x86: Save stack pointer in perf live regs savings
[linux/fpc-iii.git] / net / ipv4 / arp.c
blob1b74d3b643712ad94ed3bd2fd6d2aab6d6cd1d96
1 /* linux/net/ipv4/arp.c
3 * Copyright (C) 1994 by Florian La Roche
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
76 #include <linux/module.h>
77 #include <linux/types.h>
78 #include <linux/string.h>
79 #include <linux/kernel.h>
80 #include <linux/capability.h>
81 #include <linux/socket.h>
82 #include <linux/sockios.h>
83 #include <linux/errno.h>
84 #include <linux/in.h>
85 #include <linux/mm.h>
86 #include <linux/inet.h>
87 #include <linux/inetdevice.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/fddidevice.h>
91 #include <linux/if_arp.h>
92 #include <linux/trdevice.h>
93 #include <linux/skbuff.h>
94 #include <linux/proc_fs.h>
95 #include <linux/seq_file.h>
96 #include <linux/stat.h>
97 #include <linux/init.h>
98 #include <linux/net.h>
99 #include <linux/rcupdate.h>
100 #include <linux/jhash.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table *clip_tbl_hook;
119 EXPORT_SYMBOL(clip_tbl_hook);
120 #endif
122 #include <asm/system.h>
123 #include <linux/uaccess.h>
125 #include <linux/netfilter_arp.h>
128 * Interface to generic neighbour cache.
130 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
131 static int arp_constructor(struct neighbour *neigh);
132 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
133 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
134 static void parp_redo(struct sk_buff *skb);
136 static const struct neigh_ops arp_generic_ops = {
137 .family = AF_INET,
138 .solicit = arp_solicit,
139 .error_report = arp_error_report,
140 .output = neigh_resolve_output,
141 .connected_output = neigh_connected_output,
142 .hh_output = dev_queue_xmit,
143 .queue_xmit = dev_queue_xmit,
146 static const struct neigh_ops arp_hh_ops = {
147 .family = AF_INET,
148 .solicit = arp_solicit,
149 .error_report = arp_error_report,
150 .output = neigh_resolve_output,
151 .connected_output = neigh_resolve_output,
152 .hh_output = dev_queue_xmit,
153 .queue_xmit = dev_queue_xmit,
156 static const struct neigh_ops arp_direct_ops = {
157 .family = AF_INET,
158 .output = dev_queue_xmit,
159 .connected_output = dev_queue_xmit,
160 .hh_output = dev_queue_xmit,
161 .queue_xmit = dev_queue_xmit,
164 static const struct neigh_ops arp_broken_ops = {
165 .family = AF_INET,
166 .solicit = arp_solicit,
167 .error_report = arp_error_report,
168 .output = neigh_compat_output,
169 .connected_output = neigh_compat_output,
170 .hh_output = dev_queue_xmit,
171 .queue_xmit = dev_queue_xmit,
174 struct neigh_table arp_tbl = {
175 .family = AF_INET,
176 .entry_size = sizeof(struct neighbour) + 4,
177 .key_len = 4,
178 .hash = arp_hash,
179 .constructor = arp_constructor,
180 .proxy_redo = parp_redo,
181 .id = "arp_cache",
182 .parms = {
183 .tbl = &arp_tbl,
184 .base_reachable_time = 30 * HZ,
185 .retrans_time = 1 * HZ,
186 .gc_staletime = 60 * HZ,
187 .reachable_time = 30 * HZ,
188 .delay_probe_time = 5 * HZ,
189 .queue_len = 3,
190 .ucast_probes = 3,
191 .mcast_probes = 3,
192 .anycast_delay = 1 * HZ,
193 .proxy_delay = (8 * HZ) / 10,
194 .proxy_qlen = 64,
195 .locktime = 1 * HZ,
197 .gc_interval = 30 * HZ,
198 .gc_thresh1 = 128,
199 .gc_thresh2 = 512,
200 .gc_thresh3 = 1024,
202 EXPORT_SYMBOL(arp_tbl);
204 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
206 switch (dev->type) {
207 case ARPHRD_ETHER:
208 case ARPHRD_FDDI:
209 case ARPHRD_IEEE802:
210 ip_eth_mc_map(addr, haddr);
211 return 0;
212 case ARPHRD_IEEE802_TR:
213 ip_tr_mc_map(addr, haddr);
214 return 0;
215 case ARPHRD_INFINIBAND:
216 ip_ib_mc_map(addr, dev->broadcast, haddr);
217 return 0;
218 case ARPHRD_IPGRE:
219 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
220 return 0;
221 default:
222 if (dir) {
223 memcpy(haddr, dev->broadcast, dev->addr_len);
224 return 0;
227 return -EINVAL;
231 static u32 arp_hash(const void *pkey,
232 const struct net_device *dev,
233 __u32 hash_rnd)
235 return jhash_2words(*(u32 *)pkey, dev->ifindex, hash_rnd);
238 static int arp_constructor(struct neighbour *neigh)
240 __be32 addr = *(__be32 *)neigh->primary_key;
241 struct net_device *dev = neigh->dev;
242 struct in_device *in_dev;
243 struct neigh_parms *parms;
