Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux/fpc-iii.git] / drivers / memory / emif.c
blobdf0873694858e74b3fdeaa3066c33840cb2ec7dc
1 /*
2 * EMIF driver
4 * Copyright (C) 2012 Texas Instruments, Inc.
6 * Aneesh V <aneesh@ti.com>
7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/err.h>
14 #include <linux/kernel.h>
15 #include <linux/reboot.h>
16 #include <linux/platform_data/emif_plat.h>
17 #include <linux/io.h>
18 #include <linux/device.h>
19 #include <linux/platform_device.h>
20 #include <linux/interrupt.h>
21 #include <linux/slab.h>
22 #include <linux/of.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/module.h>
26 #include <linux/list.h>
27 #include <linux/spinlock.h>
28 #include <memory/jedec_ddr.h>
29 #include "emif.h"
30 #include "of_memory.h"
32 /**
33 * struct emif_data - Per device static data for driver's use
34 * @duplicate: Whether the DDR devices attached to this EMIF
35 * instance are exactly same as that on EMIF1. In
36 * this case we can save some memory and processing
37 * @temperature_level: Maximum temperature of LPDDR2 devices attached
38 * to this EMIF - read from MR4 register. If there
39 * are two devices attached to this EMIF, this
40 * value is the maximum of the two temperature
41 * levels.
42 * @node: node in the device list
43 * @base: base address of memory-mapped IO registers.
44 * @dev: device pointer.
45 * @addressing table with addressing information from the spec
46 * @regs_cache: An array of 'struct emif_regs' that stores
47 * calculated register values for different
48 * frequencies, to avoid re-calculating them on
49 * each DVFS transition.
50 * @curr_regs: The set of register values used in the last
51 * frequency change (i.e. corresponding to the
52 * frequency in effect at the moment)
53 * @plat_data: Pointer to saved platform data.
54 * @debugfs_root: dentry to the root folder for EMIF in debugfs
55 * @np_ddr: Pointer to ddr device tree node
57 struct emif_data {
58 u8 duplicate;
59 u8 temperature_level;
60 u8 lpmode;
61 struct list_head node;
62 unsigned long irq_state;
63 void __iomem *base;
64 struct device *dev;
65 const struct lpddr2_addressing *addressing;
66 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
67 struct emif_regs *curr_regs;
68 struct emif_platform_data *plat_data;
69 struct dentry *debugfs_root;
70 struct device_node *np_ddr;
73 static struct emif_data *emif1;
74 static spinlock_t emif_lock;
75 static unsigned long irq_state;
76 static u32 t_ck; /* DDR clock period in ps */
77 static LIST_HEAD(device_list);
79 #ifdef CONFIG_DEBUG_FS
80 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
81 struct emif_regs *regs)
83 u32 type = emif->plat_data->device_info->type;
84 u32 ip_rev = emif->plat_data->ip_rev;
86 seq_printf(s, "EMIF register cache dump for %dMHz\n",
87 regs->freq/1000000);
89 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
90 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
91 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
92 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
94 if (ip_rev == EMIF_4D) {
95 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
96 regs->read_idle_ctrl_shdw_normal);
97 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
98 regs->read_idle_ctrl_shdw_volt_ramp);
99 } else if (ip_rev == EMIF_4D5) {
100 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
101 regs->dll_calib_ctrl_shdw_normal);
102 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
103 regs->dll_calib_ctrl_shdw_volt_ramp);
106 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
107 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
108 regs->ref_ctrl_shdw_derated);
109 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
110 regs->sdram_tim1_shdw_derated);
111 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
112 regs->sdram_tim3_shdw_derated);
116 static int emif_regdump_show(struct seq_file *s, void *unused)
118 struct emif_data *emif = s->private;
119 struct emif_regs **regs_cache;
120 int i;
122 if (emif->duplicate)
123 regs_cache = emif1->regs_cache;
124 else
125 regs_cache = emif->regs_cache;
127 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
128 do_emif_regdump_show(s, emif, regs_cache[i]);
129 seq_printf(s, "\n");
132 return 0;
135 static int emif_regdump_open(struct inode *inode, struct file *file)
137 return single_open(file, emif_regdump_show, inode->i_private);
140 static const struct file_operations emif_regdump_fops = {
141 .open = emif_regdump_open,
142 .read = seq_read,
143 .release = single_release,
146 static int emif_mr4_show(struct seq_file *s, void *unused)
148 struct emif_data *emif = s->private;
150 seq_printf(s, "MR4=%d\n", emif->temperature_level);
151 return 0;
154 static int emif_mr4_open(struct inode *inode, struct file *file)
156 return single_open(file, emif_mr4_show, inode->i_private);
159 static const struct file_operations emif_mr4_fops = {
160 .open = emif_mr4_open,
161 .read = seq_read,
162 .release = single_release,
165 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
167 struct dentry *dentry;
168 int ret;
170 dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
171 if (!dentry) {
172 ret = -ENOMEM;
173 goto err0;
175 emif->debugfs_root = dentry;
177 dentry = debugfs_create_file("regcache_dump", S_IRUGO,
178 emif->debugfs_root, emif, &emif_regdump_fops);
179 if (!dentry) {
180 ret = -ENOMEM;
181 goto err1;
184 dentry = debugfs_create_file("mr4", S_IRUGO,
185 emif->debugfs_root, emif, &emif_mr4_fops);
186 if (!dentry) {
187 ret = -ENOMEM;
188 goto err1;
191 return 0;
192 err1:
193 debugfs_remove_recursive(emif->debugfs_root);
194 err0:
195 return ret;
198 static void __exit emif_debugfs_exit(struct emif_data *emif)
200 debugfs_remove_recursive(emif->debugfs_root);
201 emif->debugfs_root = NULL;
203 #else
204 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
206 return 0;
209 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
212 #endif
215 * Calculate the period of DDR clock from frequency value
217 static void set_ddr_clk_period(u32 freq)
219 /* Divide 10^12 by frequency to get period in ps */
220 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
224 * Get bus width used by EMIF. Note that this may be different from the
225 * bus width of the DDR devices used. For instance two 16-bit DDR devices
226 * may be connected to a given CS of EMIF. In this case bus width as far
227 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
229 static u32 get_emif_bus_width(struct emif_data *emif)
231 u32 width;
232 void __iomem *base = emif->base;
234 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
235 >> NARROW_MODE_SHIFT;
236 width = width == 0 ? 32 : 16;
238 return width;
242 * Get the CL from SDRAM_CONFIG register
244 static u32 get_cl(struct emif_data *emif)
246 u32 cl;
247 void __iomem *base = emif->base;
249 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
251 return cl;
254 static void set_lpmode(struct emif_data *emif, u8 lpmode)
256 u32 temp;
257 void __iomem *base = emif->base;
259 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
260 temp &= ~LP_MODE_MASK;
261 temp |= (lpmode << LP_MODE_SHIFT);
262 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
