1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
60 #include <asm/futex.h>
62 #include "locking/rtmutex_common.h"
65 * READ this before attempting to hack on futexes!
67 * Basic futex operation and ordering guarantees
68 * =============================================
70 * The waiter reads the futex value in user space and calls
71 * futex_wait(). This function computes the hash bucket and acquires
72 * the hash bucket lock. After that it reads the futex user space value
73 * again and verifies that the data has not changed. If it has not changed
74 * it enqueues itself into the hash bucket, releases the hash bucket lock
77 * The waker side modifies the user space value of the futex and calls
78 * futex_wake(). This function computes the hash bucket and acquires the
79 * hash bucket lock. Then it looks for waiters on that futex in the hash
80 * bucket and wakes them.
82 * In futex wake up scenarios where no tasks are blocked on a futex, taking
83 * the hb spinlock can be avoided and simply return. In order for this
84 * optimization to work, ordering guarantees must exist so that the waiter
85 * being added to the list is acknowledged when the list is concurrently being
86 * checked by the waker, avoiding scenarios like the following:
90 * sys_futex(WAIT, futex, val);
91 * futex_wait(futex, val);
94 * sys_futex(WAKE, futex);
99 * lock(hash_bucket(futex));
101 * unlock(hash_bucket(futex));
104 * This would cause the waiter on CPU 0 to wait forever because it
105 * missed the transition of the user space value from val to newval
106 * and the waker did not find the waiter in the hash bucket queue.
108 * The correct serialization ensures that a waiter either observes
109 * the changed user space value before blocking or is woken by a
114 * sys_futex(WAIT, futex, val);
115 * futex_wait(futex, val);
118 * smp_mb(); (A) <-- paired with -.
120 * lock(hash_bucket(futex)); |
124 * | sys_futex(WAKE, futex);
125 * | futex_wake(futex);
127 * `--------> smp_mb(); (B)
130 * unlock(hash_bucket(futex));
131 * schedule(); if (waiters)
132 * lock(hash_bucket(futex));
133 * else wake_waiters(futex);
134 * waiters--; (b) unlock(hash_bucket(futex));
136 * Where (A) orders the waiters increment and the futex value read through
137 * atomic operations (see hb_waiters_inc) and where (B) orders the write
138 * to futex and the waiters read -- this is done by the barriers for both
139 * shared and private futexes in get_futex_key_refs().
141 * This yields the following case (where X:=waiters, Y:=futex):
149 * Which guarantees that x==0 && y==0 is impossible; which translates back into
150 * the guarantee that we cannot both miss the futex variable change and the
153 * Note that a new waiter is accounted for in (a) even when it is possible that
154 * the wait call can return error, in which case we backtrack from it in (b).
155 * Refer to the comment in queue_lock().
157 * Similarly, in order to account for waiters being requeued on another
158 * address we always increment the waiters for the destination bucket before
159 * acquiring the lock. It then decrements them again after releasing it -
160 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161 * will do the additional required waiter count housekeeping. This is done for
162 * double_lock_hb() and double_unlock_hb(), respectively.
165 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166 #define futex_cmpxchg_enabled 1
168 static int __read_mostly futex_cmpxchg_enabled
;
172 * Futex flags used to encode options to functions and preserve them across
176 # define FLAGS_SHARED 0x01
179 * NOMMU does not have per process address space. Let the compiler optimize
182 # define FLAGS_SHARED 0x00
184 #define FLAGS_CLOCKRT 0x02
185 #define FLAGS_HAS_TIMEOUT 0x04
188 * Priority Inheritance state:
190 struct futex_pi_state
{
192 * list of 'owned' pi_state instances - these have to be
193 * cleaned up in do_exit() if the task exits prematurely:
195 struct list_head list
;
200 struct rt_mutex pi_mutex
;
202 struct task_struct
*owner
;
206 } __randomize_layout
;
209 * struct futex_q - The hashed futex queue entry, one per waiting task
210 * @list: priority-sorted list of tasks waiting on this futex
211 * @task: the task waiting on the futex
212 * @lock_ptr: the hash bucket lock
213 * @key: the key the futex is hashed on
214 * @pi_state: optional priority inheritance state
215 * @rt_waiter: rt_waiter storage for use with requeue_pi
216 * @requeue_pi_key: the requeue_pi target futex key
217 * @bitset: bitset for the optional bitmasked wakeup
219 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
220 * we can wake only the relevant ones (hashed queues may be shared).
222 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
223 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224 * The order of wakeup is always to make the first condition true, then
227 * PI futexes are typically woken before they are removed from the hash list via
228 * the rt_mutex code. See unqueue_me_pi().
231 struct plist_node list
;
233 struct task_struct
*task
;
234 spinlock_t
*lock_ptr
;
236 struct futex_pi_state
*pi_state
;
237 struct rt_mutex_waiter
*rt_waiter
;
238 union futex_key
*requeue_pi_key
;
240 } __randomize_layout
;
242 static const struct futex_q futex_q_init
= {
243 /* list gets initialized in queue_me()*/
244 .key
= FUTEX_KEY_INIT
,
245 .bitset
= FUTEX_BITSET_MATCH_ANY
249 * Hash buckets are shared by all the futex_keys that hash to the same
250 * location. Each key may have multiple futex_q structures, one for each task
251 * waiting on a futex.
253 struct futex_hash_bucket
{
256 struct plist_head chain
;
257 } ____cacheline_aligned_in_smp
;
260 * The base of the bucket array and its size are always used together
261 * (after initialization only in hash_futex()), so ensure that they
262 * reside in the same cacheline.
265 struct futex_hash_bucket
*queues
;
266 unsigned long hashsize
;
267 } __futex_data __read_mostly
__aligned(2*sizeof(long));
268 #define futex_queues (__futex_data.queues)
269 #define futex_hashsize (__futex_data.hashsize)
273 * Fault injections for futexes.
275 #ifdef CONFIG_FAIL_FUTEX
278 struct fault_attr attr
;
282 .attr
= FAULT_ATTR_INITIALIZER
,
283 .ignore_private
= false,
286 static int __init
setup_fail_futex(char *str
)
288 return setup_fault_attr(&fail_futex
.attr
, str
);
290 __setup("fail_futex=", setup_fail_futex
);
292 static bool should_fail_futex(bool fshared
)
294 if (fail_futex
.ignore_private
&& !fshared
)
297 return should_fail(&fail_futex
.attr
, 1);
300 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
302 static int __init
fail_futex_debugfs(void)
304 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
307 dir
= fault_create_debugfs_attr("fail_futex", NULL
,
312 debugfs_create_bool("ignore-private", mode
, dir
,
313 &fail_futex
.ignore_private
);
317 late_initcall(fail_futex_debugfs
);
319 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
322 static inline bool should_fail_futex(bool fshared
)
326 #endif /* CONFIG_FAIL_FUTEX */
328 static inline void futex_get_mm(union futex_key
*key
)
330 mmgrab(key
->private.mm
);
332 * Ensure futex_get_mm() implies a full barrier such that
333 * get_futex_key() implies a full barrier. This is relied upon
334 * as smp_mb(); (B), see the ordering comment above.
336 smp_mb__after_atomic();
340 * Reflects a new waiter being added to the waitqueue.
342 static inline void hb_waiters_inc(struct futex_hash_bucket
*hb
)
345 atomic_inc(&hb
->waiters
);
347 * Full barrier (A), see the ordering comment above.
349 smp_mb__after_atomic();
354 * Reflects a waiter being removed from the waitqueue by wakeup
357 static inline void hb_waiters_dec(struct futex_hash_bucket
*hb
)
360 atomic_dec(&hb
->waiters
);
364 static inline int hb_waiters_pending(struct futex_hash_bucket
*hb
)
367 return atomic_read(&hb
->waiters
);
374 * hash_futex - Return the hash bucket in the global hash
375 * @key: Pointer to the futex key for which the hash is calculated
377 * We hash on the keys returned from get_futex_key (see below) and return the
378 * corresponding hash bucket in the global hash.
380 static struct futex_hash_bucket
*hash_futex(union futex_key
*key
)
382 u32 hash
= jhash2((u32
*)&key
->both
.word
,
383 (sizeof(key
->both
.word
)+sizeof(key
->both
.ptr
))/4,
385 return &futex_queues
[hash
& (futex_hashsize
- 1)];
390 * match_futex - Check whether two futex keys are equal
391 * @key1: Pointer to key1
392 * @key2: Pointer to key2
394 * Return 1 if two futex_keys are equal, 0 otherwise.
396 static inline int match_futex(union futex_key
*key1
, union futex_key
*key2
)
399 && key1
->both
.word
== key2
->both
.word
400 && key1
->both
.ptr
== key2
->both
.ptr
401 && key1
->both
.offset
== key2
->both
.offset
);
405 * Take a reference to the resource addressed by a key.
406 * Can be called while holding spinlocks.
409 static void get_futex_key_refs(union futex_key
*key
)
415 * On MMU less systems futexes are always "private" as there is no per
416 * process address space. We need the smp wmb nevertheless - yes,
417 * arch/blackfin has MMU less SMP ...
419 if (!IS_ENABLED(CONFIG_MMU
)) {
420 smp_mb(); /* explicit smp_mb(); (B) */
424 switch (key
->both
.offset
& (FUT_OFF_INODE
|FUT_OFF_MMSHARED
)) {
426 ihold(key
->shared
.inode
); /* implies smp_mb(); (B) */
428 case FUT_OFF_MMSHARED
:
429 futex_get_mm(key
); /* implies smp_mb(); (B) */
433 * Private futexes do not hold reference on an inode or
434 * mm, therefore the only purpose of calling get_futex_key_refs
435 * is because we need the barrier for the lockless waiter check.
437 smp_mb(); /* explicit smp_mb(); (B) */
442 * Drop a reference to the resource addressed by a key.
443 * The hash bucket spinlock must not be held. This is
444 * a no-op for private futexes, see comment in the get
447 static void drop_futex_key_refs(union futex_key
*key
)
449 if (!key
->both
.ptr
) {
450 /* If we're here then we tried to put a key we failed to get */
455 if (!IS_ENABLED(CONFIG_MMU
))
458 switch (key
->both
.offset
& (FUT_OFF_INODE
|FUT_OFF_MMSHARED
)) {
460 iput(key
->shared
.inode
);
462 case FUT_OFF_MMSHARED
:
463 mmdrop(key
->private.mm
);
474 * futex_setup_timer - set up the sleeping hrtimer.
475 * @time: ptr to the given timeout value
476 * @timeout: the hrtimer_sleeper structure to be set up
477 * @flags: futex flags
478 * @range_ns: optional range in ns
480 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
483 static inline struct hrtimer_sleeper
*
484 futex_setup_timer(ktime_t
*time
, struct hrtimer_sleeper
*timeout
,
485 int flags
, u64 range_ns
)
490 hrtimer_init_sleeper_on_stack(timeout
, (flags
& FLAGS_CLOCKRT
) ?
491 CLOCK_REALTIME
: CLOCK_MONOTONIC
,
494 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
495 * effectively the same as calling hrtimer_set_expires().
497 hrtimer_set_expires_range_ns(&timeout
->timer
, *time
, range_ns
);
503 * get_futex_key() - Get parameters which are the keys for a futex
504 * @uaddr: virtual address of the futex
505 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
506 * @key: address where result is stored.
507 * @rw: mapping needs to be read/write (values: FUTEX_READ,
510 * Return: a negative error code or 0
512 * The key words are stored in @key on success.
514 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
515 * offset_within_page). For private mappings, it's (uaddr, current->mm).
516 * We can usually work out the index without swapping in the page.
518 * lock_page() might sleep, the caller should not hold a spinlock.
521 get_futex_key(u32 __user
*uaddr
, int fshared
, union futex_key
*key
, enum futex_access rw
)
523 unsigned long address
= (unsigned long)uaddr
;
524 struct mm_struct
*mm
= current
->mm
;
525 struct page
*page
, *tail
;
526 struct address_space
*mapping
;
530 * The futex address must be "naturally" aligned.
532 key
->both
.offset
= address
% PAGE_SIZE
;
533 if (unlikely((address
% sizeof(u32
)) != 0))
535 address
-= key
->both
.offset
;
537 if (unlikely(!access_ok(uaddr
, sizeof(u32
))))
540 if (unlikely(should_fail_futex(fshared
)))
544 * PROCESS_PRIVATE futexes are fast.
545 * As the mm cannot disappear under us and the 'key' only needs
546 * virtual address, we dont even have to find the underlying vma.
547 * Note : We do have to check 'uaddr' is a valid user address,
548 * but access_ok() should be faster than find_vma()
551 key
->private.mm
= mm
;
552 key
->private.address
= address
;
553 get_futex_key_refs(key
); /* implies smp_mb(); (B) */
558 /* Ignore any VERIFY_READ mapping (futex common case) */
559 if (unlikely(should_fail_futex(fshared
)))
562 err
= get_user_pages_fast(address
, 1, FOLL_WRITE
, &page
);
564 * If write access is not required (eg. FUTEX_WAIT), try
565 * and get read-only access.
