1 // SPDX-License-Identifier: GPL-2.0
6 #include "util/evlist.h"
7 #include "util/cache.h"
8 #include "util/evsel.h"
9 #include "util/symbol.h"
10 #include "util/thread.h"
11 #include "util/header.h"
12 #include "util/session.h"
13 #include "util/tool.h"
14 #include "util/cloexec.h"
15 #include "util/thread_map.h"
16 #include "util/color.h"
17 #include "util/stat.h"
18 #include "util/callchain.h"
19 #include "util/time-utils.h"
21 #include <subcmd/parse-options.h>
22 #include "util/trace-event.h"
24 #include "util/debug.h"
26 #include <linux/kernel.h>
27 #include <linux/log2.h>
28 #include <sys/prctl.h>
29 #include <sys/resource.h>
33 #include <semaphore.h>
36 #include <api/fs/fs.h>
37 #include <linux/time64.h>
39 #include "sane_ctype.h"
41 #define PR_SET_NAME 15 /* Set process name */
45 #define MAX_PID 1024000
54 unsigned long nr_events
;
55 unsigned long curr_event
;
56 struct sched_atom
**atoms
;
67 enum sched_event_type
{
71 SCHED_EVENT_MIGRATION
,
75 enum sched_event_type type
;
81 struct task_desc
*wakee
;
84 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
86 /* task state bitmask, copied from include/linux/sched.h */
87 #define TASK_RUNNING 0
88 #define TASK_INTERRUPTIBLE 1
89 #define TASK_UNINTERRUPTIBLE 2
90 #define __TASK_STOPPED 4
91 #define __TASK_TRACED 8
92 /* in tsk->exit_state */
94 #define EXIT_ZOMBIE 32
95 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
96 /* in tsk->state again */
98 #define TASK_WAKEKILL 128
99 #define TASK_WAKING 256
100 #define TASK_PARKED 512
110 struct list_head list
;
111 enum thread_state state
;
119 struct list_head work_list
;
120 struct thread
*thread
;
130 typedef int (*sort_fn_t
)(struct work_atoms
*, struct work_atoms
*);
134 struct trace_sched_handler
{
135 int (*switch_event
)(struct perf_sched
*sched
, struct perf_evsel
*evsel
,
136 struct perf_sample
*sample
, struct machine
*machine
);
138 int (*runtime_event
)(struct perf_sched
*sched
, struct perf_evsel
*evsel
,
139 struct perf_sample
*sample
, struct machine
*machine
);
141 int (*wakeup_event
)(struct perf_sched
*sched
, struct perf_evsel
*evsel
,
142 struct perf_sample
*sample
, struct machine
*machine
);
144 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
145 int (*fork_event
)(struct perf_sched
*sched
, union perf_event
*event
,
146 struct machine
*machine
);
148 int (*migrate_task_event
)(struct perf_sched
*sched
,
149 struct perf_evsel
*evsel
,
150 struct perf_sample
*sample
,
151 struct machine
*machine
);
154 #define COLOR_PIDS PERF_COLOR_BLUE
155 #define COLOR_CPUS PERF_COLOR_BG_RED
157 struct perf_sched_map
{
158 DECLARE_BITMAP(comp_cpus_mask
, MAX_CPUS
);
161 struct thread_map
*color_pids
;
162 const char *color_pids_str
;
163 struct cpu_map
*color_cpus
;
164 const char *color_cpus_str
;
165 struct cpu_map
*cpus
;
166 const char *cpus_str
;
170 struct perf_tool tool
;
171 const char *sort_order
;
172 unsigned long nr_tasks
;
173 struct task_desc
**pid_to_task
;
174 struct task_desc
**tasks
;
175 const struct trace_sched_handler
*tp_handler
;
176 pthread_mutex_t start_work_mutex
;
177 pthread_mutex_t work_done_wait_mutex
;
180 * Track the current task - that way we can know whether there's any
181 * weird events, such as a task being switched away that is not current.
184 u32 curr_pid
[MAX_CPUS
];
185 struct thread
*curr_thread
[MAX_CPUS
];
186 char next_shortname1
;
187 char next_shortname2
;
188 unsigned int replay_repeat
;
189 unsigned long nr_run_events
;
190 unsigned long nr_sleep_events
;
191 unsigned long nr_wakeup_events
;
192 unsigned long nr_sleep_corrections
;
193 unsigned long nr_run_events_optimized
;
194 unsigned long targetless_wakeups
;
195 unsigned long multitarget_wakeups
;
196 unsigned long nr_runs
;
197 unsigned long nr_timestamps
;
198 unsigned long nr_unordered_timestamps
;
199 unsigned long nr_context_switch_bugs
;
200 unsigned long nr_events
;
201 unsigned long nr_lost_chunks
;
202 unsigned long nr_lost_events
;
203 u64 run_measurement_overhead
;
204 u64 sleep_measurement_overhead
;
207 u64 runavg_cpu_usage
;
208 u64 parent_cpu_usage
;
209 u64 runavg_parent_cpu_usage
;
215 u64 cpu_last_switched
[MAX_CPUS
];
216 struct rb_root_cached atom_root
, sorted_atom_root
, merged_atom_root
;
217 struct list_head sort_list
, cmp_pid
;
220 struct perf_sched_map map
;
222 /* options for timehist command */
227 unsigned int max_stack
;
228 bool show_cpu_visual
;
231 bool show_migrations
;
234 const char *time_str
;
235 struct perf_time_interval ptime
;
236 struct perf_time_interval hist_time
;
239 /* per thread run time data */
240 struct thread_runtime
{
241 u64 last_time
; /* time of previous sched in/out event */
242 u64 dt_run
; /* run time */
243 u64 dt_sleep
; /* time between CPU access by sleep (off cpu) */
244 u64 dt_iowait
; /* time between CPU access by iowait (off cpu) */
245 u64 dt_preempt
; /* time between CPU access by preempt (off cpu) */
246 u64 dt_delay
; /* time between wakeup and sched-in */
247 u64 ready_to_run
; /* time of wakeup */
249 struct stats run_stats
;
251 u64 total_sleep_time
;
252 u64 total_iowait_time
;
253 u64 total_preempt_time
;
254 u64 total_delay_time
;
264 /* per event run time data */
265 struct evsel_runtime
{
266 u64
*last_time
; /* time this event was last seen per cpu */
267 u32 ncpu
; /* highest cpu slot allocated */
270 /* per cpu idle time data */
271 struct idle_thread_runtime
{
272 struct thread_runtime tr
;
273 struct thread
*last_thread
;
274 struct rb_root_cached sorted_root
;
275 struct callchain_root callchain
;
276 struct callchain_cursor cursor
;
279 /* track idle times per cpu */
280 static struct thread
**idle_threads
;
281 static int idle_max_cpu
;
282 static char idle_comm
[] = "<idle>";
284 static u64
get_nsecs(void)
288 clock_gettime(CLOCK_MONOTONIC
, &ts
);
290 return ts
.tv_sec
* NSEC_PER_SEC
+ ts
.tv_nsec
;
293 static void burn_nsecs(struct perf_sched
*sched
, u64 nsecs
)
295 u64 T0
= get_nsecs(), T1
;
299 } while (T1
+ sched
->run_measurement_overhead
< T0
+ nsecs
);
302 static void sleep_nsecs(u64 nsecs
)
306 ts
.tv_nsec
= nsecs
% 999999999;
307 ts
.tv_sec
= nsecs
/ 999999999;
309 nanosleep(&ts
, NULL
);
312 static void calibrate_run_measurement_overhead(struct perf_sched
*sched
)
314 u64 T0
, T1
, delta
, min_delta
= NSEC_PER_SEC
;
317 for (i
= 0; i
< 10; i
++) {
319 burn_nsecs(sched
, 0);
322 min_delta
= min(min_delta
, delta
);
324 sched
->run_measurement_overhead
= min_delta
;
326 printf("run measurement overhead: %" PRIu64
" nsecs\n", min_delta
);
329 static void calibrate_sleep_measurement_overhead(struct perf_sched
*sched
)
331 u64 T0
, T1
, delta
, min_delta
= NSEC_PER_SEC
;
334 for (i
= 0; i
< 10; i
++) {
339 min_delta
= min(min_delta
, delta
);
342 sched
->sleep_measurement_overhead
= min_delta
;
344 printf("sleep measurement overhead: %" PRIu64
" nsecs\n", min_delta
);
347 static struct sched_atom
*
348 get_new_event(struct task_desc
*task
, u64 timestamp
)
350 struct sched_atom
*event
= zalloc(sizeof(*event
));
351 unsigned long idx
= task
->nr_events
;
354 event
->timestamp
= timestamp
;
358 size
= sizeof(struct sched_atom
*) * task
->nr_events
;
359 task
->atoms
= realloc(task
->atoms
, size
);
360 BUG_ON(!task
->atoms
);
362 task
->atoms
[idx
] = event
;
367 static struct sched_atom
*last_event(struct task_desc
*task
)
369 if (!task
->nr_events
)
372 return task
->atoms
[task
->nr_events
- 1];
375 static void add_sched_event_run(struct perf_sched
*sched
, struct task_desc
*task
,
376 u64 timestamp
, u64 duration
)
378 struct sched_atom
*event
, *curr_event
= last_event(task
);
381 * optimize an existing RUN event by merging this one
384 if (curr_event
&& curr_event
->type
== SCHED_EVENT_RUN
) {
385 sched
->nr_run_events_optimized
++;
386 curr_event
->duration
+= duration
;
390 event
= get_new_event(task
, timestamp
);
392 event
->type
= SCHED_EVENT_RUN
;
393 event
->duration
= duration
;
395 sched
->nr_run_events
++;
398 static void add_sched_event_wakeup(struct perf_sched
*sched
, struct task_desc
*task
,
399 u64 timestamp
, struct task_desc
*wakee
)
401 struct sched_atom
*event
, *wakee_event
;
403 event
= get_new_event(task
, timestamp
);
404 event
->type
= SCHED_EVENT_WAKEUP
;
405 event
->wakee
= wakee
;
407 wakee_event
= last_event(wakee
);
408 if (!wakee_event
|| wakee_event
->type
!= SCHED_EVENT_SLEEP
) {
409 sched
->targetless_wakeups
++;
412 if (wakee_event
->wait_sem
) {
413 sched
->multitarget_wakeups
++;
417 wakee_event
->wait_sem
= zalloc(sizeof(*wakee_event
->wait_sem
));
418 sem_init(wakee_event
->wait_sem
, 0, 0);
419 wakee_event
->specific_wait
= 1;
420 event
->wait_sem
= wakee_event
->wait_sem
;
422 sched
->nr_wakeup_events
++;
425 static void add_sched_event_sleep(struct perf_sched
*sched
, struct task_desc
*task
,
426 u64 timestamp
, u64 task_state __maybe_unused
)
428 struct sched_atom
*event
= get_new_event(task
, timestamp
);
430 event
->type
= SCHED_EVENT_SLEEP
;
432 sched
->nr_sleep_events
++;
435 static struct task_desc
*register_pid(struct perf_sched
*sched
,
436 unsigned long pid
, const char *comm
)
438 struct task_desc
*task
;
441 if (sched
->pid_to_task
== NULL
) {
442 if (sysctl__read_int("kernel/pid_max", &pid_max
) < 0)
444 BUG_ON((sched
->pid_to_task
= calloc(pid_max
, sizeof(struct task_desc
*))) == NULL
);
446 if (pid
>= (unsigned long)pid_max
) {
447 BUG_ON((sched
->pid_to_task
= realloc(sched
->pid_to_task
, (pid
+ 1) *
448 sizeof(struct task_desc
*))) == NULL
);
449 while (pid
>= (unsigned long)pid_max
)
450 sched