265 static void do_freq_update(void)
267 struct emif_data *emif;
270 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
272 * i728 DESCRIPTION:
273 * The EMIF automatically puts the SDRAM into self-refresh mode
274 * after the EMIF has not performed accesses during
275 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
276 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
277 * to 0x2. If during a small window the following three events
278 * occur:
279 * - The SR_TIMING counter expires
280 * - And frequency change is requested
281 * - And OCP access is requested
282 * Then it causes instable clock on the DDR interface.
284 * WORKAROUND
285 * To avoid the occurrence of the three events, the workaround
286 * is to disable the self-refresh when requesting a frequency
287 * change. Before requesting a frequency change the software must
288 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
289 * frequency change has been done, the software can reprogram
290 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
292 list_for_each_entry(emif, &device_list, node) {
293 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
294 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
298 * TODO: Do FREQ_UPDATE here when an API
299 * is available for this as part of the new
300 * clock framework
303 list_for_each_entry(emif, &device_list, node) {
304 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
305 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
309 /* Find addressing table entry based on the device's type and density */
310 static const struct lpddr2_addressing *get_addressing_table(
311 const struct ddr_device_info *device_info)
313 u32 index, type, density;
315 type = device_info->type;
316 density = device_info->density;
318 switch (type) {
319 case DDR_TYPE_LPDDR2_S4:
320 index = density - 1;
321 break;
322 case DDR_TYPE_LPDDR2_S2:
323 switch (density) {
324 case DDR_DENSITY_1Gb:
325 case DDR_DENSITY_2Gb:
326 index = density + 3;
327 break;
328 default:
329 index = density - 1;
331 break;
332 default:
333 return NULL;
336 return &lpddr2_jedec_addressing_table[index];
340 * Find the the right timing table from the array of timing
341 * tables of the device using DDR clock frequency
343 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
344 u32 freq)
346 u32 i, min, max, freq_nearest;
347 const struct lpddr2_timings *timings = NULL;
348 const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
349 struct device *dev = emif->dev;
351 /* Start with a very high frequency - 1GHz */
352 freq_nearest = 1000000000;
355 * Find the timings table such that:
356 * 1. the frequency range covers the required frequency(safe) AND
357 * 2. the max_freq is closest to the required frequency(optimal)
359 for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
360 max = timings_arr[i].max_freq;
361 min = timings_arr[i].min_freq;
362 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
363 freq_nearest = max;
364 timings = &timings_arr[i];
368 if (!timings)
369 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
370 __func__, freq);
372 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
373 __func__, freq, freq_nearest);
375 return timings;
378 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
379 const struct lpddr2_addressing *addressing)
381 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
383 /* Scale down frequency and t_refi to avoid overflow */
384 freq_khz = freq / 1000;
385 t_refi = addressing->tREFI_ns / 100;
388 * refresh rate to be set is 'tREFI(in us) * freq in MHz
389 * division by 10000 to account for change in units
391 val = t_refi * freq_khz / 10000;
392 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
394 return ref_ctrl_shdw;
397 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
398 const struct lpddr2_min_tck *min_tck,
399 const struct lpddr2_addressing *addressing)
401 u32 tim1 = 0, val = 0;
403 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
404 tim1 |= val << T_WTR_SHIFT;
406 if (addressing->num_banks == B8)
407 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
408 else
409 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
410 tim1 |= (val - 1) << T_RRD_SHIFT;
412 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
413 tim1 |= val << T_RC_SHIFT;
415 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
416 tim1 |= (val - 1) << T_RAS_SHIFT;
418 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
419 tim1 |= val << T_WR_SHIFT;
421 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
422 tim1 |= val << T_RCD_SHIFT;
424 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
425 tim1 |= val << T_RP_SHIFT;
427 return tim1;
430 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
431 const struct lpddr2_min_tck *min_tck,
432 const struct lpddr2_addressing *addressing)
434 u32 tim1 = 0, val = 0;
436 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
437 tim1 = val << T_WTR_SHIFT;
440 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
441 * to tFAW for de-rating
443 if (addressing->num_banks == B8) {
444 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
445 } else {
446 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
447 val = max(min_tck->tRRD, val) - 1;
449 tim1 |= val << T_RRD_SHIFT;
451 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
452 tim1 |= (val - 1) << T_RC_SHIFT;
454 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
455 val = max(min_tck->tRASmin, val) - 1;
456 tim1 |= val << T_RAS_SHIFT;
458 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
459 tim1 |= val << T_WR_SHIFT;
461 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
462 tim1 |= (val - 1) << T_RCD_SHIFT;
464 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
465 tim1 |= (val - 1) << T_RP_SHIFT;
467 return tim1;
470 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
471 const struct lpddr2_min_tck *min_tck,
472 const struct lpddr2_addressing *addressing,
473 u32 type)
475 u32 tim2 = 0, val = 0;
477 val = min_tck->tCKE - 1;
478 tim2 |= val << T_CKE_SHIFT;
480 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
481 tim2 |= val << T_RTP_SHIFT;
483 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
484 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
485 tim2 |= val << T_XSNR_SHIFT;
487 /* XSRD same as XSNR for LPDDR2 */
488 tim2 |= val << T_XSRD_SHIFT;
490 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
491 tim2 |= val << T_XP_SHIFT;
493 return tim2;
496 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
497 const struct lpddr2_min_tck *min_tck,
498 const struct lpddr2_addressing *addressing,
499 u32 type, u32 ip_rev, u32 derated)
501 u32 tim3 = 0, val = 0, t_dqsck;
503 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
504 val = val > 0xF ? 0xF : val;
505 tim3 |= val << T_RAS_MAX_SHIFT;
507 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
508 tim3 |= val << T_RFC_SHIFT;
510 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
511 timings->tDQSCK_max_derated : timings->tDQSCK_max;
512 if (ip_rev == EMIF_4D5)
513 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
514 else
515 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
517 tim3 |= val << T_TDQSCKMAX_SHIFT;
