2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
7 * Released under the GPL v2. (and only v2, not any later version)
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
26 #include "callchain.h"
33 #include "thread_map.h"
35 #include "perf_regs.h"
37 #include "trace-event.h"
40 #include "util/parse-branch-options.h"
42 #include "sane_ctype.h"
44 struct perf_missing_features perf_missing_features
;
46 static clockid_t clockid
;
48 static int perf_evsel__no_extra_init(struct perf_evsel
*evsel __maybe_unused
)
53 void __weak
test_attr__ready(void) { }
55 static void perf_evsel__no_extra_fini(struct perf_evsel
*evsel __maybe_unused
)
61 int (*init
)(struct perf_evsel
*evsel
);
62 void (*fini
)(struct perf_evsel
*evsel
);
63 } perf_evsel__object
= {
64 .size
= sizeof(struct perf_evsel
),
65 .init
= perf_evsel__no_extra_init
,
66 .fini
= perf_evsel__no_extra_fini
,
69 int perf_evsel__object_config(size_t object_size
,
70 int (*init
)(struct perf_evsel
*evsel
),
71 void (*fini
)(struct perf_evsel
*evsel
))
77 if (perf_evsel__object
.size
> object_size
)
80 perf_evsel__object
.size
= object_size
;
84 perf_evsel__object
.init
= init
;
87 perf_evsel__object
.fini
= fini
;
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
94 int __perf_evsel__sample_size(u64 sample_type
)
96 u64 mask
= sample_type
& PERF_SAMPLE_MASK
;
100 for (i
= 0; i
< 64; i
++) {
101 if (mask
& (1ULL << i
))
111 * __perf_evsel__calc_id_pos - calculate id_pos.
112 * @sample_type: sample type
114 * This function returns the position of the event id (PERF_SAMPLE_ID or
115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
118 static int __perf_evsel__calc_id_pos(u64 sample_type
)
122 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
125 if (!(sample_type
& PERF_SAMPLE_ID
))
128 if (sample_type
& PERF_SAMPLE_IP
)
131 if (sample_type
& PERF_SAMPLE_TID
)
134 if (sample_type
& PERF_SAMPLE_TIME
)
137 if (sample_type
& PERF_SAMPLE_ADDR
)
144 * __perf_evsel__calc_is_pos - calculate is_pos.
145 * @sample_type: sample type
147 * This function returns the position (counting backwards) of the event id
148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149 * sample_id_all is used there is an id sample appended to non-sample events.
151 static int __perf_evsel__calc_is_pos(u64 sample_type
)
155 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
158 if (!(sample_type
& PERF_SAMPLE_ID
))
161 if (sample_type
& PERF_SAMPLE_CPU
)
164 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
170 void perf_evsel__calc_id_pos(struct perf_evsel
*evsel
)
172 evsel
->id_pos
= __perf_evsel__calc_id_pos(evsel
->attr
.sample_type
);
173 evsel
->is_pos
= __perf_evsel__calc_is_pos(evsel
->attr
.sample_type
);
176 void __perf_evsel__set_sample_bit(struct perf_evsel
*evsel
,
177 enum perf_event_sample_format bit
)
179 if (!(evsel
->attr
.sample_type
& bit
)) {
180 evsel
->attr
.sample_type
|= bit
;
181 evsel
->sample_size
+= sizeof(u64
);
182 perf_evsel__calc_id_pos(evsel
);
186 void __perf_evsel__reset_sample_bit(struct perf_evsel
*evsel
,
187 enum perf_event_sample_format bit
)
189 if (evsel
->attr
.sample_type
& bit
) {
190 evsel
->attr
.sample_type
&= ~bit
;
191 evsel
->sample_size
-= sizeof(u64
);
192 perf_evsel__calc_id_pos(evsel
);
196 void perf_evsel__set_sample_id(struct perf_evsel
*evsel
,
197 bool can_sample_identifier
)
199 if (can_sample_identifier
) {
200 perf_evsel__reset_sample_bit(evsel
, ID
);
201 perf_evsel__set_sample_bit(evsel
, IDENTIFIER
);
203 perf_evsel__set_sample_bit(evsel
, ID
);
205 evsel
->attr
.read_format
|= PERF_FORMAT_ID
;
209 * perf_evsel__is_function_event - Return whether given evsel is a function
212 * @evsel - evsel selector to be tested
214 * Return %true if event is function trace event
216 bool perf_evsel__is_function_event(struct perf_evsel
*evsel
)
218 #define FUNCTION_EVENT "ftrace:function"
220 return evsel
->name
&&
221 !strncmp(FUNCTION_EVENT
, evsel
->name
, sizeof(FUNCTION_EVENT
));
223 #undef FUNCTION_EVENT
226 void perf_evsel__init(struct perf_evsel
*evsel
,
227 struct perf_event_attr
*attr
, int idx
)
230 evsel
->tracking
= !idx
;
232 evsel
->leader
= evsel
;
235 evsel
->max_events
= ULONG_MAX
;
236 evsel
->evlist
= NULL
;
238 INIT_LIST_HEAD(&evsel
->node
);
239 INIT_LIST_HEAD(&evsel
->config_terms
);
240 perf_evsel__object
.init(evsel
);
241 evsel
->sample_size
= __perf_evsel__sample_size(attr
->sample_type
);
242 perf_evsel__calc_id_pos(evsel
);
243 evsel
->cmdline_group_boundary
= false;
244 evsel
->metric_expr
= NULL
;
245 evsel
->metric_name
= NULL
;
246 evsel
->metric_events
= NULL
;
247 evsel
->collect_stat
= false;
248 evsel
->pmu_name
= NULL
;
251 struct perf_evsel
*perf_evsel__new_idx(struct perf_event_attr
*attr
, int idx
)
253 struct perf_evsel
*evsel
= zalloc(perf_evsel__object
.size
);
257 perf_evsel__init(evsel
, attr
, idx
);
259 if (perf_evsel__is_bpf_output(evsel
)) {
260 evsel
->attr
.sample_type
|= (PERF_SAMPLE_RAW
| PERF_SAMPLE_TIME
|
261 PERF_SAMPLE_CPU
| PERF_SAMPLE_PERIOD
),
262 evsel
->attr
.sample_period
= 1;
265 if (perf_evsel__is_clock(evsel
)) {
267 * The evsel->unit points to static alias->unit
268 * so it's ok to use static string in here.
270 static const char *unit
= "msec";
279 static bool perf_event_can_profile_kernel(void)
281 return geteuid() == 0 || perf_event_paranoid() == -1;
284 struct perf_evsel
*perf_evsel__new_cycles(bool precise
)
286 struct perf_event_attr attr
= {
287 .type
= PERF_TYPE_HARDWARE
,
288 .config
= PERF_COUNT_HW_CPU_CYCLES
,
289 .exclude_kernel
= !perf_event_can_profile_kernel(),
291 struct perf_evsel
*evsel
;
293 event_attr_init(&attr
);
298 perf_event_attr__set_max_precise_ip(&attr
);
300 * Now let the usual logic to set up the perf_event_attr defaults
301 * to kick in when we return and before perf_evsel__open() is called.
304 evsel
= perf_evsel__new(&attr
);
308 /* use asprintf() because free(evsel) assumes name is allocated */
309 if (asprintf(&evsel
->name
, "cycles%s%s%.*s",
310 (attr
.precise_ip
|| attr
.exclude_kernel
) ? ":" : "",
311 attr
.exclude_kernel
? "u" : "",
312 attr
.precise_ip
? attr
.precise_ip
+ 1 : 0, "ppp") < 0)
317 perf_evsel__delete(evsel
);
323 * Returns pointer with encoded error via <linux/err.h> interface.
325 struct perf_evsel
*perf_evsel__newtp_idx(const char *sys
, const char *name
, int idx
)
327 struct perf_evsel
*evsel
= zalloc(perf_evsel__object
.size
);
333 struct perf_event_attr attr
= {
334 .type
= PERF_TYPE_TRACEPOINT
,
335 .sample_type
= (PERF_SAMPLE_RAW
| PERF_SAMPLE_TIME
|
336 PERF_SAMPLE_CPU
| PERF_SAMPLE_PERIOD
),
339 if (asprintf(&evsel
->name
, "%s:%s", sys
, name
) < 0)
342 evsel
->tp_format
= trace_event__tp_format(sys
, name
);
343 if (IS_ERR(evsel
->tp_format
)) {
344 err
= PTR_ERR(evsel
->tp_format
);
348 event_attr_init(&attr
);
349 attr
.config
= evsel
->tp_format
->id
;
350 attr
.sample_period
= 1;
351 perf_evsel__init(evsel
, &attr
, idx
);
363 const char *perf_evsel__hw_names
[PERF_COUNT_HW_MAX
] = {
371 "stalled-cycles-frontend",
372 "stalled-cycles-backend",
376 static const char *__perf_evsel__hw_name(u64 config
)
378 if (config
< PERF_COUNT_HW_MAX
&& perf_evsel__hw_names
[config
])
379 return perf_evsel__hw_names
[config
];
381 return "unknown-hardware";
384 static int perf_evsel__add_modifiers(struct perf_evsel
*evsel
, char *bf
, size_t size
)
386 int colon
= 0, r
= 0;
387 struct perf_event_attr
*attr
= &evsel
->attr
;
388 bool exclude_guest_default
= false;
390 #define MOD_PRINT(context, mod) do { \
391 if (!attr->exclude_##context) { \
392 if (!colon) colon = ++r; \
393 r += scnprintf(bf + r, size - r, "%c", mod); \
396 if (attr
->exclude_kernel
|| attr
->exclude_user
|| attr
->exclude_hv
) {
397 MOD_PRINT(kernel
, 'k');
398 MOD_PRINT(user
, 'u');
400 exclude_guest_default
= true;
403 if (attr
->precise_ip
) {
406 r
+= scnprintf(bf
+ r
, size
- r
, "%.*s", attr
->precise_ip
, "ppp");
407 exclude_guest_default
= true;
410 if (attr
->exclude_host
|| attr
->exclude_guest
== exclude_guest_default
) {
411 MOD_PRINT(host
, 'H');
412 MOD_PRINT(guest
, 'G');
420 static int perf_evsel__hw_name(struct perf_evsel
*evsel
, char *bf
, size_t size
)
422 int r
= scnprintf(bf
, size
, "%s", __perf_evsel__hw_name(evsel
->attr
.config
));
423 return r
+ perf_evsel__add_modifiers(evsel
, bf
+ r
, size
- r
);
426 const char *perf_evsel__sw_names
[PERF_COUNT_SW_MAX
] = {
439 static const char *__perf_evsel__sw_name(u64 config
)
441 if (config
< PERF_COUNT_SW_MAX
&& perf_evsel__sw_names
[config
])
442 return perf_evsel__sw_names
[config
];
443 return "unknown-software";
446 static int perf_evsel__sw_name(struct perf_evsel
*evsel
, char *bf
, size_t size
)
448 int r
= scnprintf(bf
, size
, "%s", __perf_evsel__sw_name(evsel
->attr
.config
));
449 return r
+ perf_evsel__add_modifiers(evsel
, bf
+ r
, size
- r
);
452 static int __perf_evsel__bp_name(char *bf
, size_t size
, u64 addr
, u64 type
)
456 r
= scnprintf(bf
, size
, "mem:0x%" PRIx64
":", addr
);
458 if (type
& HW_BREAKPOINT_R
)
459 r
+= scnprintf(bf
+ r
, size
- r
, "r");
461 if (type
& HW_BREAKPOINT_W
)
462 r
+= scnprintf(bf
+ r
, size
- r
, "w");
464 if (type
& HW_BREAKPOINT_X
)
465 r
+= scnprintf(bf
+ r
, size
- r
, "x");
470 static int perf_evsel__bp_name(struct perf_evsel
*evsel
, char *bf
, size_t size
)