567 if (err
== -EFAULT
&& rw
== FUTEX_READ
) {
568 err
= get_user_pages_fast(address
, 1, 0, &page
);
577 * The treatment of mapping from this point on is critical. The page
578 * lock protects many things but in this context the page lock
579 * stabilizes mapping, prevents inode freeing in the shared
580 * file-backed region case and guards against movement to swap cache.
582 * Strictly speaking the page lock is not needed in all cases being
583 * considered here and page lock forces unnecessarily serialization
584 * From this point on, mapping will be re-verified if necessary and
585 * page lock will be acquired only if it is unavoidable
587 * Mapping checks require the head page for any compound page so the
588 * head page and mapping is looked up now. For anonymous pages, it
589 * does not matter if the page splits in the future as the key is
590 * based on the address. For filesystem-backed pages, the tail is
591 * required as the index of the page determines the key. For
592 * base pages, there is no tail page and tail == page.
595 page
= compound_head(page
);
596 mapping
= READ_ONCE(page
->mapping
);
599 * If page->mapping is NULL, then it cannot be a PageAnon
600 * page; but it might be the ZERO_PAGE or in the gate area or
601 * in a special mapping (all cases which we are happy to fail);
602 * or it may have been a good file page when get_user_pages_fast
603 * found it, but truncated or holepunched or subjected to
604 * invalidate_complete_page2 before we got the page lock (also
605 * cases which we are happy to fail). And we hold a reference,
606 * so refcount care in invalidate_complete_page's remove_mapping
607 * prevents drop_caches from setting mapping to NULL beneath us.
609 * The case we do have to guard against is when memory pressure made
610 * shmem_writepage move it from filecache to swapcache beneath us:
611 * an unlikely race, but we do need to retry for page->mapping.
613 if (unlikely(!mapping
)) {
617 * Page lock is required to identify which special case above
618 * applies. If this is really a shmem page then the page lock
619 * will prevent unexpected transitions.
622 shmem_swizzled
= PageSwapCache(page
) || page
->mapping
;
633 * Private mappings are handled in a simple way.
635 * If the futex key is stored on an anonymous page, then the associated
636 * object is the mm which is implicitly pinned by the calling process.
638 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
639 * it's a read-only handle, it's expected that futexes attach to
640 * the object not the particular process.
642 if (PageAnon(page
)) {
644 * A RO anonymous page will never change and thus doesn't make
645 * sense for futex operations.
647 if (unlikely(should_fail_futex(fshared
)) || ro
) {
652 key
->both
.offset
|= FUT_OFF_MMSHARED
; /* ref taken on mm */
653 key
->private.mm
= mm
;
654 key
->private.address
= address
;
656 get_futex_key_refs(key
); /* implies smp_mb(); (B) */
662 * The associated futex object in this case is the inode and
663 * the page->mapping must be traversed. Ordinarily this should
664 * be stabilised under page lock but it's not strictly
665 * necessary in this case as we just want to pin the inode, not
666 * update the radix tree or anything like that.
668 * The RCU read lock is taken as the inode is finally freed
669 * under RCU. If the mapping still matches expectations then the
670 * mapping->host can be safely accessed as being a valid inode.
674 if (READ_ONCE(page
->mapping
) != mapping
) {
681 inode
= READ_ONCE(mapping
->host
);
690 * Take a reference unless it is about to be freed. Previously
691 * this reference was taken by ihold under the page lock
692 * pinning the inode in place so i_lock was unnecessary. The
693 * only way for this check to fail is if the inode was
694 * truncated in parallel which is almost certainly an
695 * application bug. In such a case, just retry.
697 * We are not calling into get_futex_key_refs() in file-backed
698 * cases, therefore a successful atomic_inc return below will
699 * guarantee that get_futex_key() will still imply smp_mb(); (B).
701 if (!atomic_inc_not_zero(&inode
->i_count
)) {
708 /* Should be impossible but lets be paranoid for now */
709 if (WARN_ON_ONCE(inode
->i_mapping
!= mapping
)) {
717 key
->both
.offset
|= FUT_OFF_INODE
; /* inode-based key */
718 key
->shared
.inode
= inode
;
719 key
->shared
.pgoff
= basepage_index(tail
);
728 static inline void put_futex_key(union futex_key
*key
)
730 drop_futex_key_refs(key
);
734 * fault_in_user_writeable() - Fault in user address and verify RW access
735 * @uaddr: pointer to faulting user space address
737 * Slow path to fixup the fault we just took in the atomic write
740 * We have no generic implementation of a non-destructive write to the
741 * user address. We know that we faulted in the atomic pagefault
742 * disabled section so we can as well avoid the #PF overhead by
743 * calling get_user_pages() right away.
745 static int fault_in_user_writeable(u32 __user
*uaddr
)
747 struct mm_struct
*mm
= current
->mm
;
750 down_read(&mm
->mmap_sem
);
751 ret
= fixup_user_fault(current
, mm
, (unsigned long)uaddr
,
752 FAULT_FLAG_WRITE
, NULL
);
753 up_read(&mm
->mmap_sem
);
755 return ret
< 0 ? ret
: 0;
759 * futex_top_waiter() - Return the highest priority waiter on a futex
760 * @hb: the hash bucket the futex_q's reside in
761 * @key: the futex key (to distinguish it from other futex futex_q's)
763 * Must be called with the hb lock held.
765 static struct futex_q
*futex_top_waiter(struct futex_hash_bucket
*hb
,
766 union futex_key
*key
)
768 struct futex_q
*this;
770 plist_for_each_entry(this, &hb
->chain
, list
) {
771 if (match_futex(&this->key
, key
))
777 static int cmpxchg_futex_value_locked(u32
*curval
, u32 __user
*uaddr
,
778 u32 uval
, u32 newval
)
783 ret
= futex_atomic_cmpxchg_inatomic(curval
, uaddr
, uval
, newval
);
789 static int get_futex_value_locked(u32
*dest
, u32 __user
*from
)
794 ret
= __get_user(*dest
, from
);
797 return ret
? -EFAULT
: 0;
804 static int refill_pi_state_cache(void)
806 struct futex_pi_state
*pi_state
;
808 if (likely(current
->pi_state_cache
))
811 pi_state
= kzalloc(sizeof(*pi_state
), GFP_KERNEL
);
816 INIT_LIST_HEAD(&pi_state
->list
);
817 /* pi_mutex gets initialized later */
818 pi_state
->owner
= NULL
;
819 refcount_set(&pi_state
->refcount
, 1);
820 pi_state
->key
= FUTEX_KEY_INIT
;
822 current
->pi_state_cache
= pi_state
;
827 static struct futex_pi_state
*alloc_pi_state(void)
829 struct futex_pi_state
*pi_state
= current
->pi_state_cache
;
832 current
->pi_state_cache
= NULL
;
837 static void get_pi_state(struct futex_pi_state
*pi_state
)
839 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state
->refcount
));
843 * Drops a reference to the pi_state object and frees or caches it
844 * when the last reference is gone.
846 static void put_pi_state(struct futex_pi_state
*pi_state
)
851 if (!refcount_dec_and_test(&pi_state
->refcount
))
855 * If pi_state->owner is NULL, the owner is most probably dying
856 * and has cleaned up the pi_state already
858 if (pi_state
->owner
) {
859 struct task_struct
*owner
;
861 raw_spin_lock_irq(&pi_state
->pi_mutex
.wait_lock
);
862 owner
= pi_state
->owner
;
864 raw_spin_lock(&owner
->pi_lock
);
865 list_del_init(&pi_state
->list
);
866 raw_spin_unlock(&owner
->pi_lock
);
868 rt_mutex_proxy_unlock(&pi_state
->pi_mutex
, owner
);
869 raw_spin_unlock_irq(&pi_state
->pi_mutex
.wait_lock
);
872 if (current
->pi_state_cache
) {
876 * pi_state->list is already empty.
877 * clear pi_state->owner.
878 * refcount is at 0 - put it back to 1.
880 pi_state
->owner
= NULL
;
881 refcount_set(&pi_state
->refcount
, 1);
882 current
->pi_state_cache
= pi_state
;
886 #ifdef CONFIG_FUTEX_PI
889 * This task is holding PI mutexes at exit time => bad.
890 * Kernel cleans up PI-state, but userspace is likely hosed.
891 * (Robust-futex cleanup is separate and might save the day for userspace.)
893 void exit_pi_state_list(struct task_struct
*curr
)
895 struct list_head
*next
, *head
= &curr
->pi_state_list
;
896 struct futex_pi_state
*pi_state
;
897 struct futex_hash_bucket
*hb
;
898 union futex_key key
= FUTEX_KEY_INIT
;
900 if (!futex_cmpxchg_enabled
)
903 * We are a ZOMBIE and nobody can enqueue itself on
904 * pi_state_list anymore, but we have to be careful
905 * versus waiters unqueueing themselves:
907 raw_spin_lock_irq(&curr
->pi_lock
);
908 while (!list_empty(head
)) {
910 pi_state
= list_entry(next
, struct futex_pi_state
, list
);
912 hb
= hash_futex(&key
);
915 * We can race against put_pi_state() removing itself from the
916 * list (a waiter going away). put_pi_state() will first
917 * decrement the reference count and then modify the list, so
918 * its possible to see the list entry but fail this reference
921 * In that case; drop the locks to let put_pi_state() make
922 * progress and retry the loop.
924 if (!refcount_inc_not_zero(&pi_state
->refcount
)) {
925 raw_spin_unlock_irq(&curr
->pi_lock
);
927 raw_spin_lock_irq(&curr
->pi_lock
);
930 raw_spin_unlock_irq(&curr
->pi_lock
);
932 spin_lock(&hb
->lock
);
933 raw_spin_lock_irq(&pi_state
->pi_mutex
.wait_lock
);
934 raw_spin_lock(&curr
->pi_lock
);
936 * We dropped the pi-lock, so re-check whether this
937 * task still owns the PI-state:
939 if (head
->next
!= next
) {
940 /* retain curr->pi_lock for the loop invariant */
941 raw_spin_unlock(&pi_state
->pi_mutex
.wait_lock
);
942 spin_unlock(&hb
->lock
);
943 put_pi_state(pi_state
);
947 WARN_ON(pi_state
->owner
!= curr
);
948 WARN_ON(list_empty(&pi_state
->list
));
949 list_del_init(&pi_state
->list
);
950 pi_state
->owner
= NULL
;
952 raw_spin_unlock(&curr
->pi_lock
);
953 raw_spin_unlock_irq(&pi_state
->pi_mutex
.wait_lock
);
954 spin_unlock(&hb
->lock
);
956 rt_mutex_futex_unlock(&pi_state
->pi_mutex
);
957 put_pi_state(pi_state
);
959 raw_spin_lock_irq(&curr
->pi_lock
);
961 raw_spin_unlock_irq(&curr
->pi_lock
);
967 * We need to check the following states:
969 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
971 * [1] NULL | --- | --- | 0 | 0/1 | Valid
972 * [2] NULL | --- | --- | >0 | 0/1 | Valid
974 * [3] Found | NULL | -- | Any | 0/1 | Invalid
976 * [4] Found | Found | NULL | 0 | 1 | Valid
977 * [5] Found | Found | NULL | >0 | 1 | Invalid
979 * [6] Found | Found | task | 0 | 1 | Valid
981 * [7] Found | Found | NULL | Any | 0 | Invalid
983 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
984 * [9] Found | Found | task | 0 | 0 | Invalid
985 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
987 * [1] Indicates that the kernel can acquire the futex atomically. We
988 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
990 * [2] Valid, if TID does not belong to a kernel thread. If no matching
991 * thread is found then it indicates that the owner TID has died.
993 * [3] Invalid. The waiter is queued on a non PI futex
995 * [4] Valid state after exit_robust_list(), which sets the user space
996 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
998 * [5] The user space value got manipulated between exit_robust_list()
999 * and exit_pi_state_list()
1001 * [6] Valid state after exit_pi_state_list() which sets the new owner in
1002 * the pi_state but cannot access the user space value.
1004 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1006 * [8] Owner and user space value match
1008 * [9] There is no transient state which sets the user space TID to 0
1009 * except exit_robust_list(), but this is indicated by the
1010 * FUTEX_OWNER_DIED bit. See [4]
1012 * [10] There is no transient state which leaves owner and user space
1016 * Serialization and lifetime rules:
1020 * hb -> futex_q, relation
1021 * futex_q -> pi_state, relation
1023 * (cannot be raw because hb can contain arbitrary amount
1026 * pi_mutex->wait_lock:
1030 * (and pi_mutex 'obviously')
1034 * p->pi_state_list -> pi_state->list, relation
1036 * pi_state->refcount:
1044 * pi_mutex->wait_lock
1050 * Validate that the existing waiter has a pi_state and sanity check
1051 * the pi_state against the user space value. If correct, attach to
1054 static int attach_to_pi_state(u32 __user
*uaddr
, u32 uval
,
1055 struct futex_pi_state
*pi_state
,
1056 struct futex_pi_state
**ps
)
1058 pid_t pid
= uval
& FUTEX_TID_MASK
;
1063 * Userspace might have messed up non-PI and PI futexes [3]
1065 if (unlikely(!pi_state
))
1069 * We get here with hb->lock held, and having found a
1070 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1071 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1072 * which in turn means that futex_lock_pi() still has a reference on
1075 * The waiter holding a reference on @pi_state also protects against
1076 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1077 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1078 * free pi_state before we can take a reference ourselves.