519 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
520 tim3 |= val << ZQ_ZQCS_SHIFT;
522 val = DIV_ROUND_UP(timings->tCKESR, t_ck);
523 val = max(min_tck->tCKESR, val) - 1;
524 tim3 |= val << T_CKESR_SHIFT;
526 if (ip_rev == EMIF_4D5) {
527 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
529 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
530 tim3 |= val << T_PDLL_UL_SHIFT;
533 return tim3;
536 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
537 bool cs1_used, bool cal_resistors_per_cs)
539 u32 zq = 0, val = 0;
541 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
542 zq |= val << ZQ_REFINTERVAL_SHIFT;
544 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
545 zq |= val << ZQ_ZQCL_MULT_SHIFT;
547 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
548 zq |= val << ZQ_ZQINIT_MULT_SHIFT;
550 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
552 if (cal_resistors_per_cs)
553 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
554 else
555 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
557 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
559 val = cs1_used ? 1 : 0;
560 zq |= val << ZQ_CS1EN_SHIFT;
562 return zq;
565 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
566 const struct emif_custom_configs *custom_configs, bool cs1_used,
567 u32 sdram_io_width, u32 emif_bus_width)
569 u32 alert = 0, interval, devcnt;
571 if (custom_configs && (custom_configs->mask &
572 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
573 interval = custom_configs->temp_alert_poll_interval_ms;
574 else
575 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
577 interval *= 1000000; /* Convert to ns */
578 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
579 alert |= (interval << TA_REFINTERVAL_SHIFT);
582 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
583 * also to this form and subtract to get TA_DEVCNT, which is
584 * in log2(x) form.
586 emif_bus_width = __fls(emif_bus_width) - 1;
587 devcnt = emif_bus_width - sdram_io_width;
588 alert |= devcnt << TA_DEVCNT_SHIFT;
590 /* DEVWDT is in 'log2(x) - 3' form */
591 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
593 alert |= 1 << TA_SFEXITEN_SHIFT;
594 alert |= 1 << TA_CS0EN_SHIFT;
595 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
597 return alert;
600 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
602 u32 idle = 0, val = 0;
605 * Maximum value in normal conditions and increased frequency
606 * when voltage is ramping
608 if (volt_ramp)
609 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
610 else
611 val = 0x1FF;
614 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
615 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
617 idle |= val << DLL_CALIB_INTERVAL_SHIFT;
618 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
620 return idle;
623 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
625 u32 calib = 0, val = 0;
627 if (volt_ramp == DDR_VOLTAGE_RAMPING)
628 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
629 else
630 val = 0; /* Disabled when voltage is stable */
632 calib |= val << DLL_CALIB_INTERVAL_SHIFT;
633 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
635 return calib;
638 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
639 u32 freq, u8 RL)
641 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
643 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
644 phy |= val << READ_LATENCY_SHIFT_4D;
646 if (freq <= 100000000)
647 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
648 else if (freq <= 200000000)
649 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
650 else
651 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
653 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
655 return phy;
658 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
660 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
663 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
664 * half-delay is not needed else set half-delay
666 if (freq >= 265000000 && freq < 267000000)
667 half_delay = 0;
668 else
669 half_delay = 1;
671 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
672 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
673 t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
675 return phy;
678 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
680 u32 fifo_we_slave_ratio;
682 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
683 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
685 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
686 fifo_we_slave_ratio << 22;
689 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
691 u32 fifo_we_slave_ratio;
693 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
694 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
696 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
697 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
700 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
702 u32 fifo_we_slave_ratio;
704 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
705 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
707 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
708 fifo_we_slave_ratio << 13;
711 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
713 u32 pwr_mgmt_ctrl = 0, timeout;
714 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
715 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
716 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
717 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
719 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
721 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
722 lpmode = cust_cfgs->lpmode;
723 timeout_perf = cust_cfgs->lpmode_timeout_performance;
724 timeout_pwr = cust_cfgs->lpmode_timeout_power;
725 freq_threshold = cust_cfgs->lpmode_freq_threshold;
728 /* Timeout based on DDR frequency */
729 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
731 /* The value to be set in register is "log2(timeout) - 3" */
732 if (timeout < 16) {
733 timeout = 0;
734 } else {
735 timeout = __fls(timeout) - 3;
736 if (timeout & (timeout - 1))
737 timeout++;
740 switch (lpmode) {
741 case EMIF_LP_MODE_CLOCK_STOP:
742 pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) |
743 SR_TIM_MASK | PD_TIM_MASK;
744 break;
745 case EMIF_LP_MODE_SELF_REFRESH:
746 /* Workaround for errata i735 */
747 if (timeout < 6)
748 timeout = 6;
750 pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) |
751 CS_TIM_MASK | PD_TIM_MASK;
752 break;
753 case EMIF_LP_MODE_PWR_DN:
754 pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) |
755 CS_TIM_MASK | SR_TIM_MASK;
756 break;
757 case EMIF_LP_MODE_DISABLE:
758 default:
759 pwr_mgmt_ctrl = CS_TIM_MASK |
760 PD_TIM_MASK | SR_TIM_MASK;
763 /* No CS_TIM in EMIF_4D5 */
764 if (ip_rev == EMIF_4D5)
765 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
767 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
769 return pwr_mgmt_ctrl;
773 * Get the temperature level of the EMIF instance:
774 * Reads the MR4 register of attached SDRAM parts to find out the temperature
775 * level. If there are two parts attached(one on each CS), then the temperature
776 * level for the EMIF instance is the higher of the two temperatures.
