regulator: s2mps11: Adjust supported buck voltages to real values
[linux/fpc-iii.git] / tools / perf / util / ordered-events.c
blobea523d3b248fe9bdfb2ded5bca9f88bc966b31b1
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include <linux/list.h>
5 #include <linux/compiler.h>
6 #include <linux/string.h>
7 #include "ordered-events.h"
8 #include "session.h"
9 #include "asm/bug.h"
10 #include "debug.h"
12 #define pr_N(n, fmt, ...) \
13 eprintf(n, debug_ordered_events, fmt, ##__VA_ARGS__)
15 #define pr(fmt, ...) pr_N(1, pr_fmt(fmt), ##__VA_ARGS__)
17 static void queue_event(struct ordered_events *oe, struct ordered_event *new)
19 struct ordered_event *last = oe->last;
20 u64 timestamp = new->timestamp;
21 struct list_head *p;
23 ++oe->nr_events;
24 oe->last = new;
26 pr_oe_time2(timestamp, "queue_event nr_events %u\n", oe->nr_events);
28 if (!last) {
29 list_add(&new->list, &oe->events);
30 oe->max_timestamp = timestamp;
31 return;
35 * last event might point to some random place in the list as it's
36 * the last queued event. We expect that the new event is close to
37 * this.
39 if (last->timestamp <= timestamp) {
40 while (last->timestamp <= timestamp) {
41 p = last->list.next;
42 if (p == &oe->events) {
43 list_add_tail(&new->list, &oe->events);
44 oe->max_timestamp = timestamp;
45 return;
47 last = list_entry(p, struct ordered_event, list);
49 list_add_tail(&new->list, &last->list);
50 } else {
51 while (last->timestamp > timestamp) {
52 p = last->list.prev;
53 if (p == &oe->events) {
54 list_add(&new->list, &oe->events);
55 return;
57 last = list_entry(p, struct ordered_event, list);
59 list_add(&new->list, &last->list);
63 static union perf_event *__dup_event(struct ordered_events *oe,
64 union perf_event *event)
66 union perf_event *new_event = NULL;
68 if (oe->cur_alloc_size < oe->max_alloc_size) {
69 new_event = memdup(event, event->header.size);
70 if (new_event)
71 oe->cur_alloc_size += event->header.size;
74 return new_event;
77 static union perf_event *dup_event(struct ordered_events *oe,
78 union perf_event *event)
80 return oe->copy_on_queue ? __dup_event(oe, event) : event;
83 static void __free_dup_event(struct ordered_events *oe, union perf_event *event)
85 if (event) {
86 oe->cur_alloc_size -= event->header.size;
87 free(event);
91 static void free_dup_event(struct ordered_events *oe, union perf_event *event)
93 if (oe->copy_on_queue)
94 __free_dup_event(oe, event);
97 #define MAX_SAMPLE_BUFFER (64 * 1024 / sizeof(struct ordered_event))
98 static struct ordered_event *alloc_event(struct ordered_events *oe,
99 union perf_event *event)
101 struct list_head *cache = &oe->cache;
102 struct ordered_event *new = NULL;
103 union perf_event *new_event;
104 size_t size;
106 new_event = dup_event(oe, event);
107 if (!new_event)
108 return NULL;
111 * We maintain the following scheme of buffers for ordered
112 * event allocation:
114 * to_free list -> buffer1 (64K)
115 * buffer2 (64K)
116 * ...
118 * Each buffer keeps an array of ordered events objects:
119 * buffer -> event[0]
120 * event[1]
121 * ...
123 * Each allocated ordered event is linked to one of
124 * following lists:
125 * - time ordered list 'events'
126 * - list of currently removed events 'cache'
128 * Allocation of the ordered event uses the following order
129 * to get the memory:
130 * - use recently removed object from 'cache' list
131 * - use available object in current allocation buffer
132 * - allocate new buffer if the current buffer is full
134 * Removal of ordered event object moves it from events to
135 * the cache list.