1080 WARN_ON(!refcount_read(&pi_state
->refcount
));
1083 * Now that we have a pi_state, we can acquire wait_lock
1084 * and do the state validation.
1086 raw_spin_lock_irq(&pi_state
->pi_mutex
.wait_lock
);
1089 * Since {uval, pi_state} is serialized by wait_lock, and our current
1090 * uval was read without holding it, it can have changed. Verify it
1091 * still is what we expect it to be, otherwise retry the entire
1094 if (get_futex_value_locked(&uval2
, uaddr
))
1101 * Handle the owner died case:
1103 if (uval
& FUTEX_OWNER_DIED
) {
1105 * exit_pi_state_list sets owner to NULL and wakes the
1106 * topmost waiter. The task which acquires the
1107 * pi_state->rt_mutex will fixup owner.
1109 if (!pi_state
->owner
) {
1111 * No pi state owner, but the user space TID
1112 * is not 0. Inconsistent state. [5]
1117 * Take a ref on the state and return success. [4]
1123 * If TID is 0, then either the dying owner has not
1124 * yet executed exit_pi_state_list() or some waiter
1125 * acquired the rtmutex in the pi state, but did not
1126 * yet fixup the TID in user space.
1128 * Take a ref on the state and return success. [6]
1134 * If the owner died bit is not set, then the pi_state
1135 * must have an owner. [7]
1137 if (!pi_state
->owner
)
1142 * Bail out if user space manipulated the futex value. If pi
1143 * state exists then the owner TID must be the same as the
1144 * user space TID. [9/10]
1146 if (pid
!= task_pid_vnr(pi_state
->owner
))
1150 get_pi_state(pi_state
);
1151 raw_spin_unlock_irq(&pi_state
->pi_mutex
.wait_lock
);
1168 raw_spin_unlock_irq(&pi_state
->pi_mutex
.wait_lock
);
1172 static int handle_exit_race(u32 __user
*uaddr
, u32 uval
,
1173 struct task_struct
*tsk
)
1178 * If PF_EXITPIDONE is not yet set, then try again.
1180 if (tsk
&& !(tsk
->flags
& PF_EXITPIDONE
))
1184 * Reread the user space value to handle the following situation:
1188 * sys_exit() sys_futex()
1189 * do_exit() futex_lock_pi()
1190 * futex_lock_pi_atomic()
1191 * exit_signals(tsk) No waiters:
1192 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1193 * mm_release(tsk) Set waiter bit
1194 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1195 * Set owner died attach_to_pi_owner() {
1196 * *uaddr = 0xC0000000; tsk = get_task(PID);
1197 * } if (!tsk->flags & PF_EXITING) {
1199 * tsk->flags |= PF_EXITPIDONE; } else {
1200 * if (!(tsk->flags & PF_EXITPIDONE))
1202 * return -ESRCH; <--- FAIL
1205 * Returning ESRCH unconditionally is wrong here because the
1206 * user space value has been changed by the exiting task.
1208 * The same logic applies to the case where the exiting task is
1211 if (get_futex_value_locked(&uval2
, uaddr
))
1214 /* If the user space value has changed, try again. */
1219 * The exiting task did not have a robust list, the robust list was
1220 * corrupted or the user space value in *uaddr is simply bogus.
1221 * Give up and tell user space.
1227 * Lookup the task for the TID provided from user space and attach to
1228 * it after doing proper sanity checks.
1230 static int attach_to_pi_owner(u32 __user
*uaddr
, u32 uval
, union futex_key
*key
,
1231 struct futex_pi_state
**ps
)
1233 pid_t pid
= uval
& FUTEX_TID_MASK
;
1234 struct futex_pi_state
*pi_state
;
1235 struct task_struct
*p
;
1238 * We are the first waiter - try to look up the real owner and attach
1239 * the new pi_state to it, but bail out when TID = 0 [1]
1241 * The !pid check is paranoid. None of the call sites should end up
1242 * with pid == 0, but better safe than sorry. Let the caller retry
1246 p
= find_get_task_by_vpid(pid
);
1248 return handle_exit_race(uaddr
, uval
, NULL
);
1250 if (unlikely(p
->flags
& PF_KTHREAD
)) {
1256 * We need to look at the task state flags to figure out,
1257 * whether the task is exiting. To protect against the do_exit
1258 * change of the task flags, we do this protected by
1261 raw_spin_lock_irq(&p
->pi_lock
);
1262 if (unlikely(p
->flags
& PF_EXITING
)) {
1264 * The task is on the way out. When PF_EXITPIDONE is
1265 * set, we know that the task has finished the
1268 int ret
= handle_exit_race(uaddr
, uval
, p
);
1270 raw_spin_unlock_irq(&p
->pi_lock
);
1276 * No existing pi state. First waiter. [2]
1278 * This creates pi_state, we have hb->lock held, this means nothing can
1279 * observe this state, wait_lock is irrelevant.
1281 pi_state
= alloc_pi_state();
1284 * Initialize the pi_mutex in locked state and make @p
1287 rt_mutex_init_proxy_locked(&pi_state
->pi_mutex
, p
);
1289 /* Store the key for possible exit cleanups: */
1290 pi_state
->key
= *key
;
1292 WARN_ON(!list_empty(&pi_state
->list
));
1293 list_add(&pi_state
->list
, &p
->pi_state_list
);
1295 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1296 * because there is no concurrency as the object is not published yet.
1298 pi_state
->owner
= p
;
1299 raw_spin_unlock_irq(&p
->pi_lock
);
1308 static int lookup_pi_state(u32 __user
*uaddr
, u32 uval
,
1309 struct futex_hash_bucket
*hb
,
1310 union futex_key
*key
, struct futex_pi_state
**ps
)
1312 struct futex_q
*top_waiter
= futex_top_waiter(hb
, key
);
1315 * If there is a waiter on that futex, validate it and
1316 * attach to the pi_state when the validation succeeds.
1319 return attach_to_pi_state(uaddr
, uval
, top_waiter
->pi_state
, ps
);
1322 * We are the first waiter - try to look up the owner based on
1323 * @uval and attach to it.
1325 return attach_to_pi_owner(uaddr
, uval
, key
, ps
);
1328 static int lock_pi_update_atomic(u32 __user
*uaddr
, u32 uval
, u32 newval
)
1331 u32
uninitialized_var(curval
);
1333 if (unlikely(should_fail_futex(true)))
1336 err
= cmpxchg_futex_value_locked(&curval
, uaddr
, uval
, newval
);
1340 /* If user space value changed, let the caller retry */
1341 return curval
!= uval
? -EAGAIN
: 0;
1345 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1346 * @uaddr: the pi futex user address
1347 * @hb: the pi futex hash bucket
1348 * @key: the futex key associated with uaddr and hb
1349 * @ps: the pi_state pointer where we store the result of the
1351 * @task: the task to perform the atomic lock work for. This will
1352 * be "current" except in the case of requeue pi.
1353 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1356 * - 0 - ready to wait;
1357 * - 1 - acquired the lock;
1360 * The hb->lock and futex_key refs shall be held by the caller.
1362 static int futex_lock_pi_atomic(u32 __user
*uaddr
, struct futex_hash_bucket
*hb
,
1363 union futex_key
*key
,
1364 struct futex_pi_state
**ps
,
1365 struct task_struct
*task
, int set_waiters
)
1367 u32 uval
, newval
, vpid
= task_pid_vnr(task
);
1368 struct futex_q
*top_waiter
;
1372 * Read the user space value first so we can validate a few
1373 * things before proceeding further.
1375 if (get_futex_value_locked(&uval
, uaddr
))
1378 if (unlikely(should_fail_futex(true)))
1384 if ((unlikely((uval
& FUTEX_TID_MASK
) == vpid
)))
1387 if ((unlikely(should_fail_futex(true))))
1391 * Lookup existing state first. If it exists, try to attach to
1394 top_waiter
= futex_top_waiter(hb
, key
);
1396 return attach_to_pi_state(uaddr
, uval
, top_waiter
->pi_state
, ps
);
1399 * No waiter and user TID is 0. We are here because the
1400 * waiters or the owner died bit is set or called from
1401 * requeue_cmp_pi or for whatever reason something took the
1404 if (!(uval
& FUTEX_TID_MASK
)) {
1406 * We take over the futex. No other waiters and the user space
1407 * TID is 0. We preserve the owner died bit.
1409 newval
= uval
& FUTEX_OWNER_DIED
;
1412 /* The futex requeue_pi code can enforce the waiters bit */
1414 newval
|= FUTEX_WAITERS
;
1416 ret
= lock_pi_update_atomic(uaddr
, uval
, newval
);
1417 /* If the take over worked, return 1 */
1418 return ret
< 0 ? ret
: 1;
1422 * First waiter. Set the waiters bit before attaching ourself to
1423 * the owner. If owner tries to unlock, it will be forced into
1424 * the kernel and blocked on hb->lock.
1426 newval
= uval
| FUTEX_WAITERS
;
1427 ret
= lock_pi_update_atomic(uaddr
, uval
, newval
);
1431 * If the update of the user space value succeeded, we try to
1432 * attach to the owner. If that fails, no harm done, we only
1433 * set the FUTEX_WAITERS bit in the user space variable.
1435 return attach_to_pi_owner(uaddr
, newval
, key
, ps
);
1439 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1440 * @q: The futex_q to unqueue
1442 * The q->lock_ptr must not be NULL and must be held by the caller.
1444 static void __unqueue_futex(struct futex_q
*q
)
1446 struct futex_hash_bucket
*hb
;
1448 if (WARN_ON_SMP(!q
->lock_ptr
) || WARN_ON(plist_node_empty(&q
->list
)))
1450 lockdep_assert_held(q
->lock_ptr
);
1452 hb
= container_of(q
->lock_ptr
, struct futex_hash_bucket
, lock
);
1453 plist_del(&q
->list
, &hb
->chain
);
1458 * The hash bucket lock must be held when this is called.
1459 * Afterwards, the futex_q must not be accessed. Callers
1460 * must ensure to later call wake_up_q() for the actual
1463 static void mark_wake_futex(struct wake_q_head
*wake_q
, struct futex_q
*q
)
1465 struct task_struct
*p
= q
->task
;
1467 if (WARN(q
->pi_state
|| q
->rt_waiter
, "refusing to wake PI futex\n"))
1473 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1474 * is written, without taking any locks. This is possible in the event
1475 * of a spurious wakeup, for example. A memory barrier is required here
1476 * to prevent the following store to lock_ptr from getting ahead of the
1477 * plist_del in __unqueue_futex().
1479 smp_store_release(&q
->lock_ptr
, NULL
);
1482 * Queue the task for later wakeup for after we've released
1483 * the hb->lock. wake_q_add() grabs reference to p.
1485 wake_q_add_safe(wake_q
, p
);
1489 * Caller must hold a reference on @pi_state.
1491 static int wake_futex_pi(u32 __user
*uaddr
, u32 uval
, struct futex_pi_state
*pi_state
)
1493 u32
uninitialized_var(curval
), newval
;
1494 struct task_struct
*new_owner
;
1495 bool postunlock
= false;
1496 DEFINE_WAKE_Q(wake_q
);
1499 new_owner
= rt_mutex_next_owner(&pi_state
->pi_mutex
);
1500 if (WARN_ON_ONCE(!new_owner
)) {
1502 * As per the comment in futex_unlock_pi() this should not happen.
1504 * When this happens, give up our locks and try again, giving
1505 * the futex_lock_pi() instance time to complete, either by
1506 * waiting on the rtmutex or removing itself from the futex
1514 * We pass it to the next owner. The WAITERS bit is always kept
1515 * enabled while there is PI state around. We cleanup the owner
1516 * died bit, because we are the owner.
1518 newval
= FUTEX_WAITERS
| task_pid_vnr(new_owner
);
1520 if (unlikely(should_fail_futex(true)))
1523 ret
= cmpxchg_futex_value_locked(&curval
, uaddr
, uval
, newval
);
1524 if (!ret
&& (curval
!= uval
)) {
1526 * If a unconditional UNLOCK_PI operation (user space did not
1527 * try the TID->0 transition) raced with a waiter setting the
1528 * FUTEX_WAITERS flag between get_user() and locking the hash
1529 * bucket lock, retry the operation.
1531 if ((FUTEX_TID_MASK
& curval
) == uval
)
1541 * This is a point of no return; once we modify the uval there is no
1542 * going back and subsequent operations must not fail.