778 static void get_temperature_level(struct emif_data *emif)
780 u32 temp, temperature_level;
781 void __iomem *base;
783 base = emif->base;
785 /* Read mode register 4 */
786 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
787 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
788 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
789 MR4_SDRAM_REF_RATE_SHIFT;
791 if (emif->plat_data->device_info->cs1_used) {
792 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
793 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
794 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
795 >> MR4_SDRAM_REF_RATE_SHIFT;
796 temperature_level = max(temp, temperature_level);
799 /* treat everything less than nominal(3) in MR4 as nominal */
800 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
801 temperature_level = SDRAM_TEMP_NOMINAL;
803 /* if we get reserved value in MR4 persist with the existing value */
804 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
805 emif->temperature_level = temperature_level;
809 * Program EMIF shadow registers that are not dependent on temperature
810 * or voltage
812 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
814 void __iomem *base = emif->base;
816 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
817 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
819 /* Settings specific for EMIF4D5 */
820 if (emif->plat_data->ip_rev != EMIF_4D5)
821 return;
822 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
823 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
824 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
828 * When voltage ramps dll calibration and forced read idle should
829 * happen more often
831 static void setup_volt_sensitive_regs(struct emif_data *emif,
832 struct emif_regs *regs, u32 volt_state)
834 u32 calib_ctrl;
835 void __iomem *base = emif->base;
838 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
839 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
840 * is an alias of the respective read_idle_ctrl_shdw_* (members of
841 * a union). So, the below code takes care of both cases
843 if (volt_state == DDR_VOLTAGE_RAMPING)
844 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
845 else
846 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
848 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
852 * setup_temperature_sensitive_regs() - set the timings for temperature
853 * sensitive registers. This happens once at initialisation time based
854 * on the temperature at boot time and subsequently based on the temperature
855 * alert interrupt. Temperature alert can happen when the temperature
856 * increases or drops. So this function can have the effect of either
857 * derating the timings or going back to nominal values.
859 static void setup_temperature_sensitive_regs(struct emif_data *emif,
860 struct emif_regs *regs)
862 u32 tim1, tim3, ref_ctrl, type;
863 void __iomem *base = emif->base;
864 u32 temperature;
866 type = emif->plat_data->device_info->type;
868 tim1 = regs->sdram_tim1_shdw;
869 tim3 = regs->sdram_tim3_shdw;
870 ref_ctrl = regs->ref_ctrl_shdw;
872 /* No de-rating for non-lpddr2 devices */
873 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
874 goto out;
876 temperature = emif->temperature_level;
877 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
878 ref_ctrl = regs->ref_ctrl_shdw_derated;
879 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
880 tim1 = regs->sdram_tim1_shdw_derated;
881 tim3 = regs->sdram_tim3_shdw_derated;
882 ref_ctrl = regs->ref_ctrl_shdw_derated;
885 out:
886 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
887 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
888 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
891 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
893 u32 old_temp_level;
894 irqreturn_t ret = IRQ_HANDLED;
896 spin_lock_irqsave(&emif_lock, irq_state);
897 old_temp_level = emif->temperature_level;
898 get_temperature_level(emif);
900 if (unlikely(emif->temperature_level == old_temp_level)) {
901 goto out;
902 } else if (!emif->curr_regs) {
903 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
904 goto out;
907 if (emif->temperature_level < old_temp_level ||
908 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
910 * Temperature coming down - defer handling to thread OR
911 * Temperature far too high - do kernel_power_off() from
912 * thread context
914 ret = IRQ_WAKE_THREAD;
915 } else {
916 /* Temperature is going up - handle immediately */
917 setup_temperature_sensitive_regs(emif, emif->curr_regs);
918 do_freq_update();
921 out:
922 spin_unlock_irqrestore(&emif_lock, irq_state);
923 return ret;
926 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
928 u32 interrupts;
929 struct emif_data *emif = dev_id;
930 void __iomem *base = emif->base;
931 struct device *dev = emif->dev;
932 irqreturn_t ret = IRQ_HANDLED;
934 /* Save the status and clear it */
935 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
936 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
939 * Handle temperature alert
940 * Temperature alert should be same for all ports
941 * So, it's enough to process it only for one of the ports
943 if (interrupts & TA_SYS_MASK)
944 ret = handle_temp_alert(base, emif);
946 if (interrupts & ERR_SYS_MASK)
947 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
949 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
950 /* Save the status and clear it */
951 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
952 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
954 if (interrupts & ERR_LL_MASK)
955 dev_err(dev, "Access error from LL port - %x\n",
956 interrupts);
959 return ret;
962 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
964 struct emif_data *emif = dev_id;
966 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
967 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
968 kernel_power_off();
969 return IRQ_HANDLED;
972 spin_lock_irqsave(&emif_lock, irq_state);
974 if (emif->curr_regs) {
975 setup_temperature_sensitive_regs(emif, emif->curr_regs);
976 do_freq_update();
977 } else {
