm_mday
= -1;
189 alarm
->time
.tm_mon
= -1;
190 alarm
->time
.tm_year
= -1;
191 alarm
->time
.tm_wday
= -1;
192 alarm
->time
.tm_yday
= -1;
193 alarm
->time
.tm_isdst
= -1;
194 err
= rtc
->ops
->read_alarm(rtc
->dev
.parent
, alarm
);
197 mutex_unlock(&rtc
->ops_lock
);
199 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm
->time
), err
);
203 int __rtc_read_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
206 struct rtc_time before
, now
;
208 time64_t t_now
, t_alm
;
209 enum { none
, day
, month
, year
} missing
= none
;
212 /* The lower level RTC driver may return -1 in some fields,
213 * creating invalid alarm->time values, for reasons like:
215 * - The hardware may not be capable of filling them in;
216 * many alarms match only on time-of-day fields, not
217 * day/month/year calendar data.
219 * - Some hardware uses illegal values as "wildcard" match
220 * values, which non-Linux firmware (like a BIOS) may try
221 * to set up as e.g. "alarm 15 minutes after each hour".
222 * Linux uses only oneshot alarms.
224 * When we see that here, we deal with it by using values from
225 * a current RTC timestamp for any missing (-1) values. The
226 * RTC driver prevents "periodic alarm" modes.
228 * But this can be racey, because some fields of the RTC timestamp
229 * may have wrapped in the interval since we read the RTC alarm,
230 * which would lead to us inserting inconsistent values in place
233 * Reading the alarm and timestamp in the reverse sequence
234 * would have the same race condition, and not solve the issue.
236 * So, we must first read the RTC timestamp,
237 * then read the RTC alarm value,
238 * and then read a second RTC timestamp.
240 * If any fields of the second timestamp have changed
241 * when compared with the first timestamp, then we know
242 * our timestamp may be inconsistent with that used by
243 * the low-level rtc_read_alarm_internal() function.
245 * So, when the two timestamps disagree, we just loop and do
246 * the process again to get a fully consistent set of values.
248 * This could all instead be done in the lower level driver,
249 * but since more than one lower level RTC implementation needs it,
250 * then it's probably best best to do it here instead of there..
253 /* Get the "before" timestamp */
254 err
= rtc_read_time(rtc
, &before
);
259 memcpy(&before
, &now
, sizeof(struct rtc_time
));
262 /* get the RTC alarm values, which may be incomplete */
263 err
= rtc_read_alarm_internal(rtc
, alarm
);
267 /* full-function RTCs won't have such missing fields */
268 if (rtc_valid_tm(&alarm
->time
) == 0) {
269 rtc_add_offset(rtc
, &alarm
->time
);
273 /* get the "after" timestamp, to detect wrapped fields */
274 err
= rtc_read_time(rtc
, &now
);
278 /* note that tm_sec is a "don't care" value here: */
279 } while ( before
.tm_min
!= now
.tm_min
280 || before
.tm_hour
!= now
.tm_hour
281 || before
.tm_mon
!= now
.tm_mon
282 || before
.tm_year
!= now
.tm_year
);
284 /* Fill in the missing alarm fields using the timestamp; we
285 * know there's at least one since alarm->time is invalid.
287 if (alarm
->time
.tm_sec
== -1)
288 alarm
->time
.tm_sec
= now
.tm_sec
;
289 if (alarm
->time
.tm_min
== -1)
290 alarm
->time
.tm_min
= now
.tm_min
;
291 if (alarm
->time
.tm_hour
== -1)
292 alarm
->time
.tm_hour
= now
.tm_hour
;
294 /* For simplicity, only support date rollover for now */
295 if (alarm
->time
.tm_mday
< 1 || alarm
->time
.tm_mday
> 31) {
296 alarm
->time
.tm_mday
= now
.tm_mday
;
299 if ((unsigned)alarm
->time
.tm_mon
>= 12) {
300 alarm
->time
.tm_mon
= now
.tm_mon
;
304 if (alarm
->time
.tm_year
== -1) {
305 alarm
->time
.tm_year
= now
.tm_year
;
310 /* Can't proceed if alarm is still invalid after replacing
313 err
= rtc_valid_tm(&alarm
->time
);
317 /* with luck, no rollover is needed */
318 t_now
= rtc_tm_to_time64(&now
);
319 t_alm
= rtc_tm_to_time64(&alarm
->time
);
325 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
326 * that will trigger at 5am will do so at 5am Tuesday, which
327 * could also be in the next month or year. This is a common
328 * case, especially for PCs.