472 struct perf_event_attr
*attr
= &evsel
->attr
;
473 int r
= __perf_evsel__bp_name(bf
, size
, attr
->bp_addr
, attr
->bp_type
);
474 return r
+ perf_evsel__add_modifiers(evsel
, bf
+ r
, size
- r
);
477 const char *perf_evsel__hw_cache
[PERF_COUNT_HW_CACHE_MAX
]
478 [PERF_EVSEL__MAX_ALIASES
] = {
479 { "L1-dcache", "l1-d", "l1d", "L1-data", },
480 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
482 { "dTLB", "d-tlb", "Data-TLB", },
483 { "iTLB", "i-tlb", "Instruction-TLB", },
484 { "branch", "branches", "bpu", "btb", "bpc", },
488 const char *perf_evsel__hw_cache_op
[PERF_COUNT_HW_CACHE_OP_MAX
]
489 [PERF_EVSEL__MAX_ALIASES
] = {
490 { "load", "loads", "read", },
491 { "store", "stores", "write", },
492 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
495 const char *perf_evsel__hw_cache_result
[PERF_COUNT_HW_CACHE_RESULT_MAX
]
496 [PERF_EVSEL__MAX_ALIASES
] = {
497 { "refs", "Reference", "ops", "access", },
498 { "misses", "miss", },
501 #define C(x) PERF_COUNT_HW_CACHE_##x
502 #define CACHE_READ (1 << C(OP_READ))
503 #define CACHE_WRITE (1 << C(OP_WRITE))
504 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
505 #define COP(x) (1 << x)
508 * cache operartion stat
509 * L1I : Read and prefetch only
510 * ITLB and BPU : Read-only
512 static unsigned long perf_evsel__hw_cache_stat
[C(MAX
)] = {
513 [C(L1D
)] = (CACHE_READ
| CACHE_WRITE
| CACHE_PREFETCH
),
514 [C(L1I
)] = (CACHE_READ
| CACHE_PREFETCH
),
515 [C(LL
)] = (CACHE_READ
| CACHE_WRITE
| CACHE_PREFETCH
),
516 [C(DTLB
)] = (CACHE_READ
| CACHE_WRITE
| CACHE_PREFETCH
),
517 [C(ITLB
)] = (CACHE_READ
),
518 [C(BPU
)] = (CACHE_READ
),
519 [C(NODE
)] = (CACHE_READ
| CACHE_WRITE
| CACHE_PREFETCH
),
522 bool perf_evsel__is_cache_op_valid(u8 type
, u8 op
)
524 if (perf_evsel__hw_cache_stat
[type
] & COP(op
))
525 return true; /* valid */
527 return false; /* invalid */
530 int __perf_evsel__hw_cache_type_op_res_name(u8 type
, u8 op
, u8 result
,
531 char *bf
, size_t size
)
534 return scnprintf(bf
, size
, "%s-%s-%s", perf_evsel__hw_cache
[type
][0],
535 perf_evsel__hw_cache_op
[op
][0],
536 perf_evsel__hw_cache_result
[result
][0]);
539 return scnprintf(bf
, size
, "%s-%s", perf_evsel__hw_cache
[type
][0],
540 perf_evsel__hw_cache_op
[op
][1]);
543 static int __perf_evsel__hw_cache_name(u64 config
, char *bf
, size_t size
)
545 u8 op
, result
, type
= (config
>> 0) & 0xff;
546 const char *err
= "unknown-ext-hardware-cache-type";
548 if (type
>= PERF_COUNT_HW_CACHE_MAX
)
551 op
= (config
>> 8) & 0xff;
552 err
= "unknown-ext-hardware-cache-op";
553 if (op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
556 result
= (config
>> 16) & 0xff;
557 err
= "unknown-ext-hardware-cache-result";
558 if (result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
561 err
= "invalid-cache";
562 if (!perf_evsel__is_cache_op_valid(type
, op
))
565 return __perf_evsel__hw_cache_type_op_res_name(type
, op
, result
, bf
, size
);
567 return scnprintf(bf
, size
, "%s", err
);
570 static int perf_evsel__hw_cache_name(struct perf_evsel
*evsel
, char *bf
, size_t size
)
572 int ret
= __perf_evsel__hw_cache_name(evsel
->attr
.config
, bf
, size
);
573 return ret
+ perf_evsel__add_modifiers(evsel
, bf
+ ret
, size
- ret
);
576 static int perf_evsel__raw_name(struct perf_evsel
*evsel
, char *bf
, size_t size
)
578 int ret
= scnprintf(bf
, size
, "raw 0x%" PRIx64
, evsel
->attr
.config
);
579 return ret
+ perf_evsel__add_modifiers(evsel
, bf
+ ret
, size
- ret
);
582 const char *perf_evsel__name(struct perf_evsel
*evsel
)
589 switch (evsel
->attr
.type
) {
591 perf_evsel__raw_name(evsel
, bf
, sizeof(bf
));
594 case PERF_TYPE_HARDWARE
:
595 perf_evsel__hw_name(evsel
, bf
, sizeof(bf
));
598 case PERF_TYPE_HW_CACHE
:
599 perf_evsel__hw_cache_name(evsel
, bf
, sizeof(bf
));
602 case PERF_TYPE_SOFTWARE
:
603 perf_evsel__sw_name(evsel
, bf
, sizeof(bf
));
606 case PERF_TYPE_TRACEPOINT
:
607 scnprintf(bf
, sizeof(bf
), "%s", "unknown tracepoint");
610 case PERF_TYPE_BREAKPOINT
:
611 perf_evsel__bp_name(evsel
, bf
, sizeof(bf
));
615 scnprintf(bf
, sizeof(bf
), "unknown attr type: %d",
620 evsel
->name
= strdup(bf
);
622 return evsel
->name
?: "unknown";
625 const char *perf_evsel__group_name(struct perf_evsel
*evsel
)
627 return evsel
->group_name
?: "anon group";
631 * Returns the group details for the specified leader,
632 * with following rules.
634 * For record -e '{cycles,instructions}'
635 * 'anon group { cycles:u, instructions:u }'
637 * For record -e 'cycles,instructions' and report --group
638 * 'cycles:u, instructions:u'
640 int perf_evsel__group_desc(struct perf_evsel
*evsel
, char *buf
, size_t size
)
643 struct perf_evsel
*pos
;
644 const char *group_name
= perf_evsel__group_name(evsel
);
646 if (!evsel
->forced_leader
)
647 ret
= scnprintf(buf
, size
, "%s { ", group_name
);
649 ret
+= scnprintf(buf
+ ret
, size
- ret
, "%s",
650 perf_evsel__name(evsel
));
652 for_each_group_member(pos
, evsel
)
653 ret
+= scnprintf(buf
+ ret
, size
- ret
, ", %s",
654 perf_evsel__name(pos
));
656 if (!evsel
->forced_leader
)
657 ret
+= scnprintf(buf
+ ret
, size
- ret
, " }");
662 static void __perf_evsel__config_callchain(struct perf_evsel
*evsel
,
663 struct record_opts
*opts
,
664 struct callchain_param
*param
)
666 bool function
= perf_evsel__is_function_event(evsel
);
667 struct perf_event_attr
*attr
= &evsel
->attr
;
669 perf_evsel__set_sample_bit(evsel
, CALLCHAIN
);
671 attr
->sample_max_stack
= param
->max_stack
;
673 if (param
->record_mode
== CALLCHAIN_LBR
) {
674 if (!opts
->branch_stack
) {
675 if (attr
->exclude_user
) {
676 pr_warning("LBR callstack option is only available "
677 "to get user callchain information. "
678 "Falling back to framepointers.\n");
680 perf_evsel__set_sample_bit(evsel
, BRANCH_STACK
);
681 attr
->branch_sample_type
= PERF_SAMPLE_BRANCH_USER
|
682 PERF_SAMPLE_BRANCH_CALL_STACK
|
683 PERF_SAMPLE_BRANCH_NO_CYCLES
|
684 PERF_SAMPLE_BRANCH_NO_FLAGS
;
687 pr_warning("Cannot use LBR callstack with branch stack. "
688 "Falling back to framepointers.\n");
691 if (param
->record_mode
== CALLCHAIN_DWARF
) {
693 perf_evsel__set_sample_bit(evsel
, REGS_USER
);
694 perf_evsel__set_sample_bit(evsel
, STACK_USER
);
695 attr
->sample_regs_user
|= PERF_REGS_MASK
;
696 attr
->sample_stack_user
= param
->dump_size
;
697 attr
->exclude_callchain_user
= 1;
699 pr_info("Cannot use DWARF unwind for function trace event,"
700 " falling back to framepointers.\n");
705 pr_info("Disabling user space callchains for function trace event.\n");
706 attr
->exclude_callchain_user
= 1;
710 void perf_evsel__config_callchain(struct perf_evsel
*evsel
,
711 struct record_opts
*opts
,
712 struct callchain_param
*param
)
715 return __perf_evsel__config_callchain(evsel
, opts
, param
);
719 perf_evsel__reset_callgraph(struct perf_evsel
*evsel
,
720 struct callchain_param
*param
)
722 struct perf_event_attr
*attr
= &evsel
->attr
;
724 perf_evsel__reset_sample_bit(evsel
, CALLCHAIN
);
725 if (param
->record_mode
== CALLCHAIN_LBR
) {
726 perf_evsel__reset_sample_bit(evsel
, BRANCH_STACK
);
727 attr
->branch_sample_type
&= ~(PERF_SAMPLE_BRANCH_USER
|
728 PERF_SAMPLE_BRANCH_CALL_STACK
);
730 if (param
->record_mode
== CALLCHAIN_DWARF
) {
731 perf_evsel__reset_sample_bit(evsel
, REGS_USER
);
732 perf_evsel__reset_sample_bit(evsel
, STACK_USER
);
736 static void apply_config_terms(struct perf_evsel
*evsel
,
737 struct record_opts
*opts
, bool track
)
739 struct perf_evsel_config_term
*term
;
740 struct list_head
*config_terms
= &evsel
->config_terms
;
741 struct perf_event_attr
*attr
= &evsel
->attr
;
742 /* callgraph default */
743 struct callchain_param param
= {
744 .record_mode
= callchain_param
.record_mode
,
748 const char *callgraph_buf
= NULL
;
750 list_for_each_entry(term
, config_terms
, list
) {
751 switch (term
->type
) {
752 case PERF_EVSEL__CONFIG_TERM_PERIOD
:
753 if (!(term
->weak
&& opts
->user_interval
!= ULLONG_MAX
)) {
754 attr
->sample_period
= term
->val
.period
;
756 perf_evsel__reset_sample_bit(evsel
, PERIOD
);
759 case PERF_EVSEL__CONFIG_TERM_FREQ
:
760 if (!(term
->weak
&& opts
->user_freq
!= UINT_MAX
)) {
761 attr
->sample_freq
= term
->val
.freq
;
763 perf_evsel__set_sample_bit(evsel
, PERIOD
);
766 case PERF_EVSEL__CONFIG_TERM_TIME
:
768 perf_evsel__set_sample_bit(evsel
, TIME
);
770 perf_evsel__reset_sample_bit(evsel
, TIME
);
772 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH
:
773 callgraph_buf
= term
->val
.callgraph
;
775 case PERF_EVSEL__CONFIG_TERM_BRANCH
:
776 if (term
->val
.branch
&& strcmp(term
->val
.branch
, "no")) {
777 perf_evsel__set_sample_bit(evsel
, BRANCH_STACK
);
778 parse_branch_str(term
->val
.branch
,
779 &attr
->branch_sample_type
);
781 perf_evsel__reset_sample_bit(evsel
, BRANCH_STACK
);
783 case PERF_EVSEL__CONFIG_TERM_STACK_USER
:
784 dump_size
= term
->val
.stack_user
;
786 case PERF_EVSEL__CONFIG_TERM_MAX_STACK
:
787 max_stack
= term
->val
.max_stack
;
789 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS
:
790 evsel
->max_events
= term
->val
.max_events
;
792 case PERF_EVSEL__CONFIG_TERM_INHERIT
:
794 * attr->inherit should has already been set by
795 * perf_evsel__config. If user explicitly set
796 * inherit using config terms, override global
797 * opt->no_inherit setting.