978 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
981 spin_unlock_irqrestore(&emif_lock, irq_state);
983 return IRQ_HANDLED;
986 static void clear_all_interrupts(struct emif_data *emif)
988 void __iomem *base = emif->base;
990 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
991 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
992 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
993 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
994 base + EMIF_LL_OCP_INTERRUPT_STATUS);
997 static void disable_and_clear_all_interrupts(struct emif_data *emif)
999 void __iomem *base = emif->base;
1001 /* Disable all interrupts */
1002 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1003 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1004 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1005 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1006 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1008 /* Clear all interrupts */
1009 clear_all_interrupts(emif);
1012 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1014 u32 interrupts, type;
1015 void __iomem *base = emif->base;
1017 type = emif->plat_data->device_info->type;
1019 clear_all_interrupts(emif);
1021 /* Enable interrupts for SYS interface */
1022 interrupts = EN_ERR_SYS_MASK;
1023 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1024 interrupts |= EN_TA_SYS_MASK;
1025 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1027 /* Enable interrupts for LL interface */
1028 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1029 /* TA need not be enabled for LL */
1030 interrupts = EN_ERR_LL_MASK;
1031 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1034 /* setup IRQ handlers */
1035 return devm_request_threaded_irq(emif->dev, irq,
1036 emif_interrupt_handler,
1037 emif_threaded_isr,
1038 0, dev_name(emif->dev),
1039 emif);
1043 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1045 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
1046 void __iomem *base = emif->base;
1047 const struct lpddr2_addressing *addressing;
1048 const struct ddr_device_info *device_info;
1050 device_info = emif->plat_data->device_info;
1051 addressing = get_addressing_table(device_info);
1054 * Init power management settings
1055 * We don't know the frequency yet. Use a high frequency
1056 * value for a conservative timeout setting
1058 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1059 emif->plat_data->ip_rev);
1060 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1061 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1063 /* Init ZQ calibration settings */
1064 zq = get_zq_config_reg(addressing, device_info->cs1_used,
1065 device_info->cal_resistors_per_cs);
1066 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1068 /* Check temperature level temperature level*/
1069 get_temperature_level(emif);
1070 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1071 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1073 /* Init temperature polling */
1074 temp_alert_cfg = get_temp_alert_config(addressing,
1075 emif->plat_data->custom_configs, device_info->cs1_used,
1076 device_info->io_width, get_emif_bus_width(emif));
1077 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1080 * Program external PHY control registers that are not frequency
1081 * dependent
1083 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1084 return;
1085 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1086 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1087 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1088 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1089 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1090 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1091 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1092 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1093 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1094 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1095 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1096 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1097 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1098 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1099 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1100 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1101 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1102 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1103 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1104 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1105 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1108 static void get_default_timings(struct emif_data *emif)
1110 struct emif_platform_data *pd = emif->plat_data;
1112 pd->timings = lpddr2_jedec_timings;
1113 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
1115 dev_warn(emif->dev, "%s: using default timings\n", __func__);
1118 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1119 u32 ip_rev, struct device *dev)
1121 int valid;
1123 valid = (type == DDR_TYPE_LPDDR2_S4 ||
1124 type == DDR_TYPE_LPDDR2_S2)
1125 && (density >= DDR_DENSITY_64Mb
1126 && density <= DDR_DENSITY_8Gb)
1127 && (io_width >= DDR_IO_WIDTH_8
1128 && io_width <= DDR_IO_WIDTH_32);
1130 /* Combinations of EMIF and PHY revisions that we support today */
1131 switch (ip_rev) {
1132 case EMIF_4D:
1133 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1134 break;
1135 case EMIF_4D5:
1136 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1137 break;
1138 default:
1139 valid = 0;
1142 if (!valid)
1143 dev_err(dev, "%s: invalid DDR details\n", __func__);
1144 return valid;
1147 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1148 struct device *dev)
1150 int valid = 1;
1152 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1153 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1154 valid = cust_cfgs->lpmode_freq_threshold &&
1155 cust_cfgs->lpmode_timeout_performance &&
1156 cust_cfgs->lpmode_timeout_power;
1158 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1159 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1161 if (!valid)
1162 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1164 return valid;