245 rcu_read_lock();
246 in_dev = __in_dev_get_rcu(dev);
247 if (in_dev == NULL) {
248 rcu_read_unlock();
249 return -EINVAL;
252 neigh->type = inet_addr_type(dev_net(dev), addr);
254 parms = in_dev->arp_parms;
255 __neigh_parms_put(neigh->parms);
256 neigh->parms = neigh_parms_clone(parms);
257 rcu_read_unlock();
259 if (!dev->header_ops) {
260 neigh->nud_state = NUD_NOARP;
261 neigh->ops = &arp_direct_ops;
262 neigh->output = neigh->ops->queue_xmit;
263 } else {
264 /* Good devices (checked by reading texts, but only Ethernet is
265 tested)
267 ARPHRD_ETHER: (ethernet, apfddi)
268 ARPHRD_FDDI: (fddi)
269 ARPHRD_IEEE802: (tr)
270 ARPHRD_METRICOM: (strip)
271 ARPHRD_ARCNET:
272 etc. etc. etc.
274 ARPHRD_IPDDP will also work, if author repairs it.
275 I did not it, because this driver does not work even
276 in old paradigm.
279 #if 1
280 /* So... these "amateur" devices are hopeless.
281 The only thing, that I can say now:
282 It is very sad that we need to keep ugly obsolete
283 code to make them happy.
285 They should be moved to more reasonable state, now
286 they use rebuild_header INSTEAD OF hard_start_xmit!!!
287 Besides that, they are sort of out of date
288 (a lot of redundant clones/copies, useless in 2.1),
289 I wonder why people believe that they work.
291 switch (dev->type) {
292 default:
293 break;
294 case ARPHRD_ROSE:
295 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
296 case ARPHRD_AX25:
297 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
298 case ARPHRD_NETROM:
299 #endif
300 neigh->ops = &arp_broken_ops;
301 neigh->output = neigh->ops->output;
302 return 0;
303 #else
304 break;
305 #endif
307 #endif
308 if (neigh->type == RTN_MULTICAST) {
309 neigh->nud_state = NUD_NOARP;
310 arp_mc_map(addr, neigh->ha, dev, 1);
311 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
312 neigh->nud_state = NUD_NOARP;
313 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
314 } else if (neigh->type == RTN_BROADCAST ||
315 (dev->flags & IFF_POINTOPOINT)) {
316 neigh->nud_state = NUD_NOARP;
317 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
320 if (dev->header_ops->cache)
321 neigh->ops = &arp_hh_ops;
322 else
323 neigh->ops = &arp_generic_ops;
325 if (neigh->nud_state & NUD_VALID)
326 neigh->output = neigh->ops->connected_output;
327 else
328 neigh->output = neigh->ops->output;
330 return 0;
333 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
335 dst_link_failure(skb);
336 kfree_skb(skb);
339 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
341 __be32 saddr = 0;
342 u8 *dst_ha = NULL;
343 struct net_device *dev = neigh->dev;
344 __be32 target = *(__be32 *)neigh->primary_key;
345 int probes = atomic_read(&neigh->probes);
346 struct in_device *in_dev;
348 rcu_read_lock();
349 in_dev = __in_dev_get_rcu(dev);
350 if (!in_dev) {
351 rcu_read_unlock();
352 return;
354 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
355 default:
356 case 0: /* By default announce any local IP */
357 if (skb && inet_addr_type(dev_net(dev),
358 ip_hdr(skb)->saddr) == RTN_LOCAL)
359 saddr = ip_hdr(skb)->saddr;
360 break;
361 case 1: /* Restrict announcements of saddr in same subnet */
362 if (!skb)
363 break;
364 saddr = ip_hdr(skb)->saddr;
365 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
366 /* saddr should be known to target */
367 if (inet_addr_onlink(in_dev, target, saddr))
368 break;
370 saddr = 0;
371 break;
372 case 2: /* Avoid secondary IPs, get a primary/preferred one */
373 break;
375 rcu_read_unlock();
377 if (!saddr)
378 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
380 probes -= neigh->parms->ucast_probes;
381 if (probes < 0) {
382 if (!(neigh->nud_state & NUD_VALID))
383 printk(KERN_DEBUG
384 "trying to ucast probe in NUD_INVALID\n");
385 dst_ha = neigh->ha;
386 read_lock_bh(&neigh->lock);
387 } else {
388 probes -= neigh->parms->app_probes;
389 if (probes < 0) {
390 #ifdef CONFIG_ARPD
391 neigh_app_ns(neigh);
392 #endif
393 return;
397 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
398 dst_ha, dev->dev_addr, NULL);
399 if (dst_ha)
400 read_unlock_bh(&neigh->lock);
403 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
405 int scope;
407 switch (IN_DEV_ARP_IGNORE(in_dev)) {