799 attr
->inherit
= term
->val
.inherit
? 1 : 0;
801 case PERF_EVSEL__CONFIG_TERM_OVERWRITE
:
802 attr
->write_backward
= term
->val
.overwrite
? 1 : 0;
804 case PERF_EVSEL__CONFIG_TERM_DRV_CFG
:
811 /* User explicitly set per-event callgraph, clear the old setting and reset. */
812 if ((callgraph_buf
!= NULL
) || (dump_size
> 0) || max_stack
) {
813 bool sample_address
= false;
816 param
.max_stack
= max_stack
;
817 if (callgraph_buf
== NULL
)
818 callgraph_buf
= "fp";
821 /* parse callgraph parameters */
822 if (callgraph_buf
!= NULL
) {
823 if (!strcmp(callgraph_buf
, "no")) {
824 param
.enabled
= false;
825 param
.record_mode
= CALLCHAIN_NONE
;
827 param
.enabled
= true;
828 if (parse_callchain_record(callgraph_buf
, ¶m
)) {
829 pr_err("per-event callgraph setting for %s failed. "
830 "Apply callgraph global setting for it\n",
834 if (param
.record_mode
== CALLCHAIN_DWARF
)
835 sample_address
= true;
839 dump_size
= round_up(dump_size
, sizeof(u64
));
840 param
.dump_size
= dump_size
;
843 /* If global callgraph set, clear it */
844 if (callchain_param
.enabled
)
845 perf_evsel__reset_callgraph(evsel
, &callchain_param
);
847 /* set perf-event callgraph */
849 if (sample_address
) {
850 perf_evsel__set_sample_bit(evsel
, ADDR
);
851 perf_evsel__set_sample_bit(evsel
, DATA_SRC
);
852 evsel
->attr
.mmap_data
= track
;
854 perf_evsel__config_callchain(evsel
, opts
, ¶m
);
859 static bool is_dummy_event(struct perf_evsel
*evsel
)
861 return (evsel
->attr
.type
== PERF_TYPE_SOFTWARE
) &&
862 (evsel
->attr
.config
== PERF_COUNT_SW_DUMMY
);
866 * The enable_on_exec/disabled value strategy:
868 * 1) For any type of traced program:
869 * - all independent events and group leaders are disabled
870 * - all group members are enabled
872 * Group members are ruled by group leaders. They need to
873 * be enabled, because the group scheduling relies on that.
875 * 2) For traced programs executed by perf:
876 * - all independent events and group leaders have
878 * - we don't specifically enable or disable any event during
881 * Independent events and group leaders are initially disabled
882 * and get enabled by exec. Group members are ruled by group
883 * leaders as stated in 1).
885 * 3) For traced programs attached by perf (pid/tid):
886 * - we specifically enable or disable all events during
889 * When attaching events to already running traced we
890 * enable/disable events specifically, as there's no
891 * initial traced exec call.
893 void perf_evsel__config(struct perf_evsel
*evsel
, struct record_opts
*opts
,
894 struct callchain_param
*callchain
)
896 struct perf_evsel
*leader
= evsel
->leader
;
897 struct perf_event_attr
*attr
= &evsel
->attr
;
898 int track
= evsel
->tracking
;
899 bool per_cpu
= opts
->target
.default_per_cpu
&& !opts
->target
.per_thread
;
901 attr
->sample_id_all
= perf_missing_features
.sample_id_all
? 0 : 1;
902 attr
->inherit
= !opts
->no_inherit
;
903 attr
->write_backward
= opts
->overwrite
? 1 : 0;
905 perf_evsel__set_sample_bit(evsel
, IP
);
906 perf_evsel__set_sample_bit(evsel
, TID
);
908 if (evsel
->sample_read
) {
909 perf_evsel__set_sample_bit(evsel
, READ
);
912 * We need ID even in case of single event, because
913 * PERF_SAMPLE_READ process ID specific data.
915 perf_evsel__set_sample_id(evsel
, false);
918 * Apply group format only if we belong to group
919 * with more than one members.
921 if (leader
->nr_members
> 1) {
922 attr
->read_format
|= PERF_FORMAT_GROUP
;
928 * We default some events to have a default interval. But keep
929 * it a weak assumption overridable by the user.
931 if (!attr
->sample_period
|| (opts
->user_freq
!= UINT_MAX
||
932 opts
->user_interval
!= ULLONG_MAX
)) {
934 perf_evsel__set_sample_bit(evsel
, PERIOD
);
936 attr
->sample_freq
= opts
->freq
;
938 attr
->sample_period
= opts
->default_interval
;
943 * Disable sampling for all group members other
944 * than leader in case leader 'leads' the sampling.
946 if ((leader
!= evsel
) && leader
->sample_read
) {
948 attr
->sample_freq
= 0;
949 attr
->sample_period
= 0;
950 attr
->write_backward
= 0;
953 * We don't get sample for slave events, we make them
954 * when delivering group leader sample. Set the slave
955 * event to follow the master sample_type to ease up
958 attr
->sample_type
= leader
->attr
.sample_type
;
961 if (opts
->no_samples
)
962 attr
->sample_freq
= 0;
964 if (opts
->inherit_stat
) {
965 evsel
->attr
.read_format
|=
966 PERF_FORMAT_TOTAL_TIME_ENABLED
|
967 PERF_FORMAT_TOTAL_TIME_RUNNING
|
969 attr
->inherit_stat
= 1;
972 if (opts
->sample_address
) {
973 perf_evsel__set_sample_bit(evsel
, ADDR
);
974 attr
->mmap_data
= track
;
978 * We don't allow user space callchains for function trace
979 * event, due to issues with page faults while tracing page
980 * fault handler and its overall trickiness nature.
982 if (perf_evsel__is_function_event(evsel
))
983 evsel
->attr
.exclude_callchain_user
= 1;
985 if (callchain
&& callchain
->enabled
&& !evsel
->no_aux_samples
)
986 perf_evsel__config_callchain(evsel
, opts
, callchain
);
988 if (opts
->sample_intr_regs
) {
989 attr
->sample_regs_intr
= opts
->sample_intr_regs
;
990 perf_evsel__set_sample_bit(evsel
, REGS_INTR
);
993 if (opts
->sample_user_regs
) {
994 attr
->sample_regs_user
|= opts
->sample_user_regs
;
995 perf_evsel__set_sample_bit(evsel
, REGS_USER
);
998 if (target__has_cpu(&opts
->target
) || opts
->sample_cpu
)
999 perf_evsel__set_sample_bit(evsel
, CPU
);
1002 * When the user explicitly disabled time don't force it here.
1004 if (opts
->sample_time
&&
1005 (!perf_missing_features
.sample_id_all
&&
1006 (!opts
->no_inherit
|| target__has_cpu(&opts
->target
) || per_cpu
||
1007 opts
->sample_time_set
)))
1008 perf_evsel__set_sample_bit(evsel
, TIME
);
1010 if (opts
->raw_samples
&& !evsel
->no_aux_samples
) {
1011 perf_evsel__set_sample_bit(evsel
, TIME
);
1012 perf_evsel__set_sample_bit(evsel
, RAW
);
1013 perf_evsel__set_sample_bit(evsel
, CPU
);
1016 if (opts
->sample_address
)
1017 perf_evsel__set_sample_bit(evsel
, DATA_SRC
);
1019 if (opts
->sample_phys_addr
)
1020 perf_evsel__set_sample_bit(evsel
, PHYS_ADDR
);
1022 if (opts
->no_buffering
) {
1023 attr
->watermark
= 0;
1024 attr
->wakeup_events
= 1;
1026 if (opts
->branch_stack
&& !evsel
->no_aux_samples
) {
1027 perf_evsel__set_sample_bit(evsel
, BRANCH_STACK
);
1028 attr
->branch_sample_type
= opts
->branch_stack
;
1031 if (opts
->sample_weight
)
1032 perf_evsel__set_sample_bit(evsel
, WEIGHT
);
1036 attr
->mmap2
= track
&& !perf_missing_features
.mmap2
;
1038 attr
->ksymbol
= track
&& !perf_missing_features
.ksymbol
;
1039 attr
->bpf_event
= track
&& opts
->bpf_event
&&
1040 !perf_missing_features
.bpf_event
;
1042 if (opts
->record_namespaces
)
1043 attr
->namespaces
= track
;
1045 if (opts
->record_switch_events
)
1046 attr
->context_switch
= track
;
1048 if (opts
->sample_transaction
)
1049 perf_evsel__set_sample_bit(evsel
, TRANSACTION
);
1051 if (opts
->running_time
) {
1052 evsel
->attr
.read_format
|=
1053 PERF_FORMAT_TOTAL_TIME_ENABLED
|
1054 PERF_FORMAT_TOTAL_TIME_RUNNING
;
1058 * XXX see the function comment above
1060 * Disabling only independent events or group leaders,
1061 * keeping group members enabled.
1063 if (perf_evsel__is_group_leader(evsel
))
1067 * Setting enable_on_exec for independent events and
1068 * group leaders for traced executed by perf.
1070 if (target__none(&opts
->target
) && perf_evsel__is_group_leader(evsel
) &&
1071 !opts
->initial_delay
)
1072 attr
->enable_on_exec
= 1;
1074 if (evsel
->immediate
) {
1076 attr
->enable_on_exec
= 0;
1079 clockid
= opts
->clockid
;
1080 if (opts
->use_clockid
) {
1081 attr
->use_clockid
= 1;
1082 attr
->clockid
= opts
->clockid
;
1085 if (evsel
->precise_max
)
1086 perf_event_attr__set_max_precise_ip(attr
);
1088 if (opts
->all_user
) {
1089 attr
->exclude_kernel
= 1;
1090 attr
->exclude_user
= 0;
1093 if (opts
->all_kernel
) {
1094 attr
->exclude_kernel
= 0;
1095 attr
->exclude_user
= 1;
1098 if (evsel
->own_cpus
|| evsel
->unit
)
1099 evsel
->attr
.read_format
|= PERF_FORMAT_ID
;
1102 * Apply event specific term settings,
1103 * it overloads any global configuration.
1105 apply_config_terms(evsel
, opts
, track
);
1107 evsel
->ignore_missing_thread
= opts
->ignore_missing_thread
;
1109 /* The --period option takes the precedence. */
1110 if (opts
->period_set
) {
1112 perf_evsel__set_sample_bit(evsel
, PERIOD
);
1114 perf_evsel__reset_sample_bit(evsel
, PERIOD
);
1118 * For initial_delay, a dummy event is added implicitly.