1545 raw_spin_lock(&pi_state
->owner
->pi_lock
);
1546 WARN_ON(list_empty(&pi_state
->list
));
1547 list_del_init(&pi_state
->list
);
1548 raw_spin_unlock(&pi_state
->owner
->pi_lock
);
1550 raw_spin_lock(&new_owner
->pi_lock
);
1551 WARN_ON(!list_empty(&pi_state
->list
));
1552 list_add(&pi_state
->list
, &new_owner
->pi_state_list
);
1553 pi_state
->owner
= new_owner
;
1554 raw_spin_unlock(&new_owner
->pi_lock
);
1556 postunlock
= __rt_mutex_futex_unlock(&pi_state
->pi_mutex
, &wake_q
);
1559 raw_spin_unlock_irq(&pi_state
->pi_mutex
.wait_lock
);
1562 rt_mutex_postunlock(&wake_q
);
1568 * Express the locking dependencies for lockdep:
1571 double_lock_hb(struct futex_hash_bucket
*hb1
, struct futex_hash_bucket
*hb2
)
1574 spin_lock(&hb1
->lock
);
1576 spin_lock_nested(&hb2
->lock
, SINGLE_DEPTH_NESTING
);
1577 } else { /* hb1 > hb2 */
1578 spin_lock(&hb2
->lock
);
1579 spin_lock_nested(&hb1
->lock
, SINGLE_DEPTH_NESTING
);
1584 double_unlock_hb(struct futex_hash_bucket
*hb1
, struct futex_hash_bucket
*hb2
)
1586 spin_unlock(&hb1
->lock
);
1588 spin_unlock(&hb2
->lock
);
1592 * Wake up waiters matching bitset queued on this futex (uaddr).
1595 futex_wake(u32 __user
*uaddr
, unsigned int flags
, int nr_wake
, u32 bitset
)
1597 struct futex_hash_bucket
*hb
;
1598 struct futex_q
*this, *next
;
1599 union futex_key key
= FUTEX_KEY_INIT
;
1601 DEFINE_WAKE_Q(wake_q
);
1606 ret
= get_futex_key(uaddr
, flags
& FLAGS_SHARED
, &key
, FUTEX_READ
);
1607 if (unlikely(ret
!= 0))
1610 hb
= hash_futex(&key
);
1612 /* Make sure we really have tasks to wakeup */
1613 if (!hb_waiters_pending(hb
))
1616 spin_lock(&hb
->lock
);
1618 plist_for_each_entry_safe(this, next
, &hb
->chain
, list
) {
1619 if (match_futex (&this->key
, &key
)) {
1620 if (this->pi_state
|| this->rt_waiter
) {
1625 /* Check if one of the bits is set in both bitsets */
1626 if (!(this->bitset
& bitset
))
1629 mark_wake_futex(&wake_q
, this);
1630 if (++ret
>= nr_wake
)
1635 spin_unlock(&hb
->lock
);
1638 put_futex_key(&key
);
1643 static int futex_atomic_op_inuser(unsigned int encoded_op
, u32 __user
*uaddr
)
1645 unsigned int op
= (encoded_op
& 0x70000000) >> 28;
1646 unsigned int cmp
= (encoded_op
& 0x0f000000) >> 24;
1647 int oparg
= sign_extend32((encoded_op
& 0x00fff000) >> 12, 11);
1648 int cmparg
= sign_extend32(encoded_op
& 0x00000fff, 11);
1651 if (encoded_op
& (FUTEX_OP_OPARG_SHIFT
<< 28)) {
1652 if (oparg
< 0 || oparg
> 31) {
1653 char comm
[sizeof(current
->comm
)];
1655 * kill this print and return -EINVAL when userspace
1658 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1659 get_task_comm(comm
, current
), oparg
);
1665 if (!access_ok(uaddr
, sizeof(u32
)))
1668 ret
= arch_futex_atomic_op_inuser(op
, oparg
, &oldval
, uaddr
);
1673 case FUTEX_OP_CMP_EQ
:
1674 return oldval
== cmparg
;
1675 case FUTEX_OP_CMP_NE
:
1676 return oldval
!= cmparg
;
1677 case FUTEX_OP_CMP_LT
:
1678 return oldval
< cmparg
;
1679 case FUTEX_OP_CMP_GE
:
1680 return oldval
>= cmparg
;
1681 case FUTEX_OP_CMP_LE
:
1682 return oldval
<= cmparg
;
1683 case FUTEX_OP_CMP_GT
:
1684 return oldval
> cmparg
;
1691 * Wake up all waiters hashed on the physical page that is mapped
1692 * to this virtual address:
1695 futex_wake_op(u32 __user
*uaddr1
, unsigned int flags
, u32 __user
*uaddr2
,
1696 int nr_wake
, int nr_wake2
, int op
)
1698 union futex_key key1
= FUTEX_KEY_INIT
, key2
= FUTEX_KEY_INIT
;
1699 struct futex_hash_bucket
*hb1
, *hb2
;
1700 struct futex_q
*this, *next
;
1702 DEFINE_WAKE_Q(wake_q
);
1705 ret
= get_futex_key(uaddr1
, flags
& FLAGS_SHARED
, &key1
, FUTEX_READ
);
1706 if (unlikely(ret
!= 0))
1708 ret
= get_futex_key(uaddr2
, flags
& FLAGS_SHARED
, &key2
, FUTEX_WRITE
);
1709 if (unlikely(ret
!= 0))
1712 hb1
= hash_futex(&key1
);
1713 hb2
= hash_futex(&key2
);
1716 double_lock_hb(hb1
, hb2
);
1717 op_ret
= futex_atomic_op_inuser(op
, uaddr2
);
1718 if (unlikely(op_ret
< 0)) {
1719 double_unlock_hb(hb1
, hb2
);
1721 if (!IS_ENABLED(CONFIG_MMU
) ||
1722 unlikely(op_ret
!= -EFAULT
&& op_ret
!= -EAGAIN
)) {
1724 * we don't get EFAULT from MMU faults if we don't have
1725 * an MMU, but we might get them from range checking
1731 if (op_ret
== -EFAULT
) {
1732 ret
= fault_in_user_writeable(uaddr2
);
1737 if (!(flags
& FLAGS_SHARED
)) {
1742 put_futex_key(&key2
);
1743 put_futex_key(&key1
);
1748 plist_for_each_entry_safe(this, next
, &hb1
->chain
, list
) {
1749 if (match_futex (&this->key
, &key1
)) {
1750 if (this->pi_state
|| this->rt_waiter
) {
1754 mark_wake_futex(&wake_q
, this);
1755 if (++ret
>= nr_wake
)
1762 plist_for_each_entry_safe(this, next
, &hb2
->chain
, list
) {
1763 if (match_futex (&this->key
, &key2
)) {
1764 if (this->pi_state
|| this->rt_waiter
) {
1768 mark_wake_futex(&wake_q
, this);
1769 if (++op_ret
>= nr_wake2
)
1777 double_unlock_hb(hb1
, hb2
);
1780 put_futex_key(&key2
);
1782 put_futex_key(&key1
);
1788 * requeue_futex() - Requeue a futex_q from one hb to another
1789 * @q: the futex_q to requeue
1790 * @hb1: the source hash_bucket
1791 * @hb2: the target hash_bucket
1792 * @key2: the new key for the requeued futex_q
1795 void requeue_futex(struct futex_q
*q
, struct futex_hash_bucket
*hb1
,
1796 struct futex_hash_bucket
*hb2
, union futex_key
*key2
)
1800 * If key1 and key2 hash to the same bucket, no need to
1803 if (likely(&hb1
->chain
!= &hb2
->chain
)) {
1804 plist_del(&q
->list
, &hb1
->chain
);
1805 hb_waiters_dec(hb1
);
1806 hb_waiters_inc(hb2
);
1807 plist_add(&q
->list
, &hb2
->chain
);
1808 q
->lock_ptr
= &hb2
->lock
;
1810 get_futex_key_refs(key2
);
1815 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1817 * @key: the key of the requeue target futex
1818 * @hb: the hash_bucket of the requeue target futex
1820 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1821 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1822 * to the requeue target futex so the waiter can detect the wakeup on the right
1823 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1824 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1825 * to protect access to the pi_state to fixup the owner later. Must be called
1826 * with both q->lock_ptr and hb->lock held.
1829 void requeue_pi_wake_futex(struct futex_q
*q
, union futex_key
*key
,
1830 struct futex_hash_bucket
*hb
)
1832 get_futex_key_refs(key
);
1837 WARN_ON(!q
->rt_waiter
);
1838 q
->rt_waiter
= NULL
;
1840 q
->lock_ptr
= &hb
->lock
;
1842 wake_up_state(q
->task
, TASK_NORMAL
);
1846 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1847 * @pifutex: the user address of the to futex
1848 * @hb1: the from futex hash bucket, must be locked by the caller
1849 * @hb2: the to futex hash bucket, must be locked by the caller
1850 * @key1: the from futex key
1851 * @key2: the to futex key
1852 * @ps: address to store the pi_state pointer
1853 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1855 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1856 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1857 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1858 * hb1 and hb2 must be held by the caller.
1861 * - 0 - failed to acquire the lock atomically;
1862 * - >0 - acquired the lock, return value is vpid of the top_waiter
1865 static int futex_proxy_trylock_atomic(u32 __user
*pifutex
,
1866 struct futex_hash_bucket
*hb1
,
1867 struct futex_hash_bucket
*hb2
,
1868 union futex_key
*key1
, union futex_key
*key2
,
1869 struct futex_pi_state
**ps
, int set_waiters
)
1871 struct futex_q
*top_waiter
= NULL
;
1875 if (get_futex_value_locked(&curval
, pifutex
))
1878 if (unlikely(should_fail_futex(true)))
1882 * Find the top_waiter and determine if there are additional waiters.
1883 * If the caller intends to requeue more than 1 waiter to pifutex,
1884 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1885 * as we have means to handle the possible fault. If not, don't set
1886 * the bit unecessarily as it will force the subsequent unlock to enter
1889 top_waiter
= futex_top_waiter(hb1
, key1
);
1891 /* There are no waiters, nothing for us to do. */
1895 /* Ensure we requeue to the expected futex. */
1896 if (!match_futex(top_waiter
->requeue_pi_key
, key2
))
1900 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1901 * the contended case or if set_waiters is 1. The pi_state is returned
1902 * in ps in contended cases.
1904 vpid
= task_pid_vnr(top_waiter
->task
);
1905 ret
= futex_lock_pi_atomic(pifutex
, hb2
, key2
, ps
, top_waiter
->task
,
1908 requeue_pi_wake_futex(top_waiter
, key2
, hb2
);
1915 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1916 * @uaddr1: source futex user address
1917 * @flags: futex flags (FLAGS_SHARED, etc.)
1918 * @uaddr2: target futex user address
1919 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1920 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1921 * @cmpval: @uaddr1 expected value (or %NULL)
1922 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1923 * pi futex (pi to pi requeue is not supported)
1925 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1926 * uaddr2 atomically on behalf of the top waiter.
1929 * - >=0 - on success, the number of tasks requeued or woken;
1932 static int futex_requeue(u32 __user
*uaddr1
, unsigned int flags
,
1933 u32 __user
*uaddr2
, int nr_wake
, int nr_requeue
,
1934 u32
*cmpval
, int requeue_pi
)
1936 union futex_key key1
= FUTEX_KEY_INIT
, key2
= FUTEX_KEY_INIT
;
1937 int drop_count
= 0, task_count
= 0, ret
;
1938 struct futex_pi_state
*pi_state
= NULL
;
1939 struct futex_hash_bucket
*hb1
, *hb2
;
1940 struct futex_q
*this, *next
;
1941 DEFINE_WAKE_Q(wake_q
);
1943 if (nr_wake
< 0 || nr_requeue
< 0)
1947 * When PI not supported: return -ENOSYS if requeue_pi is true,
1948 * consequently the compiler knows requeue_pi is always false past
1949 * this point which will optimize away all the conditional code
1952 if (!IS_ENABLED(CONFIG_FUTEX_PI
) && requeue_pi
)
1957 * Requeue PI only works on two distinct uaddrs. This
1958 * check is only valid for private futexes. See below.
1960 if (uaddr1
== uaddr2
)
1964 * requeue_pi requires a pi_state, try to allocate it now
1965 * without any locks in case it fails.
1967 if (refill_pi_state_cache())
1970 * requeue_pi must wake as many tasks as it can, up to nr_wake
1971 * + nr_requeue, since it acquires the rt_mutex prior to
1972 * returning to userspace, so as to not leave the rt_mutex with
1973 * waiters and no owner. However, second and third wake-ups
1974 * cannot be predicted as they involve race conditions with the
1975 * first wake and a fault while looking up the pi_state. Both
1976 * pthread_cond_signal() and pthread_cond_broadcast() should
1984 ret
= get_futex_key(uaddr1
, flags
& FLAGS_SHARED
, &key1
, FUTEX_READ
);
1985 if (unlikely(ret
!= 0))
1987 ret
= get_futex_key(uaddr2
, flags
& FLAGS_SHARED
, &key2
,
1988 requeue_pi
? FUTEX_WRITE
: FUTEX_READ
);
1989 if (unlikely(ret
!= 0))
1993 * The check above which compares uaddrs is not sufficient for
1994 * shared futexes. We need to compare the keys:
1996 if (requeue_pi
&& match_futex(&key1
, &key2
)) {
2001 hb1
= hash_futex(&key1
);
2002 hb2
= hash_futex(&key2
);
2005 hb_waiters_inc(hb2
);
2006 double_lock_hb(hb1
, hb2
);
2008 if (likely(cmpval
!= NULL
)) {
2011 ret
= get_futex_value_locked(&curval
, uaddr1
);
2013 if (unlikely(ret
)) {
2014 double_unlock_hb(hb1
, hb2
);
2015 hb_waiters_dec(hb2
);
2017 ret
= get_user(curval
, uaddr1
);
2021 if (!(flags
& FLAGS_SHARED
))
2024 put_futex_key(&key2
);
2025 put_futex_key(&key1
);
2028 if (curval
!= *cmpval
) {
2034 if (requeue_pi
&& (task_count
- nr_wake
< nr_requeue
)) {
2036 * Attempt to acquire uaddr2 and wake the top waiter. If we
2037 * intend to requeue waiters, force setting the FUTEX_WAITERS
2038 * bit. We force this here where we are able to easily handle
2039 * faults rather in the requeue loop below.