331 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "day");
332 t_alm
+= 24 * 60 * 60;
333 rtc_time64_to_tm(t_alm
, &alarm
->time
);
336 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
337 * be next month. An alarm matching on the 30th, 29th, or 28th
338 * may end up in the month after that! Many newer PCs support
339 * this type of alarm.
342 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "month");
344 if (alarm
->time
.tm_mon
< 11)
345 alarm
->time
.tm_mon
++;
347 alarm
->time
.tm_mon
= 0;
348 alarm
->time
.tm_year
++;
350 days
= rtc_month_days(alarm
->time
.tm_mon
,
351 alarm
->time
.tm_year
);
352 } while (days
< alarm
->time
.tm_mday
);
355 /* Year rollover ... easy except for leap years! */
357 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "year");
359 alarm
->time
.tm_year
++;
360 } while (!is_leap_year(alarm
->time
.tm_year
+ 1900)
361 && rtc_valid_tm(&alarm
->time
) != 0);
365 dev_warn(&rtc
->dev
, "alarm rollover not handled\n");
368 err
= rtc_valid_tm(&alarm
->time
);
372 dev_warn(&rtc
->dev
, "invalid alarm value: %ptR\n", &alarm
->time
);
377 int rtc_read_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
381 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
384 if (rtc
->ops
== NULL
)
386 else if (!rtc
->ops
->read_alarm
)
389 memset(alarm
, 0, sizeof(struct rtc_wkalrm
));
390 alarm
->enabled
= rtc
->aie_timer
.enabled
;
391 alarm
->time
= rtc_ktime_to_tm(rtc
->aie_timer
.node
.expires
);
393 mutex_unlock(&rtc
->ops_lock
);
395 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm
->time
), err
);
398 EXPORT_SYMBOL_GPL(rtc_read_alarm
);
400 static int __rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
403 time64_t now
, scheduled
;
406 err
= rtc_valid_tm(&alarm
->time
);
410 scheduled
= rtc_tm_to_time64(&alarm
->time
);
412 /* Make sure we're not setting alarms in the past */
413 err
= __rtc_read_time(rtc
, &tm
);
416 now
= rtc_tm_to_time64(&tm
);
417 if (scheduled
<= now
)
420 * XXX - We just checked to make sure the alarm time is not
421 * in the past, but there is still a race window where if
422 * the is alarm set for the next second and the second ticks
423 * over right here, before we set the alarm.