->pid_to_task
[pid_max
++] = NULL
;
453 task
= sched
->pid_to_task
[pid
];
458 task
= zalloc(sizeof(*task
));
460 task
->nr
= sched
->nr_tasks
;
461 strcpy(task
->comm
, comm
);
463 * every task starts in sleeping state - this gets ignored
464 * if there's no wakeup pointing to this sleep state:
466 add_sched_event_sleep(sched
, task
, 0, 0);
468 sched
->pid_to_task
[pid
] = task
;
470 sched
->tasks
= realloc(sched
->tasks
, sched
->nr_tasks
* sizeof(struct task_desc
*));
471 BUG_ON(!sched
->tasks
);
472 sched
->tasks
[task
->nr
] = task
;
475 printf("registered task #%ld, PID %ld (%s)\n", sched
->nr_tasks
, pid
, comm
);
481 static void print_task_traces(struct perf_sched
*sched
)
483 struct task_desc
*task
;
486 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
487 task
= sched
->tasks
[i
];
488 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
489 task
->nr
, task
->comm
, task
->pid
, task
->nr_events
);
493 static void add_cross_task_wakeups(struct perf_sched
*sched
)
495 struct task_desc
*task1
, *task2
;
498 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
499 task1
= sched
->tasks
[i
];
501 if (j
== sched
->nr_tasks
)
503 task2
= sched
->tasks
[j
];
504 add_sched_event_wakeup(sched
, task1
, 0, task2
);
508 static void perf_sched__process_event(struct perf_sched
*sched
,
509 struct sched_atom
*atom
)
513 switch (atom
->type
) {
514 case SCHED_EVENT_RUN
:
515 burn_nsecs(sched
, atom
->duration
);
517 case SCHED_EVENT_SLEEP
:
519 ret
= sem_wait(atom
->wait_sem
);
522 case SCHED_EVENT_WAKEUP
:
524 ret
= sem_post(atom
->wait_sem
);
527 case SCHED_EVENT_MIGRATION
:
534 static u64
get_cpu_usage_nsec_parent(void)
540 err
= getrusage(RUSAGE_SELF
, &ru
);
543 sum
= ru
.ru_utime
.tv_sec
* NSEC_PER_SEC
+ ru
.ru_utime
.tv_usec
* NSEC_PER_USEC
;
544 sum
+= ru
.ru_stime
.tv_sec
* NSEC_PER_SEC
+ ru
.ru_stime
.tv_usec
* NSEC_PER_USEC
;
549 static int self_open_counters(struct perf_sched
*sched
, unsigned long cur_task
)
551 struct perf_event_attr attr
;
552 char sbuf
[STRERR_BUFSIZE
], info
[STRERR_BUFSIZE
];
555 bool need_privilege
= false;
557 memset(&attr
, 0, sizeof(attr
));
559 attr
.type
= PERF_TYPE_SOFTWARE
;
560 attr
.config
= PERF_COUNT_SW_TASK_CLOCK
;
563 fd
= sys_perf_event_open(&attr
, 0, -1, -1,
564 perf_event_open_cloexec_flag());
567 if (errno
== EMFILE
) {
569 BUG_ON(getrlimit(RLIMIT_NOFILE
, &limit
) == -1);
570 limit
.rlim_cur
+= sched
->nr_tasks
- cur_task
;
571 if (limit
.rlim_cur
> limit
.rlim_max
) {
572 limit
.rlim_max
= limit
.rlim_cur
;
573 need_privilege
= true;
575 if (setrlimit(RLIMIT_NOFILE
, &limit
) == -1) {
576 if (need_privilege
&& errno
== EPERM
)
577 strcpy(info
, "Need privilege\n");
581 strcpy(info
, "Have a try with -f option\n");
583 pr_err("Error: sys_perf_event_open() syscall returned "
584 "with %d (%s)\n%s", fd
,
585 str_error_r(errno
, sbuf
, sizeof(sbuf
)), info
);
591 static u64
get_cpu_usage_nsec_self(int fd
)
596 ret
= read(fd
, &runtime
, sizeof(runtime
));
597 BUG_ON(ret
!= sizeof(runtime
));
602 struct sched_thread_parms
{
603 struct task_desc
*task
;
604 struct perf_sched
*sched
;
608 static void *thread_func(void *ctx
)
610 struct sched_thread_parms
*parms
= ctx
;
611 struct task_desc
*this_task
= parms
->task
;
612 struct perf_sched
*sched
= parms
->sched
;
613 u64 cpu_usage_0
, cpu_usage_1
;
614 unsigned long i
, ret
;
620 sprintf(comm2
, ":%s", this_task
->comm
);
621 prctl(PR_SET_NAME
, comm2
);
625 ret
= sem_post(&this_task
->ready_for_work
);
627 ret
= pthread_mutex_lock(&sched
->start_work_mutex
);
629 ret
= pthread_mutex_unlock(&sched
->start_work_mutex
);
632 cpu_usage_0
= get_cpu_usage_nsec_self(fd
);
634 for (i
= 0; i
< this_task
->nr_events
; i
++) {
635 this_task
->curr_event
= i
;
636 perf_sched__process_event(sched
, this_task
->atoms
[i
]);
639 cpu_usage_1
= get_cpu_usage_nsec_self(fd
);
640 this_task
->cpu_usage
= cpu_usage_1
- cpu_usage_0
;
641 ret
= sem_post(&this_task
->work_done_sem
);
644 ret
= pthread_mutex_lock(&sched
->work_done_wait_mutex
);
646 ret
= pthread_mutex_unlock(&sched
->work_done_wait_mutex
);
652 static void create_tasks(struct perf_sched
*sched
)
654 struct task_desc
*task
;
659 err
= pthread_attr_init(&attr
);
661 err
= pthread_attr_setstacksize(&attr
,
662 (size_t) max(16 * 1024, PTHREAD_STACK_MIN
));
664 err
= pthread_mutex_lock(&sched
->start_work_mutex
);
666 err
= pthread_mutex_lock(&sched
->work_done_wait_mutex
);
668 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
669 struct sched_thread_parms
*parms
= malloc(sizeof(*parms
));
670 BUG_ON(parms
== NULL
);
671 parms
->task
= task
= sched
->tasks
[i
];
672 parms
->sched
= sched
;
673 parms
->fd
= self_open_counters(sched
, i
);
674 sem_init(&task
->sleep_sem
, 0, 0);
675 sem_init(&task
->ready_for_work
, 0, 0);
676 sem_init(&task
->work_done_sem
, 0, 0);
677 task
->curr_event
= 0;
678 err
= pthread_create(&task
->thread
, &attr
, thread_func
, parms
);
683 static void wait_for_tasks(struct perf_sched
*sched
)
685 u64 cpu_usage_0
, cpu_usage_1
;
686 struct task_desc
*task
;
687 unsigned long i
, ret
;
689 sched
->start_time
= get_nsecs();
690 sched
->cpu_usage
= 0;
691 pthread_mutex_unlock(&sched
->work_done_wait_mutex
);
693 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
694 task
= sched
->tasks
[i
];
695 ret
= sem_wait(&task
->ready_for_work
);
697 sem_init(&task
->ready_for_work
, 0, 0);
699 ret
= pthread_mutex_lock(&sched
->work_done_wait_mutex
);
702 cpu_usage_0
= get_cpu_usage_nsec_parent();
704 pthread_mutex_unlock(&sched
->start_work_mutex
);
706 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
707 task
= sched
->tasks
[i
];
708 ret
= sem_wait(&task
->work_done_sem
);
710 sem_init(&task
->work_done_sem
, 0, 0);
711 sched
->cpu_usage
+= task
->cpu_usage
;
715 cpu_usage_1
= get_cpu_usage_nsec_parent();
716 if (!sched
->runavg_cpu_usage
)
717 sched
->runavg_cpu_usage
= sched
->cpu_usage
;
718 sched
->runavg_cpu_usage
= (sched
->runavg_cpu_usage
* (sched
->replay_repeat
- 1) + sched
->cpu_usage
) / sched
->replay_repeat
;
720 sched
->parent_cpu_usage
= cpu_usage_1
- cpu_usage_0
;
721 if (!sched
->runavg_parent_cpu_usage
)
722 sched
->runavg_parent_cpu_usage
= sched
->parent_cpu_usage
;
723 sched
->runavg_parent_cpu_usage
= (sched
->runavg_parent_cpu_usage
* (sched
->replay_repeat
- 1) +
724 sched
->parent_cpu_usage
)/sched
->replay_repeat
;
726 ret
= pthread_mutex_lock(&sched
->start_work_mutex
);
729 for (i
= 0; i
< sched
->nr_tasks
; i
++) {
730 task
= sched
->tasks
[i
];
731 sem_init(&task
->sleep_sem
, 0, 0);
732 task
->curr_event
= 0;
736 static void run_one_test(struct perf_sched
*sched
)
738 u64 T0
, T1
, delta
, avg_delta
, fluct
;
741 wait_for_tasks(sched
);
745 sched
->sum_runtime
+= delta
;
748 avg_delta
= sched
->sum_runtime
/ sched
->nr_runs
;
749 if (delta
< avg_delta
)
750 fluct
= avg_delta
- delta
;
752 fluct
= delta
- avg_delta
;
753 sched
->sum_fluct
+= fluct
;
755 sched
->run_avg
= delta
;
756 sched
->run_avg
= (sched
->run_avg
* (sched
->replay_repeat
- 1) + delta
) / sched
->replay_repeat
;
758 printf("#%-3ld: %0.3f, ", sched
->nr_runs
, (double)delta
/ NSEC_PER_MSEC
);
760 printf("ravg: %0.2f, ", (double)sched
->run_avg
/ NSEC_PER_MSEC
);
762 printf("cpu: %0.2f / %0.2f",
763 (double)sched
->cpu_usage
/ NSEC_PER_MSEC
, (double)sched
->runavg_cpu_usage
/ NSEC_PER_MSEC
);
767 * rusage statistics done by the parent, these are less
768 * accurate than the sched->sum_exec_runtime based statistics:
770 printf(" [%0.2f / %0.2f]",
771 (double)sched
->parent_cpu_usage
/ NSEC_PER_MSEC
,
772 (double)sched
->runavg_parent_cpu_usage
/ NSEC_PER_MSEC
);
777 if (sched
->nr_sleep_corrections
)
778 printf(" (%ld sleep corrections)\n", sched
->nr_sleep_corrections
);
779 sched
->nr_sleep_corrections
= 0;
782 static void test_calibrations(struct perf_sched
*sched
)
787 burn_nsecs(sched
, NSEC_PER_MSEC
);
790 printf("the run test took %" PRIu64
" nsecs\n", T1
- T0
);
793 sleep_nsecs(NSEC_PER_MSEC
);
796 printf("the sleep test took %" PRIu64
" nsecs\n", T1
- T0
);
800 replay_wakeup_event(struct perf_sched
*sched
,
801 struct perf_evsel
*evsel
, struct perf_sample
*sample
,
802 struct machine
*machine __maybe_unused
)
804 const char *comm
= perf_evsel__strval(evsel
, sample
, "comm");
805 const u32 pid
= perf_evsel__intval(evsel
, sample
, "pid");
806 struct task_desc
*waker
, *wakee
;
809 printf("sched_wakeup event %p\n", evsel
);
811 printf(" ... pid %d woke up %s/%d\n", sample
->tid
, comm
, pid
);
814 waker
= register_pid(sched
, sample
->tid
, "<unknown>");
815 wakee
= register_pid(sched
, pid
, comm
);
817 add_sched_event_wakeup(sched
, waker
, sample
->time
, wakee
);
821 static int replay_switch_event(struct perf_sched
*sched
,
822 struct perf_evsel
*evsel
,
823 struct perf_sample
*sample
,
824 struct machine
*machine __maybe_unused
)
826 const char *prev_comm
= perf_evsel__strval(evsel
, sample
, "prev_comm"),
827 *next_comm
= perf_evsel__strval(evsel
, sample
, "next_comm");
828 const u32 prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid"),
829 next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
830 const u64 prev_state
= perf_evsel__intval(evsel
, sample
, "prev_state");
831 struct task_desc
*prev
, __maybe_unused
*next
;
832 u64 timestamp0
, timestamp
= sample
->time
;
833 int cpu
= sample
->cpu
;
837 printf("sched_switch event %p\n", evsel
);
839 if (cpu
>= MAX_CPUS
|| cpu
< 0)
842 timestamp0
= sched
->cpu_last_switched
[cpu
];
844 delta
= timestamp
- timestamp0
;
849 pr_err("hm, delta: %" PRIu64