2041 ret
= futex_proxy_trylock_atomic(uaddr2
, hb1
, hb2
, &key1
,
2042 &key2
, &pi_state
, nr_requeue
);
2045 * At this point the top_waiter has either taken uaddr2 or is
2046 * waiting on it. If the former, then the pi_state will not
2047 * exist yet, look it up one more time to ensure we have a
2048 * reference to it. If the lock was taken, ret contains the
2049 * vpid of the top waiter task.
2050 * If the lock was not taken, we have pi_state and an initial
2051 * refcount on it. In case of an error we have nothing.
2058 * If we acquired the lock, then the user space value
2059 * of uaddr2 should be vpid. It cannot be changed by
2060 * the top waiter as it is blocked on hb2 lock if it
2061 * tries to do so. If something fiddled with it behind
2062 * our back the pi state lookup might unearth it. So
2063 * we rather use the known value than rereading and
2064 * handing potential crap to lookup_pi_state.
2066 * If that call succeeds then we have pi_state and an
2067 * initial refcount on it.
2069 ret
= lookup_pi_state(uaddr2
, ret
, hb2
, &key2
, &pi_state
);
2074 /* We hold a reference on the pi state. */
2077 /* If the above failed, then pi_state is NULL */
2079 double_unlock_hb(hb1
, hb2
);
2080 hb_waiters_dec(hb2
);
2081 put_futex_key(&key2
);
2082 put_futex_key(&key1
);
2083 ret
= fault_in_user_writeable(uaddr2
);
2089 * Two reasons for this:
2090 * - Owner is exiting and we just wait for the
2092 * - The user space value changed.
2094 double_unlock_hb(hb1
, hb2
);
2095 hb_waiters_dec(hb2
);
2096 put_futex_key(&key2
);
2097 put_futex_key(&key1
);
2105 plist_for_each_entry_safe(this, next
, &hb1
->chain
, list
) {
2106 if (task_count
- nr_wake
>= nr_requeue
)
2109 if (!match_futex(&this->key
, &key1
))
2113 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2114 * be paired with each other and no other futex ops.
2116 * We should never be requeueing a futex_q with a pi_state,
2117 * which is awaiting a futex_unlock_pi().
2119 if ((requeue_pi
&& !this->rt_waiter
) ||
2120 (!requeue_pi
&& this->rt_waiter
) ||
2127 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2128 * lock, we already woke the top_waiter. If not, it will be
2129 * woken by futex_unlock_pi().
2131 if (++task_count
<= nr_wake
&& !requeue_pi
) {
2132 mark_wake_futex(&wake_q
, this);
2136 /* Ensure we requeue to the expected futex for requeue_pi. */
2137 if (requeue_pi
&& !match_futex(this->requeue_pi_key
, &key2
)) {
2143 * Requeue nr_requeue waiters and possibly one more in the case
2144 * of requeue_pi if we couldn't acquire the lock atomically.
2148 * Prepare the waiter to take the rt_mutex. Take a
2149 * refcount on the pi_state and store the pointer in
2150 * the futex_q object of the waiter.
2152 get_pi_state(pi_state
);
2153 this->pi_state
= pi_state
;
2154 ret
= rt_mutex_start_proxy_lock(&pi_state
->pi_mutex
,
2159 * We got the lock. We do neither drop the
2160 * refcount on pi_state nor clear
2161 * this->pi_state because the waiter needs the
2162 * pi_state for cleaning up the user space
2163 * value. It will drop the refcount after
2166 requeue_pi_wake_futex(this, &key2
, hb2
);
2171 * rt_mutex_start_proxy_lock() detected a
2172 * potential deadlock when we tried to queue
2173 * that waiter. Drop the pi_state reference
2174 * which we took above and remove the pointer
2175 * to the state from the waiters futex_q
2178 this->pi_state
= NULL
;
2179 put_pi_state(pi_state
);
2181 * We stop queueing more waiters and let user
2182 * space deal with the mess.
2187 requeue_futex(this, hb1
, hb2
, &key2
);
2192 * We took an extra initial reference to the pi_state either
2193 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2194 * need to drop it here again.
2196 put_pi_state(pi_state
);
2199 double_unlock_hb(hb1
, hb2
);
2201 hb_waiters_dec(hb2
);
2204 * drop_futex_key_refs() must be called outside the spinlocks. During
2205 * the requeue we moved futex_q's from the hash bucket at key1 to the
2206 * one at key2 and updated their key pointer. We no longer need to
2207 * hold the references to key1.
2209 while (--drop_count
>= 0)
2210 drop_futex_key_refs(&key1
);
2213 put_futex_key(&key2
);
2215 put_futex_key(&key1
);
2217 return ret
? ret
: task_count
;
2220 /* The key must be already stored in q->key. */
2221 static inline struct futex_hash_bucket
*queue_lock(struct futex_q
*q
)
2222 __acquires(&hb
->lock
)
2224 struct futex_hash_bucket
*hb
;
2226 hb
= hash_futex(&q
->key
);
2229 * Increment the counter before taking the lock so that
2230 * a potential waker won't miss a to-be-slept task that is
2231 * waiting for the spinlock. This is safe as all queue_lock()
2232 * users end up calling queue_me(). Similarly, for housekeeping,
2233 * decrement the counter at queue_unlock() when some error has
2234 * occurred and we don't end up adding the task to the list.
2236 hb_waiters_inc(hb
); /* implies smp_mb(); (A) */
2238 q
->lock_ptr
= &hb
->lock
;
2240 spin_lock(&hb
->lock
);
2245 queue_unlock(struct futex_hash_bucket
*hb
)
2246 __releases(&hb
->lock
)
2248 spin_unlock(&hb
->lock
);
2252 static inline void __queue_me(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
2257 * The priority used to register this element is
2258 * - either the real thread-priority for the real-time threads
2259 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2260 * - or MAX_RT_PRIO for non-RT threads.
2261 * Thus, all RT-threads are woken first in priority order, and
2262 * the others are woken last, in FIFO order.
2264 prio
= min(current
->normal_prio
, MAX_RT_PRIO
);
2266 plist_node_init(&q
->list
, prio
);
2267 plist_add(&q
->list
, &hb
->chain
);
2272 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2273 * @q: The futex_q to enqueue
2274 * @hb: The destination hash bucket
2276 * The hb->lock must be held by the caller, and is released here. A call to
2277 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2278 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2279 * or nothing if the unqueue is done as part of the wake process and the unqueue
2280 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2283 static inline void queue_me(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
2284 __releases(&hb
->lock
)
2287 spin_unlock(&hb
->lock
);
2291 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2292 * @q: The futex_q to unqueue
2294 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2295 * be paired with exactly one earlier call to queue_me().
2298 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2299 * - 0 - if the futex_q was already removed by the waking thread
2301 static int unqueue_me(struct futex_q
*q
)
2303 spinlock_t
*lock_ptr
;
2306 /* In the common case we don't take the spinlock, which is nice. */
2309 * q->lock_ptr can change between this read and the following spin_lock.
2310 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2311 * optimizing lock_ptr out of the logic below.
2313 lock_ptr
= READ_ONCE(q
->lock_ptr
);
2314 if (lock_ptr
!= NULL
) {
2315 spin_lock(lock_ptr
);
2317 * q->lock_ptr can change between reading it and
2318 * spin_lock(), causing us to take the wrong lock. This
2319 * corrects the race condition.
2321 * Reasoning goes like this: if we have the wrong lock,
2322 * q->lock_ptr must have changed (maybe several times)
2323 * between reading it and the spin_lock(). It can
2324 * change again after the spin_lock() but only if it was
2325 * already changed before the spin_lock(). It cannot,
2326 * however, change back to the original value. Therefore
2327 * we can detect whether we acquired the correct lock.
2329 if (unlikely(lock_ptr
!= q
->lock_ptr
)) {
2330 spin_unlock(lock_ptr
);
2335 BUG_ON(q
->pi_state
);
2337 spin_unlock(lock_ptr
);
2341 drop_futex_key_refs(&q
->key
);
2346 * PI futexes can not be requeued and must remove themself from the
2347 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2350 static void unqueue_me_pi(struct futex_q
*q
)
2351 __releases(q
->lock_ptr
)
2355 BUG_ON(!q
->pi_state
);
2356 put_pi_state(q
->pi_state
);
2359 spin_unlock(q
->lock_ptr
);
2362 static int fixup_pi_state_owner(u32 __user
*uaddr
, struct futex_q
*q
,
2363 struct task_struct
*argowner
)
2365 struct futex_pi_state
*pi_state
= q
->pi_state
;
2366 u32 uval
, uninitialized_var(curval
), newval
;
2367 struct task_struct
*oldowner
, *newowner
;
2371 lockdep_assert_held(q
->lock_ptr
);
2373 raw_spin_lock_irq(&pi_state
->pi_mutex
.wait_lock
);
2375 oldowner
= pi_state
->owner
;
2378 * We are here because either:
2380 * - we stole the lock and pi_state->owner needs updating to reflect
2381 * that (@argowner == current),
2385 * - someone stole our lock and we need to fix things to point to the
2386 * new owner (@argowner == NULL).
2388 * Either way, we have to replace the TID in the user space variable.
2389 * This must be atomic as we have to preserve the owner died bit here.
2391 * Note: We write the user space value _before_ changing the pi_state
2392 * because we can fault here. Imagine swapped out pages or a fork
2393 * that marked all the anonymous memory readonly for cow.
2395 * Modifying pi_state _before_ the user space value would leave the
2396 * pi_state in an inconsistent state when we fault here, because we
2397 * need to drop the locks to handle the fault. This might be observed
2398 * in the PID check in lookup_pi_state.
2402 if (oldowner
!= current
) {
2404 * We raced against a concurrent self; things are
2405 * already fixed up. Nothing to do.
2411 if (__rt_mutex_futex_trylock(&pi_state
->pi_mutex
)) {
2412 /* We got the lock after all, nothing to fix. */
2418 * Since we just failed the trylock; there must be an owner.
2420 newowner
= rt_mutex_owner(&pi_state
->pi_mutex
);
2423 WARN_ON_ONCE(argowner
!= current
);
2424 if (oldowner
== current
) {
2426 * We raced against a concurrent self; things are
2427 * already fixed up. Nothing to do.
2432 newowner
= argowner
;
2435 newtid
= task_pid_vnr(newowner
) | FUTEX_WAITERS
;
2437 if (!pi_state
->owner
)
2438 newtid
|= FUTEX_OWNER_DIED
;
2440 err
= get_futex_value_locked(&uval
, uaddr
);
2445 newval
= (uval
& FUTEX_OWNER_DIED
) | newtid
;
2447 err
= cmpxchg_futex_value_locked(&curval
, uaddr
, uval
, newval
);
2457 * We fixed up user space. Now we need to fix the pi_state
2460 if (pi_state
->owner
!= NULL
) {
2461 raw_spin_lock(&pi_state
->owner
->pi_lock
);
2462 WARN_ON(list_empty(&pi_state
->list
));
2463 list_del_init(&pi_state
->list
);
2464 raw_spin_unlock(&pi_state
->owner
->pi_lock
);
2467 pi_state
->owner
= newowner
;
2469 raw_spin_lock(&newowner
->pi_lock
);
2470 WARN_ON(!list_empty(&pi_state
->list
));
2471 list_add(&pi_state
->list
, &newowner
->pi_state_list
);
2472 raw_spin_unlock(&newowner
->pi_lock
);
2473 raw_spin_unlock_irq(&pi_state
->pi_mutex
.wait_lock
);
2478 * In order to reschedule or handle a page fault, we need to drop the
2479 * locks here. In the case of a fault, this gives the other task
2480 * (either the highest priority waiter itself or the task which stole
2481 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2482 * are back from handling the fault we need to check the pi_state after
2483 * reacquiring the locks and before trying to do another fixup. When
2484 * the fixup has been done already we simply return.
2486 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2487 * drop hb->lock since the caller owns the hb -> futex_q relation.