408 case 0: /* Reply, the tip is already validated */
409 return 0;
410 case 1: /* Reply only if tip is configured on the incoming interface */
411 sip = 0;
412 scope = RT_SCOPE_HOST;
413 break;
414 case 2: /*
415 * Reply only if tip is configured on the incoming interface
416 * and is in same subnet as sip
418 scope = RT_SCOPE_HOST;
419 break;
420 case 3: /* Do not reply for scope host addresses */
421 sip = 0;
422 scope = RT_SCOPE_LINK;
423 break;
424 case 4: /* Reserved */
425 case 5:
426 case 6:
427 case 7:
428 return 0;
429 case 8: /* Do not reply */
430 return 1;
431 default:
432 return 0;
434 return !inet_confirm_addr(in_dev, sip, tip, scope);
437 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
439 struct rtable *rt;
440 int flag = 0;
441 /*unsigned long now; */
442 struct net *net = dev_net(dev);
444 rt = ip_route_output(net, sip, tip, 0, 0);
445 if (IS_ERR(rt))
446 return 1;
447 if (rt->dst.dev != dev) {
448 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
449 flag = 1;
451 ip_rt_put(rt);
452 return flag;
455 /* OBSOLETE FUNCTIONS */
458 * Find an arp mapping in the cache. If not found, post a request.
460 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
461 * even if it exists. It is supposed that skb->dev was mangled
462 * by a virtual device (eql, shaper). Nobody but broken devices
463 * is allowed to use this function, it is scheduled to be removed. --ANK
466 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
467 __be32 paddr, struct net_device *dev)
469 switch (addr_hint) {
470 case RTN_LOCAL:
471 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
472 memcpy(haddr, dev->dev_addr, dev->addr_len);
473 return 1;
474 case RTN_MULTICAST:
475 arp_mc_map(paddr, haddr, dev, 1);
476 return 1;
477 case RTN_BROADCAST:
478 memcpy(haddr, dev->broadcast, dev->addr_len);
479 return 1;
481 return 0;
485 int arp_find(unsigned char *haddr, struct sk_buff *skb)
487 struct net_device *dev = skb->dev;
488 __be32 paddr;
489 struct neighbour *n;
491 if (!skb_dst(skb)) {
492 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
493 kfree_skb(skb);
494 return 1;
497 paddr = skb_rtable(skb)->rt_gateway;
499 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
500 paddr, dev))
501 return 0;
503 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
505 if (n) {
506 n->used = jiffies;
507 if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
508 neigh_ha_snapshot(haddr, n, dev);
509 neigh_release(n);
510 return 0;
512 neigh_release(n);
513 } else
514 kfree_skb(skb);
515 return 1;
517 EXPORT_SYMBOL(arp_find);
519 /* END OF OBSOLETE FUNCTIONS */
521 int arp_bind_neighbour(struct dst_entry *dst)
523 struct net_device *dev = dst->dev;
524 struct neighbour *n = dst->neighbour;
526 if (dev == NULL)
527 return -EINVAL;
528 if (n == NULL) {
529 __be32 nexthop = ((struct rtable *)dst)->rt_gateway;
530 if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
531 nexthop = 0;
532 n = __neigh_lookup_errno(
533 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
534 dev->type == ARPHRD_ATM ?
535 clip_tbl_hook :
536 #endif
537 &arp_tbl, &nexthop, dev);
538 if (IS_ERR(n))
539 return PTR_ERR(n);
540 dst->neighbour = n;
542 return 0;
546 * Check if we can use proxy ARP for this path
548 static inline int arp_fwd_proxy(struct in_device *in_dev,
549 struct net_device *dev, struct rtable *rt)
551 struct in_device *out_dev;
552 int imi, omi = -1;
554 if (rt->dst.dev == dev)
555 return 0;
557 if (!IN_DEV_PROXY_ARP(in_dev))
558 return 0;
559 imi = IN_DEV_MEDIUM_ID(in_dev);
560 if (imi == 0)
561 return 1;
562 if (imi == -1)
563 return 0;
565 /* place to check for proxy_arp for routes */
567 out_dev = __in_dev_get_rcu(rt->dst.dev);
568 if (out_dev)
569 omi = IN_DEV_MEDIUM_ID(out_dev);
571 return omi != imi && omi != -1;
575 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
577 * RFC3069 supports proxy arp replies back to the same interface. This
578 * is done to support (ethernet) switch features, like RFC 3069, where
579 * the individual ports are not allowed to communicate with each
580 * other, BUT they are allowed to talk to the upstream router. As
581 * described in RFC 3069, it is possible to allow these hosts to
582 * communicate through the upstream router, by proxy_arp'ing.