1119 * The software event will trigger -EOPNOTSUPP error out,
1120 * if BRANCH_STACK bit is set.
1122 if (opts
->initial_delay
&& is_dummy_event(evsel
))
1123 perf_evsel__reset_sample_bit(evsel
, BRANCH_STACK
);
1126 static int perf_evsel__alloc_fd(struct perf_evsel
*evsel
, int ncpus
, int nthreads
)
1128 if (evsel
->system_wide
)
1131 evsel
->fd
= xyarray__new(ncpus
, nthreads
, sizeof(int));
1135 for (cpu
= 0; cpu
< ncpus
; cpu
++) {
1136 for (thread
= 0; thread
< nthreads
; thread
++) {
1137 FD(evsel
, cpu
, thread
) = -1;
1142 return evsel
->fd
!= NULL
? 0 : -ENOMEM
;
1145 static int perf_evsel__run_ioctl(struct perf_evsel
*evsel
,
1150 for (cpu
= 0; cpu
< xyarray__max_x(evsel
->fd
); cpu
++) {
1151 for (thread
= 0; thread
< xyarray__max_y(evsel
->fd
); thread
++) {
1152 int fd
= FD(evsel
, cpu
, thread
),
1153 err
= ioctl(fd
, ioc
, arg
);
1163 int perf_evsel__apply_filter(struct perf_evsel
*evsel
, const char *filter
)
1165 return perf_evsel__run_ioctl(evsel
,
1166 PERF_EVENT_IOC_SET_FILTER
,
1170 int perf_evsel__set_filter(struct perf_evsel
*evsel
, const char *filter
)
1172 char *new_filter
= strdup(filter
);
1174 if (new_filter
!= NULL
) {
1175 free(evsel
->filter
);
1176 evsel
->filter
= new_filter
;
1183 static int perf_evsel__append_filter(struct perf_evsel
*evsel
,
1184 const char *fmt
, const char *filter
)
1188 if (evsel
->filter
== NULL
)
1189 return perf_evsel__set_filter(evsel
, filter
);
1191 if (asprintf(&new_filter
, fmt
, evsel
->filter
, filter
) > 0) {
1192 free(evsel
->filter
);
1193 evsel
->filter
= new_filter
;
1200 int perf_evsel__append_tp_filter(struct perf_evsel
*evsel
, const char *filter
)
1202 return perf_evsel__append_filter(evsel
, "(%s) && (%s)", filter
);
1205 int perf_evsel__append_addr_filter(struct perf_evsel
*evsel
, const char *filter
)
1207 return perf_evsel__append_filter(evsel
, "%s,%s", filter
);
1210 int perf_evsel__enable(struct perf_evsel
*evsel
)
1212 int err
= perf_evsel__run_ioctl(evsel
, PERF_EVENT_IOC_ENABLE
, 0);
1215 evsel
->disabled
= false;
1220 int perf_evsel__disable(struct perf_evsel
*evsel
)
1222 int err
= perf_evsel__run_ioctl(evsel
, PERF_EVENT_IOC_DISABLE
, 0);
1224 * We mark it disabled here so that tools that disable a event can
1225 * ignore events after they disable it. I.e. the ring buffer may have
1226 * already a few more events queued up before the kernel got the stop
1230 evsel
->disabled
= true;
1235 int perf_evsel__alloc_id(struct perf_evsel
*evsel
, int ncpus
, int nthreads
)
1237 if (ncpus
== 0 || nthreads
== 0)
1240 if (evsel
->system_wide
)
1243 evsel
->sample_id
= xyarray__new(ncpus
, nthreads
, sizeof(struct perf_sample_id
));
1244 if (evsel
->sample_id
== NULL
)
1247 evsel
->id
= zalloc(ncpus
* nthreads
* sizeof(u64
));
1248 if (evsel
->id
== NULL
) {
1249 xyarray__delete(evsel
->sample_id
);
1250 evsel
->sample_id
= NULL
;
1257 static void perf_evsel__free_fd(struct perf_evsel
*evsel
)
1259 xyarray__delete(evsel
->fd
);
1263 static void perf_evsel__free_id(struct perf_evsel
*evsel
)
1265 xyarray__delete(evsel
->sample_id
);
1266 evsel
->sample_id
= NULL
;
1270 static void perf_evsel__free_config_terms(struct perf_evsel
*evsel
)
1272 struct perf_evsel_config_term
*term
, *h
;
1274 list_for_each_entry_safe(term
, h
, &evsel
->config_terms
, list
) {
1275 list_del(&term
->list
);
1280 void perf_evsel__close_fd(struct perf_evsel
*evsel
)
1284 for (cpu
= 0; cpu
< xyarray__max_x(evsel
->fd
); cpu
++)
1285 for (thread
= 0; thread
< xyarray__max_y(evsel
->fd
); ++thread
) {
1286 close(FD(evsel
, cpu
, thread
));
1287 FD(evsel
, cpu
, thread
) = -1;
1291 void perf_evsel__exit(struct perf_evsel
*evsel
)
1293 assert(list_empty(&evsel
->node
));
1294 assert(evsel
->evlist
== NULL
);
1295 perf_evsel__free_fd(evsel
);
1296 perf_evsel__free_id(evsel
);
1297 perf_evsel__free_config_terms(evsel
);
1298 cgroup__put(evsel
->cgrp
);
1299 cpu_map__put(evsel
->cpus
);
1300 cpu_map__put(evsel
->own_cpus
);
1301 thread_map__put(evsel
->threads
);
1302 zfree(&evsel
->group_name
);
1303 zfree(&evsel
->name
);
1304 perf_evsel__object
.fini(evsel
);
1307 void perf_evsel__delete(struct perf_evsel
*evsel
)
1309 perf_evsel__exit(evsel
);
1313 void perf_evsel__compute_deltas(struct perf_evsel
*evsel
, int cpu
, int thread
,
1314 struct perf_counts_values
*count
)
1316 struct perf_counts_values tmp
;
1318 if (!evsel
->prev_raw_counts
)
1322 tmp
= evsel
->prev_raw_counts
->aggr
;
1323 evsel
->prev_raw_counts
->aggr
= *count
;
1325 tmp
= *perf_counts(evsel
->prev_raw_counts
, cpu
, thread
);
1326 *perf_counts(evsel
->prev_raw_counts
, cpu
, thread
) = *count
;
1329 count
->val
= count
->val
- tmp
.val
;
1330 count
->ena
= count
->ena
- tmp
.ena
;
1331 count
->run
= count
->run
- tmp
.run
;
1334 void perf_counts_values__scale(struct perf_counts_values
*count
,
1335 bool scale
, s8
*pscaled
)
1340 if (count
->run
== 0) {
1343 } else if (count
->run
< count
->ena
) {
1345 count
->val
= (u64
)((double) count
->val
* count
->ena
/ count
->run
+ 0.5);
1348 count
->ena
= count
->run
= 0;
1354 static int perf_evsel__read_size(struct perf_evsel
*evsel
)
1356 u64 read_format
= evsel
->attr
.read_format
;
1357 int entry
= sizeof(u64
); /* value */
1361 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1362 size
+= sizeof(u64
);
1364 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1365 size
+= sizeof(u64
);
1367 if (read_format
& PERF_FORMAT_ID
)
1368 entry
+= sizeof(u64
);
1370 if (read_format
& PERF_FORMAT_GROUP
) {
1371 nr
= evsel
->nr_members
;
1372 size
+= sizeof(u64
);
1379 int perf_evsel__read(struct perf_evsel
*evsel
, int cpu
, int thread
,
1380 struct perf_counts_values
*count
)
1382 size_t size
= perf_evsel__read_size(evsel
);
1384 memset(count
, 0, sizeof(*count
));
1386 if (FD(evsel
, cpu
, thread
) < 0)
1389 if (readn(FD(evsel
, cpu
, thread
), count
->values
, size
) <= 0)
1396 perf_evsel__read_one(struct perf_evsel
*evsel
, int cpu
, int thread
)
1398 struct perf_counts_values
*count
= perf_counts(evsel
->counts
, cpu
, thread
);
1400 return perf_evsel__read(evsel
, cpu
, thread
, count
);
1404 perf_evsel__set_count(struct perf_evsel
*counter
, int cpu
, int thread
,
1405 u64 val
, u64 ena
, u64 run
)
1407 struct perf_counts_values
*count
;
1409 count
= perf_counts(counter
->counts
, cpu
, thread
);
1414 count
->loaded
= true;
1418 perf_evsel__process_group_data(struct perf_evsel
*leader
,
1419 int cpu
, int thread
, u64
*data
)
1421 u64 read_format
= leader
->attr
.read_format
;
1422 struct sample_read_value
*v
;
1423 u64 nr
, ena
= 0, run
= 0, i
;
1427 if (nr
!= (u64
) leader
->nr_members
)
1430 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1433 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1436 v
= (struct sample_read_value
*) data
;
1438 perf_evsel__set_count(leader
, cpu
, thread
,
1439 v
[0].value
, ena
, run
);
1441 for (i
= 1; i
< nr
; i
++) {
1442 struct perf_evsel
*counter
;
1444 counter
= perf_evlist__id2evsel(leader
->evlist
, v
[i
].id
);
1448 perf_evsel__set_count(counter
, cpu
, thread
,
1449 v
[i
].value
, ena
, run
);
1456 perf_evsel__read_group(struct perf_evsel
*leader
, int cpu
, int thread
)
1458 struct perf_stat_evsel
*ps
= leader
->stats
;
1459 u64 read_format
= leader
->attr
.read_format
;
1460 int size
= perf_evsel__read_size(leader
);
1461 u64
*data
= ps
->group_data
;
1463 if (!(read_format
& PERF_FORMAT_ID
))
1466 if (!perf_evsel__is_group_leader(leader
))
1470 data
= zalloc(size
);
1474 ps
->group_data
= data
;
1477 if (FD(leader
, cpu
, thread
) < 0)
1480 if (readn(FD(leader
, cpu
, thread
), data
, size
) <= 0)
1483 return perf_evsel__process_group_data(leader
, cpu
, thread
, data
);
1486 int perf_evsel__read_counter(struct perf_evsel
*evsel
, int cpu
, int thread
)
1488 u64 read_format
= evsel
->attr
.read_format
;
1490 if (read_format
& PERF_FORMAT_GROUP
)
1491 return perf_evsel__read_group(evsel
, cpu
, thread
);
1493 return perf_evsel__read_one(evsel
, cpu
, thread
);
1496 int __perf_evsel__read_on_cpu(struct perf_evsel
*evsel
,
1497 int cpu
, int thread
, bool scale
)
1499 struct perf_counts_values count
;
1500 size_t nv
= scale
? 3 : 1;
1502 if (FD(evsel
, cpu
, thread
) < 0)
1505 if (evsel
->counts
== NULL
&& perf_evsel__alloc_counts(evsel
, cpu
+ 1, thread
+ 1) < 0)
1508 if (readn(FD(evsel
, cpu
, thread
), &count
, nv
* sizeof(u64
)) <= 0)
1511 perf_evsel__compute_deltas(evsel
, cpu
, thread
, &count
);
1512 perf_counts_values__scale(&count
, scale
, NULL
);
1513 *perf_counts(evsel
->counts
, cpu
, thread
) = count
;
1517 static int get_group_fd(struct perf_evsel
*evsel
, int cpu
, int thread
)
1519 struct perf_evsel
*leader
= evsel
->leader
;
1522 if (perf_evsel__is_group_leader(evsel
))
1526 * Leader must be already processed/open,
1527 * if not it's a bug.