137 size = sizeof(*oe->buffer) + MAX_SAMPLE_BUFFER * sizeof(*new);
139 if (!list_empty(cache)) {
140 new = list_entry(cache->next, struct ordered_event, list);
141 list_del(&new->list);
142 } else if (oe->buffer) {
143 new = &oe->buffer->event[oe->buffer_idx];
144 if (++oe->buffer_idx == MAX_SAMPLE_BUFFER)
145 oe->buffer = NULL;
146 } else if ((oe->cur_alloc_size + size) < oe->max_alloc_size) {
147 oe->buffer = malloc(size);
148 if (!oe->buffer) {
149 free_dup_event(oe, new_event);
150 return NULL;
153 pr("alloc size %" PRIu64 "B (+%zu), max %" PRIu64 "B\n",
154 oe->cur_alloc_size, size, oe->max_alloc_size);
156 oe->cur_alloc_size += size;
157 list_add(&oe->buffer->list, &oe->to_free);
159 oe->buffer_idx = 1;
160 new = &oe->buffer->event[0];
161 } else {
162 pr("allocation limit reached %" PRIu64 "B\n", oe->max_alloc_size);
163 return NULL;
166 new->event = new_event;
167 return new;
170 static struct ordered_event *
171 ordered_events__new_event(struct ordered_events *oe, u64 timestamp,
172 union perf_event *event)
174 struct ordered_event *new;
176 new = alloc_event(oe, event);
177 if (new) {
178 new->timestamp = timestamp;
179 queue_event(oe, new);
182 return new;
185 void ordered_events__delete(struct ordered_events *oe, struct ordered_event *event)
187 list_move(&event->list, &oe->cache);
188 oe->nr_events--;
189 free_dup_event(oe, event->event);
190 event->event = NULL;
193 int ordered_events__queue(struct ordered_events *oe, union perf_event *event,
194 u64 timestamp, u64 file_offset)
196 struct ordered_event *oevent;
198 if (!timestamp || timestamp == ~0ULL)
199 return -ETIME;
201 if (timestamp < oe->last_flush) {
202 pr_oe_time(timestamp, "out of order event\n");
203 pr_oe_time(oe->last_flush, "last flush, last_flush_type %d\n",
204 oe->last_flush_type);
206 oe->nr_unordered_events++;
209 oevent = ordered_events__new_event(oe, timestamp, event);
210 if (!oevent) {
211 ordered_events__flush(oe, OE_FLUSH__HALF);
212 oevent = ordered_events__new_event(oe, timestamp, event);
215 if (!oevent)
216 return -ENOMEM;
218 oevent->file_offset = file_offset;
219 return 0;
222 static int do_flush(struct ordered_events *oe, bool show_progress)
224 struct list_head *head = &oe->events;
225 struct ordered_event *tmp, *iter;
226 u64 limit = oe->next_flush;
227 u64 last_ts = oe->last ? oe->last->timestamp : 0ULL;
228 struct ui_progress prog;
229 int ret;
231 if (!limit)
232 return 0;
234 if (show_progress)
235 ui_progress__init(&prog, oe->nr_events, "Processing time ordered events...");
237 list_for_each_entry_safe(iter, tmp, head, list) {
238 if (session_done())
239 return 0;
241 if (iter->timestamp > limit)
242 break;
243 ret = oe->deliver(oe, iter);
244 if (ret)
245 return ret;
247 ordered_events__delete(oe, iter);
248 oe->last_flush = iter->timestamp;
250 if (show_progress)
251 ui_progress__update(&prog, 1);
254 if (list_empty(head))
255 oe->last = NULL;
256 else if (last_ts <= limit)
257 oe->last = list_entry(head->prev, struct ordered_event, list);
259 if (show_progress)
260 ui_progress__finish();
262 return 0;
265 static int __ordered_events__flush(struct ordered_events *oe, enum oe_flush how,
266 u64 timestamp)
268 static const char * const str[] = {
269 "NONE",
270 "FINAL",
271 "ROUND",
272 "HALF ",
274 int err;