2488 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2491 raw_spin_unlock_irq(&pi_state
->pi_mutex
.wait_lock
);
2492 spin_unlock(q
->lock_ptr
);
2496 ret
= fault_in_user_writeable(uaddr
);
2510 spin_lock(q
->lock_ptr
);
2511 raw_spin_lock_irq(&pi_state
->pi_mutex
.wait_lock
);
2514 * Check if someone else fixed it for us:
2516 if (pi_state
->owner
!= oldowner
) {
2527 raw_spin_unlock_irq(&pi_state
->pi_mutex
.wait_lock
);
2531 static long futex_wait_restart(struct restart_block
*restart
);
2534 * fixup_owner() - Post lock pi_state and corner case management
2535 * @uaddr: user address of the futex
2536 * @q: futex_q (contains pi_state and access to the rt_mutex)
2537 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2539 * After attempting to lock an rt_mutex, this function is called to cleanup
2540 * the pi_state owner as well as handle race conditions that may allow us to
2541 * acquire the lock. Must be called with the hb lock held.
2544 * - 1 - success, lock taken;
2545 * - 0 - success, lock not taken;
2546 * - <0 - on error (-EFAULT)
2548 static int fixup_owner(u32 __user
*uaddr
, struct futex_q
*q
, int locked
)
2554 * Got the lock. We might not be the anticipated owner if we
2555 * did a lock-steal - fix up the PI-state in that case:
2557 * Speculative pi_state->owner read (we don't hold wait_lock);
2558 * since we own the lock pi_state->owner == current is the
2559 * stable state, anything else needs more attention.
2561 if (q
->pi_state
->owner
!= current
)
2562 ret
= fixup_pi_state_owner(uaddr
, q
, current
);
2567 * If we didn't get the lock; check if anybody stole it from us. In
2568 * that case, we need to fix up the uval to point to them instead of
2569 * us, otherwise bad things happen. [10]
2571 * Another speculative read; pi_state->owner == current is unstable
2572 * but needs our attention.
2574 if (q
->pi_state
->owner
== current
) {
2575 ret
= fixup_pi_state_owner(uaddr
, q
, NULL
);
2580 * Paranoia check. If we did not take the lock, then we should not be
2581 * the owner of the rt_mutex.
2583 if (rt_mutex_owner(&q
->pi_state
->pi_mutex
) == current
) {
2584 printk(KERN_ERR
"fixup_owner: ret = %d pi-mutex: %p "
2585 "pi-state %p\n", ret
,
2586 q
->pi_state
->pi_mutex
.owner
,
2587 q
->pi_state
->owner
);
2591 return ret
? ret
: locked
;
2595 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2596 * @hb: the futex hash bucket, must be locked by the caller
2597 * @q: the futex_q to queue up on
2598 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2600 static void futex_wait_queue_me(struct futex_hash_bucket
*hb
, struct futex_q
*q
,
2601 struct hrtimer_sleeper
*timeout
)
2604 * The task state is guaranteed to be set before another task can
2605 * wake it. set_current_state() is implemented using smp_store_mb() and
2606 * queue_me() calls spin_unlock() upon completion, both serializing
2607 * access to the hash list and forcing another memory barrier.
2609 set_current_state(TASK_INTERRUPTIBLE
);
2614 hrtimer_sleeper_start_expires(timeout
, HRTIMER_MODE_ABS
);
2617 * If we have been removed from the hash list, then another task
2618 * has tried to wake us, and we can skip the call to schedule().
2620 if (likely(!plist_node_empty(&q
->list
))) {
2622 * If the timer has already expired, current will already be
2623 * flagged for rescheduling. Only call schedule if there
2624 * is no timeout, or if it has yet to expire.
2626 if (!timeout
|| timeout
->task
)
2627 freezable_schedule();
2629 __set_current_state(TASK_RUNNING
);
2633 * futex_wait_setup() - Prepare to wait on a futex
2634 * @uaddr: the futex userspace address
2635 * @val: the expected value
2636 * @flags: futex flags (FLAGS_SHARED, etc.)
2637 * @q: the associated futex_q
2638 * @hb: storage for hash_bucket pointer to be returned to caller
2640 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2641 * compare it with the expected value. Handle atomic faults internally.
2642 * Return with the hb lock held and a q.key reference on success, and unlocked
2643 * with no q.key reference on failure.
2646 * - 0 - uaddr contains val and hb has been locked;
2647 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2649 static int futex_wait_setup(u32 __user
*uaddr
, u32 val
, unsigned int flags
,
2650 struct futex_q
*q
, struct futex_hash_bucket
**hb
)
2656 * Access the page AFTER the hash-bucket is locked.
2657 * Order is important:
2659 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2660 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2662 * The basic logical guarantee of a futex is that it blocks ONLY
2663 * if cond(var) is known to be true at the time of blocking, for
2664 * any cond. If we locked the hash-bucket after testing *uaddr, that
2665 * would open a race condition where we could block indefinitely with
2666 * cond(var) false, which would violate the guarantee.
2668 * On the other hand, we insert q and release the hash-bucket only
2669 * after testing *uaddr. This guarantees that futex_wait() will NOT
2670 * absorb a wakeup if *uaddr does not match the desired values
2671 * while the syscall executes.
2674 ret
= get_futex_key(uaddr
, flags
& FLAGS_SHARED
, &q
->key
, FUTEX_READ
);
2675 if (unlikely(ret
!= 0))
2679 *hb
= queue_lock(q
);
2681 ret
= get_futex_value_locked(&uval
, uaddr
);
2686 ret
= get_user(uval
, uaddr
);
2690 if (!(flags
& FLAGS_SHARED
))
2693 put_futex_key(&q
->key
);
2704 put_futex_key(&q
->key
);
2708 static int futex_wait(u32 __user
*uaddr
, unsigned int flags
, u32 val
,
2709 ktime_t
*abs_time
, u32 bitset
)
2711 struct hrtimer_sleeper timeout
, *to
;
2712 struct restart_block
*restart
;
2713 struct futex_hash_bucket
*hb
;
2714 struct futex_q q
= futex_q_init
;
2721 to
= futex_setup_timer(abs_time
, &timeout
, flags
,
2722 current
->timer_slack_ns
);
2725 * Prepare to wait on uaddr. On success, holds hb lock and increments
2728 ret
= futex_wait_setup(uaddr
, val
, flags
, &q
, &hb
);
2732 /* queue_me and wait for wakeup, timeout, or a signal. */
2733 futex_wait_queue_me(hb
, &q
, to
);
2735 /* If we were woken (and unqueued), we succeeded, whatever. */
2737 /* unqueue_me() drops q.key ref */
2738 if (!unqueue_me(&q
))
2741 if (to
&& !to
->task
)
2745 * We expect signal_pending(current), but we might be the
2746 * victim of a spurious wakeup as well.
2748 if (!signal_pending(current
))
2755 restart
= ¤t
->restart_block
;
2756 restart
->fn
= futex_wait_restart
;
2757 restart
->futex
.uaddr
= uaddr
;
2758 restart
->futex
.val
= val
;
2759 restart
->futex
.time
= *abs_time
;
2760 restart
->futex
.bitset
= bitset
;
2761 restart
->futex
.flags
= flags
| FLAGS_HAS_TIMEOUT
;
2763 ret
= -ERESTART_RESTARTBLOCK
;
2767 hrtimer_cancel(&to
->timer
);
2768 destroy_hrtimer_on_stack(&to
->timer
);
2774 static long futex_wait_restart(struct restart_block
*restart
)
2776 u32 __user
*uaddr
= restart
->futex
.uaddr
;
2777 ktime_t t
, *tp
= NULL
;
2779 if (restart
->futex
.flags
& FLAGS_HAS_TIMEOUT
) {
2780 t
= restart
->futex
.time
;
2783 restart
->fn
= do_no_restart_syscall
;
2785 return (long)futex_wait(uaddr
, restart
->futex
.flags
,
2786 restart
->futex
.val
, tp
, restart
->futex
.bitset
);
2791 * Userspace tried a 0 -> TID atomic transition of the futex value
2792 * and failed. The kernel side here does the whole locking operation:
2793 * if there are waiters then it will block as a consequence of relying
2794 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2795 * a 0 value of the futex too.).
2797 * Also serves as futex trylock_pi()'ing, and due semantics.
2799 static int futex_lock_pi(u32 __user
*uaddr
, unsigned int flags
,
2800 ktime_t
*time
, int trylock
)
2802 struct hrtimer_sleeper timeout
, *to
;
2803 struct futex_pi_state
*pi_state
= NULL
;
2804 struct rt_mutex_waiter rt_waiter
;
2805 struct futex_hash_bucket
*hb
;
2806 struct futex_q q
= futex_q_init
;
2809 if (!IS_ENABLED(CONFIG_FUTEX_PI
))
2812 if (refill_pi_state_cache())
2815 to
= futex_setup_timer(time
, &timeout
, FLAGS_CLOCKRT
, 0);
2818 ret
= get_futex_key(uaddr
, flags
& FLAGS_SHARED
, &q
.key
, FUTEX_WRITE
);
2819 if (unlikely(ret
!= 0))
2823 hb
= queue_lock(&q
);
2825 ret
= futex_lock_pi_atomic(uaddr
, hb
, &q
.key
, &q
.pi_state
, current
, 0);
2826 if (unlikely(ret
)) {
2828 * Atomic work succeeded and we got the lock,
2829 * or failed. Either way, we do _not_ block.
2833 /* We got the lock. */
2835 goto out_unlock_put_key
;
2840 * Two reasons for this:
2841 * - Task is exiting and we just wait for the
2843 * - The user space value changed.
2846 put_futex_key(&q
.key
);
2850 goto out_unlock_put_key
;
2854 WARN_ON(!q
.pi_state
);
2857 * Only actually queue now that the atomic ops are done:
2862 ret
= rt_mutex_futex_trylock(&q
.pi_state
->pi_mutex
);
2863 /* Fixup the trylock return value: */
2864 ret
= ret
? 0 : -EWOULDBLOCK
;
2868 rt_mutex_init_waiter(&rt_waiter
);
2871 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2872 * hold it while doing rt_mutex_start_proxy(), because then it will
2873 * include hb->lock in the blocking chain, even through we'll not in
2874 * fact hold it while blocking. This will lead it to report -EDEADLK
2875 * and BUG when futex_unlock_pi() interleaves with this.
2877 * Therefore acquire wait_lock while holding hb->lock, but drop the
2878 * latter before calling __rt_mutex_start_proxy_lock(). This
2879 * interleaves with futex_unlock_pi() -- which does a similar lock
2880 * handoff -- such that the latter can observe the futex_q::pi_state
2881 * before __rt_mutex_start_proxy_lock() is done.
2883 raw_spin_lock_irq(&q
.pi_state
->pi_mutex
.wait_lock
);
2884 spin_unlock(q
.lock_ptr
);
2886 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2887 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2888 * it sees the futex_q::pi_state.
2890 ret
= __rt_mutex_start_proxy_lock(&q
.pi_state
->pi_mutex
, &rt_waiter
, current
);
2891 raw_spin_unlock_irq(&q
.pi_state
->pi_mutex
.wait_lock
);
2900 hrtimer_sleeper_start_expires(to
, HRTIMER_MODE_ABS
);
2902 ret
= rt_mutex_wait_proxy_lock(&q
.pi_state
->pi_mutex
, to
, &rt_waiter
);
2905 spin_lock(q
.lock_ptr
);
2907 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2908 * first acquire the hb->lock before removing the lock from the
2909 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2912 * In particular; it is important that futex_unlock_pi() can not
2913 * observe this inconsistency.
2915 if (ret
&& !rt_mutex_cleanup_proxy_lock(&q
.pi_state
->pi_mutex
, &rt_waiter
))
2920 * Fixup the pi_state owner and possibly acquire the lock if we
2923 res
= fixup_owner(uaddr
, &q
, !ret
);
2925 * If fixup_owner() returned an error, proprogate that. If it acquired
2926 * the lock, clear our -ETIMEDOUT or -EINTR.
2929 ret
= (res
< 0) ? res
: 0;
2932 * If fixup_owner() faulted and was unable to handle the fault, unlock
2933 * it and return the fault to userspace.
2935 if (ret
&& (rt_mutex_owner(&q
.pi_state
->pi_mutex
) == current
)) {
2936 pi_state
= q
.pi_state
;
2937 get_pi_state(pi_state
);
2940 /* Unqueue and drop the lock */
2944 rt_mutex_futex_unlock(&pi_state
->pi_mutex
);
2945 put_pi_state(pi_state
);
2954 put_futex_key(&q
.key
);
2957 hrtimer_cancel(&to
->timer
);
2958 destroy_hrtimer_on_stack(&to
->timer
);
2960 return ret
!= -EINTR
? ret
: -ERESTARTNOINTR
;
2965 ret
= fault_in_user_writeable(uaddr
);
2969 if (!(flags
& FLAGS_SHARED
))
2972 put_futex_key(&q
.key
);
2977 * Userspace attempted a TID -> 0 atomic transition, and failed.
2978 * This is the in-kernel slowpath: we look up the PI state (if any),
2979 * and do the rt-mutex unlock.