1529 BUG_ON(!leader
->fd
);
1531 fd
= FD(leader
, cpu
, thread
);
1542 static void __p_bits(char *buf
, size_t size
, u64 value
, struct bit_names
*bits
)
1544 bool first_bit
= true;
1548 if (value
& bits
[i
].bit
) {
1549 buf
+= scnprintf(buf
, size
, "%s%s", first_bit
? "" : "|", bits
[i
].name
);
1552 } while (bits
[++i
].name
!= NULL
);
1555 static void __p_sample_type(char *buf
, size_t size
, u64 value
)
1557 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1558 struct bit_names bits
[] = {
1559 bit_name(IP
), bit_name(TID
), bit_name(TIME
), bit_name(ADDR
),
1560 bit_name(READ
), bit_name(CALLCHAIN
), bit_name(ID
), bit_name(CPU
),
1561 bit_name(PERIOD
), bit_name(STREAM_ID
), bit_name(RAW
),
1562 bit_name(BRANCH_STACK
), bit_name(REGS_USER
), bit_name(STACK_USER
),
1563 bit_name(IDENTIFIER
), bit_name(REGS_INTR
), bit_name(DATA_SRC
),
1564 bit_name(WEIGHT
), bit_name(PHYS_ADDR
),
1568 __p_bits(buf
, size
, value
, bits
);
1571 static void __p_branch_sample_type(char *buf
, size_t size
, u64 value
)
1573 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1574 struct bit_names bits
[] = {
1575 bit_name(USER
), bit_name(KERNEL
), bit_name(HV
), bit_name(ANY
),
1576 bit_name(ANY_CALL
), bit_name(ANY_RETURN
), bit_name(IND_CALL
),
1577 bit_name(ABORT_TX
), bit_name(IN_TX
), bit_name(NO_TX
),
1578 bit_name(COND
), bit_name(CALL_STACK
), bit_name(IND_JUMP
),
1579 bit_name(CALL
), bit_name(NO_FLAGS
), bit_name(NO_CYCLES
),
1583 __p_bits(buf
, size
, value
, bits
);
1586 static void __p_read_format(char *buf
, size_t size
, u64 value
)
1588 #define bit_name(n) { PERF_FORMAT_##n, #n }
1589 struct bit_names bits
[] = {
1590 bit_name(TOTAL_TIME_ENABLED
), bit_name(TOTAL_TIME_RUNNING
),
1591 bit_name(ID
), bit_name(GROUP
),
1595 __p_bits(buf
, size
, value
, bits
);
1598 #define BUF_SIZE 1024
1600 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1601 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1602 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1603 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1604 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1605 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1607 #define PRINT_ATTRn(_n, _f, _p) \
1611 ret += attr__fprintf(fp, _n, buf, priv);\
1615 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1617 int perf_event_attr__fprintf(FILE *fp
, struct perf_event_attr
*attr
,
1618 attr__fprintf_f attr__fprintf
, void *priv
)
1623 PRINT_ATTRf(type
, p_unsigned
);
1624 PRINT_ATTRf(size
, p_unsigned
);
1625 PRINT_ATTRf(config
, p_hex
);
1626 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period
, p_unsigned
);
1627 PRINT_ATTRf(sample_type
, p_sample_type
);
1628 PRINT_ATTRf(read_format
, p_read_format
);
1630 PRINT_ATTRf(disabled
, p_unsigned
);
1631 PRINT_ATTRf(inherit
, p_unsigned
);
1632 PRINT_ATTRf(pinned
, p_unsigned
);
1633 PRINT_ATTRf(exclusive
, p_unsigned
);
1634 PRINT_ATTRf(exclude_user
, p_unsigned
);
1635 PRINT_ATTRf(exclude_kernel
, p_unsigned
);
1636 PRINT_ATTRf(exclude_hv
, p_unsigned
);
1637 PRINT_ATTRf(exclude_idle
, p_unsigned
);
1638 PRINT_ATTRf(mmap
, p_unsigned
);
1639 PRINT_ATTRf(comm
, p_unsigned
);
1640 PRINT_ATTRf(freq
, p_unsigned
);
1641 PRINT_ATTRf(inherit_stat
, p_unsigned
);
1642 PRINT_ATTRf(enable_on_exec
, p_unsigned
);
1643 PRINT_ATTRf(task
, p_unsigned
);
1644 PRINT_ATTRf(watermark
, p_unsigned
);
1645 PRINT_ATTRf(precise_ip
, p_unsigned
);
1646 PRINT_ATTRf(mmap_data
, p_unsigned
);
1647 PRINT_ATTRf(sample_id_all
, p_unsigned
);
1648 PRINT_ATTRf(exclude_host
, p_unsigned
);
1649 PRINT_ATTRf(exclude_guest
, p_unsigned
);
1650 PRINT_ATTRf(exclude_callchain_kernel
, p_unsigned
);
1651 PRINT_ATTRf(exclude_callchain_user
, p_unsigned
);
1652 PRINT_ATTRf(mmap2
, p_unsigned
);
1653 PRINT_ATTRf(comm_exec
, p_unsigned
);
1654 PRINT_ATTRf(use_clockid
, p_unsigned
);
1655 PRINT_ATTRf(context_switch
, p_unsigned
);
1656 PRINT_ATTRf(write_backward
, p_unsigned
);
1657 PRINT_ATTRf(namespaces
, p_unsigned
);
1658 PRINT_ATTRf(ksymbol
, p_unsigned
);
1659 PRINT_ATTRf(bpf_event
, p_unsigned
);
1661 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events
, p_unsigned
);
1662 PRINT_ATTRf(bp_type
, p_unsigned
);
1663 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr
, p_hex
);
1664 PRINT_ATTRn("{ bp_len, config2 }", bp_len
, p_hex
);
1665 PRINT_ATTRf(branch_sample_type
, p_branch_sample_type
);
1666 PRINT_ATTRf(sample_regs_user
, p_hex
);
1667 PRINT_ATTRf(sample_stack_user
, p_unsigned
);
1668 PRINT_ATTRf(clockid
, p_signed
);
1669 PRINT_ATTRf(sample_regs_intr
, p_hex
);
1670 PRINT_ATTRf(aux_watermark
, p_unsigned
);
1671 PRINT_ATTRf(sample_max_stack
, p_unsigned
);
1676 static int __open_attr__fprintf(FILE *fp
, const char *name
, const char *val
,
1677 void *priv __maybe_unused
)
1679 return fprintf(fp
, " %-32s %s\n", name
, val
);
1682 static void perf_evsel__remove_fd(struct perf_evsel
*pos
,
1683 int nr_cpus
, int nr_threads
,
1686 for (int cpu
= 0; cpu
< nr_cpus
; cpu
++)
1687 for (int thread
= thread_idx
; thread
< nr_threads
- 1; thread
++)
1688 FD(pos
, cpu
, thread
) = FD(pos
, cpu
, thread
+ 1);
1691 static int update_fds(struct perf_evsel
*evsel
,
1692 int nr_cpus
, int cpu_idx
,
1693 int nr_threads
, int thread_idx
)
1695 struct perf_evsel
*pos
;
1697 if (cpu_idx
>= nr_cpus
|| thread_idx
>= nr_threads
)
1700 evlist__for_each_entry(evsel
->evlist
, pos
) {
1701 nr_cpus
= pos
!= evsel
? nr_cpus
: cpu_idx
;
1703 perf_evsel__remove_fd(pos
, nr_cpus
, nr_threads
, thread_idx
);
1706 * Since fds for next evsel has not been created,
1707 * there is no need to iterate whole event list.
1715 static bool ignore_missing_thread(struct perf_evsel
*evsel
,
1716 int nr_cpus
, int cpu
,
1717 struct thread_map
*threads
,
1718 int thread
, int err
)
1720 pid_t ignore_pid
= thread_map__pid(threads
, thread
);
1722 if (!evsel
->ignore_missing_thread
)
1725 /* The system wide setup does not work with threads. */
1726 if (evsel
->system_wide
)
1729 /* The -ESRCH is perf event syscall errno for pid's not found. */
1733 /* If there's only one thread, let it fail. */
1734 if (threads
->nr
== 1)
1738 * We should remove fd for missing_thread first
1739 * because thread_map__remove() will decrease threads->nr.
1741 if (update_fds(evsel
, nr_cpus
, cpu
, threads
->nr
, thread
))
1744 if (thread_map__remove(threads
, thread
))
1747 pr_warning("WARNING: Ignored open failure for pid %d\n",
1752 int perf_evsel__open(struct perf_evsel
*evsel
, struct cpu_map
*cpus
,
1753 struct thread_map
*threads
)
1755 int cpu
, thread
, nthreads
;
1756 unsigned long flags
= PERF_FLAG_FD_CLOEXEC
;
1758 enum { NO_CHANGE
, SET_TO_MAX
, INCREASED_MAX
} set_rlimit
= NO_CHANGE
;
1760 if (perf_missing_features
.write_backward
&& evsel
->attr
.write_backward
)
1764 static struct cpu_map
*empty_cpu_map
;
1766 if (empty_cpu_map
== NULL
) {
1767 empty_cpu_map
= cpu_map__dummy_new();
1768 if (empty_cpu_map
== NULL
)
1772 cpus
= empty_cpu_map
;
1775 if (threads
== NULL
) {
1776 static struct thread_map
*empty_thread_map
;
1778 if (empty_thread_map
== NULL
) {
1779 empty_thread_map
= thread_map__new_by_tid(-1);
1780 if (empty_thread_map
== NULL
)
1784 threads
= empty_thread_map
;
1787 if (evsel
->system_wide
)
1790 nthreads
= threads
->nr
;
1792 if (evsel
->fd
== NULL
&&
1793 perf_evsel__alloc_fd(evsel
, cpus
->nr
, nthreads
) < 0)
1797 flags
|= PERF_FLAG_PID_CGROUP
;
1798 pid
= evsel
->cgrp
->fd
;
1801 fallback_missing_features
:
1802 if (perf_missing_features
.clockid_wrong
)
1803 evsel
->attr
.clockid
= CLOCK_MONOTONIC
; /* should always work */
1804 if (perf_missing_features
.clockid
) {
1805 evsel
->attr
.use_clockid
= 0;
1806 evsel
->attr
.clockid
= 0;
1808 if (perf_missing_features
.cloexec
)
1809 flags
&= ~(unsigned long)PERF_FLAG_FD_CLOEXEC
;
1810 if (perf_missing_features
.mmap2
)
1811 evsel
->attr
.mmap2
= 0;
1812 if (perf_missing_features
.exclude_guest
)
1813 evsel
->attr
.exclude_guest
= evsel
->attr
.exclude_host
= 0;
1814 if (perf_missing_features
.lbr_flags
)
1815 evsel
->attr
.branch_sample_type
&= ~(PERF_SAMPLE_BRANCH_NO_FLAGS
|
1816 PERF_SAMPLE_BRANCH_NO_CYCLES
);
1817 if (perf_missing_features
.group_read
&& evsel
->attr
.inherit
)
1818 evsel
->attr
.read_format
&= ~(PERF_FORMAT_GROUP
|PERF_FORMAT_ID
);
1819 if (perf_missing_features
.ksymbol
)
1820 evsel
->attr
.ksymbol
= 0;
1821 if (perf_missing_features
.bpf_event
)
1822 evsel
->attr
.bpf_event
= 0;
1824 if (perf_missing_features
.sample_id_all
)
1825 evsel
->attr
.sample_id_all
= 0;
1828 fprintf(stderr
, "%.60s\n", graph_dotted_line
);
1829 fprintf(stderr
, "perf_event_attr:\n");
1830 perf_event_attr__fprintf(stderr
, &evsel
->attr
, __open_attr__fprintf
, NULL
);
1831 fprintf(stderr
, "%.60s\n", graph_dotted_line
);
1834 for (cpu
= 0; cpu
< cpus
->nr
; cpu
++) {
1836 for (thread
= 0; thread
< nthreads
; thread
++) {
1839 if (!evsel
->cgrp
&& !evsel
->system_wide
)
1840 pid
= thread_map__pid(threads
, thread
);
1842 group_fd
= get_group_fd(evsel
, cpu
, thread
);
1844 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1845 pid
, cpus
->map
[cpu
], group_fd
, flags
);
1849 fd
= sys_perf_event_open(&evsel
->attr
, pid
, cpus
->map
[cpu
],
1852 FD(evsel
, cpu
, thread
) = fd
;
1857 if (ignore_missing_thread(evsel
, cpus
->nr
, cpu
, threads
, thread
, err
)) {
1859 * We just removed 1 thread, so take a step
1860 * back on thread index and lower the upper
1866 /* ... and pretend like nothing have happened. */
1871 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1876 pr_debug2(" = %d\n", fd
);
1878 if (evsel
->bpf_fd
>= 0) {
1880 int bpf_fd
= evsel
->bpf_fd
;
1883 PERF_EVENT_IOC_SET_BPF
,
1885 if (err
&& errno
!= EEXIST
) {
1886 pr_err("failed to attach bpf fd %d: %s\n",
1887 bpf_fd
, strerror(errno
));
1893 set_rlimit
= NO_CHANGE
;
1896 * If we succeeded but had to kill clockid, fail and
1897 * have perf_evsel__open_strerror() print us a nice
1900 if (perf_missing_features
.clockid
||
1901 perf_missing_features
.clockid_wrong
) {
1912 * perf stat needs between 5 and 22 fds per CPU. When we run out
1913 * of them try to increase the limits.