" < 0 ?\n", delta
);
853 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64
" nsecs]\n",
854 prev_comm
, prev_pid
, next_comm
, next_pid
, delta
);
856 prev
= register_pid(sched
, prev_pid
, prev_comm
);
857 next
= register_pid(sched
, next_pid
, next_comm
);
859 sched
->cpu_last_switched
[cpu
] = timestamp
;
861 add_sched_event_run(sched
, prev
, timestamp
, delta
);
862 add_sched_event_sleep(sched
, prev
, timestamp
, prev_state
);
867 static int replay_fork_event(struct perf_sched
*sched
,
868 union perf_event
*event
,
869 struct machine
*machine
)
871 struct thread
*child
, *parent
;
873 child
= machine__findnew_thread(machine
, event
->fork
.pid
,
875 parent
= machine__findnew_thread(machine
, event
->fork
.ppid
,
878 if (child
== NULL
|| parent
== NULL
) {
879 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
885 printf("fork event\n");
886 printf("... parent: %s/%d\n", thread__comm_str(parent
), parent
->tid
);
887 printf("... child: %s/%d\n", thread__comm_str(child
), child
->tid
);
890 register_pid(sched
, parent
->tid
, thread__comm_str(parent
));
891 register_pid(sched
, child
->tid
, thread__comm_str(child
));
898 struct sort_dimension
{
901 struct list_head list
;
905 * handle runtime stats saved per thread
907 static struct thread_runtime
*thread__init_runtime(struct thread
*thread
)
909 struct thread_runtime
*r
;
911 r
= zalloc(sizeof(struct thread_runtime
));
915 init_stats(&r
->run_stats
);
916 thread__set_priv(thread
, r
);
921 static struct thread_runtime
*thread__get_runtime(struct thread
*thread
)
923 struct thread_runtime
*tr
;
925 tr
= thread__priv(thread
);
927 tr
= thread__init_runtime(thread
);
929 pr_debug("Failed to malloc memory for runtime data.\n");
936 thread_lat_cmp(struct list_head
*list
, struct work_atoms
*l
, struct work_atoms
*r
)
938 struct sort_dimension
*sort
;
941 BUG_ON(list_empty(list
));
943 list_for_each_entry(sort
, list
, list
) {
944 ret
= sort
->cmp(l
, r
);
952 static struct work_atoms
*
953 thread_atoms_search(struct rb_root_cached
*root
, struct thread
*thread
,
954 struct list_head
*sort_list
)
956 struct rb_node
*node
= root
->rb_root
.rb_node
;
957 struct work_atoms key
= { .thread
= thread
};
960 struct work_atoms
*atoms
;
963 atoms
= container_of(node
, struct work_atoms
, node
);
965 cmp
= thread_lat_cmp(sort_list
, &key
, atoms
);
967 node
= node
->rb_left
;
969 node
= node
->rb_right
;
971 BUG_ON(thread
!= atoms
->thread
);
979 __thread_latency_insert(struct rb_root_cached
*root
, struct work_atoms
*data
,
980 struct list_head
*sort_list
)
982 struct rb_node
**new = &(root
->rb_root
.rb_node
), *parent
= NULL
;
983 bool leftmost
= true;
986 struct work_atoms
*this;
989 this = container_of(*new, struct work_atoms
, node
);
992 cmp
= thread_lat_cmp(sort_list
, data
, this);
995 new = &((*new)->rb_left
);
997 new = &((*new)->rb_right
);
1002 rb_link_node(&data
->node
, parent
, new);
1003 rb_insert_color_cached(&data
->node
, root
, leftmost
);
1006 static int thread_atoms_insert(struct perf_sched
*sched
, struct thread
*thread
)
1008 struct work_atoms
*atoms
= zalloc(sizeof(*atoms
));
1010 pr_err("No memory at %s\n", __func__
);
1014 atoms
->thread
= thread__get(thread
);
1015 INIT_LIST_HEAD(&atoms
->work_list
);
1016 __thread_latency_insert(&sched
->atom_root
, atoms
, &sched
->cmp_pid
);
1020 static char sched_out_state(u64 prev_state
)
1022 const char *str
= TASK_STATE_TO_CHAR_STR
;
1024 return str
[prev_state
];
1028 add_sched_out_event(struct work_atoms
*atoms
,
1032 struct work_atom
*atom
= zalloc(sizeof(*atom
));
1034 pr_err("Non memory at %s", __func__
);
1038 atom
->sched_out_time
= timestamp
;
1040 if (run_state
== 'R') {
1041 atom
->state
= THREAD_WAIT_CPU
;
1042 atom
->wake_up_time
= atom
->sched_out_time
;
1045 list_add_tail(&atom
->list
, &atoms
->work_list
);
1050 add_runtime_event(struct work_atoms
*atoms
, u64 delta
,
1051 u64 timestamp __maybe_unused
)
1053 struct work_atom
*atom
;
1055 BUG_ON(list_empty(&atoms
->work_list
));
1057 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
1059 atom
->runtime
+= delta
;
1060 atoms
->total_runtime
+= delta
;
1064 add_sched_in_event(struct work_atoms
*atoms
, u64 timestamp
)
1066 struct work_atom
*atom
;
1069 if (list_empty(&atoms
->work_list
))
1072 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
1074 if (atom
->state
!= THREAD_WAIT_CPU
)
1077 if (timestamp
< atom
->wake_up_time
) {
1078 atom
->state
= THREAD_IGNORE
;
1082 atom
->state
= THREAD_SCHED_IN
;
1083 atom
->sched_in_time
= timestamp
;
1085 delta
= atom
->sched_in_time
- atom
->wake_up_time
;
1086 atoms
->total_lat
+= delta
;
1087 if (delta
> atoms
->max_lat
) {
1088 atoms
->max_lat
= delta
;
1089 atoms
->max_lat_at
= timestamp
;
1094 static int latency_switch_event(struct perf_sched
*sched
,
1095 struct perf_evsel
*evsel
,
1096 struct perf_sample
*sample
,
1097 struct machine
*machine
)
1099 const u32 prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid"),
1100 next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
1101 const u64 prev_state
= perf_evsel__intval(evsel
, sample
, "prev_state");
1102 struct work_atoms
*out_events
, *in_events
;
1103 struct thread
*sched_out
, *sched_in
;
1104 u64 timestamp0
, timestamp
= sample
->time
;
1105 int cpu
= sample
->cpu
, err
= -1;
1108 BUG_ON(cpu
>= MAX_CPUS
|| cpu
< 0);
1110 timestamp0
= sched
->cpu_last_switched
[cpu
];
1111 sched
->cpu_last_switched
[cpu
] = timestamp
;
1113 delta
= timestamp
- timestamp0
;
1118 pr_err("hm, delta: %" PRIu64
" < 0 ?\n", delta
);
1122 sched_out
= machine__findnew_thread(machine
, -1, prev_pid
);
1123 sched_in
= machine__findnew_thread(machine
, -1, next_pid
);
1124 if (sched_out
== NULL
|| sched_in
== NULL
)
1127 out_events
= thread_atoms_search(&sched
->atom_root
, sched_out
, &sched
->cmp_pid
);
1129 if (thread_atoms_insert(sched
, sched_out
))
1131 out_events
= thread_atoms_search(&sched
->atom_root
, sched_out
, &sched
->cmp_pid
);
1133 pr_err("out-event: Internal tree error");
1137 if (add_sched_out_event(out_events
, sched_out_state(prev_state
), timestamp
))
1140 in_events
= thread_atoms_search(&sched
->atom_root
, sched_in
, &sched
->cmp_pid
);
1142 if (thread_atoms_insert(sched
, sched_in
))
1144 in_events
= thread_atoms_search(&sched
->atom_root
, sched_in
, &sched
->cmp_pid
);
1146 pr_err("in-event: Internal tree error");
1150 * Take came in we have not heard about yet,
1151 * add in an initial atom in runnable state:
1153 if (add_sched_out_event(in_events
, 'R', timestamp
))
1156 add_sched_in_event(in_events
, timestamp
);
1159 thread__put(sched_out
);
1160 thread__put(sched_in
);
1164 static int latency_runtime_event(struct perf_sched
*sched
,
1165 struct perf_evsel
*evsel
,
1166 struct perf_sample
*sample
,
1167 struct machine
*machine
)
1169 const u32 pid
= perf_evsel__intval(evsel
, sample
, "pid");
1170 const u64 runtime
= perf_evsel__intval(evsel
, sample
, "runtime");
1171 struct thread
*thread
= machine__findnew_thread(machine
, -1, pid
);
1172 struct work_atoms
*atoms
= thread_atoms_search(&sched
->atom_root
, thread
, &sched
->cmp_pid
);
1173 u64 timestamp
= sample
->time
;
1174 int cpu
= sample
->cpu
, err
= -1;
1179 BUG_ON(cpu
>= MAX_CPUS
|| cpu
< 0);
1181 if (thread_atoms_insert(sched
, thread
))
1183 atoms
= thread_atoms_search(&sched
->atom_root
, thread
, &sched
->cmp_pid
);
1185 pr_err("in-event: Internal tree error");
1188 if (add_sched_out_event(atoms
, 'R', timestamp
))
1192 add_runtime_event(atoms
, runtime
, timestamp
);
1195 thread__put(thread
);
1199 static int latency_wakeup_event(struct perf_sched
*sched
,
1200 struct perf_evsel
*evsel
,
1201 struct perf_sample
*sample
,
1202 struct machine
*machine
)
1204 const u32 pid
= perf_evsel__intval(evsel
, sample
, "pid");
1205 struct work_atoms
*atoms
;
1206 struct work_atom
*atom
;
1207 struct thread
*wakee
;
1208 u64 timestamp
= sample
->time
;
1211 wakee
= machine__findnew_thread(machine
, -1, pid
);
1214 atoms
= thread_atoms_search(&sched
->atom_root
, wakee
, &sched
->cmp_pid
);
1216 if (thread_atoms_insert(sched
, wakee
))
1218 atoms
= thread_atoms_search(&sched
->atom_root
, wakee
, &sched
->cmp_pid
);
1220 pr_err("wakeup-event: Internal tree error");
1223 if (add_sched_out_event(atoms
, 'S', timestamp
))
1227 BUG_ON(list_empty(&atoms
->work_list
));
1229 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
1232 * As we do not guarantee the wakeup event happens when
1233 * task is out of run queue, also may happen when task is
1234 * on run queue and wakeup only change ->state to TASK_RUNNING,
1235 * then we should not set the ->wake_up_time when wake up a
1236 * task which is on run queue.
1238 * You WILL be missing events if you've recorded only
1239 * one CPU, or are only looking at only one, so don't
1240 * skip in this case.
1242 if (sched
->profile_cpu
== -1 && atom
->state
!= THREAD_SLEEPING
)
1245 sched
->nr_timestamps
++;
1246 if (atom
->sched_out_time
> timestamp
) {
1247 sched
->nr_unordered_timestamps
++;
1251 atom
->state
= THREAD_WAIT_CPU
;
1252 atom
->wake_up_time
= timestamp
;
1260 static int latency_migrate_task_event(struct perf_sched
*sched
,
1261 struct perf_evsel
*evsel
,
1262 struct perf_sample
*sample
,
1263 struct machine
*machine
)
1265 const u32 pid
= perf_evsel__intval(evsel
, sample
, "pid");
1266 u64 timestamp
= sample
->time
;
1267 struct work_atoms
*atoms
;
1268 struct work_atom
*atom
;
1269 struct thread
*migrant
;
1273 * Only need to worry about migration when profiling one CPU.