584 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
586 * This technology is known by different names:
587 * In RFC 3069 it is called VLAN Aggregation.
588 * Cisco and Allied Telesyn call it Private VLAN.
589 * Hewlett-Packard call it Source-Port filtering or port-isolation.
590 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
593 static inline int arp_fwd_pvlan(struct in_device *in_dev,
594 struct net_device *dev, struct rtable *rt,
595 __be32 sip, __be32 tip)
597 /* Private VLAN is only concerned about the same ethernet segment */
598 if (rt->dst.dev != dev)
599 return 0;
601 /* Don't reply on self probes (often done by windowz boxes)*/
602 if (sip == tip)
603 return 0;
605 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
606 return 1;
607 else
608 return 0;
612 * Interface to link layer: send routine and receive handler.
616 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
617 * message.
619 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
620 struct net_device *dev, __be32 src_ip,
621 const unsigned char *dest_hw,
622 const unsigned char *src_hw,
623 const unsigned char *target_hw)
625 struct sk_buff *skb;
626 struct arphdr *arp;
627 unsigned char *arp_ptr;
630 * Allocate a buffer
633 skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
634 if (skb == NULL)
635 return NULL;
637 skb_reserve(skb, LL_RESERVED_SPACE(dev));
638 skb_reset_network_header(skb);
639 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
640 skb->dev = dev;
641 skb->protocol = htons(ETH_P_ARP);
642 if (src_hw == NULL)
643 src_hw = dev->dev_addr;
644 if (dest_hw == NULL)
645 dest_hw = dev->broadcast;
648 * Fill the device header for the ARP frame
650 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
651 goto out;
654 * Fill out the arp protocol part.
656 * The arp hardware type should match the device type, except for FDDI,
657 * which (according to RFC 1390) should always equal 1 (Ethernet).
660 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
661 * DIX code for the protocol. Make these device structure fields.
663 switch (dev->type) {
664 default:
665 arp->ar_hrd = htons(dev->type);
666 arp->ar_pro = htons(ETH_P_IP);
667 break;
669 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
670 case ARPHRD_AX25:
671 arp->ar_hrd = htons(ARPHRD_AX25);
672 arp->ar_pro = htons(AX25_P_IP);
673 break;
675 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
676 case ARPHRD_NETROM:
677 arp->ar_hrd = htons(ARPHRD_NETROM);
678 arp->ar_pro = htons(AX25_P_IP);
679 break;
680 #endif
681 #endif
683 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
684 case ARPHRD_FDDI:
685 arp->ar_hrd = htons(ARPHRD_ETHER);
686 arp->ar_pro = htons(ETH_P_IP);
687 break;
688 #endif
689 #if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
690 case ARPHRD_IEEE802_TR:
691 arp->ar_hrd = htons(ARPHRD_IEEE802);
692 arp->ar_pro = htons(ETH_P_IP);
693 break;
694 #endif
697 arp->ar_hln = dev->addr_len;
698 arp->ar_pln = 4;
699 arp->ar_op = htons(type);
701 arp_ptr = (unsigned char *)(arp + 1);
703 memcpy(arp_ptr, src_hw, dev->addr_len);
704 arp_ptr += dev->addr_len;
705 memcpy(arp_ptr, &src_ip, 4);
706 arp_ptr += 4;
707 if (target_hw != NULL)
708 memcpy(arp_ptr, target_hw, dev->addr_len);
709 else
710 memset(arp_ptr, 0, dev->addr_len);
711 arp_ptr += dev->addr_len;
712 memcpy(arp_ptr, &dest_ip, 4);
714 return skb;
716 out:
717 kfree_skb(skb);
718 return NULL;
720 EXPORT_SYMBOL(arp_create);
723 * Send an arp packet.
725 void arp_xmit(struct sk_buff *skb)
727 /* Send it off, maybe filter it using firewalling first. */
728 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
730 EXPORT_SYMBOL(arp_xmit);
733 * Create and send an arp packet.
735 void arp_send(int type, int ptype, __be32 dest_ip,
736 struct net_device *dev, __be32 src_ip,
737 const unsigned char *dest_hw, const unsigned char *src_hw,
738 const unsigned char *target_hw)
740 struct sk_buff *skb;
743 * No arp on this interface.