2981 static int futex_unlock_pi(u32 __user
*uaddr
, unsigned int flags
)
2983 u32
uninitialized_var(curval
), uval
, vpid
= task_pid_vnr(current
);
2984 union futex_key key
= FUTEX_KEY_INIT
;
2985 struct futex_hash_bucket
*hb
;
2986 struct futex_q
*top_waiter
;
2989 if (!IS_ENABLED(CONFIG_FUTEX_PI
))
2993 if (get_user(uval
, uaddr
))
2996 * We release only a lock we actually own:
2998 if ((uval
& FUTEX_TID_MASK
) != vpid
)
3001 ret
= get_futex_key(uaddr
, flags
& FLAGS_SHARED
, &key
, FUTEX_WRITE
);
3005 hb
= hash_futex(&key
);
3006 spin_lock(&hb
->lock
);
3009 * Check waiters first. We do not trust user space values at
3010 * all and we at least want to know if user space fiddled
3011 * with the futex value instead of blindly unlocking.
3013 top_waiter
= futex_top_waiter(hb
, &key
);
3015 struct futex_pi_state
*pi_state
= top_waiter
->pi_state
;
3022 * If current does not own the pi_state then the futex is
3023 * inconsistent and user space fiddled with the futex value.
3025 if (pi_state
->owner
!= current
)
3028 get_pi_state(pi_state
);
3030 * By taking wait_lock while still holding hb->lock, we ensure
3031 * there is no point where we hold neither; and therefore
3032 * wake_futex_pi() must observe a state consistent with what we
3035 * In particular; this forces __rt_mutex_start_proxy() to
3036 * complete such that we're guaranteed to observe the
3037 * rt_waiter. Also see the WARN in wake_futex_pi().
3039 raw_spin_lock_irq(&pi_state
->pi_mutex
.wait_lock
);
3040 spin_unlock(&hb
->lock
);
3042 /* drops pi_state->pi_mutex.wait_lock */
3043 ret
= wake_futex_pi(uaddr
, uval
, pi_state
);
3045 put_pi_state(pi_state
);
3048 * Success, we're done! No tricky corner cases.
3053 * The atomic access to the futex value generated a
3054 * pagefault, so retry the user-access and the wakeup:
3059 * A unconditional UNLOCK_PI op raced against a waiter
3060 * setting the FUTEX_WAITERS bit. Try again.
3065 * wake_futex_pi has detected invalid state. Tell user
3072 * We have no kernel internal state, i.e. no waiters in the
3073 * kernel. Waiters which are about to queue themselves are stuck
3074 * on hb->lock. So we can safely ignore them. We do neither
3075 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3078 if ((ret
= cmpxchg_futex_value_locked(&curval
, uaddr
, uval
, 0))) {
3079 spin_unlock(&hb
->lock
);
3094 * If uval has changed, let user space handle it.
3096 ret
= (curval
== uval
) ? 0 : -EAGAIN
;
3099 spin_unlock(&hb
->lock
);
3101 put_futex_key(&key
);
3105 put_futex_key(&key
);
3110 put_futex_key(&key
);
3112 ret
= fault_in_user_writeable(uaddr
);
3120 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3121 * @hb: the hash_bucket futex_q was original enqueued on
3122 * @q: the futex_q woken while waiting to be requeued
3123 * @key2: the futex_key of the requeue target futex
3124 * @timeout: the timeout associated with the wait (NULL if none)
3126 * Detect if the task was woken on the initial futex as opposed to the requeue
3127 * target futex. If so, determine if it was a timeout or a signal that caused
3128 * the wakeup and return the appropriate error code to the caller. Must be
3129 * called with the hb lock held.
3132 * - 0 = no early wakeup detected;
3133 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3136 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket
*hb
,
3137 struct futex_q
*q
, union futex_key
*key2
,
3138 struct hrtimer_sleeper
*timeout
)
3143 * With the hb lock held, we avoid races while we process the wakeup.
3144 * We only need to hold hb (and not hb2) to ensure atomicity as the
3145 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3146 * It can't be requeued from uaddr2 to something else since we don't
3147 * support a PI aware source futex for requeue.
3149 if (!match_futex(&q
->key
, key2
)) {
3150 WARN_ON(q
->lock_ptr
&& (&hb
->lock
!= q
->lock_ptr
));
3152 * We were woken prior to requeue by a timeout or a signal.
3153 * Unqueue the futex_q and determine which it was.
3155 plist_del(&q
->list
, &hb
->chain
);
3158 /* Handle spurious wakeups gracefully */
3160 if (timeout
&& !timeout
->task
)
3162 else if (signal_pending(current
))
3163 ret
= -ERESTARTNOINTR
;
3169 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3170 * @uaddr: the futex we initially wait on (non-pi)
3171 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3172 * the same type, no requeueing from private to shared, etc.
3173 * @val: the expected value of uaddr
3174 * @abs_time: absolute timeout
3175 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3176 * @uaddr2: the pi futex we will take prior to returning to user-space
3178 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3179 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3180 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3181 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3182 * without one, the pi logic would not know which task to boost/deboost, if
3183 * there was a need to.
3185 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3186 * via the following--
3187 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3188 * 2) wakeup on uaddr2 after a requeue
3192 * If 3, cleanup and return -ERESTARTNOINTR.
3194 * If 2, we may then block on trying to take the rt_mutex and return via:
3195 * 5) successful lock
3198 * 8) other lock acquisition failure
3200 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3202 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3208 static int futex_wait_requeue_pi(u32 __user
*uaddr
, unsigned int flags
,
3209 u32 val
, ktime_t
*abs_time
, u32 bitset
,
3212 struct hrtimer_sleeper timeout
, *to
;
3213 struct futex_pi_state
*pi_state
= NULL
;
3214 struct rt_mutex_waiter rt_waiter
;
3215 struct futex_hash_bucket
*hb
;
3216 union futex_key key2
= FUTEX_KEY_INIT
;
3217 struct futex_q q
= futex_q_init
;
3220 if (!IS_ENABLED(CONFIG_FUTEX_PI
))
3223 if (uaddr
== uaddr2
)
3229 to
= futex_setup_timer(abs_time
, &timeout
, flags
,
3230 current
->timer_slack_ns
);
3233 * The waiter is allocated on our stack, manipulated by the requeue
3234 * code while we sleep on uaddr.
3236 rt_mutex_init_waiter(&rt_waiter
);
3238 ret
= get_futex_key(uaddr2
, flags
& FLAGS_SHARED
, &key2
, FUTEX_WRITE
);
3239 if (unlikely(ret
!= 0))
3243 q
.rt_waiter
= &rt_waiter
;
3244 q
.requeue_pi_key
= &key2
;
3247 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3250 ret
= futex_wait_setup(uaddr
, val
, flags
, &q
, &hb
);
3255 * The check above which compares uaddrs is not sufficient for
3256 * shared futexes. We need to compare the keys:
3258 if (match_futex(&q
.key
, &key2
)) {
3264 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3265 futex_wait_queue_me(hb
, &q
, to
);
3267 spin_lock(&hb
->lock
);
3268 ret
= handle_early_requeue_pi_wakeup(hb
, &q
, &key2
, to
);
3269 spin_unlock(&hb
->lock
);
3274 * In order for us to be here, we know our q.key == key2, and since
3275 * we took the hb->lock above, we also know that futex_requeue() has
3276 * completed and we no longer have to concern ourselves with a wakeup
3277 * race with the atomic proxy lock acquisition by the requeue code. The
3278 * futex_requeue dropped our key1 reference and incremented our key2
3282 /* Check if the requeue code acquired the second futex for us. */
3285 * Got the lock. We might not be the anticipated owner if we
3286 * did a lock-steal - fix up the PI-state in that case.
3288 if (q
.pi_state
&& (q
.pi_state
->owner
!= current
)) {
3289 spin_lock(q
.lock_ptr
);
3290 ret
= fixup_pi_state_owner(uaddr2
, &q
, current
);
3291 if (ret
&& rt_mutex_owner(&q
.pi_state
->pi_mutex
) == current
) {
3292 pi_state
= q
.pi_state
;
3293 get_pi_state(pi_state
);
3296 * Drop the reference to the pi state which
3297 * the requeue_pi() code acquired for us.
3299 put_pi_state(q
.pi_state
);
3300 spin_unlock(q
.lock_ptr
);
3303 struct rt_mutex
*pi_mutex
;
3306 * We have been woken up by futex_unlock_pi(), a timeout, or a
3307 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3310 WARN_ON(!q
.pi_state
);
3311 pi_mutex
= &q
.pi_state
->pi_mutex
;
3312 ret
= rt_mutex_wait_proxy_lock(pi_mutex
, to
, &rt_waiter
);
3314 spin_lock(q
.lock_ptr
);
3315 if (ret
&& !rt_mutex_cleanup_proxy_lock(pi_mutex
, &rt_waiter
))
3318 debug_rt_mutex_free_waiter(&rt_waiter
);
3320 * Fixup the pi_state owner and possibly acquire the lock if we
3323 res
= fixup_owner(uaddr2
, &q
, !ret
);
3325 * If fixup_owner() returned an error, proprogate that. If it
3326 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3329 ret
= (res
< 0) ? res
: 0;
3332 * If fixup_pi_state_owner() faulted and was unable to handle
3333 * the fault, unlock the rt_mutex and return the fault to
3336 if (ret
&& rt_mutex_owner(&q
.pi_state
->pi_mutex
) == current
) {
3337 pi_state
= q
.pi_state
;
3338 get_pi_state(pi_state
);
3341 /* Unqueue and drop the lock. */
3346 rt_mutex_futex_unlock(&pi_state
->pi_mutex
);
3347 put_pi_state(pi_state
);
3350 if (ret
== -EINTR
) {
3352 * We've already been requeued, but cannot restart by calling
3353 * futex_lock_pi() directly. We could restart this syscall, but
3354 * it would detect that the user space "val" changed and return
3355 * -EWOULDBLOCK. Save the overhead of the restart and return
3356 * -EWOULDBLOCK directly.
3362 put_futex_key(&q
.key
);
3364 put_futex_key(&key2
);
3368 hrtimer_cancel(&to
->timer
);
3369 destroy_hrtimer_on_stack(&to
->timer
);
3375 * Support for robust futexes: the kernel cleans up held futexes at
3378 * Implementation: user-space maintains a per-thread list of locks it
3379 * is holding. Upon do_exit(), the kernel carefully walks this list,
3380 * and marks all locks that are owned by this thread with the
3381 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3382 * always manipulated with the lock held, so the list is private and
3383 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3384 * field, to allow the kernel to clean up if the thread dies after
3385 * acquiring the lock, but just before it could have added itself to
3386 * the list. There can only be one such pending lock.
3390 * sys_set_robust_list() - Set the robust-futex list head of a task
3391 * @head: pointer to the list-head
3392 * @len: length of the list-head, as userspace expects
3394 SYSCALL_DEFINE2(set_robust_list
, struct robust_list_head __user
*, head
,
3397 if (!futex_cmpxchg_enabled
)
3400 * The kernel knows only one size for now:
3402 if (unlikely(len
!= sizeof(*head
)))
3405 current
->robust_list
= head
;
3411 * sys_get_robust_list() - Get the robust-futex list head of a task
3412 * @pid: pid of the process [zero for current task]
3413 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3414 * @len_ptr: pointer to a length field, the kernel fills in the header size
3416 SYSCALL_DEFINE3(get_robust_list
, int, pid
,
3417 struct robust_list_head __user
* __user
*, head_ptr
,
3418 size_t __user
*, len_ptr
)
3420 struct robust_list_head __user
*head
;
3422 struct task_struct
*p
;
3424 if (!futex_cmpxchg_enabled
)
3433 p
= find_task_by_vpid(pid
);
3439 if (!ptrace_may_access(p
, PTRACE_MODE_READ_REALCREDS
))
3442 head
= p
->robust_list
;
3445 if (put_user(sizeof(*head
), len_ptr
))
3447 return put_user(head
, head_ptr
);
3456 * Process a futex-list entry, check whether it's owned by the
3457 * dying task, and do notification if so:
3459 static int handle_futex_death(u32 __user
*uaddr
, struct task_struct
*curr
, int pi
)
3461 u32 uval
, uninitialized_var(nval
), mval
;
3464 /* Futex address must be 32bit aligned */
3465 if ((((unsigned long)uaddr
) % sizeof(*uaddr
)) != 0)
3469 if (get_user(uval
, uaddr
))
3472 if ((uval
& FUTEX_TID_MASK
) != task_pid_vnr(curr
))
3476 * Ok, this dying thread is truly holding a futex
3477 * of interest. Set the OWNER_DIED bit atomically
3478 * via cmpxchg, and if the value had FUTEX_WAITERS
3479 * set, wake up a waiter (if any). (We have to do a
3480 * futex_wake() even if OWNER_DIED is already set -
3481 * to handle the rare but possible case of recursive
3482 * thread-death.) The rest of the cleanup is done in
3485 mval
= (uval
& FUTEX_WAITERS
) | FUTEX_OWNER_DIED
;
3488 * We are not holding a lock here, but we want to have
3489 * the pagefault_disable/enable() protection because
3490 * we want to handle the fault gracefully. If the
3491 * access fails we try to fault in the futex with R/W
3492 * verification via get_user_pages. get_user() above
3493 * does not guarantee R/W access. If that fails we
3494 * give up and leave the futex locked.