426 rtc_subtract_offset(rtc
, &alarm
->time
);
430 else if (!rtc
->ops
->set_alarm
)
433 err
= rtc
->ops
->set_alarm(rtc
->dev
.parent
, alarm
);
435 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm
->time
), err
);
439 int rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
445 else if (!rtc
->ops
->set_alarm
)
448 err
= rtc_valid_tm(&alarm
->time
);
452 err
= rtc_valid_range(rtc
, &alarm
->time
);
456 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
459 if (rtc
->aie_timer
.enabled
)
460 rtc_timer_remove(rtc
, &rtc
->aie_timer
);
462 rtc
->aie_timer
.node
.expires
= rtc_tm_to_ktime(alarm
->time
);
463 rtc
->aie_timer
.period
= 0;
465 err
= rtc_timer_enqueue(rtc
, &rtc
->aie_timer
);
467 mutex_unlock(&rtc
->ops_lock
);
471 EXPORT_SYMBOL_GPL(rtc_set_alarm
);
473 /* Called once per device from rtc_device_register */
474 int rtc_initialize_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
479 err
= rtc_valid_tm(&alarm
->time
);
483 err
= rtc_read_time(rtc
, &now
);
487 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
491 rtc
->aie_timer
.node
.expires
= rtc_tm_to_ktime(alarm
->time
);
492 rtc
->aie_timer
.period
= 0;
494 /* Alarm has to be enabled & in the future for us to enqueue it */
495 if (alarm
->enabled
&& (rtc_tm_to_ktime(now
) <
496 rtc
->aie_timer
.node
.expires
)) {
498 rtc
->aie_timer
.enabled
= 1;
499 timerqueue_add(&rtc
->timerqueue
, &rtc
->aie_timer
.node
);
500 trace_rtc_timer_enqueue(&rtc
->aie_timer
);
502 mutex_unlock(&rtc
->ops_lock
);
505 EXPORT_SYMBOL_GPL(rtc_initialize_alarm
);
507 int rtc_alarm_irq_enable(struct rtc_device
*rtc
, unsigned int enabled
)
509 int err
= mutex_lock_interruptible(&rtc
->ops_lock
);
513 if (rtc
->aie_timer
.enabled
!= enabled
) {
515 err
= rtc_timer_enqueue(rtc
, &rtc
->aie_timer
);
517 rtc_timer_remove(rtc
, &rtc
->aie_timer
);
524 else if (!rtc
->ops
->alarm_irq_enable
)
527 err
= rtc
->ops
->alarm_irq_enable(rtc
->dev
.parent
, enabled
);
529 mutex_unlock(&rtc
->ops_lock
);
531 trace_rtc_alarm_irq_enable(enabled
, err
);
534 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable
);
536 int rtc_update_irq_enable(struct rtc_device
*rtc
, unsigned int enabled
)
538 int err
= mutex_lock_interruptible(&rtc
->ops_lock
);
542 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
543 if (enabled
== 0 && rtc
->uie_irq_active
) {
544 mutex_unlock(&rtc
->ops_lock
);
545 return rtc_dev_update_irq_enable_emul(rtc
, 0);
548 /* make sure we're changing state */
549 if (rtc
->uie_rtctimer
.enabled
== enabled
)
552 if (rtc
->uie_unsupported
) {
561 __rtc_read_time(rtc
, &tm
);
562 onesec
= ktime_set(1, 0);
563 now
= rtc_tm_to_ktime(tm
);
564 rtc
->uie_rtctimer
.node
.expires
= ktime_add(now
, onesec
);
565 rtc
->uie_rtctimer
.period
= ktime_set(1, 0);
566 err
= rtc_timer_enqueue(rtc
, &rtc
->uie_rtctimer
);
568 rtc_timer_remove(rtc
, &rtc
->uie_rtctimer
);
571 mutex_unlock(&rtc
->ops_lock
);
572 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
574 * Enable emulation if the driver did not provide
575 * the update_irq_enable function pointer or if returned
576 * -EINVAL to signal that it has been configured without
577 * interrupts or that are not available at the moment.
580 err
= rtc_dev_update_irq_enable_emul(rtc
, enabled
);
585 EXPORT_SYMBOL_GPL(rtc_update_irq_enable
);
589 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
590 * @rtc: pointer to the rtc device
592 * This function is called when an AIE, UIE or PIE mode interrupt
593 * has occurred (or been emulated).
596 void rtc_handle_legacy_irq(struct rtc_device
*rtc
, int num
, int mode
)
600 /* mark one irq of the appropriate mode */
601 spin_lock_irqsave(&rtc
->irq_lock
, flags
);
602 rtc
->irq_data
= (rtc
->irq_data
+ (num
<< 8)) | (RTC_IRQF
|mode
);
603 spin_unlock_irqrestore(&rtc
->irq_lock
, flags
);
605 wake_up_interruptible(&rtc
->irq_queue
);
606 kill_fasync(&rtc
->async_queue
, SIGIO
, POLL_IN
);
611 * rtc_aie_update_irq - AIE mode rtctimer hook
612 * @rtc: pointer to the rtc_device
614 * This functions is called when the aie_timer expires.