1915 if (err
== -EMFILE
&& set_rlimit
< INCREASED_MAX
) {
1917 int old_errno
= errno
;
1919 if (getrlimit(RLIMIT_NOFILE
, &l
) == 0) {
1920 if (set_rlimit
== NO_CHANGE
)
1921 l
.rlim_cur
= l
.rlim_max
;
1923 l
.rlim_cur
= l
.rlim_max
+ 1000;
1924 l
.rlim_max
= l
.rlim_cur
;
1926 if (setrlimit(RLIMIT_NOFILE
, &l
) == 0) {
1935 if (err
!= -EINVAL
|| cpu
> 0 || thread
> 0)
1939 * Must probe features in the order they were added to the
1940 * perf_event_attr interface.
1942 if (!perf_missing_features
.bpf_event
&& evsel
->attr
.bpf_event
) {
1943 perf_missing_features
.bpf_event
= true;
1944 pr_debug2("switching off bpf_event\n");
1945 goto fallback_missing_features
;
1946 } else if (!perf_missing_features
.ksymbol
&& evsel
->attr
.ksymbol
) {
1947 perf_missing_features
.ksymbol
= true;
1948 pr_debug2("switching off ksymbol\n");
1949 goto fallback_missing_features
;
1950 } else if (!perf_missing_features
.write_backward
&& evsel
->attr
.write_backward
) {
1951 perf_missing_features
.write_backward
= true;
1952 pr_debug2("switching off write_backward\n");
1954 } else if (!perf_missing_features
.clockid_wrong
&& evsel
->attr
.use_clockid
) {
1955 perf_missing_features
.clockid_wrong
= true;
1956 pr_debug2("switching off clockid\n");
1957 goto fallback_missing_features
;
1958 } else if (!perf_missing_features
.clockid
&& evsel
->attr
.use_clockid
) {
1959 perf_missing_features
.clockid
= true;
1960 pr_debug2("switching off use_clockid\n");
1961 goto fallback_missing_features
;
1962 } else if (!perf_missing_features
.cloexec
&& (flags
& PERF_FLAG_FD_CLOEXEC
)) {
1963 perf_missing_features
.cloexec
= true;
1964 pr_debug2("switching off cloexec flag\n");
1965 goto fallback_missing_features
;
1966 } else if (!perf_missing_features
.mmap2
&& evsel
->attr
.mmap2
) {
1967 perf_missing_features
.mmap2
= true;
1968 pr_debug2("switching off mmap2\n");
1969 goto fallback_missing_features
;
1970 } else if (!perf_missing_features
.exclude_guest
&&
1971 (evsel
->attr
.exclude_guest
|| evsel
->attr
.exclude_host
)) {
1972 perf_missing_features
.exclude_guest
= true;
1973 pr_debug2("switching off exclude_guest, exclude_host\n");
1974 goto fallback_missing_features
;
1975 } else if (!perf_missing_features
.sample_id_all
) {
1976 perf_missing_features
.sample_id_all
= true;
1977 pr_debug2("switching off sample_id_all\n");
1978 goto retry_sample_id
;
1979 } else if (!perf_missing_features
.lbr_flags
&&
1980 (evsel
->attr
.branch_sample_type
&
1981 (PERF_SAMPLE_BRANCH_NO_CYCLES
|
1982 PERF_SAMPLE_BRANCH_NO_FLAGS
))) {
1983 perf_missing_features
.lbr_flags
= true;
1984 pr_debug2("switching off branch sample type no (cycles/flags)\n");
1985 goto fallback_missing_features
;
1986 } else if (!perf_missing_features
.group_read
&&
1987 evsel
->attr
.inherit
&&
1988 (evsel
->attr
.read_format
& PERF_FORMAT_GROUP
) &&
1989 perf_evsel__is_group_leader(evsel
)) {
1990 perf_missing_features
.group_read
= true;
1991 pr_debug2("switching off group read\n");
1992 goto fallback_missing_features
;
1996 threads
->err_thread
= thread
;
1999 while (--thread
>= 0) {
2000 close(FD(evsel
, cpu
, thread
));
2001 FD(evsel
, cpu
, thread
) = -1;
2004 } while (--cpu
>= 0);
2008 void perf_evsel__close(struct perf_evsel
*evsel
)
2010 if (evsel
->fd
== NULL
)
2013 perf_evsel__close_fd(evsel
);
2014 perf_evsel__free_fd(evsel
);
2017 int perf_evsel__open_per_cpu(struct perf_evsel
*evsel
,
2018 struct cpu_map
*cpus
)
2020 return perf_evsel__open(evsel
, cpus
, NULL
);
2023 int perf_evsel__open_per_thread(struct perf_evsel
*evsel
,
2024 struct thread_map
*threads
)
2026 return perf_evsel__open(evsel
, NULL
, threads
);
2029 static int perf_evsel__parse_id_sample(const struct perf_evsel
*evsel
,
2030 const union perf_event
*event
,
2031 struct perf_sample
*sample
)
2033 u64 type
= evsel
->attr
.sample_type
;
2034 const u64
*array
= event
->sample
.array
;
2035 bool swapped
= evsel
->needs_swap
;
2038 array
+= ((event
->header
.size
-
2039 sizeof(event
->header
)) / sizeof(u64
)) - 1;
2041 if (type
& PERF_SAMPLE_IDENTIFIER
) {
2042 sample
->id
= *array
;
2046 if (type
& PERF_SAMPLE_CPU
) {
2049 /* undo swap of u64, then swap on individual u32s */
2050 u
.val64
= bswap_64(u
.val64
);
2051 u
.val32
[0] = bswap_32(u
.val32
[0]);
2054 sample
->cpu
= u
.val32
[0];
2058 if (type
& PERF_SAMPLE_STREAM_ID
) {
2059 sample
->stream_id
= *array
;
2063 if (type
& PERF_SAMPLE_ID
) {
2064 sample
->id
= *array
;
2068 if (type
& PERF_SAMPLE_TIME
) {
2069 sample
->time
= *array
;
2073 if (type
& PERF_SAMPLE_TID
) {
2076 /* undo swap of u64, then swap on individual u32s */
2077 u
.val64
= bswap_64(u
.val64
);
2078 u
.val32
[0] = bswap_32(u
.val32
[0]);
2079 u
.val32
[1] = bswap_32(u
.val32
[1]);
2082 sample
->pid
= u
.val32
[0];
2083 sample
->tid
= u
.val32
[1];
2090 static inline bool overflow(const void *endp
, u16 max_size
, const void *offset
,
2093 return size
> max_size
|| offset
+ size
> endp
;
2096 #define OVERFLOW_CHECK(offset, size, max_size) \
2098 if (overflow(endp, (max_size), (offset), (size))) \
2102 #define OVERFLOW_CHECK_u64(offset) \
2103 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2106 perf_event__check_size(union perf_event
*event
, unsigned int sample_size
)
2109 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2110 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
2111 * check the format does not go past the end of the event.
2113 if (sample_size
+ sizeof(event
->header
) > event
->header
.size
)
2119 int perf_evsel__parse_sample(struct perf_evsel
*evsel
, union perf_event
*event
,
2120 struct perf_sample
*data
)
2122 u64 type
= evsel
->attr
.sample_type
;
2123 bool swapped
= evsel
->needs_swap
;
2125 u16 max_size
= event
->header
.size
;
2126 const void *endp
= (void *)event
+ max_size
;
2130 * used for cross-endian analysis. See git commit 65014ab3
2131 * for why this goofiness is needed.