746 if (dev->flags&IFF_NOARP)
747 return;
749 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
750 dest_hw, src_hw, target_hw);
751 if (skb == NULL)
752 return;
754 arp_xmit(skb);
756 EXPORT_SYMBOL(arp_send);
759 * Process an arp request.
762 static int arp_process(struct sk_buff *skb)
764 struct net_device *dev = skb->dev;
765 struct in_device *in_dev = __in_dev_get_rcu(dev);
766 struct arphdr *arp;
767 unsigned char *arp_ptr;
768 struct rtable *rt;
769 unsigned char *sha;
770 __be32 sip, tip;
771 u16 dev_type = dev->type;
772 int addr_type;
773 struct neighbour *n;
774 struct net *net = dev_net(dev);
776 /* arp_rcv below verifies the ARP header and verifies the device
777 * is ARP'able.
780 if (in_dev == NULL)
781 goto out;
783 arp = arp_hdr(skb);
785 switch (dev_type) {
786 default:
787 if (arp->ar_pro != htons(ETH_P_IP) ||
788 htons(dev_type) != arp->ar_hrd)
789 goto out;
790 break;
791 case ARPHRD_ETHER:
792 case ARPHRD_IEEE802_TR:
793 case ARPHRD_FDDI:
794 case ARPHRD_IEEE802:
796 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
797 * devices, according to RFC 2625) devices will accept ARP
798 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
799 * This is the case also of FDDI, where the RFC 1390 says that
800 * FDDI devices should accept ARP hardware of (1) Ethernet,
801 * however, to be more robust, we'll accept both 1 (Ethernet)
802 * or 6 (IEEE 802.2)
804 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
805 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
806 arp->ar_pro != htons(ETH_P_IP))
807 goto out;
808 break;
809 case ARPHRD_AX25:
810 if (arp->ar_pro != htons(AX25_P_IP) ||
811 arp->ar_hrd != htons(ARPHRD_AX25))
812 goto out;
813 break;
814 case ARPHRD_NETROM:
815 if (arp->ar_pro != htons(AX25_P_IP) ||
816 arp->ar_hrd != htons(ARPHRD_NETROM))
817 goto out;
818 break;
821 /* Understand only these message types */
823 if (arp->ar_op != htons(ARPOP_REPLY) &&
824 arp->ar_op != htons(ARPOP_REQUEST))
825 goto out;
828 * Extract fields
830 arp_ptr = (unsigned char *)(arp + 1);
831 sha = arp_ptr;
832 arp_ptr += dev->addr_len;
833 memcpy(&sip, arp_ptr, 4);
834 arp_ptr += 4;
835 arp_ptr += dev->addr_len;
836 memcpy(&tip, arp_ptr, 4);
838 * Check for bad requests for 127.x.x.x and requests for multicast
839 * addresses. If this is one such, delete it.
841 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
842 goto out;
845 * Special case: We must set Frame Relay source Q.922 address
847 if (dev_type == ARPHRD_DLCI)
848 sha = dev->broadcast;
851 * Process entry. The idea here is we want to send a reply if it is a
852 * request for us or if it is a request for someone else that we hold
853 * a proxy for. We want to add an entry to our cache if it is a reply
854 * to us or if it is a request for our address.
855 * (The assumption for this last is that if someone is requesting our
856 * address, they are probably intending to talk to us, so it saves time
857 * if we cache their address. Their address is also probably not in
858 * our cache, since ours is not in their cache.)
860 * Putting this another way, we only care about replies if they are to
861 * us, in which case we add them to the cache. For requests, we care
862 * about those for us and those for our proxies. We reply to both,
863 * and in the case of requests for us we add the requester to the arp
864 * cache.
867 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
868 if (sip == 0) {
869 if (arp->ar_op == htons(ARPOP_REQUEST) &&
870 inet_addr_type(net, tip) == RTN_LOCAL &&
871 !arp_ignore(in_dev, sip, tip))
872 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
873 dev->dev_addr, sha);
874 goto out;
877 if (arp->ar_op == htons(ARPOP_REQUEST) &&
878 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
880 rt = skb_rtable(skb);
881 addr_type = rt->rt_type;
883 if (addr_type == RTN_LOCAL) {
884 int dont_send;
886 dont_send = arp_ignore(in_dev, sip, tip);
887 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
888 dont_send = arp_filter(sip, tip, dev);
889 if (!dont_send) {
890 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
891 if (n) {
892 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
893 dev, tip, sha, dev->dev_addr,
894 sha);
895 neigh_release(n);
898 goto out;
899 } else if (IN_DEV_FORWARD(in_dev)) {
900 if (addr_type == RTN_UNICAST &&
901 (arp_fwd_proxy(in_dev, dev, rt) ||
902 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
903 pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
904 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
905 if (n)
906 neigh_release(n);
908 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
909 skb->pkt_type == PACKET_HOST ||
910 in_dev->arp_parms->proxy_delay == 0) {
911 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
912 dev, tip, sha, dev->dev_addr,
913 sha);
914 } else {
915 pneigh_enqueue(&arp_tbl,
916 in_dev->arp_parms, skb);
917 return 0;
919 goto out;
924 /* Update our ARP tables */
926 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
928 if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
929 /* Unsolicited ARP is not accepted by default.