616 void rtc_aie_update_irq(struct rtc_device
*rtc
)
618 rtc_handle_legacy_irq(rtc
, 1, RTC_AF
);
623 * rtc_uie_update_irq - UIE mode rtctimer hook
624 * @rtc: pointer to the rtc_device
626 * This functions is called when the uie_timer expires.
628 void rtc_uie_update_irq(struct rtc_device
*rtc
)
630 rtc_handle_legacy_irq(rtc
, 1, RTC_UF
);
635 * rtc_pie_update_irq - PIE mode hrtimer hook
636 * @timer: pointer to the pie mode hrtimer
638 * This function is used to emulate PIE mode interrupts
639 * using an hrtimer. This function is called when the periodic
642 enum hrtimer_restart
rtc_pie_update_irq(struct hrtimer
*timer
)
644 struct rtc_device
*rtc
;
647 rtc
= container_of(timer
, struct rtc_device
, pie_timer
);
649 period
= NSEC_PER_SEC
/ rtc
->irq_freq
;
650 count
= hrtimer_forward_now(timer
, period
);
652 rtc_handle_legacy_irq(rtc
, count
, RTC_PF
);
654 return HRTIMER_RESTART
;
658 * rtc_update_irq - Triggered when a RTC interrupt occurs.
659 * @rtc: the rtc device
660 * @num: how many irqs are being reported (usually one)
661 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
664 void rtc_update_irq(struct rtc_device
*rtc
,
665 unsigned long num
, unsigned long events
)
667 if (IS_ERR_OR_NULL(rtc
))
670 pm_stay_awake(rtc
->dev
.parent
);
671 schedule_work(&rtc
->irqwork
);
673 EXPORT_SYMBOL_GPL(rtc_update_irq
);
675 static int __rtc_match(struct device
*dev
, const void *data
)
677 const char *name
= data
;
679 if (strcmp(dev_name(dev
), name
) == 0)
684 struct rtc_device
*rtc_class_open(const char *name
)
687 struct rtc_device
*rtc
= NULL
;
689 dev
= class_find_device(rtc_class
, NULL
, name
, __rtc_match
);
691 rtc
= to_rtc_device(dev
);
694 if (!try_module_get(rtc
->owner
)) {
702 EXPORT_SYMBOL_GPL(rtc_class_open
);
704 void rtc_class_close(struct rtc_device
*rtc
)
706 module_put(rtc
->owner
);
707 put_device(&rtc
->dev
);
709 EXPORT_SYMBOL_GPL(rtc_class_close
);
711 static int rtc_update_hrtimer(struct rtc_device
*rtc
, int enabled
)
714 * We always cancel the timer here first, because otherwise
715 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
716 * when we manage to start the timer before the callback
717 * returns HRTIMER_RESTART.
719 * We cannot use hrtimer_cancel() here as a running callback
720 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
721 * would spin forever.
723 if (hrtimer_try_to_cancel(&rtc
->pie_timer
) < 0)
727 ktime_t period
= NSEC_PER_SEC
/ rtc
->irq_freq
;
729 hrtimer_start(&rtc
->pie_timer
, period
, HRTIMER_MODE_REL
);
735 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
736 * @rtc: the rtc device
737 * @enabled: true to enable periodic IRQs
740 * Note that rtc_irq_set_freq() should previously have been used to
741 * specify the desired frequency of periodic IRQ.
743 int rtc_irq_set_state(struct rtc_device
*rtc
, int enabled
)
747 while (rtc_update_hrtimer(rtc
, enabled
) < 0)
750 rtc
->pie_enabled
= enabled
;
752 trace_rtc_irq_set_state(enabled
, err
);
757 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
758 * @rtc: the rtc device
759 * @freq: positive frequency
762 * Note that rtc_irq_set_state() is used to enable or disable the
765 int rtc_irq_set_freq(struct rtc_device
*rtc
, int freq
)
769 if (freq
<= 0 || freq
> RTC_MAX_FREQ
)
772 rtc
->irq_freq
= freq
;
773 while (rtc
->pie_enabled
&& rtc_update_hrtimer(rtc
, 1) < 0)
776 trace_rtc_irq_set_freq(freq
, err
);
781 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
783 * @timer timer being added.