1275 if (sched
->profile_cpu
== -1)
1278 migrant
= machine__findnew_thread(machine
, -1, pid
);
1279 if (migrant
== NULL
)
1281 atoms
= thread_atoms_search(&sched
->atom_root
, migrant
, &sched
->cmp_pid
);
1283 if (thread_atoms_insert(sched
, migrant
))
1285 register_pid(sched
, migrant
->tid
, thread__comm_str(migrant
));
1286 atoms
= thread_atoms_search(&sched
->atom_root
, migrant
, &sched
->cmp_pid
);
1288 pr_err("migration-event: Internal tree error");
1291 if (add_sched_out_event(atoms
, 'R', timestamp
))
1295 BUG_ON(list_empty(&atoms
->work_list
));
1297 atom
= list_entry(atoms
->work_list
.prev
, struct work_atom
, list
);
1298 atom
->sched_in_time
= atom
->sched_out_time
= atom
->wake_up_time
= timestamp
;
1300 sched
->nr_timestamps
++;
1302 if (atom
->sched_out_time
> timestamp
)
1303 sched
->nr_unordered_timestamps
++;
1306 thread__put(migrant
);
1310 static void output_lat_thread(struct perf_sched
*sched
, struct work_atoms
*work_list
)
1315 char max_lat_at
[32];
1317 if (!work_list
->nb_atoms
)
1320 * Ignore idle threads:
1322 if (!strcmp(thread__comm_str(work_list
->thread
), "swapper"))
1325 sched
->all_runtime
+= work_list
->total_runtime
;
1326 sched
->all_count
+= work_list
->nb_atoms
;
1328 if (work_list
->num_merged
> 1)
1329 ret
= printf(" %s:(%d) ", thread__comm_str(work_list
->thread
), work_list
->num_merged
);
1331 ret
= printf(" %s:%d ", thread__comm_str(work_list
->thread
), work_list
->thread
->tid
);
1333 for (i
= 0; i
< 24 - ret
; i
++)
1336 avg
= work_list
->total_lat
/ work_list
->nb_atoms
;
1337 timestamp__scnprintf_usec(work_list
->max_lat_at
, max_lat_at
, sizeof(max_lat_at
));
1339 printf("|%11.3f ms |%9" PRIu64
" | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1340 (double)work_list
->total_runtime
/ NSEC_PER_MSEC
,
1341 work_list
->nb_atoms
, (double)avg
/ NSEC_PER_MSEC
,
1342 (double)work_list
->max_lat
/ NSEC_PER_MSEC
,
1346 static int pid_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1348 if (l
->thread
== r
->thread
)
1350 if (l
->thread
->tid
< r
->thread
->tid
)
1352 if (l
->thread
->tid
> r
->thread
->tid
)
1354 return (int)(l
->thread
- r
->thread
);
1357 static int avg_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1367 avgl
= l
->total_lat
/ l
->nb_atoms
;
1368 avgr
= r
->total_lat
/ r
->nb_atoms
;
1378 static int max_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1380 if (l
->max_lat
< r
->max_lat
)
1382 if (l
->max_lat
> r
->max_lat
)
1388 static int switch_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1390 if (l
->nb_atoms
< r
->nb_atoms
)
1392 if (l
->nb_atoms
> r
->nb_atoms
)
1398 static int runtime_cmp(struct work_atoms
*l
, struct work_atoms
*r
)
1400 if (l
->total_runtime
< r
->total_runtime
)
1402 if (l
->total_runtime
> r
->total_runtime
)
1408 static int sort_dimension__add(const char *tok
, struct list_head
*list
)
1411 static struct sort_dimension avg_sort_dimension
= {
1415 static struct sort_dimension max_sort_dimension
= {
1419 static struct sort_dimension pid_sort_dimension
= {
1423 static struct sort_dimension runtime_sort_dimension
= {
1427 static struct sort_dimension switch_sort_dimension
= {
1431 struct sort_dimension
*available_sorts
[] = {
1432 &pid_sort_dimension
,
1433 &avg_sort_dimension
,
1434 &max_sort_dimension
,
1435 &switch_sort_dimension
,
1436 &runtime_sort_dimension
,
1439 for (i
= 0; i
< ARRAY_SIZE(available_sorts
); i
++) {
1440 if (!strcmp(available_sorts
[i
]->name
, tok
)) {
1441 list_add_tail(&available_sorts
[i
]->list
, list
);
1450 static void perf_sched__sort_lat(struct perf_sched
*sched
)
1452 struct rb_node
*node
;
1453 struct rb_root_cached
*root
= &sched
->atom_root
;
1456 struct work_atoms
*data
;
1457 node
= rb_first_cached(root
);
1461 rb_erase_cached(node
, root
);
1462 data
= rb_entry(node
, struct work_atoms
, node
);
1463 __thread_latency_insert(&sched
->sorted_atom_root
, data
, &sched
->sort_list
);
1465 if (root
== &sched
->atom_root
) {
1466 root
= &sched
->merged_atom_root
;
1471 static int process_sched_wakeup_event(struct perf_tool
*tool
,
1472 struct perf_evsel
*evsel
,
1473 struct perf_sample
*sample
,
1474 struct machine
*machine
)
1476 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1478 if (sched
->tp_handler
->wakeup_event
)
1479 return sched
->tp_handler
->wakeup_event(sched
, evsel
, sample
, machine
);
1489 static bool thread__has_color(struct thread
*thread
)
1491 union map_priv priv
= {
1492 .ptr
= thread__priv(thread
),
1498 static struct thread
*
1499 map__findnew_thread(struct perf_sched
*sched
, struct machine
*machine
, pid_t pid
, pid_t tid
)
1501 struct thread
*thread
= machine__findnew_thread(machine
, pid
, tid
);
1502 union map_priv priv
= {
1506 if (!sched
->map
.color_pids
|| !thread
|| thread__priv(thread
))
1509 if (thread_map__has(sched
->map
.color_pids
, tid
))
1512 thread__set_priv(thread
, priv
.ptr
);
1516 static int map_switch_event(struct perf_sched
*sched
, struct perf_evsel
*evsel
,
1517 struct perf_sample
*sample
, struct machine
*machine
)
1519 const u32 next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
1520 struct thread
*sched_in
;
1521 struct thread_runtime
*tr
;
1523 u64 timestamp0
, timestamp
= sample
->time
;
1525 int i
, this_cpu
= sample
->cpu
;
1527 bool new_cpu
= false;
1528 const char *color
= PERF_COLOR_NORMAL
;
1529 char stimestamp
[32];
1531 BUG_ON(this_cpu
>= MAX_CPUS
|| this_cpu
< 0);
1533 if (this_cpu
> sched
->max_cpu
)
1534 sched
->max_cpu
= this_cpu
;
1536 if (sched
->map
.comp
) {
1537 cpus_nr
= bitmap_weight(sched
->map
.comp_cpus_mask
, MAX_CPUS
);
1538 if (!test_and_set_bit(this_cpu
, sched
->map
.comp_cpus_mask
)) {
1539 sched
->map
.comp_cpus
[cpus_nr
++] = this_cpu
;
1543 cpus_nr
= sched
->max_cpu
;
1545 timestamp0
= sched
->cpu_last_switched
[this_cpu
];
1546 sched
->cpu_last_switched
[this_cpu
] = timestamp
;
1548 delta
= timestamp
- timestamp0
;
1553 pr_err("hm, delta: %" PRIu64
" < 0 ?\n", delta
);
1557 sched_in
= map__findnew_thread(sched
, machine
, -1, next_pid
);
1558 if (sched_in
== NULL
)
1561 tr
= thread__get_runtime(sched_in
);
1563 thread__put(sched_in
);
1567 sched
->curr_thread
[this_cpu
] = thread__get(sched_in
);
1572 if (!tr
->shortname
[0]) {
1573 if (!strcmp(thread__comm_str(sched_in
), "swapper")) {
1575 * Don't allocate a letter-number for swapper:0
1576 * as a shortname. Instead, we use '.' for it.
1578 tr
->shortname
[0] = '.';
1579 tr
->shortname
[1] = ' ';
1581 tr
->shortname
[0] = sched
->next_shortname1
;
1582 tr
->shortname
[1] = sched
->next_shortname2
;
1584 if (sched
->next_shortname1
< 'Z') {
1585 sched
->next_shortname1
++;
1587 sched
->next_shortname1
= 'A';
1588 if (sched
->next_shortname2
< '9')
1589 sched
->next_shortname2
++;
1591 sched
->next_shortname2
= '0';
1597 for (i
= 0; i
< cpus_nr
; i
++) {
1598 int cpu
= sched
->map
.comp
? sched
->map
.comp_cpus
[i
] : i
;
1599 struct thread
*curr_thread
= sched
->curr_thread
[cpu
];
1600 struct thread_runtime
*curr_tr
;
1601 const char *pid_color
= color
;
1602 const char *cpu_color
= color
;
1604 if (curr_thread
&& thread__has_color(curr_thread
))
1605 pid_color
= COLOR_PIDS
;
1607 if (sched
->map
.cpus
&& !cpu_map__has(sched
->map
.cpus
, cpu
))
1610 if (sched
->map
.color_cpus
&& cpu_map__has(sched
->map
.color_cpus
, cpu
))
1611 cpu_color
= COLOR_CPUS
;
1613 if (cpu
!= this_cpu
)
1614 color_fprintf(stdout
, color
, " ");
1616 color_fprintf(stdout
, cpu_color
, "*");
1618 if (sched
->curr_thread
[cpu
]) {
1619 curr_tr
= thread__get_runtime(sched
->curr_thread
[cpu
]);
1620 if (curr_tr
== NULL
) {
1621 thread__put(sched_in
);
1624 color_fprintf(stdout
, pid_color
, "%2s ", curr_tr
->shortname
);
1626 color_fprintf(stdout
, color
, " ");
1629 if (sched
->map
.cpus
&& !cpu_map__has(sched
->map
.cpus
, this_cpu
))
1632 timestamp__scnprintf_usec(timestamp
, stimestamp
, sizeof(stimestamp
));
1633 color_fprintf(stdout
, color
, " %12s secs ", stimestamp
);
1634 if (new_shortname
|| tr
->comm_changed
|| (verbose
> 0 && sched_in
->tid
)) {
1635 const char *pid_color
= color
;
1637 if (thread__has_color(sched_in
))
1638 pid_color
= COLOR_PIDS
;
1640 color_fprintf(stdout
, pid_color
, "%s => %s:%d",
1641 tr
->shortname
, thread__comm_str(sched_in
), sched_in
->tid
);
1642 tr
->comm_changed
= false;
1645 if (sched
->map
.comp
&& new_cpu
)
1646 color_fprintf(stdout
, color
, " (CPU %d)", this_cpu
);
1649 color_fprintf(stdout
, color
, "\n");
1651 thread__put(sched_in
);
1656 static int process_sched_switch_event(struct perf_tool
*tool
,
1657 struct perf_evsel
*evsel
,
1658 struct perf_sample
*sample
,
1659 struct machine
*machine
)
1661 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1662 int this_cpu
= sample
->cpu
, err
= 0;
1663 u32 prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid"),
1664 next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
1666 if (sched
->curr_pid
[this_cpu
] != (u32
)-1) {
1668 * Are we trying to switch away a PID that is
1671 if (sched
->curr_pid
[this_cpu
] != prev_pid
)
1672 sched
->nr_context_switch_bugs
++;
1675 if (sched
->tp_handler
->switch_event
)
1676 err
= sched
->tp_handler
->switch_event(sched
, evsel
, sample
, machine
);
1678 sched
->curr_pid
[this_cpu
] = next_pid
;
1682 static int process_sched_runtime_event(struct perf_tool
*tool
,
1683 struct perf_evsel
*evsel
,
1684 struct perf_sample
*sample
,
1685 struct machine
*machine
)
1687 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1689 if (sched
->tp_handler
->runtime_event
)
1690 return sched
->tp_handler
->runtime_event(sched
, evsel
, sample
, machine
);
1695 static int perf_sched__process_fork_event(struct perf_tool
*tool
,
1696 union perf_event
*event
,
1697 struct perf_sample
*sample
,
1698 struct machine
*machine
)
1700 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1702 /* run the fork event through the perf machineruy */
1703 perf_event__process_fork(tool
, event
, sample
, machine
);
1705 /* and then run additional processing needed for this command */
1706 if (sched
->tp_handler
->fork_event
)
1707 return sched
->tp_handler
->fork_event(sched
, event
, machine
);
1712 static int process_sched_migrate_task_event(struct perf_tool
*tool
,
1713 struct perf_evsel
*evsel
,
1714 struct perf_sample
*sample
,
1715 struct machine
*machine
)
1717 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
1719 if (sched
->tp_handler
->migrate_task_event
)
1720 return sched
->tp_handler
->migrate_task_event(sched
, evsel
, sample
, machine
);
1725 typedef int (*tracepoint_handler
)(struct perf_tool
*tool
,
1726 struct perf_evsel
*evsel
,
1727 struct perf_sample
*sample
,
1728 struct machine
*machine
);
1730 static int perf_sched__process_tracepoint_sample(struct perf_tool
*tool __maybe_unused
,
1731 union perf_event
*event __maybe_unused
,
1732 struct perf_sample
*sample
,
1733 struct perf_evsel
*evsel
,
1734 struct machine
*machine
)
1738 if (evsel
->handler
!= NULL
) {
1739 tracepoint_handler f
= evsel
->handler
;
1740 err
= f(tool
, evsel
, sample
, machine
);
1746 static int perf_sched__process_comm(struct perf_tool
*tool __maybe_unused
,
1747 union perf_event
*event
,
1748 struct perf_sample
*sample
,
1749 struct machine
*machine
)
1751 struct thread
*thread
;
1752 struct thread_runtime
*tr
;
1755 err
= perf_event__process_comm(tool
, event
, sample
, machine
);
1759 thread
= machine__find_thread(machine
, sample
->pid
, sample
->tid
);
1761 pr_err("Internal error: can't find thread\n");
1765 tr
= thread__get_runtime(thread
);
1767 thread__put(thread
);
1771 tr
->comm_changed
= true;
1772 thread__put(thread
);
1777 static int perf_sched__read_events(struct perf_sched
*sched
)
1779 const struct perf_evsel_str_handler handlers
[] = {
1780 { "sched:sched_switch", process_sched_switch_event
, },
1781 { "sched:sched_stat_runtime", process_sched_runtime_event
, },
1782 { "sched:sched_wakeup", process_sched_wakeup_event
, },
1783 { "sched:sched_wakeup_new", process_sched_wakeup_event
, },
1784 { "sched:sched_migrate_task", process_sched_migrate_task_event
, },
1786 struct perf_session
*session
;
1787 struct perf_data data
= {
1789 .mode
= PERF_DATA_MODE_READ
,
1790 .force
= sched
->force
,
1794 session
= perf_session__new(&data
, false, &sched
->tool
);
1795 if (session
== NULL
) {
1796 pr_debug("No Memory for session\n");
1800 symbol__init(&session
->header
.env
);
1802 if (perf_session__set_tracepoints_handlers(session
, handlers
))
1805 if (perf_session__has_traces(session
, "record -R")) {
1806 int err
= perf_session__process_events(session
);
1808 pr_err("Failed to process events, error %d", err
);
1812 sched
->nr_events
= session
->evlist
->stats
.nr_events
[0];
1813 sched
->nr_lost_events
= session
->evlist
->stats
.total_lost
;
1814 sched
->nr_lost_chunks
= session
->evlist
->stats
.nr_events
[PERF_RECORD_LOST
];
1819 perf_session__delete(session
);
1824 * scheduling times are printed as msec.usec
1826 static inline void print_sched_time(unsigned long long nsecs
, int width
)
1828 unsigned long msecs
;
1829 unsigned long usecs
;
1831 msecs
= nsecs
/ NSEC_PER_MSEC
;
1832 nsecs
-= msecs
* NSEC_PER_MSEC
;
1833 usecs
= nsecs
/ NSEC_PER_USEC
;
1834 printf("%*lu.%03lu ", width
, msecs
, usecs
);
1838 * returns runtime data for event, allocating memory for it the
1839 * first time it is used.