930 It is possible, that this option should be enabled for some
931 devices (strip is candidate)
933 if (n == NULL &&
934 (arp->ar_op == htons(ARPOP_REPLY) ||
935 (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
936 inet_addr_type(net, sip) == RTN_UNICAST)
937 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
940 if (n) {
941 int state = NUD_REACHABLE;
942 int override;
944 /* If several different ARP replies follows back-to-back,
945 use the FIRST one. It is possible, if several proxy
946 agents are active. Taking the first reply prevents
947 arp trashing and chooses the fastest router.
949 override = time_after(jiffies, n->updated + n->parms->locktime);
951 /* Broadcast replies and request packets
952 do not assert neighbour reachability.
954 if (arp->ar_op != htons(ARPOP_REPLY) ||
955 skb->pkt_type != PACKET_HOST)
956 state = NUD_STALE;
957 neigh_update(n, sha, state,
958 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
959 neigh_release(n);
962 out:
963 consume_skb(skb);
964 return 0;
967 static void parp_redo(struct sk_buff *skb)
969 arp_process(skb);
974 * Receive an arp request from the device layer.
977 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
978 struct packet_type *pt, struct net_device *orig_dev)
980 struct arphdr *arp;
982 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
983 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
984 goto freeskb;
986 arp = arp_hdr(skb);
987 if (arp->ar_hln != dev->addr_len ||
988 dev->flags & IFF_NOARP ||
989 skb->pkt_type == PACKET_OTHERHOST ||
990 skb->pkt_type == PACKET_LOOPBACK ||
991 arp->ar_pln != 4)
992 goto freeskb;
994 skb = skb_share_check(skb, GFP_ATOMIC);
995 if (skb == NULL)
996 goto out_of_mem;
998 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
1000 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
1002 freeskb:
1003 kfree_skb(skb);
1004 out_of_mem:
1005 return 0;
1009 * User level interface (ioctl)
1013 * Set (create) an ARP cache entry.
1016 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1018 if (dev == NULL) {
1019 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1020 return 0;
1022 if (__in_dev_get_rtnl(dev)) {
1023 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1024 return 0;
1026 return -ENXIO;
1029 static int arp_req_set_public(struct net *net, struct arpreq *r,
1030 struct net_device *dev)
1032 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1033 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1035 if (mask && mask != htonl(0xFFFFFFFF))
1036 return -EINVAL;
1037 if (!dev && (r->arp_flags & ATF_COM)) {
1038 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1039 r->arp_ha.sa_data);
1040 if (!dev)
1041 return -ENODEV;
1043 if (mask) {
1044 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1045 return -ENOBUFS;
1046 return 0;
1049 return arp_req_set_proxy(net, dev, 1);
1052 static int arp_req_set(struct net *net, struct arpreq *r,
1053 struct net_device *dev)
1055 __be32 ip;
1056 struct neighbour *neigh;
1057 int err;
1059 if (r->arp_flags & ATF_PUBL)
1060 return arp_req_set_public(net, r, dev);
1062 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1063 if (r->arp_flags & ATF_PERM)
1064 r->arp_flags |= ATF_COM;
1065 if (dev == NULL) {
1066 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1068 if (IS_ERR(rt))
1069 return PTR_ERR(rt);
1070 dev = rt->dst.dev;
1071 ip_rt_put(rt);
1072 if (!dev)
1073 return -EINVAL;
1075 switch (dev->type) {
1076 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1077 case ARPHRD_FDDI:
1079 * According to RFC 1390, FDDI devices should accept ARP
1080 * hardware types of 1 (Ethernet). However, to be more
1081 * robust, we'll accept hardware types of either 1 (Ethernet)
1082 * or 6 (IEEE 802.2).