1167 #if defined(CONFIG_OF)
1168 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1169 struct emif_data *emif)
1171 struct emif_custom_configs *cust_cfgs = NULL;
1172 int len;
1173 const int *lpmode, *poll_intvl;
1175 lpmode = of_get_property(np_emif, "low-power-mode", &len);
1176 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1178 if (lpmode || poll_intvl)
1179 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1180 GFP_KERNEL);
1182 if (!cust_cfgs)
1183 return;
1185 if (lpmode) {
1186 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1187 cust_cfgs->lpmode = *lpmode;
1188 of_property_read_u32(np_emif,
1189 "low-power-mode-timeout-performance",
1190 &cust_cfgs->lpmode_timeout_performance);
1191 of_property_read_u32(np_emif,
1192 "low-power-mode-timeout-power",
1193 &cust_cfgs->lpmode_timeout_power);
1194 of_property_read_u32(np_emif,
1195 "low-power-mode-freq-threshold",
1196 &cust_cfgs->lpmode_freq_threshold);
1199 if (poll_intvl) {
1200 cust_cfgs->mask |=
1201 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1202 cust_cfgs->temp_alert_poll_interval_ms = *poll_intvl;
1205 if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1206 devm_kfree(emif->dev, cust_cfgs);
1207 return;
1210 emif->plat_data->custom_configs = cust_cfgs;
1213 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1214 struct device_node *np_ddr,
1215 struct ddr_device_info *dev_info)
1217 u32 density = 0, io_width = 0;
1218 int len;
1220 if (of_find_property(np_emif, "cs1-used", &len))
1221 dev_info->cs1_used = true;
1223 if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1224 dev_info->cal_resistors_per_cs = true;
1226 if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1227 dev_info->type = DDR_TYPE_LPDDR2_S4;
1228 else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1229 dev_info->type = DDR_TYPE_LPDDR2_S2;
1231 of_property_read_u32(np_ddr, "density", &density);
1232 of_property_read_u32(np_ddr, "io-width", &io_width);
1234 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1235 if (density & (density - 1))
1236 dev_info->density = 0;
1237 else
1238 dev_info->density = __fls(density) - 5;
1240 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1241 if (io_width & (io_width - 1))
1242 dev_info->io_width = 0;
1243 else
1244 dev_info->io_width = __fls(io_width) - 1;
1247 static struct emif_data * __init_or_module of_get_memory_device_details(
1248 struct device_node *np_emif, struct device *dev)
1250 struct emif_data *emif = NULL;
1251 struct ddr_device_info *dev_info = NULL;
1252 struct emif_platform_data *pd = NULL;
1253 struct device_node *np_ddr;
1254 int len;
1256 np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1257 if (!np_ddr)
1258 goto error;
1259 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1260 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1261 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1263 if (!emif || !pd || !dev_info) {
1264 dev_err(dev, "%s: Out of memory!!\n",
1265 __func__);
1266 goto error;
1269 emif->plat_data = pd;
1270 pd->device_info = dev_info;
1271 emif->dev = dev;
1272 emif->np_ddr = np_ddr;
1273 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1275 if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1276 emif->plat_data->ip_rev = EMIF_4D;
1277 else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1278 emif->plat_data->ip_rev = EMIF_4D5;
1280 of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1282 if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1283 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1285 of_get_ddr_info(np_emif, np_ddr, dev_info);
1286 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1287 pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1288 emif->dev)) {
1289 dev_err(dev, "%s: invalid device data!!\n", __func__);
1290 goto error;
1293 * For EMIF instances other than EMIF1 see if the devices connected
1294 * are exactly same as on EMIF1(which is typically the case). If so,
1295 * mark it as a duplicate of EMIF1. This will save some memory and
1296 * computation.
1298 if (emif1 && emif1->np_ddr == np_ddr) {
1299 emif->duplicate = true;
1300 goto out;
1301 } else if (emif1) {
1302 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1303 __func__);
1306 of_get_custom_configs(np_emif, emif);
1307 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1308 emif->plat_data->device_info->type,
1309 &emif->plat_data->timings_arr_size);
1311 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1312 goto out;
1314 error:
1315 return NULL;
1316 out:
1317 return emif;
1320 #else
1322 static struct emif_data * __init_or_module of_get_memory_device_details(
1323 struct device_node *np_emif, struct device *dev)
1325 return NULL;
1327 #endif
1329 static struct emif_data *__init_or_module get_device_details(
1330 struct platform_device *pdev)
1332 u32 size;
1333 struct emif_data *emif = NULL;
1334 struct ddr_device_info *dev_info;
1335 struct emif_custom_configs *cust_cfgs;
1336 struct emif_platform_data *pd;
1337 struct device *dev;
1338 void *temp;
1340 pd = pdev->dev.platform_data;
1341 dev = &pdev->dev;
1343 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1344 pd->device_info->density, pd->device_info->io_width,
1345 pd->phy_type, pd->ip_rev, dev))) {
1346 dev_err(dev, "%s: invalid device data\n", __func__);
1347 goto error;
1350 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1351 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1352 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1354 if (!emif || !pd || !dev_info) {
1355 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1356 goto error;
1359 memcpy(temp, pd, sizeof(*pd));
1360 pd = temp;
1361 memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1363 pd->device_info = dev_info;
1364 emif->plat_data = pd;
1365 emif->dev = dev;
1366 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1369 * For EMIF instances other than EMIF1 see if the devices connected
1370 * are exactly same as on EMIF1(which is typically the case). If so,
1371 * mark it as a duplicate of EMIF1 and skip copying timings data.
1372 * This will save some memory and some computation later.