275 bool show_progress = false;
277 if (oe->nr_events == 0)
278 return 0;
280 switch (how) {
281 case OE_FLUSH__FINAL:
282 show_progress = true;
283 __fallthrough;
284 case OE_FLUSH__TOP:
285 oe->next_flush = ULLONG_MAX;
286 break;
288 case OE_FLUSH__HALF:
290 struct ordered_event *first, *last;
291 struct list_head *head = &oe->events;
293 first = list_entry(head->next, struct ordered_event, list);
294 last = oe->last;
296 /* Warn if we are called before any event got allocated. */
297 if (WARN_ONCE(!last || list_empty(head), "empty queue"))
298 return 0;
300 oe->next_flush = first->timestamp;
301 oe->next_flush += (last->timestamp - first->timestamp) / 2;
302 break;
305 case OE_FLUSH__TIME:
306 oe->next_flush = timestamp;
307 show_progress = false;
308 break;
310 case OE_FLUSH__ROUND:
311 case OE_FLUSH__NONE:
312 default:
313 break;
316 pr_oe_time(oe->next_flush, "next_flush - ordered_events__flush PRE %s, nr_events %u\n",
317 str[how], oe->nr_events);
318 pr_oe_time(oe->max_timestamp, "max_timestamp\n");
320 err = do_flush(oe, show_progress);
322 if (!err) {
323 if (how == OE_FLUSH__ROUND)
324 oe->next_flush = oe->max_timestamp;
326 oe->last_flush_type = how;
329 pr_oe_time(oe->next_flush, "next_flush - ordered_events__flush POST %s, nr_events %u\n",
330 str[how], oe->nr_events);
331 pr_oe_time(oe->last_flush, "last_flush\n");
333 return err;
336 int ordered_events__flush(struct ordered_events *oe, enum oe_flush how)
338 return __ordered_events__flush(oe, how, 0);
341 int ordered_events__flush_time(struct ordered_events *oe, u64 timestamp)
343 return __ordered_events__flush(oe, OE_FLUSH__TIME, timestamp);
346 u64 ordered_events__first_time(struct ordered_events *oe)
348 struct ordered_event *event;
350 if (list_empty(&oe->events))
351 return 0;
353 event = list_first_entry(&oe->events, struct ordered_event, list);
354 return event->timestamp;
357 void ordered_events__init(struct ordered_events *oe, ordered_events__deliver_t deliver,
358 void *data)
360 INIT_LIST_HEAD(&oe->events);
361 INIT_LIST_HEAD(&oe->cache);
362 INIT_LIST_HEAD(&oe->to_free);
363 oe->max_alloc_size = (u64) -1;
364 oe->cur_alloc_size = 0;
365 oe->deliver = deliver;
366 oe->data = data;
369 static void
370 ordered_events_buffer__free(struct ordered_events_buffer *buffer,
371 unsigned int max, struct ordered_events *oe)
373 if (oe->copy_on_queue) {
374 unsigned int i;
376 for (i = 0; i < max; i++)
377 __free_dup_event(oe, buffer->event[i].event);
380 free(buffer);
383 void ordered_events__free(struct ordered_events *oe)
385 struct ordered_events_buffer *buffer, *tmp;
387 if (list_empty(&oe->to_free))
388 return;
391 * Current buffer might not have all the events allocated
392 * yet, we need to free only allocated ones ...
394 if (oe->buffer) {
395 list_del(&oe->buffer->list);
396 ordered_events_buffer__free(oe->buffer, oe->buffer_idx, oe);
399 /* ... and continue with the rest */
400 list_for_each_entry_safe(buffer, tmp, &oe->to_free, list) {
401 list_del(&buffer->list);
402 ordered_events_buffer__free(buffer, MAX_SAMPLE_BUFFER, oe);
406 void ordered_events__reinit(struct ordered_events *oe)
408 ordered_events__deliver_t old_deliver = oe->deliver;
410 ordered_events__free(oe);
411 memset(oe, '\0', sizeof(*oe));
412 ordered_events__init(oe, old_deliver, oe->data);