1841 static struct evsel_runtime
*perf_evsel__get_runtime(struct perf_evsel
*evsel
)
1843 struct evsel_runtime
*r
= evsel
->priv
;
1846 r
= zalloc(sizeof(struct evsel_runtime
));
1854 * save last time event was seen per cpu
1856 static void perf_evsel__save_time(struct perf_evsel
*evsel
,
1857 u64 timestamp
, u32 cpu
)
1859 struct evsel_runtime
*r
= perf_evsel__get_runtime(evsel
);
1864 if ((cpu
>= r
->ncpu
) || (r
->last_time
== NULL
)) {
1865 int i
, n
= __roundup_pow_of_two(cpu
+1);
1866 void *p
= r
->last_time
;
1868 p
= realloc(r
->last_time
, n
* sizeof(u64
));
1873 for (i
= r
->ncpu
; i
< n
; ++i
)
1874 r
->last_time
[i
] = (u64
) 0;
1879 r
->last_time
[cpu
] = timestamp
;
1882 /* returns last time this event was seen on the given cpu */
1883 static u64
perf_evsel__get_time(struct perf_evsel
*evsel
, u32 cpu
)
1885 struct evsel_runtime
*r
= perf_evsel__get_runtime(evsel
);
1887 if ((r
== NULL
) || (r
->last_time
== NULL
) || (cpu
>= r
->ncpu
))
1890 return r
->last_time
[cpu
];
1893 static int comm_width
= 30;
1895 static char *timehist_get_commstr(struct thread
*thread
)
1897 static char str
[32];
1898 const char *comm
= thread__comm_str(thread
);
1899 pid_t tid
= thread
->tid
;
1900 pid_t pid
= thread
->pid_
;
1904 n
= scnprintf(str
, sizeof(str
), "%s", comm
);
1906 else if (tid
!= pid
)
1907 n
= scnprintf(str
, sizeof(str
), "%s[%d/%d]", comm
, tid
, pid
);
1910 n
= scnprintf(str
, sizeof(str
), "%s[%d]", comm
, tid
);
1918 static void timehist_header(struct perf_sched
*sched
)
1920 u32 ncpus
= sched
->max_cpu
+ 1;
1923 printf("%15s %6s ", "time", "cpu");
1925 if (sched
->show_cpu_visual
) {
1927 for (i
= 0, j
= 0; i
< ncpus
; ++i
) {
1935 printf(" %-*s %9s %9s %9s", comm_width
,
1936 "task name", "wait time", "sch delay", "run time");
1938 if (sched
->show_state
)
1939 printf(" %s", "state");
1946 printf("%15s %-6s ", "", "");
1948 if (sched
->show_cpu_visual
)
1949 printf(" %*s ", ncpus
, "");
1951 printf(" %-*s %9s %9s %9s", comm_width
,
1952 "[tid/pid]", "(msec)", "(msec)", "(msec)");
1954 if (sched
->show_state
)
1962 printf("%.15s %.6s ", graph_dotted_line
, graph_dotted_line
);
1964 if (sched
->show_cpu_visual
)
1965 printf(" %.*s ", ncpus
, graph_dotted_line
);
1967 printf(" %.*s %.9s %.9s %.9s", comm_width
,
1968 graph_dotted_line
, graph_dotted_line
, graph_dotted_line
,
1971 if (sched
->show_state
)
1972 printf(" %.5s", graph_dotted_line
);
1977 static char task_state_char(struct thread
*thread
, int state
)
1979 static const char state_to_char
[] = TASK_STATE_TO_CHAR_STR
;
1980 unsigned bit
= state
? ffs(state
) : 0;
1983 if (thread
->tid
== 0)
1986 return bit
< sizeof(state_to_char
) - 1 ? state_to_char
[bit
] : '?';
1989 static void timehist_print_sample(struct perf_sched
*sched
,
1990 struct perf_evsel
*evsel
,
1991 struct perf_sample
*sample
,
1992 struct addr_location
*al
,
1993 struct thread
*thread
,
1996 struct thread_runtime
*tr
= thread__priv(thread
);
1997 const char *next_comm
= perf_evsel__strval(evsel
, sample
, "next_comm");
1998 const u32 next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
1999 u32 max_cpus
= sched
->max_cpu
+ 1;
2004 timestamp__scnprintf_usec(t
, tstr
, sizeof(tstr
));
2005 printf("%15s [%04d] ", tstr
, sample
->cpu
);
2007 if (sched
->show_cpu_visual
) {
2012 for (i
= 0; i
< max_cpus
; ++i
) {
2013 /* flag idle times with 'i'; others are sched events */
2014 if (i
== sample
->cpu
)
2015 c
= (thread
->tid
== 0) ? 'i' : 's';
2023 printf(" %-*s ", comm_width
, timehist_get_commstr(thread
));
2025 wait_time
= tr
->dt_sleep
+ tr
->dt_iowait
+ tr
->dt_preempt
;
2026 print_sched_time(wait_time
, 6);
2028 print_sched_time(tr
->dt_delay
, 6);
2029 print_sched_time(tr
->dt_run
, 6);
2031 if (sched
->show_state
)
2032 printf(" %5c ", task_state_char(thread
, state
));
2034 if (sched
->show_next
) {
2035 snprintf(nstr
, sizeof(nstr
), "next: %s[%d]", next_comm
, next_pid
);
2036 printf(" %-*s", comm_width
, nstr
);
2039 if (sched
->show_wakeups
&& !sched
->show_next
)
2040 printf(" %-*s", comm_width
, "");
2042 if (thread
->tid
== 0)
2045 if (sched
->show_callchain
)
2048 sample__fprintf_sym(sample
, al
, 0,
2049 EVSEL__PRINT_SYM
| EVSEL__PRINT_ONELINE
|
2050 EVSEL__PRINT_CALLCHAIN_ARROW
|
2051 EVSEL__PRINT_SKIP_IGNORED
,
2052 &callchain_cursor
, stdout
);
2059 * Explanation of delta-time stats:
2061 * t = time of current schedule out event
2062 * tprev = time of previous sched out event
2063 * also time of schedule-in event for current task
2064 * last_time = time of last sched change event for current task
2065 * (i.e, time process was last scheduled out)
2066 * ready_to_run = time of wakeup for current task
2068 * -----|------------|------------|------------|------
2069 * last ready tprev t
2072 * |-------- dt_wait --------|
2073 * |- dt_delay -|-- dt_run --|
2075 * dt_run = run time of current task
2076 * dt_wait = time between last schedule out event for task and tprev
2077 * represents time spent off the cpu
2078 * dt_delay = time between wakeup and schedule-in of task
2081 static void timehist_update_runtime_stats(struct thread_runtime
*r
,
2091 r
->dt_run
= t
- tprev
;
2092 if (r
->ready_to_run
) {
2093 if (r
->ready_to_run
> tprev
)
2094 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2096 r
->dt_delay
= tprev
- r
->ready_to_run
;
2099 if (r
->last_time
> tprev
)
2100 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2101 else if (r
->last_time
) {
2102 u64 dt_wait
= tprev
- r
->last_time
;
2104 if (r
->last_state
== TASK_RUNNING
)
2105 r
->dt_preempt
= dt_wait
;
2106 else if (r
->last_state
== TASK_UNINTERRUPTIBLE
)
2107 r
->dt_iowait
= dt_wait
;
2109 r
->dt_sleep
= dt_wait
;
2113 update_stats(&r
->run_stats
, r
->dt_run
);
2115 r
->total_run_time
+= r
->dt_run
;
2116 r
->total_delay_time
+= r
->dt_delay
;
2117 r
->total_sleep_time
+= r
->dt_sleep
;
2118 r
->total_iowait_time
+= r
->dt_iowait
;
2119 r
->total_preempt_time
+= r
->dt_preempt
;
2122 static bool is_idle_sample(struct perf_sample
*sample
,
2123 struct perf_evsel
*evsel
)
2125 /* pid 0 == swapper == idle task */
2126 if (strcmp(perf_evsel__name(evsel
), "sched:sched_switch") == 0)
2127 return perf_evsel__intval(evsel
, sample
, "prev_pid") == 0;
2129 return sample
->pid
== 0;
2132 static void save_task_callchain(struct perf_sched
*sched
,
2133 struct perf_sample
*sample
,
2134 struct perf_evsel
*evsel
,
2135 struct machine
*machine
)
2137 struct callchain_cursor
*cursor
= &callchain_cursor
;
2138 struct thread
*thread
;
2140 /* want main thread for process - has maps */
2141 thread
= machine__findnew_thread(machine
, sample
->pid
, sample
->pid
);
2142 if (thread
== NULL
) {
2143 pr_debug("Failed to get thread for pid %d.\n", sample
->pid
);
2147 if (!sched
->show_callchain
|| sample
->callchain
== NULL
)
2150 if (thread__resolve_callchain(thread
, cursor
, evsel
, sample
,
2151 NULL
, NULL
, sched
->max_stack
+ 2) != 0) {
2153 pr_err("Failed to resolve callchain. Skipping\n");
2158 callchain_cursor_commit(cursor
);
2161 struct callchain_cursor_node
*node
;
2164 node
= callchain_cursor_current(cursor
);
2170 if (!strcmp(sym
->name
, "schedule") ||
2171 !strcmp(sym
->name
, "__schedule") ||
2172 !strcmp(sym
->name
, "preempt_schedule"))
2176 callchain_cursor_advance(cursor
);
2180 static int init_idle_thread(struct thread
*thread
)
2182 struct idle_thread_runtime
*itr
;
2184 thread__set_comm(thread
, idle_comm
, 0);
2186 itr
= zalloc(sizeof(*itr
));
2190 init_stats(&itr
->tr
.run_stats
);
2191 callchain_init(&itr
->callchain
);
2192 callchain_cursor_reset(&itr
->cursor
);
2193 thread__set_priv(thread
, itr
);
2199 * Track idle stats per cpu by maintaining a local thread
2200 * struct for the idle task on each cpu.