1084 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1085 r->arp_ha.sa_family != ARPHRD_ETHER &&
1086 r->arp_ha.sa_family != ARPHRD_IEEE802)
1087 return -EINVAL;
1088 break;
1089 #endif
1090 default:
1091 if (r->arp_ha.sa_family != dev->type)
1092 return -EINVAL;
1093 break;
1096 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1097 err = PTR_ERR(neigh);
1098 if (!IS_ERR(neigh)) {
1099 unsigned state = NUD_STALE;
1100 if (r->arp_flags & ATF_PERM)
1101 state = NUD_PERMANENT;
1102 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1103 r->arp_ha.sa_data : NULL, state,
1104 NEIGH_UPDATE_F_OVERRIDE |
1105 NEIGH_UPDATE_F_ADMIN);
1106 neigh_release(neigh);
1108 return err;
1111 static unsigned arp_state_to_flags(struct neighbour *neigh)
1113 if (neigh->nud_state&NUD_PERMANENT)
1114 return ATF_PERM | ATF_COM;
1115 else if (neigh->nud_state&NUD_VALID)
1116 return ATF_COM;
1117 else
1118 return 0;
1122 * Get an ARP cache entry.
1125 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1127 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1128 struct neighbour *neigh;
1129 int err = -ENXIO;
1131 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1132 if (neigh) {
1133 read_lock_bh(&neigh->lock);
1134 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1135 r->arp_flags = arp_state_to_flags(neigh);
1136 read_unlock_bh(&neigh->lock);
1137 r->arp_ha.sa_family = dev->type;
1138 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1139 neigh_release(neigh);
1140 err = 0;
1142 return err;
1145 int arp_invalidate(struct net_device *dev, __be32 ip)
1147 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1148 int err = -ENXIO;
1150 if (neigh) {
1151 if (neigh->nud_state & ~NUD_NOARP)
1152 err = neigh_update(neigh, NULL, NUD_FAILED,
1153 NEIGH_UPDATE_F_OVERRIDE|
1154 NEIGH_UPDATE_F_ADMIN);
1155 neigh_release(neigh);
1158 return err;
1160 EXPORT_SYMBOL(arp_invalidate);
1162 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1163 struct net_device *dev)
1165 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1166 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1168 if (mask == htonl(0xFFFFFFFF))
1169 return pneigh_delete(&arp_tbl, net, &ip, dev);
1171 if (mask)
1172 return -EINVAL;
1174 return arp_req_set_proxy(net, dev, 0);
1177 static int arp_req_delete(struct net *net, struct arpreq *r,
1178 struct net_device *dev)
1180 __be32 ip;
1182 if (r->arp_flags & ATF_PUBL)
1183 return arp_req_delete_public(net, r, dev);
1185 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1186 if (dev == NULL) {
1187 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1188 if (IS_ERR(rt))
1189 return PTR_ERR(rt);
1190 dev = rt->dst.dev;
1191 ip_rt_put(rt);
1192 if (!dev)
1193 return -EINVAL;
1195 return arp_invalidate(dev, ip);
1199 * Handle an ARP layer I/O control request.
1202 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1204 int err;
1205 struct arpreq r;
1206 struct net_device *dev = NULL;
1208 switch (cmd) {
1209 case SIOCDARP:
1210 case SIOCSARP:
1211 if (!capable(CAP_NET_ADMIN))
1212 return -EPERM;
1213 case SIOCGARP:
1214 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1215 if (err)
1216 return -EFAULT;
1217 break;
1218 default:
1219 return -EINVAL;
1222 if (r.arp_pa.sa_family != AF_INET)
1223 return -EPFNOSUPPORT;
1225 if (!(r.arp_flags & ATF_PUBL) &&
1226 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1227 return -EINVAL;
1228 if (!(r.arp_flags & ATF_NETMASK))
1229 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1230 htonl(0xFFFFFFFFUL);
1231 rtnl_lock();
1232 if (r.arp_dev[0]) {
1233 err = -ENODEV;
1234 dev = __dev_get_by_name(net, r.arp_dev);
1235 if (dev == NULL)
1236 goto out;
1238 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1239 if (!r.arp_ha.sa_family)
1240 r.arp_ha.sa_family = dev->type;
1241 err = -EINVAL;
1242 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1243 goto out;
1244 } else if (cmd == SIOCGARP) {
1245 err = -ENODEV;
1246 goto out;
1249 switch (cmd) {
1250 case SIOCDARP:
1251 err = arp_req_delete(net, &r, dev);
1252 break;
1253 case SIOCSARP:
1254 err = arp_req_set(net, &r, dev);
1255 break;
1256 case SIOCGARP:
1257 err = arp_req_get(&r, dev);
1258 break;
1260 out:
1261 rtnl_unlock();
1262 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1263 err = -EFAULT;
1264 return err;
1267 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1268 void *ptr)
1270 struct net_device *dev = ptr;
1272 switch (event) {
1273 case NETDEV_CHANGEADDR:
1274 neigh_changeaddr(&arp_tbl, dev);
1275 rt_cache_flush(dev_net(dev), 0);
1276 break;
1277 default:
1278 break;
1281 return NOTIFY_DONE;
1284 static struct notifier_block arp_netdev_notifier = {
1285 .notifier_call = arp_netdev_event,
1288 /* Note, that it is not on notifier chain.