3496 if ((err
= cmpxchg_futex_value_locked(&nval
, uaddr
, uval
, mval
))) {
3499 if (fault_in_user_writeable(uaddr
))
3517 * Wake robust non-PI futexes here. The wakeup of
3518 * PI futexes happens in exit_pi_state():
3520 if (!pi
&& (uval
& FUTEX_WAITERS
))
3521 futex_wake(uaddr
, 1, 1, FUTEX_BITSET_MATCH_ANY
);
3527 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3529 static inline int fetch_robust_entry(struct robust_list __user
**entry
,
3530 struct robust_list __user
* __user
*head
,
3533 unsigned long uentry
;
3535 if (get_user(uentry
, (unsigned long __user
*)head
))
3538 *entry
= (void __user
*)(uentry
& ~1UL);
3545 * Walk curr->robust_list (very carefully, it's a userspace list!)
3546 * and mark any locks found there dead, and notify any waiters.
3548 * We silently return on any sign of list-walking problem.
3550 void exit_robust_list(struct task_struct
*curr
)
3552 struct robust_list_head __user
*head
= curr
->robust_list
;
3553 struct robust_list __user
*entry
, *next_entry
, *pending
;
3554 unsigned int limit
= ROBUST_LIST_LIMIT
, pi
, pip
;
3555 unsigned int uninitialized_var(next_pi
);
3556 unsigned long futex_offset
;
3559 if (!futex_cmpxchg_enabled
)
3563 * Fetch the list head (which was registered earlier, via
3564 * sys_set_robust_list()):
3566 if (fetch_robust_entry(&entry
, &head
->list
.next
, &pi
))
3569 * Fetch the relative futex offset:
3571 if (get_user(futex_offset
, &head
->futex_offset
))
3574 * Fetch any possibly pending lock-add first, and handle it
3577 if (fetch_robust_entry(&pending
, &head
->list_op_pending
, &pip
))
3580 next_entry
= NULL
; /* avoid warning with gcc */
3581 while (entry
!= &head
->list
) {
3583 * Fetch the next entry in the list before calling
3584 * handle_futex_death:
3586 rc
= fetch_robust_entry(&next_entry
, &entry
->next
, &next_pi
);
3588 * A pending lock might already be on the list, so
3589 * don't process it twice:
3591 if (entry
!= pending
)
3592 if (handle_futex_death((void __user
*)entry
+ futex_offset
,
3600 * Avoid excessively long or circular lists:
3609 handle_futex_death((void __user
*)pending
+ futex_offset
,
3613 long do_futex(u32 __user
*uaddr
, int op
, u32 val
, ktime_t
*timeout
,
3614 u32 __user
*uaddr2
, u32 val2
, u32 val3
)
3616 int cmd
= op
& FUTEX_CMD_MASK
;
3617 unsigned int flags
= 0;
3619 if (!(op
& FUTEX_PRIVATE_FLAG
))
3620 flags
|= FLAGS_SHARED
;
3622 if (op
& FUTEX_CLOCK_REALTIME
) {
3623 flags
|= FLAGS_CLOCKRT
;
3624 if (cmd
!= FUTEX_WAIT
&& cmd
!= FUTEX_WAIT_BITSET
&& \
3625 cmd
!= FUTEX_WAIT_REQUEUE_PI
)
3631 case FUTEX_UNLOCK_PI
:
3632 case FUTEX_TRYLOCK_PI
:
3633 case FUTEX_WAIT_REQUEUE_PI
:
3634 case FUTEX_CMP_REQUEUE_PI
:
3635 if (!futex_cmpxchg_enabled
)
3641 val3
= FUTEX_BITSET_MATCH_ANY
;
3643 case FUTEX_WAIT_BITSET
:
3644 return futex_wait(uaddr
, flags
, val
, timeout
, val3
);
3646 val3
= FUTEX_BITSET_MATCH_ANY
;
3648 case FUTEX_WAKE_BITSET
:
3649 return futex_wake(uaddr
, flags
, val
, val3
);
3651 return futex_requeue(uaddr
, flags
, uaddr2
, val
, val2
, NULL
, 0);
3652 case FUTEX_CMP_REQUEUE
:
3653 return futex_requeue(uaddr
, flags
, uaddr2
, val
, val2
, &val3
, 0);
3655 return futex_wake_op(uaddr
, flags
, uaddr2
, val
, val2
, val3
);
3657 return futex_lock_pi(uaddr
, flags
, timeout
, 0);
3658 case FUTEX_UNLOCK_PI
:
3659 return futex_unlock_pi(uaddr
, flags
);
3660 case FUTEX_TRYLOCK_PI
:
3661 return futex_lock_pi(uaddr
, flags
, NULL
, 1);
3662 case FUTEX_WAIT_REQUEUE_PI
:
3663 val3
= FUTEX_BITSET_MATCH_ANY
;
3664 return futex_wait_requeue_pi(uaddr
, flags
, val
, timeout
, val3
,
3666 case FUTEX_CMP_REQUEUE_PI
:
3667 return futex_requeue(uaddr
, flags
, uaddr2
, val
, val2
, &val3
, 1);
3673 SYSCALL_DEFINE6(futex
, u32 __user
*, uaddr
, int, op
, u32
, val
,
3674 struct __kernel_timespec __user
*, utime
, u32 __user
*, uaddr2
,
3677 struct timespec64 ts
;
3678 ktime_t t
, *tp
= NULL
;
3680 int cmd
= op
& FUTEX_CMD_MASK
;
3682 if (utime
&& (cmd
== FUTEX_WAIT
|| cmd
== FUTEX_LOCK_PI
||
3683 cmd
== FUTEX_WAIT_BITSET
||
3684 cmd
== FUTEX_WAIT_REQUEUE_PI
)) {
3685 if (unlikely(should_fail_futex(!(op
& FUTEX_PRIVATE_FLAG
))))
3687 if (get_timespec64(&ts
, utime
))
3689 if (!timespec64_valid(&ts
))
3692 t
= timespec64_to_ktime(ts
);
3693 if (cmd
== FUTEX_WAIT
)
3694 t
= ktime_add_safe(ktime_get(), t
);
3698 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3699 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3701 if (cmd
== FUTEX_REQUEUE
|| cmd
== FUTEX_CMP_REQUEUE
||
3702 cmd
== FUTEX_CMP_REQUEUE_PI
|| cmd
== FUTEX_WAKE_OP
)
3703 val2
= (u32
) (unsigned long) utime
;
3705 return do_futex(uaddr
, op
, val
, tp
, uaddr2
, val2
, val3
);
3708 #ifdef CONFIG_COMPAT
3710 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3713 compat_fetch_robust_entry(compat_uptr_t
*uentry
, struct robust_list __user
**entry
,
3714 compat_uptr_t __user
*head
, unsigned int *pi
)
3716 if (get_user(*uentry
, head
))
3719 *entry
= compat_ptr((*uentry
) & ~1);
3720 *pi
= (unsigned int)(*uentry
) & 1;
3725 static void __user
*futex_uaddr(struct robust_list __user
*entry
,
3726 compat_long_t futex_offset
)
3728 compat_uptr_t base
= ptr_to_compat(entry
);
3729 void __user
*uaddr
= compat_ptr(base
+ futex_offset
);
3735 * Walk curr->robust_list (very carefully, it's a userspace list!)
3736 * and mark any locks found there dead, and notify any waiters.
3738 * We silently return on any sign of list-walking problem.
3740 void compat_exit_robust_list(struct task_struct
*curr
)
3742 struct compat_robust_list_head __user
*head
= curr
->compat_robust_list
;
3743 struct robust_list __user
*entry
, *next_entry
, *pending
;
3744 unsigned int limit
= ROBUST_LIST_LIMIT
, pi
, pip
;
3745 unsigned int uninitialized_var(next_pi
);
3746 compat_uptr_t uentry
, next_uentry
, upending
;
3747 compat_long_t futex_offset
;
3750 if (!futex_cmpxchg_enabled
)
3754 * Fetch the list head (which was registered earlier, via
3755 * sys_set_robust_list()):
3757 if (compat_fetch_robust_entry(&uentry
, &entry
, &head
->list
.next
, &pi
))
3760 * Fetch the relative futex offset:
3762 if (get_user(futex_offset
, &head
->futex_offset
))
3765 * Fetch any possibly pending lock-add first, and handle it
3768 if (compat_fetch_robust_entry(&upending
, &pending
,
3769 &head
->list_op_pending
, &pip
))
3772 next_entry
= NULL
; /* avoid warning with gcc */
3773 while (entry
!= (struct robust_list __user
*) &head
->list
) {
3775 * Fetch the next entry in the list before calling
3776 * handle_futex_death:
3778 rc
= compat_fetch_robust_entry(&next_uentry
, &next_entry
,
3779 (compat_uptr_t __user
*)&entry
->next
, &next_pi
);
3781 * A pending lock might already be on the list, so
3782 * dont process it twice:
3784 if (entry
!= pending
) {
3785 void __user
*uaddr
= futex_uaddr(entry
, futex_offset
);
3787 if (handle_futex_death(uaddr
, curr
, pi
))
3792 uentry
= next_uentry
;
3796 * Avoid excessively long or circular lists:
3804 void __user
*uaddr
= futex_uaddr(pending
, futex_offset
);
3806 handle_futex_death(uaddr
, curr
, pip
);
3810 COMPAT_SYSCALL_DEFINE2(set_robust_list
,
3811 struct compat_robust_list_head __user
*, head
,
3814 if (!futex_cmpxchg_enabled
)
3817 if (unlikely(len
!= sizeof(*head
)))
3820 current
->compat_robust_list
= head
;
3825 COMPAT_SYSCALL_DEFINE3(get_robust_list
, int, pid
,
3826 compat_uptr_t __user
*, head_ptr
,
3827 compat_size_t __user
*, len_ptr
)
3829 struct compat_robust_list_head __user
*head
;
3831 struct task_struct
*p
;
3833 if (!futex_cmpxchg_enabled
)
3842 p
= find_task_by_vpid(pid
);
3848 if (!ptrace_may_access(p
, PTRACE_MODE_READ_REALCREDS
))
3851 head
= p
->compat_robust_list
;
3854 if (put_user(sizeof(*head
), len_ptr
))
3856 return put_user(ptr_to_compat(head
), head_ptr
);
3863 #endif /* CONFIG_COMPAT */
3865 #ifdef CONFIG_COMPAT_32BIT_TIME
3866 SYSCALL_DEFINE6(futex_time32
, u32 __user
*, uaddr
, int, op
, u32
, val
,
3867 struct old_timespec32 __user
*, utime
, u32 __user
*, uaddr2
,
3870 struct timespec64 ts
;
3871 ktime_t t
, *tp
= NULL
;
3873 int cmd
= op
& FUTEX_CMD_MASK
;
3875 if (utime
&& (cmd
== FUTEX_WAIT
|| cmd
== FUTEX_LOCK_PI
||
3876 cmd
== FUTEX_WAIT_BITSET
||
3877 cmd
== FUTEX_WAIT_REQUEUE_PI
)) {
3878 if (get_old_timespec32(&ts
, utime
))
3880 if (!timespec64_valid(&ts
))
3883 t
= timespec64_to_ktime(ts
);
3884 if (cmd
== FUTEX_WAIT
)
3885 t
= ktime_add_safe(ktime_get(), t
);
3888 if (cmd
== FUTEX_REQUEUE
|| cmd
== FUTEX_CMP_REQUEUE
||
3889 cmd
== FUTEX_CMP_REQUEUE_PI
|| cmd
== FUTEX_WAKE_OP
)
3890 val2
= (int) (unsigned long) utime
;
3892 return do_futex(uaddr
, op
, val
, tp
, uaddr2
, val2
, val3
);
3894 #endif /* CONFIG_COMPAT_32BIT_TIME */
3896 static void __init
futex_detect_cmpxchg(void)
3898 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3902 * This will fail and we want it. Some arch implementations do
3903 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3904 * functionality. We want to know that before we call in any
3905 * of the complex code paths. Also we want to prevent
3906 * registration of robust lists in that case. NULL is
3907 * guaranteed to fault and we get -EFAULT on functional
3908 * implementation, the non-functional ones will return
3911 if (cmpxchg_futex_value_locked(&curval
, NULL
, 0, 0) == -EFAULT
)
3912 futex_cmpxchg_enabled
= 1;
3916 static int __init
futex_init(void)
3918 unsigned int futex_shift
;
3921 #if CONFIG_BASE_SMALL
3922 futex_hashsize
= 16;
3924 futex_hashsize
= roundup_pow_of_two(256 * num_possible_cpus());
3927 futex_queues
= alloc_large_system_hash("futex", sizeof(*futex_queues
),
3929 futex_hashsize
< 256 ? HASH_SMALL
: 0,
3931 futex_hashsize
, futex_hashsize
);
3932 futex_hashsize
= 1UL << futex_shift
;
3934 futex_detect_cmpxchg();
3936 for (i
= 0; i
< futex_hashsize
; i
++) {
3937 atomic_set(&futex_queues
[i
].waiters
, 0);
3938 plist_head_init(&futex_queues
[i
].chain
);
3939 spin_lock_init(&futex_queues
[i
].lock
);
3944 core_initcall(futex_init
);