785 * Enqueues a timer onto the rtc devices timerqueue and sets
786 * the next alarm event appropriately.
788 * Sets the enabled bit on the added timer.
790 * Must hold ops_lock for proper serialization of timerqueue
792 static int rtc_timer_enqueue(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
794 struct timerqueue_node
*next
= timerqueue_getnext(&rtc
->timerqueue
);
799 __rtc_read_time(rtc
, &tm
);
800 now
= rtc_tm_to_ktime(tm
);
802 /* Skip over expired timers */
804 if (next
->expires
>= now
)
806 next
= timerqueue_iterate_next(next
);
809 timerqueue_add(&rtc
->timerqueue
, &timer
->node
);
810 trace_rtc_timer_enqueue(timer
);
811 if (!next
|| ktime_before(timer
->node
.expires
, next
->expires
)) {
812 struct rtc_wkalrm alarm
;
814 alarm
.time
= rtc_ktime_to_tm(timer
->node
.expires
);
816 err
= __rtc_set_alarm(rtc
, &alarm
);
818 pm_stay_awake(rtc
->dev
.parent
);
819 schedule_work(&rtc
->irqwork
);
821 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
822 trace_rtc_timer_dequeue(timer
);
830 static void rtc_alarm_disable(struct rtc_device
*rtc
)
832 if (!rtc
->ops
|| !rtc
->ops
->alarm_irq_enable
)
835 rtc
->ops
->alarm_irq_enable(rtc
->dev
.parent
, false);
836 trace_rtc_alarm_irq_enable(0, 0);
840 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
842 * @timer timer being removed.
844 * Removes a timer onto the rtc devices timerqueue and sets
845 * the next alarm event appropriately.
847 * Clears the enabled bit on the removed timer.
849 * Must hold ops_lock for proper serialization of timerqueue
851 static void rtc_timer_remove(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
853 struct timerqueue_node
*next
= timerqueue_getnext(&rtc
->timerqueue
);
854 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
855 trace_rtc_timer_dequeue(timer
);
857 if (next
== &timer
->node
) {
858 struct rtc_wkalrm alarm
;
860 next
= timerqueue_getnext(&rtc
->timerqueue
);
862 rtc_alarm_disable(rtc
);
865 alarm
.time
= rtc_ktime_to_tm(next
->expires
);
867 err
= __rtc_set_alarm(rtc
, &alarm
);
869 pm_stay_awake(rtc
->dev
.parent
);
870 schedule_work(&rtc
->irqwork
);
876 * rtc_timer_do_work - Expires rtc timers
878 * @timer timer being removed.
880 * Expires rtc timers. Reprograms next alarm event if needed.
881 * Called via worktask.
883 * Serializes access to timerqueue via ops_lock mutex
885 void rtc_timer_do_work(struct work_struct
*work
)
887 struct rtc_timer
*timer
;
888 struct timerqueue_node
*next
;
892 struct rtc_device
*rtc
=
893 container_of(work
, struct rtc_device
, irqwork
);
895 mutex_lock(&rtc
->ops_lock
);
897 __rtc_read_time(rtc
, &tm
);
898 now
= rtc_tm_to_ktime(tm
);
899 while ((next
= timerqueue_getnext(&rtc
->timerqueue
))) {
900 if (next
->expires
> now
)
904 timer
= container_of(next
, struct rtc_timer
, node
);
905 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
906 trace_rtc_timer_dequeue(timer
);
909 timer
->func(timer
->rtc
);
911 trace_rtc_timer_fired(timer
);
912 /* Re-add/fwd periodic timers */
913 if (ktime_to_ns(timer
->period
)) {
914 timer
->node
.expires
= ktime_add(timer
->node
.expires
,
917 timerqueue_add(&rtc
->timerqueue
, &timer
->node
);
918 trace_rtc_timer_enqueue(timer
);
924 struct rtc_wkalrm alarm
;
928 alarm
.time
= rtc_ktime_to_tm(next
->expires
);
931 err
= __rtc_set_alarm(rtc
, &alarm
);
938 timer
= container_of(next
, struct rtc_timer
, node
);
939 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
940 trace_rtc_timer_dequeue(timer
);
942 dev_err(&rtc
->dev
, "__rtc_set_alarm: err=%d\n", err
);
946 rtc_alarm_disable(rtc
);
948 pm_relax(rtc
->dev
.parent
);
949 mutex_unlock(&rtc
->ops_lock
);
953 /* rtc_timer_init - Initializes an rtc_timer
954 * @timer: timer to be intiialized
955 * @f: function pointer to be called when timer fires
956 * @rtc: pointer to the rtc_device
958 * Kernel interface to initializing an rtc_timer.