2202 static int init_idle_threads(int ncpu
)
2206 idle_threads
= zalloc(ncpu
* sizeof(struct thread
*));
2210 idle_max_cpu
= ncpu
;
2212 /* allocate the actual thread struct if needed */
2213 for (i
= 0; i
< ncpu
; ++i
) {
2214 idle_threads
[i
] = thread__new(0, 0);
2215 if (idle_threads
[i
] == NULL
)
2218 ret
= init_idle_thread(idle_threads
[i
]);
2226 static void free_idle_threads(void)
2230 if (idle_threads
== NULL
)
2233 for (i
= 0; i
< idle_max_cpu
; ++i
) {
2234 if ((idle_threads
[i
]))
2235 thread__delete(idle_threads
[i
]);
2241 static struct thread
*get_idle_thread(int cpu
)
2244 * expand/allocate array of pointers to local thread
2247 if ((cpu
>= idle_max_cpu
) || (idle_threads
== NULL
)) {
2248 int i
, j
= __roundup_pow_of_two(cpu
+1);
2251 p
= realloc(idle_threads
, j
* sizeof(struct thread
*));
2255 idle_threads
= (struct thread
**) p
;
2256 for (i
= idle_max_cpu
; i
< j
; ++i
)
2257 idle_threads
[i
] = NULL
;
2262 /* allocate a new thread struct if needed */
2263 if (idle_threads
[cpu
] == NULL
) {
2264 idle_threads
[cpu
] = thread__new(0, 0);
2266 if (idle_threads
[cpu
]) {
2267 if (init_idle_thread(idle_threads
[cpu
]) < 0)
2272 return idle_threads
[cpu
];
2275 static void save_idle_callchain(struct perf_sched
*sched
,
2276 struct idle_thread_runtime
*itr
,
2277 struct perf_sample
*sample
)
2279 if (!sched
->show_callchain
|| sample
->callchain
== NULL
)
2282 callchain_cursor__copy(&itr
->cursor
, &callchain_cursor
);
2285 static struct thread
*timehist_get_thread(struct perf_sched
*sched
,
2286 struct perf_sample
*sample
,
2287 struct machine
*machine
,
2288 struct perf_evsel
*evsel
)
2290 struct thread
*thread
;
2292 if (is_idle_sample(sample
, evsel
)) {
2293 thread
= get_idle_thread(sample
->cpu
);
2295 pr_err("Failed to get idle thread for cpu %d.\n", sample
->cpu
);
2298 /* there were samples with tid 0 but non-zero pid */
2299 thread
= machine__findnew_thread(machine
, sample
->pid
,
2300 sample
->tid
?: sample
->pid
);
2301 if (thread
== NULL
) {
2302 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2306 save_task_callchain(sched
, sample
, evsel
, machine
);
2307 if (sched
->idle_hist
) {
2308 struct thread
*idle
;
2309 struct idle_thread_runtime
*itr
;
2311 idle
= get_idle_thread(sample
->cpu
);
2313 pr_err("Failed to get idle thread for cpu %d.\n", sample
->cpu
);
2317 itr
= thread__priv(idle
);
2321 itr
->last_thread
= thread
;
2323 /* copy task callchain when entering to idle */
2324 if (perf_evsel__intval(evsel
, sample
, "next_pid") == 0)
2325 save_idle_callchain(sched
, itr
, sample
);
2332 static bool timehist_skip_sample(struct perf_sched
*sched
,
2333 struct thread
*thread
,
2334 struct perf_evsel
*evsel
,
2335 struct perf_sample
*sample
)
2339 if (thread__is_filtered(thread
)) {
2341 sched
->skipped_samples
++;
2344 if (sched
->idle_hist
) {
2345 if (strcmp(perf_evsel__name(evsel
), "sched:sched_switch"))
2347 else if (perf_evsel__intval(evsel
, sample
, "prev_pid") != 0 &&
2348 perf_evsel__intval(evsel
, sample
, "next_pid") != 0)
2355 static void timehist_print_wakeup_event(struct perf_sched
*sched
,
2356 struct perf_evsel
*evsel
,
2357 struct perf_sample
*sample
,
2358 struct machine
*machine
,
2359 struct thread
*awakened
)
2361 struct thread
*thread
;
2364 thread
= machine__findnew_thread(machine
, sample
->pid
, sample
->tid
);
2368 /* show wakeup unless both awakee and awaker are filtered */
2369 if (timehist_skip_sample(sched
, thread
, evsel
, sample
) &&
2370 timehist_skip_sample(sched
, awakened
, evsel
, sample
)) {
2374 timestamp__scnprintf_usec(sample
->time
, tstr
, sizeof(tstr
));
2375 printf("%15s [%04d] ", tstr
, sample
->cpu
);
2376 if (sched
->show_cpu_visual
)
2377 printf(" %*s ", sched
->max_cpu
+ 1, "");
2379 printf(" %-*s ", comm_width
, timehist_get_commstr(thread
));
2382 printf(" %9s %9s %9s ", "", "", "");
2384 printf("awakened: %s", timehist_get_commstr(awakened
));
2389 static int timehist_sched_wakeup_event(struct perf_tool
*tool
,
2390 union perf_event
*event __maybe_unused
,
2391 struct perf_evsel
*evsel
,
2392 struct perf_sample
*sample
,
2393 struct machine
*machine
)
2395 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
2396 struct thread
*thread
;
2397 struct thread_runtime
*tr
= NULL
;
2398 /* want pid of awakened task not pid in sample */
2399 const u32 pid
= perf_evsel__intval(evsel
, sample
, "pid");
2401 thread
= machine__findnew_thread(machine
, 0, pid
);
2405 tr
= thread__get_runtime(thread
);
2409 if (tr
->ready_to_run
== 0)
2410 tr
->ready_to_run
= sample
->time
;
2412 /* show wakeups if requested */
2413 if (sched
->show_wakeups
&&
2414 !perf_time__skip_sample(&sched
->ptime
, sample
->time
))
2415 timehist_print_wakeup_event(sched
, evsel
, sample
, machine
, thread
);
2420 static void timehist_print_migration_event(struct perf_sched
*sched
,
2421 struct perf_evsel
*evsel
,
2422 struct perf_sample
*sample
,
2423 struct machine
*machine
,
2424 struct thread
*migrated
)
2426 struct thread
*thread
;
2428 u32 max_cpus
= sched
->max_cpu
+ 1;
2431 if (sched
->summary_only
)
2434 max_cpus
= sched
->max_cpu
+ 1;
2435 ocpu
= perf_evsel__intval(evsel
, sample
, "orig_cpu");
2436 dcpu
= perf_evsel__intval(evsel
, sample
, "dest_cpu");
2438 thread
= machine__findnew_thread(machine
, sample
->pid
, sample
->tid
);
2442 if (timehist_skip_sample(sched
, thread
, evsel
, sample
) &&
2443 timehist_skip_sample(sched
, migrated
, evsel
, sample
)) {
2447 timestamp__scnprintf_usec(sample
->time
, tstr
, sizeof(tstr
));
2448 printf("%15s [%04d] ", tstr
, sample
->cpu
);
2450 if (sched
->show_cpu_visual
) {
2455 for (i
= 0; i
< max_cpus
; ++i
) {
2456 c
= (i
== sample
->cpu
) ? 'm' : ' ';
2462 printf(" %-*s ", comm_width
, timehist_get_commstr(thread
));
2465 printf(" %9s %9s %9s ", "", "", "");
2467 printf("migrated: %s", timehist_get_commstr(migrated
));
2468 printf(" cpu %d => %d", ocpu
, dcpu
);
2473 static int timehist_migrate_task_event(struct perf_tool
*tool
,
2474 union perf_event
*event __maybe_unused
,
2475 struct perf_evsel
*evsel
,
2476 struct perf_sample
*sample
,
2477 struct machine
*machine
)
2479 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
2480 struct thread
*thread
;
2481 struct thread_runtime
*tr
= NULL
;
2482 /* want pid of migrated task not pid in sample */
2483 const u32 pid
= perf_evsel__intval(evsel
, sample
, "pid");
2485 thread
= machine__findnew_thread(machine
, 0, pid
);
2489 tr
= thread__get_runtime(thread
);
2495 /* show migrations if requested */
2496 timehist_print_migration_event(sched
, evsel
, sample
, machine
, thread
);
2501 static int timehist_sched_change_event(struct perf_tool
*tool
,
2502 union perf_event
*event
,
2503 struct perf_evsel
*evsel
,
2504 struct perf_sample
*sample
,
2505 struct machine
*machine
)
2507 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
2508 struct perf_time_interval
*ptime
= &sched
->ptime
;
2509 struct addr_location al
;
2510 struct thread
*thread
;
2511 struct thread_runtime
*tr
= NULL
;
2512 u64 tprev
, t
= sample
->time
;
2514 int state
= perf_evsel__intval(evsel
, sample
, "prev_state");
2517 if (machine__resolve(machine
, &al
, sample
) < 0) {
2518 pr_err("problem processing %d event. skipping it\n",
2519 event
->header
.type
);
2524 thread
= timehist_get_thread(sched
, sample
, machine
, evsel
);
2525 if (thread
== NULL
) {
2530 if (timehist_skip_sample(sched
, thread
, evsel
, sample
))
2533 tr
= thread__get_runtime(thread
);
2539 tprev
= perf_evsel__get_time(evsel
, sample
->cpu
);
2542 * If start time given:
2543 * - sample time is under window user cares about - skip sample
2544 * - tprev is under window user cares about - reset to start of window
2546 if (ptime
->start
&& ptime
->start
> t
)
2549 if (tprev
&& ptime
->start
> tprev
)
2550 tprev
= ptime
->start
;
2553 * If end time given:
2554 * - previous sched event is out of window - we are done
2555 * - sample time is beyond window user cares about - reset it
2556 * to close out stats for time window interest
2559 if (tprev
> ptime
->end
)
2566 if (!sched
->idle_hist
|| thread
->tid
== 0) {
2567 timehist_update_runtime_stats(tr
, t
, tprev
);
2569 if (sched
->idle_hist
) {
2570 struct idle_thread_runtime
*itr
= (void *)tr
;
2571 struct thread_runtime
*last_tr
;
2573 BUG_ON(thread
->tid
!= 0);
2575 if (itr
->last_thread
== NULL
)
2578 /* add current idle time as last thread's runtime */
2579 last_tr
= thread__get_runtime(itr
->last_thread
);
2580 if (last_tr
== NULL
)
2583 timehist_update_runtime_stats(last_tr
, t
, tprev
);
2585 * remove delta time of last thread as it's not updated
2586 * and otherwise it will show an invalid value next
2587 * time. we only care total run time and run stat.
2589 last_tr
->dt_run
= 0;
2590 last_tr
->dt_delay
= 0;
2591 last_tr
->dt_sleep
= 0;
2592 last_tr
->dt_iowait
= 0;
2593 last_tr
->dt_preempt
= 0;
2596 callchain_append(&itr
->callchain
, &itr
->cursor
, t
- tprev
);
2598 itr
->last_thread
= NULL
;
2602 if (!sched
->summary_only
)
2603 timehist_print_sample(sched
, evsel
, sample
, &al
, thread
, t
, state
);
2606 if (sched
->hist_time
.start
== 0 && t
>= ptime
->start
)
2607 sched
->hist_time
.start
= t
;
2608 if (ptime
->end
== 0 || t
<= ptime
->end
)
2609 sched
->hist_time
.end
= t
;
2612 /* time of this sched_switch event becomes last time task seen */
2613 tr
->last_time
= sample
->time
;
2615 /* last state is used to determine where to account wait time */
2616 tr
->last_state
= state
;
2618 /* sched out event for task so reset ready to run time */
2619 tr
->ready_to_run
= 0;
2622 perf_evsel__save_time(evsel
, sample
->time
, sample
->cpu
);
2627 static int timehist_sched_switch_event(struct perf_tool
*tool
,
2628 union perf_event
*event
,
2629 struct perf_evsel
*evsel
,
2630 struct perf_sample
*sample
,
2631 struct machine
*machine __maybe_unused
)
2633 return timehist_sched_change_event(tool
, event
, evsel
, sample
, machine
);
2636 static int process_lost(struct perf_tool
*tool __maybe_unused
,
2637 union perf_event
*event
,
2638 struct perf_sample
*sample
,
2639 struct machine
*machine __maybe_unused
)
2643 timestamp__scnprintf_usec(sample
->time
, tstr
, sizeof(tstr
));
2644 printf("%15s ", tstr
);
2645 printf("lost %" PRIu64
" events on cpu %d\n", event
->lost
.lost
, sample
->cpu
);
2651 static void print_thread_runtime(struct thread
*t
,
2652 struct thread_runtime
*r
)
2654 double mean
= avg_stats(&r
->run_stats
);
2657 printf("%*s %5d %9" PRIu64
" ",
2658 comm_width
, timehist_get_commstr(t
), t
->ppid
,
2659 (u64
) r
->run_stats
.n
);
2661 print_sched_time(r
->total_run_time
, 8);
2662 stddev
= rel_stddev_stats(stddev_stats(&r
->run_stats
), mean
);
2663 print_sched_time(r
->run_stats
.min
, 6);
2665 print_sched_time((u64
) mean
, 6);
2667 print_sched_time(r
->run_stats
.max
, 6);
2669 printf("%5.2f", stddev
);
2670 printf(" %5" PRIu64
, r
->migrations
);
2674 static void print_thread_waittime(struct thread
*t
,
2675 struct thread_runtime
*r
)
2677 printf("%*s %5d %9" PRIu64
" ",
2678 comm_width
, timehist_get_commstr(t
), t
->ppid
,
2679 (u64
) r
->run_stats
.n
);
2681 print_sched_time(r
->total_run_time
, 8);
2682 print_sched_time(r
->total_sleep_time
, 6);
2684 print_sched_time(r
->total_iowait_time
, 6);
2686 print_sched_time(r
->total_preempt_time
, 6);
2688 print_sched_time(r
->total_delay_time
, 6);
2692 struct total_run_stats
{
2693 struct perf_sched
*sched
;