2135 memset(data
, 0, sizeof(*data
));
2136 data
->cpu
= data
->pid
= data
->tid
= -1;
2137 data
->stream_id
= data
->id
= data
->time
= -1ULL;
2138 data
->period
= evsel
->attr
.sample_period
;
2139 data
->cpumode
= event
->header
.misc
& PERF_RECORD_MISC_CPUMODE_MASK
;
2140 data
->misc
= event
->header
.misc
;
2142 data
->data_src
= PERF_MEM_DATA_SRC_NONE
;
2144 if (event
->header
.type
!= PERF_RECORD_SAMPLE
) {
2145 if (!evsel
->attr
.sample_id_all
)
2147 return perf_evsel__parse_id_sample(evsel
, event
, data
);
2150 array
= event
->sample
.array
;
2152 if (perf_event__check_size(event
, evsel
->sample_size
))
2155 if (type
& PERF_SAMPLE_IDENTIFIER
) {
2160 if (type
& PERF_SAMPLE_IP
) {
2165 if (type
& PERF_SAMPLE_TID
) {
2168 /* undo swap of u64, then swap on individual u32s */
2169 u
.val64
= bswap_64(u
.val64
);
2170 u
.val32
[0] = bswap_32(u
.val32
[0]);
2171 u
.val32
[1] = bswap_32(u
.val32
[1]);
2174 data
->pid
= u
.val32
[0];
2175 data
->tid
= u
.val32
[1];
2179 if (type
& PERF_SAMPLE_TIME
) {
2180 data
->time
= *array
;
2184 if (type
& PERF_SAMPLE_ADDR
) {
2185 data
->addr
= *array
;
2189 if (type
& PERF_SAMPLE_ID
) {
2194 if (type
& PERF_SAMPLE_STREAM_ID
) {
2195 data
->stream_id
= *array
;
2199 if (type
& PERF_SAMPLE_CPU
) {
2203 /* undo swap of u64, then swap on individual u32s */
2204 u
.val64
= bswap_64(u
.val64
);
2205 u
.val32
[0] = bswap_32(u
.val32
[0]);
2208 data
->cpu
= u
.val32
[0];
2212 if (type
& PERF_SAMPLE_PERIOD
) {
2213 data
->period
= *array
;
2217 if (type
& PERF_SAMPLE_READ
) {
2218 u64 read_format
= evsel
->attr
.read_format
;
2220 OVERFLOW_CHECK_u64(array
);
2221 if (read_format
& PERF_FORMAT_GROUP
)
2222 data
->read
.group
.nr
= *array
;
2224 data
->read
.one
.value
= *array
;
2228 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
2229 OVERFLOW_CHECK_u64(array
);
2230 data
->read
.time_enabled
= *array
;
2234 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
2235 OVERFLOW_CHECK_u64(array
);
2236 data
->read
.time_running
= *array
;
2240 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2241 if (read_format
& PERF_FORMAT_GROUP
) {
2242 const u64 max_group_nr
= UINT64_MAX
/
2243 sizeof(struct sample_read_value
);
2245 if (data
->read
.group
.nr
> max_group_nr
)
2247 sz
= data
->read
.group
.nr
*
2248 sizeof(struct sample_read_value
);
2249 OVERFLOW_CHECK(array
, sz
, max_size
);
2250 data
->read
.group
.values
=
2251 (struct sample_read_value
*)array
;
2252 array
= (void *)array
+ sz
;
2254 OVERFLOW_CHECK_u64(array
);
2255 data
->read
.one
.id
= *array
;
2260 if (evsel__has_callchain(evsel
)) {
2261 const u64 max_callchain_nr
= UINT64_MAX
/ sizeof(u64
);
2263 OVERFLOW_CHECK_u64(array
);
2264 data
->callchain
= (struct ip_callchain
*)array
++;
2265 if (data
->callchain
->nr
> max_callchain_nr
)
2267 sz
= data
->callchain
->nr
* sizeof(u64
);
2268 OVERFLOW_CHECK(array
, sz
, max_size
);
2269 array
= (void *)array
+ sz
;
2272 if (type
& PERF_SAMPLE_RAW
) {
2273 OVERFLOW_CHECK_u64(array
);
2277 * Undo swap of u64, then swap on individual u32s,
2278 * get the size of the raw area and undo all of the
2279 * swap. The pevent interface handles endianity by
2283 u
.val64
= bswap_64(u
.val64
);
2284 u
.val32
[0] = bswap_32(u
.val32
[0]);
2285 u
.val32
[1] = bswap_32(u
.val32
[1]);
2287 data
->raw_size
= u
.val32
[0];
2290 * The raw data is aligned on 64bits including the
2291 * u32 size, so it's safe to use mem_bswap_64.
2294 mem_bswap_64((void *) array
, data
->raw_size
);
2296 array
= (void *)array
+ sizeof(u32
);
2298 OVERFLOW_CHECK(array
, data
->raw_size
, max_size
);
2299 data
->raw_data
= (void *)array
;
2300 array
= (void *)array
+ data
->raw_size
;
2303 if (type
& PERF_SAMPLE_BRANCH_STACK
) {
2304 const u64 max_branch_nr
= UINT64_MAX
/
2305 sizeof(struct branch_entry
);
2307 OVERFLOW_CHECK_u64(array
);
2308 data
->branch_stack
= (struct branch_stack
*)array
++;
2310 if (data
->branch_stack
->nr
> max_branch_nr
)
2312 sz
= data
->branch_stack
->nr
* sizeof(struct branch_entry
);
2313 OVERFLOW_CHECK(array
, sz
, max_size
);
2314 array
= (void *)array
+ sz
;
2317 if (type
& PERF_SAMPLE_REGS_USER
) {
2318 OVERFLOW_CHECK_u64(array
);
2319 data
->user_regs
.abi
= *array
;
2322 if (data
->user_regs
.abi
) {
2323 u64 mask
= evsel
->attr
.sample_regs_user
;
2325 sz
= hweight_long(mask
) * sizeof(u64
);
2326 OVERFLOW_CHECK(array
, sz
, max_size
);
2327 data
->user_regs
.mask
= mask
;
2328 data
->user_regs
.regs
= (u64
*)array
;
2329 array
= (void *)array
+ sz
;
2333 if (type
& PERF_SAMPLE_STACK_USER
) {
2334 OVERFLOW_CHECK_u64(array
);
2337 data
->user_stack
.offset
= ((char *)(array
- 1)
2341 data
->user_stack
.size
= 0;
2343 OVERFLOW_CHECK(array
, sz
, max_size
);
2344 data
->user_stack
.data
= (char *)array
;
2345 array
= (void *)array
+ sz
;
2346 OVERFLOW_CHECK_u64(array
);
2347 data
->user_stack
.size
= *array
++;
2348 if (WARN_ONCE(data
->user_stack
.size
> sz
,
2349 "user stack dump failure\n"))
2354 if (type
& PERF_SAMPLE_WEIGHT
) {
2355 OVERFLOW_CHECK_u64(array
);
2356 data
->weight
= *array
;
2360 if (type
& PERF_SAMPLE_DATA_SRC
) {
2361 OVERFLOW_CHECK_u64(array
);
2362 data
->data_src
= *array
;
2366 if (type
& PERF_SAMPLE_TRANSACTION
) {
2367 OVERFLOW_CHECK_u64(array
);
2368 data
->transaction
= *array
;
2372 data
->intr_regs
.abi
= PERF_SAMPLE_REGS_ABI_NONE
;
2373 if (type
& PERF_SAMPLE_REGS_INTR
) {
2374 OVERFLOW_CHECK_u64(array
);
2375 data
->intr_regs
.abi
= *array
;
2378 if (data
->intr_regs
.abi
!= PERF_SAMPLE_REGS_ABI_NONE
) {
2379 u64 mask
= evsel
->attr
.sample_regs_intr
;
2381 sz
= hweight_long(mask
) * sizeof(u64
);
2382 OVERFLOW_CHECK(array
, sz
, max_size
);
2383 data
->intr_regs
.mask
= mask
;
2384 data
->intr_regs
.regs
= (u64
*)array
;
2385 array
= (void *)array
+ sz
;
2389 data
->phys_addr
= 0;
2390 if (type
& PERF_SAMPLE_PHYS_ADDR
) {
2391 data
->phys_addr
= *array
;
2398 int perf_evsel__parse_sample_timestamp(struct perf_evsel
*evsel
,
2399 union perf_event
*event
,
2402 u64 type
= evsel
->attr
.sample_type
;
2405 if (!(type
& PERF_SAMPLE_TIME
))
2408 if (event
->header
.type
!= PERF_RECORD_SAMPLE
) {
2409 struct perf_sample data
= {
2413 if (!evsel
->attr
.sample_id_all
)
2415 if (perf_evsel__parse_id_sample(evsel
, event
, &data
))
2418 *timestamp
= data
.time
;
2422 array
= event
->sample
.array
;
2424 if (perf_event__check_size(event
, evsel
->sample_size
))
2427 if (type
& PERF_SAMPLE_IDENTIFIER
)
2430 if (type
& PERF_SAMPLE_IP
)
2433 if (type
& PERF_SAMPLE_TID
)
2436 if (type
& PERF_SAMPLE_TIME
)
2437 *timestamp
= *array
;
2442 size_t perf_event__sample_event_size(const struct perf_sample
*sample
, u64 type
,
2445 size_t sz
, result
= sizeof(struct sample_event
);
2447 if (type
& PERF_SAMPLE_IDENTIFIER
)
2448 result
+= sizeof(u64
);
2450 if (type
& PERF_SAMPLE_IP
)
2451 result
+= sizeof(u64
);
2453 if (type
& PERF_SAMPLE_TID
)
2454 result
+= sizeof(u64
);
2456 if (type
& PERF_SAMPLE_TIME
)
2457 result
+= sizeof(u64
);
2459 if (type
& PERF_SAMPLE_ADDR
)
2460 result
+= sizeof(u64
);
2462 if (type
& PERF_SAMPLE_ID
)
2463 result
+= sizeof(u64
);
2465 if (type
& PERF_SAMPLE_STREAM_ID
)
2466 result
+= sizeof(u64
);
2468 if (type
& PERF_SAMPLE_CPU
)
2469 result
+= sizeof(u64
);
2471 if (type
& PERF_SAMPLE_PERIOD
)
2472 result
+= sizeof(u64
);
2474 if (type
& PERF_SAMPLE_READ
) {
2475 result
+= sizeof(u64
);
2476 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2477 result
+= sizeof(u64
);
2478 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2479 result
+= sizeof(u64
);
2480 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2481 if (read_format
& PERF_FORMAT_GROUP
) {
2482 sz
= sample
->read
.group
.nr
*
2483 sizeof(struct sample_read_value
);
2486 result
+= sizeof(u64
);
2490 if (type
& PERF_SAMPLE_CALLCHAIN
) {
2491 sz
= (sample
->callchain
->nr
+ 1) * sizeof(u64
);
2495 if (type
& PERF_SAMPLE_RAW
) {
2496 result
+= sizeof(u32
);
2497 result
+= sample
->raw_size
;
2500 if (type
& PERF_SAMPLE_BRANCH_STACK
) {
2501 sz
= sample
->branch_stack
->nr
* sizeof(struct branch_entry
);
2506 if (type
& PERF_SAMPLE_REGS_USER
) {
2507 if (sample
->user_regs
.abi
) {
2508 result
+= sizeof(u64
);
2509 sz
= hweight_long(sample
->user_regs
.mask
) * sizeof(u64
);
2512 result
+= sizeof(u64
);
2516 if (type
& PERF_SAMPLE_STACK_USER
) {
2517 sz
= sample
->user_stack
.size
;
2518 result
+= sizeof(u64
);
2521 result
+= sizeof(u64
);
2525 if (type
& PERF_SAMPLE_WEIGHT
)
2526 result
+= sizeof(u64
);
2528 if (type
& PERF_SAMPLE_DATA_SRC
)
2529 result
+= sizeof(u64
);
2531 if (type
& PERF_SAMPLE_TRANSACTION
)
2532 result
+= sizeof(u64
);
2534 if (type
& PERF_SAMPLE_REGS_INTR
) {
2535 if (sample
->intr_regs
.abi
) {
2536 result
+= sizeof(u64
);
2537 sz
= hweight_long(sample
->intr_regs
.mask
) * sizeof(u64
);
2540 result
+= sizeof(u64
);
2544 if (type
& PERF_SAMPLE_PHYS_ADDR
)
2545 result
+= sizeof(u64
);
2550 int perf_event__synthesize_sample(union perf_event
*event
, u64 type
,
2552 const struct perf_sample
*sample
)
2557 * used for cross-endian analysis. See git commit 65014ab3
2558 * for why this goofiness is needed.