960 void rtc_timer_init(struct rtc_timer
*timer
, void (*f
)(struct rtc_device
*r
),
961 struct rtc_device
*rtc
)
963 timerqueue_init(&timer
->node
);
969 /* rtc_timer_start - Sets an rtc_timer to fire in the future
970 * @ rtc: rtc device to be used
971 * @ timer: timer being set
972 * @ expires: time at which to expire the timer
973 * @ period: period that the timer will recur
975 * Kernel interface to set an rtc_timer
977 int rtc_timer_start(struct rtc_device
*rtc
, struct rtc_timer
*timer
,
978 ktime_t expires
, ktime_t period
)
981 mutex_lock(&rtc
->ops_lock
);
983 rtc_timer_remove(rtc
, timer
);
985 timer
->node
.expires
= expires
;
986 timer
->period
= period
;
988 ret
= rtc_timer_enqueue(rtc
, timer
);
990 mutex_unlock(&rtc
->ops_lock
);
994 /* rtc_timer_cancel - Stops an rtc_timer
995 * @ rtc: rtc device to be used
996 * @ timer: timer being set
998 * Kernel interface to cancel an rtc_timer
1000 void rtc_timer_cancel(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
1002 mutex_lock(&rtc
->ops_lock
);
1004 rtc_timer_remove(rtc
, timer
);
1005 mutex_unlock(&rtc
->ops_lock
);
1009 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1010 * @ rtc: rtc device to be used
1011 * @ offset: the offset in parts per billion
1013 * see below for details.
1015 * Kernel interface to read rtc clock offset
1016 * Returns 0 on success, or a negative number on error.
1017 * If read_offset() is not implemented for the rtc, return -EINVAL
1019 int rtc_read_offset(struct rtc_device
*rtc
, long *offset
)
1026 if (!rtc
->ops
->read_offset
)
1029 mutex_lock(&rtc
->ops_lock
);
1030 ret
= rtc
->ops
->read_offset(rtc
->dev
.parent
, offset
);
1031 mutex_unlock(&rtc
->ops_lock
);
1033 trace_rtc_read_offset(*offset
, ret
);
1038 * rtc_set_offset - Adjusts the duration of the average second
1039 * @ rtc: rtc device to be used
1040 * @ offset: the offset in parts per billion
1042 * Some rtc's allow an adjustment to the average duration of a second
1043 * to compensate for differences in the actual clock rate due to temperature,
1044 * the crystal, capacitor, etc.
1046 * The adjustment applied is as follows:
1047 * t = t0 * (1 + offset * 1e-9)
1048 * where t0 is the measured length of 1 RTC second with offset = 0
1050 * Kernel interface to adjust an rtc clock offset.
1051 * Return 0 on success, or a negative number on error.
1052 * If the rtc offset is not setable (or not implemented), return -EINVAL
1054 int rtc_set_offset(struct rtc_device
*rtc
, long offset
)
1061 if (!rtc
->ops
->set_offset
)
1064 mutex_lock(&rtc
->ops_lock
);
1065 ret
= rtc
->ops
->set_offset(rtc
->dev
.parent
, offset
);
1066 mutex_unlock(&rtc
->ops_lock
);
1068 trace_rtc_set_offset(offset
, ret
);