2699 static int __show_thread_runtime(struct thread
*t
, void *priv
)
2701 struct total_run_stats
*stats
= priv
;
2702 struct thread_runtime
*r
;
2704 if (thread__is_filtered(t
))
2707 r
= thread__priv(t
);
2708 if (r
&& r
->run_stats
.n
) {
2709 stats
->task_count
++;
2710 stats
->sched_count
+= r
->run_stats
.n
;
2711 stats
->total_run_time
+= r
->total_run_time
;
2713 if (stats
->sched
->show_state
)
2714 print_thread_waittime(t
, r
);
2716 print_thread_runtime(t
, r
);
2722 static int show_thread_runtime(struct thread
*t
, void *priv
)
2727 return __show_thread_runtime(t
, priv
);
2730 static int show_deadthread_runtime(struct thread
*t
, void *priv
)
2735 return __show_thread_runtime(t
, priv
);
2738 static size_t callchain__fprintf_folded(FILE *fp
, struct callchain_node
*node
)
2740 const char *sep
= " <- ";
2741 struct callchain_list
*chain
;
2749 ret
= callchain__fprintf_folded(fp
, node
->parent
);
2752 list_for_each_entry(chain
, &node
->val
, list
) {
2753 if (chain
->ip
>= PERF_CONTEXT_MAX
)
2755 if (chain
->ms
.sym
&& chain
->ms
.sym
->ignore
)
2757 ret
+= fprintf(fp
, "%s%s", first
? "" : sep
,
2758 callchain_list__sym_name(chain
, bf
, sizeof(bf
),
2766 static size_t timehist_print_idlehist_callchain(struct rb_root_cached
*root
)
2770 struct callchain_node
*chain
;
2771 struct rb_node
*rb_node
= rb_first_cached(root
);
2773 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2774 printf(" %.16s %.8s %.50s\n", graph_dotted_line
, graph_dotted_line
,
2778 chain
= rb_entry(rb_node
, struct callchain_node
, rb_node
);
2779 rb_node
= rb_next(rb_node
);
2781 ret
+= fprintf(fp
, " ");
2782 print_sched_time(chain
->hit
, 12);
2783 ret
+= 16; /* print_sched_time returns 2nd arg + 4 */
2784 ret
+= fprintf(fp
, " %8d ", chain
->count
);
2785 ret
+= callchain__fprintf_folded(fp
, chain
);
2786 ret
+= fprintf(fp
, "\n");
2792 static void timehist_print_summary(struct perf_sched
*sched
,
2793 struct perf_session
*session
)
2795 struct machine
*m
= &session
->machines
.host
;
2796 struct total_run_stats totals
;
2799 struct thread_runtime
*r
;
2801 u64 hist_time
= sched
->hist_time
.end
- sched
->hist_time
.start
;
2803 memset(&totals
, 0, sizeof(totals
));
2804 totals
.sched
= sched
;
2806 if (sched
->idle_hist
) {
2807 printf("\nIdle-time summary\n");
2808 printf("%*s parent sched-out ", comm_width
, "comm");
2809 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2810 } else if (sched
->show_state
) {
2811 printf("\nWait-time summary\n");
2812 printf("%*s parent sched-in ", comm_width
, "comm");
2813 printf(" run-time sleep iowait preempt delay\n");
2815 printf("\nRuntime summary\n");
2816 printf("%*s parent sched-in ", comm_width
, "comm");
2817 printf(" run-time min-run avg-run max-run stddev migrations\n");
2819 printf("%*s (count) ", comm_width
, "");
2820 printf(" (msec) (msec) (msec) (msec) %s\n",
2821 sched
->show_state
? "(msec)" : "%");
2822 printf("%.117s\n", graph_dotted_line
);
2824 machine__for_each_thread(m
, show_thread_runtime
, &totals
);
2825 task_count
= totals
.task_count
;
2827 printf("<no still running tasks>\n");
2829 printf("\nTerminated tasks:\n");
2830 machine__for_each_thread(m
, show_deadthread_runtime
, &totals
);
2831 if (task_count
== totals
.task_count
)
2832 printf("<no terminated tasks>\n");
2834 /* CPU idle stats not tracked when samples were skipped */
2835 if (sched
->skipped_samples
&& !sched
->idle_hist
)
2838 printf("\nIdle stats:\n");
2839 for (i
= 0; i
< idle_max_cpu
; ++i
) {
2840 t
= idle_threads
[i
];
2844 r
= thread__priv(t
);
2845 if (r
&& r
->run_stats
.n
) {
2846 totals
.sched_count
+= r
->run_stats
.n
;
2847 printf(" CPU %2d idle for ", i
);
2848 print_sched_time(r
->total_run_time
, 6);
2849 printf(" msec (%6.2f%%)\n", 100.0 * r
->total_run_time
/ hist_time
);
2851 printf(" CPU %2d idle entire time window\n", i
);
2854 if (sched
->idle_hist
&& sched
->show_callchain
) {
2855 callchain_param
.mode
= CHAIN_FOLDED
;
2856 callchain_param
.value
= CCVAL_PERIOD
;
2858 callchain_register_param(&callchain_param
);
2860 printf("\nIdle stats by callchain:\n");
2861 for (i
= 0; i
< idle_max_cpu
; ++i
) {
2862 struct idle_thread_runtime
*itr
;
2864 t
= idle_threads
[i
];
2868 itr
= thread__priv(t
);
2872 callchain_param
.sort(&itr
->sorted_root
.rb_root
, &itr
->callchain
,
2873 0, &callchain_param
);
2875 printf(" CPU %2d:", i
);
2876 print_sched_time(itr
->tr
.total_run_time
, 6);
2878 timehist_print_idlehist_callchain(&itr
->sorted_root
);
2884 " Total number of unique tasks: %" PRIu64
"\n"
2885 "Total number of context switches: %" PRIu64
"\n",
2886 totals
.task_count
, totals
.sched_count
);
2888 printf(" Total run time (msec): ");
2889 print_sched_time(totals
.total_run_time
, 2);
2892 printf(" Total scheduling time (msec): ");
2893 print_sched_time(hist_time
, 2);
2894 printf(" (x %d)\n", sched
->max_cpu
);
2897 typedef int (*sched_handler
)(struct perf_tool
*tool
,
2898 union perf_event
*event
,
2899 struct perf_evsel
*evsel
,
2900 struct perf_sample
*sample
,
2901 struct machine
*machine
);
2903 static int perf_timehist__process_sample(struct perf_tool
*tool
,
2904 union perf_event
*event
,
2905 struct perf_sample
*sample
,
2906 struct perf_evsel
*evsel
,
2907 struct machine
*machine
)
2909 struct perf_sched
*sched
= container_of(tool
, struct perf_sched
, tool
);
2911 int this_cpu
= sample
->cpu
;
2913 if (this_cpu
> sched
->max_cpu
)
2914 sched
->max_cpu
= this_cpu
;
2916 if (evsel
->handler
!= NULL
) {
2917 sched_handler f
= evsel
->handler
;
2919 err
= f(tool
, event
, evsel
, sample
, machine
);
2925 static int timehist_check_attr(struct perf_sched
*sched
,
2926 struct perf_evlist
*evlist
)
2928 struct perf_evsel
*evsel
;
2929 struct evsel_runtime
*er
;
2931 list_for_each_entry(evsel
, &evlist
->entries
, node
) {
2932 er
= perf_evsel__get_runtime(evsel
);
2934 pr_err("Failed to allocate memory for evsel runtime data\n");
2938 if (sched
->show_callchain
&& !evsel__has_callchain(evsel
)) {
2939 pr_info("Samples do not have callchains.\n");
2940 sched
->show_callchain
= 0;
2941 symbol_conf
.use_callchain
= 0;
2948 static int perf_sched__timehist(struct perf_sched
*sched
)
2950 const struct perf_evsel_str_handler handlers
[] = {
2951 { "sched:sched_switch", timehist_sched_switch_event
, },
2952 { "sched:sched_wakeup", timehist_sched_wakeup_event
, },
2953 { "sched:sched_wakeup_new", timehist_sched_wakeup_event
, },
2955 const struct perf_evsel_str_handler migrate_handlers
[] = {
2956 { "sched:sched_migrate_task", timehist_migrate_task_event
, },
2958 struct perf_data data
= {
2960 .mode
= PERF_DATA_MODE_READ
,
2961 .force
= sched
->force
,
2964 struct perf_session
*session
;
2965 struct perf_evlist
*evlist
;
2969 * event handlers for timehist option
2971 sched
->tool
.sample
= perf_timehist__process_sample
;
2972 sched
->tool
.mmap
= perf_event__process_mmap
;
2973 sched
->tool
.comm
= perf_event__process_comm
;
2974 sched
->tool
.exit
= perf_event__process_exit
;
2975 sched
->tool
.fork
= perf_event__process_fork
;
2976 sched
->tool
.lost
= process_lost
;
2977 sched
->tool
.attr
= perf_event__process_attr
;
2978 sched
->tool
.tracing_data
= perf_event__process_tracing_data
;
2979 sched
->tool
.build_id
= perf_event__process_build_id
;
2981 sched
->tool
.ordered_events
= true;
2982 sched
->tool
.ordering_requires_timestamps
= true;
2984 symbol_conf
.use_callchain
= sched
->show_callchain
;
2986 session
= perf_session__new(&data
, false, &sched
->tool
);
2987 if (session
== NULL
)
2990 evlist
= session
->evlist
;
2992 symbol__init(&session
->header
.env
);
2994 if (perf_time__parse_str(&sched
->ptime
, sched
->time_str
) != 0) {
2995 pr_err("Invalid time string\n");
2999 if (timehist_check_attr(sched
, evlist
) != 0)
3004 /* setup per-evsel handlers */
3005 if (perf_session__set_tracepoints_handlers(session
, handlers
))
3008 /* sched_switch event at a minimum needs to exist */
3009 if (!perf_evlist__find_tracepoint_by_name(session
->evlist
,
3010 "sched:sched_switch")) {
3011 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3015 if (sched
->show_migrations
&&
3016 perf_session__set_tracepoints_handlers(session
, migrate_handlers
))
3019 /* pre-allocate struct for per-CPU idle stats */
3020 sched
->max_cpu
= session
->header
.env
.nr_cpus_online
;
3021 if (sched
->max_cpu
== 0)
3023 if (init_idle_threads(sched
->max_cpu
))
3026 /* summary_only implies summary option, but don't overwrite summary if set */
3027 if (sched
->summary_only
)
3028 sched
->summary
= sched
->summary_only
;
3030 if (!sched
->summary_only
)
3031 timehist_header(sched
);
3033 err
= perf_session__process_events(session
);
3035 pr_err("Failed to process events, error %d", err
);
3039 sched
->nr_events
= evlist
->stats
.nr_events
[0];
3040 sched
->nr_lost_events
= evlist
->stats
.total_lost
;
3041 sched
->nr_lost_chunks
= evlist
->stats
.nr_events
[PERF_RECORD_LOST
];
3044 timehist_print_summary(sched
, session
);
3047 free_idle_threads();
3048 perf_session__delete(session
);
3054 static void print_bad_events(struct perf_sched
*sched
)
3056 if (sched
->nr_unordered_timestamps
&& sched
->nr_timestamps
) {
3057 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3058 (double)sched
->nr_unordered_timestamps
/(double)sched
->nr_timestamps
*100.0,
3059 sched
->nr_unordered_timestamps
, sched
->nr_timestamps
);
3061 if (sched
->nr_lost_events
&& sched
->nr_events
) {
3062 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3063 (double)sched
->nr_lost_events
/(double)sched
->nr_events
* 100.0,
3064 sched
->nr_lost_events
, sched
->nr_events
, sched
->nr_lost_chunks
);
3066 if (sched
->nr_context_switch_bugs
&& sched
->nr_timestamps
) {
3067 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3068 (double)sched
->nr_context_switch_bugs
/(double)sched
->nr_timestamps
*100.0,
3069 sched
->nr_context_switch_bugs
, sched
->nr_timestamps
);
3070 if (sched
->nr_lost_events
)
3071 printf(" (due to lost events?)");
3076 static void __merge_work_atoms(struct rb_root_cached
*root
, struct work_atoms
*data
)
3078 struct rb_node
**new = &(root
->rb_root
.rb_node
), *parent
= NULL
;
3079 struct work_atoms
*this;
3080 const char *comm
= thread__comm_str(data
->thread
), *this_comm
;
3081 bool leftmost
= true;
3086 this = container_of(*new, struct work_atoms
, node
);
3089 this_comm
= thread__comm_str(this->thread
);
3090 cmp
= strcmp(comm
, this_comm
);
3092 new = &((*new)->rb_left
);
3093 } else if (cmp
< 0) {
3094 new = &((*new)->rb_right
);
3098 this->total_runtime
+= data
->total_runtime
;
3099 this->nb_atoms
+= data
->nb_atoms
;
3100 this->total_lat
+= data
->total_lat
;
3101 list_splice(&data
->work_list
, &this->work_list
);
3102 if (this->max_lat
< data
->max_lat
) {
3103 this->max_lat
= data
->max_lat
;
3104 this->max_lat_at
= data
->max_lat_at
;
3112 rb_link_node(&data
->node
, parent
, new);
3113 rb_insert_color_cached(&data
->node
, root
, leftmost
);
3116 static void perf_sched__merge_lat(struct perf_sched
*sched
)
3118 struct work_atoms
*data
;
3119 struct rb_node
*node
;
3121 if (sched
->skip_merge
)
3124 while ((node
= rb_first_cached(&sched
->atom_root
))) {
3125 rb_erase_cached(node
, &sched
->atom_root
);
3126 data
= rb_entry(node
, struct work_atoms
, node
);
3127 __merge_work_atoms(&sched
->merged_atom_root
, data
);
3131 static int perf_sched__lat(struct perf_sched
*sched
)
3133 struct rb_node
*next
;
3137 if (perf_sched__read_events(sched