1374 emif->duplicate = emif1 && (memcmp(dev_info,
1375 emif1->plat_data->device_info,
1376 sizeof(struct ddr_device_info)) == 0);
1378 if (emif->duplicate) {
1379 pd->timings = NULL;
1380 pd->min_tck = NULL;
1381 goto out;
1382 } else if (emif1) {
1383 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1384 __func__);
1388 * Copy custom configs - ignore allocation error, if any, as
1389 * custom_configs is not very critical
1391 cust_cfgs = pd->custom_configs;
1392 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1393 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1394 if (temp)
1395 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1396 else
1397 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1398 __LINE__);
1399 pd->custom_configs = temp;
1403 * Copy timings and min-tck values from platform data. If it is not
1404 * available or if memory allocation fails, use JEDEC defaults
1406 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1407 if (pd->timings) {
1408 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1409 if (temp) {
1410 memcpy(temp, pd->timings, sizeof(*pd->timings));
1411 pd->timings = temp;
1412 } else {
1413 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1414 __LINE__);
1415 get_default_timings(emif);
1417 } else {
1418 get_default_timings(emif);
1421 if (pd->min_tck) {
1422 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1423 if (temp) {
1424 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1425 pd->min_tck = temp;
1426 } else {
1427 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1428 __LINE__);
1429 pd->min_tck = &lpddr2_jedec_min_tck;
1431 } else {
1432 pd->min_tck = &lpddr2_jedec_min_tck;
1435 out:
1436 return emif;
1438 error:
1439 return NULL;
1442 static int __init_or_module emif_probe(struct platform_device *pdev)
1444 struct emif_data *emif;
1445 struct resource *res;
1446 int irq;
1448 if (pdev->dev.of_node)
1449 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1450 else
1451 emif = get_device_details(pdev);
1453 if (!emif) {
1454 pr_err("%s: error getting device data\n", __func__);
1455 goto error;
1458 list_add(&emif->node, &device_list);
1459 emif->addressing = get_addressing_table(emif->plat_data->device_info);
1461 /* Save pointers to each other in emif and device structures */
1462 emif->dev = &pdev->dev;
1463 platform_set_drvdata(pdev, emif);
1465 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1466 if (!res) {
1467 dev_err(emif->dev, "%s: error getting memory resource\n",
1468 __func__);
1469 goto error;
1472 emif->base = devm_ioremap_resource(emif->dev, res);
1473 if (IS_ERR(emif->base))
1474 goto error;
1476 irq = platform_get_irq(pdev, 0);
1477 if (irq < 0) {
1478 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1479 __func__, irq);
1480 goto error;
1483 emif_onetime_settings(emif);
1484 emif_debugfs_init(emif);
1485 disable_and_clear_all_interrupts(emif);
1486 setup_interrupts(emif, irq);
1488 /* One-time actions taken on probing the first device */
1489 if (!emif1) {
1490 emif1 = emif;
1491 spin_lock_init(&emif_lock);
1494 * TODO: register notifiers for frequency and voltage
1495 * change here once the respective frameworks are
1496 * available
1500 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1501 __func__, emif->base, irq);
1503 return 0;
1504 error:
1505 return -ENODEV;
1508 static int __exit emif_remove(struct platform_device *pdev)
1510 struct emif_data *emif = platform_get_drvdata(pdev);
1512 emif_debugfs_exit(emif);
1514 return 0;
1517 static void emif_shutdown(struct platform_device *pdev)
1519 struct emif_data *emif = platform_get_drvdata(pdev);
1521 disable_and_clear_all_interrupts(emif);
1524 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1525 struct emif_regs *regs)
1527 u32 cs1_used, ip_rev, phy_type;
1528 u32 cl, type;
1529 const struct lpddr2_timings *timings;
1530 const struct lpddr2_min_tck *min_tck;
1531 const struct ddr_device_info *device_info;
1532 const struct lpddr2_addressing *addressing;
1533 struct emif_data *emif_for_calc;
1534 struct device *dev;
1535 const struct emif_custom_configs *custom_configs;
1537 dev = emif->dev;
1539 * If the devices on this EMIF instance is duplicate of EMIF1,
1540 * use EMIF1 details for the calculation
1542 emif_for_calc = emif->duplicate ? emif1 : emif;
1543 timings = get_timings_table(emif_for_calc, freq);
1544 addressing = emif_for_calc->addressing;
1545 if (!timings || !addressing) {
1546 dev_err(dev, "%s: not enough data available for %dHz",
1547 __func__, freq);
1548 return -1;
1551 device_info = emif_for_calc->plat_data->device_info;
1552 type = device_info->type;
1553 cs1_used = device_info->cs1_used;
1554 ip_rev = emif_for_calc->plat_data->ip_rev;
1555 phy_type = emif_for_calc->plat_data->phy_type;
1557 min_tck = emif_for_calc->plat_data->min_tck;
1558 custom_configs = emif_for_calc->plat_data->custom_configs;
1560 set_ddr_clk_period(freq);
1562 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1563 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1564 addressing);
1565 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1566 addressing, type);
1567 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1568 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1570 cl = get_cl(emif);
1572 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1573 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1574 timings, freq, cl);
1575 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1576 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1577 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1578 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1579 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1580 } else {
1581 return -1;
1584 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1585 regs->pwr_mgmt_ctrl_shdw =
1586 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1587 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1589 if (ip_rev & EMIF_4D) {
1590 regs->read_idle_ctrl_shdw_normal =
1591 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1593 regs->read_idle_ctrl_shdw_volt_ramp =
1594 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1595 } else if (ip_rev & EMIF_4D5) {
1596 regs->dll_calib_ctrl_shdw_normal =
1597 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1599 regs->dll_calib_ctrl_shdw_volt_ramp =
1600 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1603 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1604 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1605 addressing);
1607 regs->sdram_tim1_shdw_derated =
1608 get_sdram_tim_1_shdw_derated(timings, min_tck,
1609 addressing);
1611 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1612 min_tck, addressing, type, ip_rev,
1613 EMIF_DERATED_TIMINGS);
1616 regs->freq = freq;
1618 return 0;
1622 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1623 * given frequency(freq):
1625 * As an optimisation, every EMIF instance other than EMIF1 shares the
1626 * register cache with EMIF1 if the devices connected on this instance
1627 * are same as that on EMIF1(indicated by the duplicate flag)
1629 * If we do not have an entry corresponding to the frequency given, we
1630 * allocate a new entry and calculate the values
1632 * Upon finding the right reg dump, save it in curr_regs. It can be
1633 * directly used for thermal de-rating and voltage ramping changes.