2562 array
= event
->sample
.array
;
2564 if (type
& PERF_SAMPLE_IDENTIFIER
) {
2565 *array
= sample
->id
;
2569 if (type
& PERF_SAMPLE_IP
) {
2570 *array
= sample
->ip
;
2574 if (type
& PERF_SAMPLE_TID
) {
2575 u
.val32
[0] = sample
->pid
;
2576 u
.val32
[1] = sample
->tid
;
2581 if (type
& PERF_SAMPLE_TIME
) {
2582 *array
= sample
->time
;
2586 if (type
& PERF_SAMPLE_ADDR
) {
2587 *array
= sample
->addr
;
2591 if (type
& PERF_SAMPLE_ID
) {
2592 *array
= sample
->id
;
2596 if (type
& PERF_SAMPLE_STREAM_ID
) {
2597 *array
= sample
->stream_id
;
2601 if (type
& PERF_SAMPLE_CPU
) {
2602 u
.val32
[0] = sample
->cpu
;
2608 if (type
& PERF_SAMPLE_PERIOD
) {
2609 *array
= sample
->period
;
2613 if (type
& PERF_SAMPLE_READ
) {
2614 if (read_format
& PERF_FORMAT_GROUP
)
2615 *array
= sample
->read
.group
.nr
;
2617 *array
= sample
->read
.one
.value
;
2620 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
2621 *array
= sample
->read
.time_enabled
;
2625 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
2626 *array
= sample
->read
.time_running
;
2630 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2631 if (read_format
& PERF_FORMAT_GROUP
) {
2632 sz
= sample
->read
.group
.nr
*
2633 sizeof(struct sample_read_value
);
2634 memcpy(array
, sample
->read
.group
.values
, sz
);
2635 array
= (void *)array
+ sz
;
2637 *array
= sample
->read
.one
.id
;
2642 if (type
& PERF_SAMPLE_CALLCHAIN
) {
2643 sz
= (sample
->callchain
->nr
+ 1) * sizeof(u64
);
2644 memcpy(array
, sample
->callchain
, sz
);
2645 array
= (void *)array
+ sz
;
2648 if (type
& PERF_SAMPLE_RAW
) {
2649 u
.val32
[0] = sample
->raw_size
;
2651 array
= (void *)array
+ sizeof(u32
);
2653 memcpy(array
, sample
->raw_data
, sample
->raw_size
);
2654 array
= (void *)array
+ sample
->raw_size
;
2657 if (type
& PERF_SAMPLE_BRANCH_STACK
) {
2658 sz
= sample
->branch_stack
->nr
* sizeof(struct branch_entry
);
2660 memcpy(array
, sample
->branch_stack
, sz
);
2661 array
= (void *)array
+ sz
;
2664 if (type
& PERF_SAMPLE_REGS_USER
) {
2665 if (sample
->user_regs
.abi
) {
2666 *array
++ = sample
->user_regs
.abi
;
2667 sz
= hweight_long(sample
->user_regs
.mask
) * sizeof(u64
);
2668 memcpy(array
, sample
->user_regs
.regs
, sz
);
2669 array
= (void *)array
+ sz
;
2675 if (type
& PERF_SAMPLE_STACK_USER
) {
2676 sz
= sample
->user_stack
.size
;
2679 memcpy(array
, sample
->user_stack
.data
, sz
);
2680 array
= (void *)array
+ sz
;
2685 if (type
& PERF_SAMPLE_WEIGHT
) {
2686 *array
= sample
->weight
;
2690 if (type
& PERF_SAMPLE_DATA_SRC
) {
2691 *array
= sample
->data_src
;
2695 if (type
& PERF_SAMPLE_TRANSACTION
) {
2696 *array
= sample
->transaction
;
2700 if (type
& PERF_SAMPLE_REGS_INTR
) {
2701 if (sample
->intr_regs
.abi
) {
2702 *array
++ = sample
->intr_regs
.abi
;
2703 sz
= hweight_long(sample
->intr_regs
.mask
) * sizeof(u64
);
2704 memcpy(array
, sample
->intr_regs
.regs
, sz
);
2705 array
= (void *)array
+ sz
;
2711 if (type
& PERF_SAMPLE_PHYS_ADDR
) {
2712 *array
= sample
->phys_addr
;
2719 struct tep_format_field
*perf_evsel__field(struct perf_evsel
*evsel
, const char *name
)
2721 return tep_find_field(evsel
->tp_format
, name
);
2724 void *perf_evsel__rawptr(struct perf_evsel
*evsel
, struct perf_sample
*sample
,
2727 struct tep_format_field
*field
= perf_evsel__field(evsel
, name
);
2733 offset
= field
->offset
;
2735 if (field
->flags
& TEP_FIELD_IS_DYNAMIC
) {
2736 offset
= *(int *)(sample
->raw_data
+ field
->offset
);
2740 return sample
->raw_data
+ offset
;
2743 u64
format_field__intval(struct tep_format_field
*field
, struct perf_sample
*sample
,
2747 void *ptr
= sample
->raw_data
+ field
->offset
;
2749 switch (field
->size
) {
2753 value
= *(u16
*)ptr
;
2756 value
= *(u32
*)ptr
;
2759 memcpy(&value
, ptr
, sizeof(u64
));
2768 switch (field
->size
) {
2770 return bswap_16(value
);
2772 return bswap_32(value
);
2774 return bswap_64(value
);
2782 u64
perf_evsel__intval(struct perf_evsel
*evsel
, struct perf_sample
*sample
,
2785 struct tep_format_field
*field
= perf_evsel__field(evsel
, name
);
2790 return field
? format_field__intval(field
, sample
, evsel
->needs_swap
) : 0;
2793 bool perf_evsel__fallback(struct perf_evsel
*evsel
, int err
,
2794 char *msg
, size_t msgsize
)
2798 if ((err
== ENOENT
|| err
== ENXIO
|| err
== ENODEV
) &&
2799 evsel
->attr
.type
== PERF_TYPE_HARDWARE
&&
2800 evsel
->attr
.config
== PERF_COUNT_HW_CPU_CYCLES
) {
2802 * If it's cycles then fall back to hrtimer based
2803 * cpu-clock-tick sw counter, which is always available even if
2806 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2809 scnprintf(msg
, msgsize
, "%s",
2810 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2812 evsel
->attr
.type
= PERF_TYPE_SOFTWARE
;
2813 evsel
->attr
.config
= PERF_COUNT_SW_CPU_CLOCK
;
2815 zfree(&evsel
->name
);
2817 } else if (err
== EACCES
&& !evsel
->attr
.exclude_kernel
&&
2818 (paranoid
= perf_event_paranoid()) > 1) {
2819 const char *name
= perf_evsel__name(evsel
);
2821 const char *sep
= ":";
2823 /* Is there already the separator in the name. */
2824 if (strchr(name
, '/') ||
2828 if (asprintf(&new_name
, "%s%su", name
, sep
) < 0)
2833 evsel
->name
= new_name
;
2834 scnprintf(msg
, msgsize
,
2835 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid
);
2836 evsel
->attr
.exclude_kernel
= 1;
2844 static bool find_process(const char *name
)
2846 size_t len
= strlen(name
);
2851 dir
= opendir(procfs__mountpoint());
2855 /* Walk through the directory. */
2856 while (ret
&& (d
= readdir(dir
)) != NULL
) {
2857 char path
[PATH_MAX
];
2861 if ((d
->d_type
!= DT_DIR
) ||
2862 !strcmp(".", d
->d_name
) ||
2863 !strcmp("..", d
->d_name
))
2866 scnprintf(path
, sizeof(path
), "%s/%s/comm",
2867 procfs__mountpoint(), d
->d_name
);
2869 if (filename__read_str(path
, &data
, &size
))
2872 ret
= strncmp(name
, data
, len
);
2877 return ret
? false : true;
2880 int perf_evsel__open_strerror(struct perf_evsel
*evsel
, struct target
*target
,
2881 int err
, char *msg
, size_t size
)
2883 char sbuf
[STRERR_BUFSIZE
];
2890 printed
= scnprintf(msg
, size
,
2891 "No permission to enable %s event.\n\n",
2892 perf_evsel__name(evsel
));
2894 return scnprintf(msg
+ printed
, size
- printed
,
2895 "You may not have permission to collect %sstats.\n\n"
2896 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2897 "which controls use of the performance events system by\n"
2898 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2899 "The current value is %d:\n\n"
2900 " -1: Allow use of (almost) all events by all users\n"
2901 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2902 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2903 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2904 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2905 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2906 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2907 " kernel.perf_event_paranoid = -1\n" ,
2908 target
->system_wide
? "system-wide " : "",
2909 perf_event_paranoid());
2911 return scnprintf(msg
, size
, "The %s event is not supported.",
2912 perf_evsel__name(evsel
));
2914 return scnprintf(msg
, size
, "%s",
2915 "Too many events are opened.\n"
2916 "Probably the maximum number of open file descriptors has been reached.\n"
2917 "Hint: Try again after reducing the number of events.\n"
2918 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2920 if (evsel__has_callchain(evsel
) &&
2921 access("/proc/sys/kernel/perf_event_max_stack", F_OK
) == 0)
2922 return scnprintf(msg
, size
,
2923 "Not enough memory to setup event with callchain.\n"
2924 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2925 "Hint: Current value: %d", sysctl__max_stack());
2928 if (target
->cpu_list
)
2929 return scnprintf(msg
, size
, "%s",
2930 "No such device - did you specify an out-of-range profile CPU?");
2933 if (evsel
->attr
.sample_period
!= 0)
2934 return scnprintf(msg
, size
,
2935 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2936 perf_evsel__name(evsel
));
2937 if (evsel
->attr
.precise_ip
)
2938 return scnprintf(msg
, size
, "%s",
2939 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2940 #if defined(__i386__) || defined(__x86_64__)
2941 if (evsel
->attr
.type
== PERF_TYPE_HARDWARE
)
2942 return scnprintf(msg
, size
, "%s",
2943 "No hardware sampling interrupt available.\n");
2947 if (find_process("oprofiled"))
2948 return scnprintf(msg
, size
,
2949 "The PMU counters are busy/taken by another profiler.\n"
2950 "We found oprofile daemon running, please stop it and try again.");
2953 if (evsel
->attr
.write_backward
&& perf_missing_features
.write_backward
)
2954 return scnprintf(msg
, size
, "Reading from overwrite event is not supported by this kernel.");
2955 if (perf_missing_features
.clockid
)
2956 return scnprintf(msg
, size
, "clockid feature not supported.");
2957 if (perf_missing_features
.clockid_wrong
)
2958 return scnprintf(msg
, size
, "wrong clockid (%d).", clockid
);
2964 return scnprintf(msg
, size
,
2965 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2966 "/bin/dmesg | grep -i perf may provide additional information.\n",
2967 err
, str_error_r(err
, sbuf
, sizeof(sbuf
)),
2968 perf_evsel__name(evsel
));
2971 struct perf_env
*perf_evsel__env(struct perf_evsel
*evsel
)
2973 if (evsel
&& evsel
->evlist
)
2974 return evsel
->evlist
->env
;
2978 static int store_evsel_ids(struct perf_evsel
*evsel
, struct perf_evlist
*evlist
)
2982 for (cpu
= 0; cpu
< xyarray__max_x(evsel
->fd
); cpu
++) {
2983 for (thread
= 0; thread
< xyarray__max_y(evsel
->fd
);
2985 int fd
= FD(evsel
, cpu
, thread
);
2987 if (perf_evlist__id_add_fd(evlist
, evsel
,
2988 cpu
, thread
, fd
) < 0)
2996 int perf_evsel__store_ids(struct perf_evsel
*evsel
, struct perf_evlist
*evlist
)
2998 struct cpu_map
*cpus
= evsel
->cpus
;
2999 struct thread_map
*threads
= evsel
->threads
;
3001 if (perf_evsel__alloc_id(evsel
, cpus
->nr
, threads
->nr
))
3004 return store_evsel_ids(evsel
, evlist
);