))
3140 perf_sched__merge_lat(sched
);
3141 perf_sched__sort_lat(sched
);
3143 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3144 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
3145 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3147 next
= rb_first_cached(&sched
->sorted_atom_root
);
3150 struct work_atoms
*work_list
;
3152 work_list
= rb_entry(next
, struct work_atoms
, node
);
3153 output_lat_thread(sched
, work_list
);
3154 next
= rb_next(next
);
3155 thread__zput(work_list
->thread
);
3158 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3159 printf(" TOTAL: |%11.3f ms |%9" PRIu64
" |\n",
3160 (double)sched
->all_runtime
/ NSEC_PER_MSEC
, sched
->all_count
);
3162 printf(" ---------------------------------------------------\n");
3164 print_bad_events(sched
);
3170 static int setup_map_cpus(struct perf_sched
*sched
)
3172 struct cpu_map
*map
;
3174 sched
->max_cpu
= sysconf(_SC_NPROCESSORS_CONF
);
3176 if (sched
->map
.comp
) {
3177 sched
->map
.comp_cpus
= zalloc(sched
->max_cpu
* sizeof(int));
3178 if (!sched
->map
.comp_cpus
)
3182 if (!sched
->map
.cpus_str
)
3185 map
= cpu_map__new(sched
->map
.cpus_str
);
3187 pr_err("failed to get cpus map from %s\n", sched
->map
.cpus_str
);
3191 sched
->map
.cpus
= map
;
3195 static int setup_color_pids(struct perf_sched
*sched
)
3197 struct thread_map
*map
;
3199 if (!sched
->map
.color_pids_str
)
3202 map
= thread_map__new_by_tid_str(sched
->map
.color_pids_str
);
3204 pr_err("failed to get thread map from %s\n", sched
->map
.color_pids_str
);
3208 sched
->map
.color_pids
= map
;
3212 static int setup_color_cpus(struct perf_sched
*sched
)
3214 struct cpu_map
*map
;
3216 if (!sched
->map
.color_cpus_str
)
3219 map
= cpu_map__new(sched
->map
.color_cpus_str
);
3221 pr_err("failed to get thread map from %s\n", sched
->map
.color_cpus_str
);
3225 sched
->map
.color_cpus
= map
;
3229 static int perf_sched__map(struct perf_sched
*sched
)
3231 if (setup_map_cpus(sched
))
3234 if (setup_color_pids(sched
))
3237 if (setup_color_cpus(sched
))
3241 if (perf_sched__read_events(sched
))
3243 print_bad_events(sched
);
3247 static int perf_sched__replay(struct perf_sched
*sched
)
3251 calibrate_run_measurement_overhead(sched
);
3252 calibrate_sleep_measurement_overhead(sched
);
3254 test_calibrations(sched
);
3256 if (perf_sched__read_events(sched
))
3259 printf("nr_run_events: %ld\n", sched
->nr_run_events
);
3260 printf("nr_sleep_events: %ld\n", sched
->nr_sleep_events
);
3261 printf("nr_wakeup_events: %ld\n", sched
->nr_wakeup_events
);
3263 if (sched
->targetless_wakeups
)
3264 printf("target-less wakeups: %ld\n", sched
->targetless_wakeups
);
3265 if (sched
->multitarget_wakeups
)
3266 printf("multi-target wakeups: %ld\n", sched
->multitarget_wakeups
);
3267 if (sched
->nr_run_events_optimized
)
3268 printf("run atoms optimized: %ld\n",
3269 sched
->nr_run_events_optimized
);
3271 print_task_traces(sched
);
3272 add_cross_task_wakeups(sched
);
3274 create_tasks(sched
);
3275 printf("------------------------------------------------------------\n");
3276 for (i
= 0; i
< sched
->replay_repeat
; i
++)
3277 run_one_test(sched
);
3282 static void setup_sorting(struct perf_sched
*sched
, const struct option
*options
,
3283 const char * const usage_msg
[])
3285 char *tmp
, *tok
, *str
= strdup(sched
->sort_order
);
3287 for (tok
= strtok_r(str
, ", ", &tmp
);
3288 tok
; tok
= strtok_r(NULL
, ", ", &tmp
)) {
3289 if (sort_dimension__add(tok
, &sched
->sort_list
) < 0) {
3290 usage_with_options_msg(usage_msg
, options
,
3291 "Unknown --sort key: `%s'", tok
);
3297 sort_dimension__add("pid", &sched
->cmp_pid
);
3300 static int __cmd_record(int argc
, const char **argv
)
3302 unsigned int rec_argc
, i
, j
;
3303 const char **rec_argv
;
3304 const char * const record_args
[] = {
3310 "-e", "sched:sched_switch",
3311 "-e", "sched:sched_stat_wait",
3312 "-e", "sched:sched_stat_sleep",
3313 "-e", "sched:sched_stat_iowait",
3314 "-e", "sched:sched_stat_runtime",
3315 "-e", "sched:sched_process_fork",
3316 "-e", "sched:sched_wakeup",
3317 "-e", "sched:sched_wakeup_new",
3318 "-e", "sched:sched_migrate_task",
3321 rec_argc
= ARRAY_SIZE(record_args
) + argc
- 1;
3322 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
3324 if (rec_argv
== NULL
)
3327 for (i
= 0; i
< ARRAY_SIZE(record_args
); i
++)
3328 rec_argv
[i
] = strdup(record_args
[i
]);
3330 for (j
= 1; j
< (unsigned int)argc
; j
++, i
++)
3331 rec_argv
[i
] = argv
[j
];
3333 BUG_ON(i
!= rec_argc
);
3335 return cmd_record(i
, rec_argv
);
3338 int cmd_sched(int argc
, const char **argv
)
3340 static const char default_sort_order
[] = "avg, max, switch, runtime";
3341 struct perf_sched sched
= {
3343 .sample
= perf_sched__process_tracepoint_sample
,
3344 .comm
= perf_sched__process_comm
,
3345 .namespaces
= perf_event__process_namespaces
,
3346 .lost
= perf_event__process_lost
,
3347 .fork
= perf_sched__process_fork_event
,
3348 .ordered_events
= true,
3350 .cmp_pid
= LIST_HEAD_INIT(sched
.cmp_pid
),
3351 .sort_list
= LIST_HEAD_INIT(sched
.sort_list
),
3352 .start_work_mutex
= PTHREAD_MUTEX_INITIALIZER
,
3353 .work_done_wait_mutex
= PTHREAD_MUTEX_INITIALIZER
,
3354 .sort_order
= default_sort_order
,
3355 .replay_repeat
= 10,
3357 .next_shortname1
= 'A',
3358 .next_shortname2
= '0',
3360 .show_callchain
= 1,
3363 const struct option sched_options
[] = {
3364 OPT_STRING('i', "input", &input_name
, "file",
3366 OPT_INCR('v', "verbose", &verbose
,
3367 "be more verbose (show symbol address, etc)"),
3368 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace
,
3369 "dump raw trace in ASCII"),
3370 OPT_BOOLEAN('f', "force", &sched
.force
, "don't complain, do it"),
3373 const struct option latency_options
[] = {
3374 OPT_STRING('s', "sort", &sched
.sort_order
, "key[,key2...]",
3375 "sort by key(s): runtime, switch, avg, max"),
3376 OPT_INTEGER('C', "CPU", &sched
.profile_cpu
,
3377 "CPU to profile on"),
3378 OPT_BOOLEAN('p', "pids", &sched
.skip_merge
,
3379 "latency stats per pid instead of per comm"),
3380 OPT_PARENT(sched_options
)
3382 const struct option replay_options
[] = {
3383 OPT_UINTEGER('r', "repeat", &sched
.replay_repeat
,
3384 "repeat the workload replay N times (-1: infinite)"),
3385 OPT_PARENT(sched_options
)
3387 const struct option map_options
[] = {
3388 OPT_BOOLEAN(0, "compact", &sched
.map
.comp
,
3389 "map output in compact mode"),
3390 OPT_STRING(0, "color-pids", &sched
.map
.color_pids_str
, "pids",
3391 "highlight given pids in map"),
3392 OPT_STRING(0, "color-cpus", &sched
.map
.color_cpus_str
, "cpus",
3393 "highlight given CPUs in map"),
3394 OPT_STRING(0, "cpus", &sched
.map
.cpus_str
, "cpus",
3395 "display given CPUs in map"),
3396 OPT_PARENT(sched_options
)
3398 const struct option timehist_options
[] = {
3399 OPT_STRING('k', "vmlinux", &symbol_conf
.vmlinux_name
,
3400 "file", "vmlinux pathname"),
3401 OPT_STRING(0, "kallsyms", &symbol_conf
.kallsyms_name
,
3402 "file", "kallsyms pathname"),
3403 OPT_BOOLEAN('g', "call-graph", &sched
.show_callchain
,
3404 "Display call chains if present (default on)"),
3405 OPT_UINTEGER(0, "max-stack", &sched
.max_stack
,
3406 "Maximum number of functions to display backtrace."),
3407 OPT_STRING(0, "symfs", &symbol_conf
.symfs
, "directory",
3408 "Look for files with symbols relative to this directory"),
3409 OPT_BOOLEAN('s', "summary", &sched
.summary_only
,
3410 "Show only syscall summary with statistics"),
3411 OPT_BOOLEAN('S', "with-summary", &sched
.summary
,
3412 "Show all syscalls and summary with statistics"),
3413 OPT_BOOLEAN('w', "wakeups", &sched
.show_wakeups
, "Show wakeup events"),
3414 OPT_BOOLEAN('n', "next", &sched
.show_next
, "Show next task"),
3415 OPT_BOOLEAN('M', "migrations", &sched
.show_migrations
, "Show migration events"),
3416 OPT_BOOLEAN('V', "cpu-visual", &sched
.show_cpu_visual
, "Add CPU visual"),
3417 OPT_BOOLEAN('I', "idle-hist", &sched
.idle_hist
, "Show idle events only"),
3418 OPT_STRING(0, "time", &sched
.time_str
, "str",
3419 "Time span for analysis (start,stop)"),
3420 OPT_BOOLEAN(0, "state", &sched
.show_state
, "Show task state when sched-out"),
3421 OPT_STRING('p', "pid", &symbol_conf
.pid_list_str
, "pid[,pid...]",
3422 "analyze events only for given process id(s)"),
3423 OPT_STRING('t', "tid", &symbol_conf
.tid_list_str
, "tid[,tid...]",
3424 "analyze events only for given thread id(s)"),
3425 OPT_PARENT(sched_options
)
3428 const char * const latency_usage
[] = {
3429 "perf sched latency [<options>]",
3432 const char * const replay_usage
[] = {
3433 "perf sched replay [<options>]",
3436 const char * const map_usage
[] = {
3437 "perf sched map [<options>]",
3440 const char * const timehist_usage
[] = {
3441 "perf sched timehist [<options>]",
3444 const char *const sched_subcommands
[] = { "record", "latency", "map",
3447 const char *sched_usage
[] = {
3451 struct trace_sched_handler lat_ops
= {
3452 .wakeup_event
= latency_wakeup_event
,
3453 .switch_event
= latency_switch_event
,
3454 .runtime_event
= latency_runtime_event
,
3455 .migrate_task_event
= latency_migrate_task_event
,
3457 struct trace_sched_handler map_ops
= {
3458 .switch_event
= map_switch_event
,
3460 struct trace_sched_handler replay_ops
= {
3461 .wakeup_event
= replay_wakeup_event
,
3462 .switch_event
= replay_switch_event
,
3463 .fork_event
= replay_fork_event
,
3467 for (i
= 0; i
< ARRAY_SIZE(sched
.curr_pid
); i
++)
3468 sched
.curr_pid
[i
] = -1;
3470 argc
= parse_options_subcommand(argc
, argv
, sched_options
, sched_subcommands
,
3471 sched_usage
, PARSE_OPT_STOP_AT_NON_OPTION
);
3473 usage_with_options(sched_usage
, sched_options
);
3476 * Aliased to 'perf script' for now:
3478 if (!strcmp(argv
[0], "script"))
3479 return cmd_script(argc
, argv
);
3481 if (!strncmp(argv
[0], "rec", 3)) {
3482 return __cmd_record(argc
, argv
);
3483 } else if (!strncmp(argv
[0], "lat", 3)) {
3484 sched
.tp_handler
= &lat_ops
;
3486 argc
= parse_options(argc
, argv
, latency_options
, latency_usage
, 0);
3488 usage_with_options(latency_usage
, latency_options
);
3490 setup_sorting(&sched
, latency_options
, latency_usage
);
3491 return perf_sched__lat(&sched
);
3492 } else if (!strcmp(argv
[0], "map")) {
3494 argc
= parse_options(argc
, argv
, map_options
, map_usage
, 0);
3496 usage_with_options(map_usage
, map_options
);
3498 sched
.tp_handler
= &map_ops
;
3499 setup_sorting(&sched
, latency_options
, latency_usage
);
3500 return perf_sched__map(&sched
);
3501 } else if (!strncmp(argv
[0], "rep", 3)) {
3502 sched
.tp_handler
= &replay_ops
;
3504 argc
= parse_options(argc
, argv
, replay_options
, replay_usage
, 0);
3506 usage_with_options(replay_usage
, replay_options
);
3508 return perf_sched__replay(&sched
);
3509 } else if (!strcmp(argv
[0], "timehist")) {
3511 argc
= parse_options(argc
, argv
, timehist_options
,
3514 usage_with_options(timehist_usage
, timehist_options
);
3516 if ((sched
.show_wakeups
|| sched
.show_next
) &&
3517 sched
.summary_only
) {
3518 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3519 parse_options_usage(timehist_usage
, timehist_options
, "s", true);
3520 if (sched
.show_wakeups
)
3521 parse_options_usage(NULL
, timehist_options
, "w", true);
3522 if (sched
.show_next
)
3523 parse_options_usage(NULL
, timehist_options
, "n", true);
3527 return perf_sched__timehist(&sched
);
3529 usage_with_options(sched_usage
, sched_options
);