1635 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1637 int i;
1638 struct emif_regs **regs_cache;
1639 struct emif_regs *regs = NULL;
1640 struct device *dev;
1642 dev = emif->dev;
1643 if (emif->curr_regs && emif->curr_regs->freq == freq) {
1644 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1645 return emif->curr_regs;
1648 if (emif->duplicate)
1649 regs_cache = emif1->regs_cache;
1650 else
1651 regs_cache = emif->regs_cache;
1653 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1654 if (regs_cache[i]->freq == freq) {
1655 regs = regs_cache[i];
1656 dev_dbg(dev,
1657 "%s: reg dump found in reg cache for %u Hz\n",
1658 __func__, freq);
1659 break;
1664 * If we don't have an entry for this frequency in the cache create one
1665 * and calculate the values
1667 if (!regs) {
1668 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1669 if (!regs)
1670 return NULL;
1672 if (get_emif_reg_values(emif, freq, regs)) {
1673 devm_kfree(emif->dev, regs);
1674 return NULL;
1678 * Now look for an un-used entry in the cache and save the
1679 * newly created struct. If there are no free entries
1680 * over-write the last entry
1682 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1685 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1686 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1687 __func__);
1688 i = EMIF_MAX_NUM_FREQUENCIES - 1;
1689 devm_kfree(emif->dev, regs_cache[i]);
1691 regs_cache[i] = regs;
1694 return regs;
1697 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1699 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1700 volt_state);
1702 if (!emif->curr_regs) {
1703 dev_err(emif->dev,
1704 "%s: volt-notify before registers are ready: %d\n",
1705 __func__, volt_state);
1706 return;
1709 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1713 * TODO: voltage notify handling should be hooked up to
1714 * regulator framework as soon as the necessary support
1715 * is available in mainline kernel. This function is un-used
1716 * right now.
1718 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1720 struct emif_data *emif;
1722 spin_lock_irqsave(&emif_lock, irq_state);
1724 list_for_each_entry(emif, &device_list, node)
1725 do_volt_notify_handling(emif, volt_state);
1726 do_freq_update();
1728 spin_unlock_irqrestore(&emif_lock, irq_state);
1731 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1733 struct emif_regs *regs;
1735 regs = get_regs(emif, new_freq);
1736 if (!regs)
1737 return;
1739 emif->curr_regs = regs;
1742 * Update the shadow registers:
1743 * Temperature and voltage-ramp sensitive settings are also configured
1744 * in terms of DDR cycles. So, we need to update them too when there
1745 * is a freq change
1747 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1748 __func__, new_freq);
1749 setup_registers(emif, regs);
1750 setup_temperature_sensitive_regs(emif, regs);
1751 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1754 * Part of workaround for errata i728. See do_freq_update()
1755 * for more details
1757 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1758 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1762 * TODO: frequency notify handling should be hooked up to
1763 * clock framework as soon as the necessary support is
1764 * available in mainline kernel. This function is un-used
1765 * right now.
1767 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1769 struct emif_data *emif;
1772 * NOTE: we are taking the spin-lock here and releases it
1773 * only in post-notifier. This doesn't look good and
1774 * Sparse complains about it, but this seems to be
1775 * un-avoidable. We need to lock a sequence of events
1776 * that is split between EMIF and clock framework.
1778 * 1. EMIF driver updates EMIF timings in shadow registers in the
1779 * frequency pre-notify callback from clock framework
1780 * 2. clock framework sets up the registers for the new frequency
1781 * 3. clock framework initiates a hw-sequence that updates
1782 * the frequency EMIF timings synchronously.
1784 * All these 3 steps should be performed as an atomic operation
1785 * vis-a-vis similar sequence in the EMIF interrupt handler
1786 * for temperature events. Otherwise, there could be race
1787 * conditions that could result in incorrect EMIF timings for
1788 * a given frequency
1790 spin_lock_irqsave(&emif_lock, irq_state);
1792 list_for_each_entry(emif, &device_list, node)
1793 do_freq_pre_notify_handling(emif, new_freq);
1796 static void do_freq_post_notify_handling(struct emif_data *emif)
1799 * Part of workaround for errata i728. See do_freq_update()
1800 * for more details
1802 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1803 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1807 * TODO: frequency notify handling should be hooked up to
1808 * clock framework as soon as the necessary support is
1809 * available in mainline kernel. This function is un-used
1810 * right now.
1812 static void __attribute__((unused)) freq_post_notify_handling(void)
1814 struct emif_data *emif;
1816 list_for_each_entry(emif, &device_list, node)
1817 do_freq_post_notify_handling(emif);
1820 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1821 * for more details
1823 spin_unlock_irqrestore(&emif_lock, irq_state);
1826 #if defined(CONFIG_OF)
1827 static const struct of_device_id emif_of_match[] = {
1828 { .compatible = "ti,emif-4d" },
1829 { .compatible = "ti,emif-4d5" },
1832 MODULE_DEVICE_TABLE(of, emif_of_match);
1833 #endif
1835 static struct platform_driver emif_driver = {
1836 .remove = __exit_p(emif_remove),
1837 .shutdown = emif_shutdown,
1838 .driver = {
1839 .name = "emif",
1840 .of_match_table = of_match_ptr(emif_of_match),
1844 static int __init_or_module emif_register(void)
1846 return platform_driver_probe(&emif_driver, emif_probe);
1849 static void __exit emif_unregister(void)
1851 platform_driver_unregister(&emif_driver);
1854 module_init(emif_register);
1855 module_exit(emif_unregister);
1856 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1857 MODULE_LICENSE("GPL");
1858 MODULE_ALIAS("platform:emif");
1859 MODULE_AUTHOR("Texas Instruments Inc");