1289 It is necessary, that this routine was called after route cache will be
1290 flushed.
1292 void arp_ifdown(struct net_device *dev)
1294 neigh_ifdown(&arp_tbl, dev);
1299 * Called once on startup.
1302 static struct packet_type arp_packet_type __read_mostly = {
1303 .type = cpu_to_be16(ETH_P_ARP),
1304 .func = arp_rcv,
1307 static int arp_proc_init(void);
1309 void __init arp_init(void)
1311 neigh_table_init(&arp_tbl);
1313 dev_add_pack(&arp_packet_type);
1314 arp_proc_init();
1315 #ifdef CONFIG_SYSCTL
1316 neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1317 #endif
1318 register_netdevice_notifier(&arp_netdev_notifier);
1321 #ifdef CONFIG_PROC_FS
1322 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1324 /* ------------------------------------------------------------------------ */
1326 * ax25 -> ASCII conversion
1328 static char *ax2asc2(ax25_address *a, char *buf)
1330 char c, *s;
1331 int n;
1333 for (n = 0, s = buf; n < 6; n++) {
1334 c = (a->ax25_call[n] >> 1) & 0x7F;
1336 if (c != ' ')
1337 *s++ = c;
1340 *s++ = '-';
1341 n = (a->ax25_call[6] >> 1) & 0x0F;
1342 if (n > 9) {
1343 *s++ = '1';
1344 n -= 10;
1347 *s++ = n + '0';
1348 *s++ = '\0';
1350 if (*buf == '\0' || *buf == '-')
1351 return "*";
1353 return buf;
1355 #endif /* CONFIG_AX25 */
1357 #define HBUFFERLEN 30
1359 static void arp_format_neigh_entry(struct seq_file *seq,
1360 struct neighbour *n)
1362 char hbuffer[HBUFFERLEN];
1363 int k, j;
1364 char tbuf[16];
1365 struct net_device *dev = n->dev;
1366 int hatype = dev->type;
1368 read_lock(&n->lock);
1369 /* Convert hardware address to XX:XX:XX:XX ... form. */
1370 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1371 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1372 ax2asc2((ax25_address *)n->ha, hbuffer);
1373 else {
1374 #endif
1375 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1376 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1377 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1378 hbuffer[k++] = ':';
1380 if (k != 0)
1381 --k;
1382 hbuffer[k] = 0;
1383 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1385 #endif
1386 sprintf(tbuf, "%pI4", n->primary_key);
1387 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1388 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1389 read_unlock(&n->lock);
1392 static void arp_format_pneigh_entry(struct seq_file *seq,
1393 struct pneigh_entry *n)
1395 struct net_device *dev = n->dev;
1396 int hatype = dev ? dev->type : 0;
1397 char tbuf[16];
1399 sprintf(tbuf, "%pI4", n->key);
1400 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1401 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1402 dev ? dev->name : "*");
1405 static int arp_seq_show(struct seq_file *seq, void *v)
1407 if (v == SEQ_START_TOKEN) {
1408 seq_puts(seq, "IP address HW type Flags "
1409 "HW address Mask Device\n");
1410 } else {
1411 struct neigh_seq_state *state = seq->private;
1413 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1414 arp_format_pneigh_entry(seq, v);
1415 else
1416 arp_format_neigh_entry(seq, v);
1419 return 0;
1422 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1424 /* Don't want to confuse "arp -a" w/ magic entries,
1425 * so we tell the generic iterator to skip NUD_NOARP.
1427 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1430 /* ------------------------------------------------------------------------ */
1432 static const struct seq_operations arp_seq_ops = {
1433 .start = arp_seq_start,
1434 .next = neigh_seq_next,
1435 .stop = neigh_seq_stop,
1436 .show = arp_seq_show,
1439 static int arp_seq_open(struct inode *inode, struct file *file)
1441 return seq_open_net(inode, file, &arp_seq_ops,
1442 sizeof(struct neigh_seq_state));
1445 static const struct file_operations arp_seq_fops = {
1446 .owner = THIS_MODULE,
1447 .open = arp_seq_open,
1448 .read = seq_read,
1449 .llseek = seq_lseek,
1450 .release = seq_release_net,
1454 static int __net_init arp_net_init(struct net *net)
1456 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1457 return -ENOMEM;
1458 return 0;
1461 static void __net_exit arp_net_exit(struct net *net)
1463 proc_net_remove(net, "arp");
1466 static struct pernet_operations arp_net_ops = {
1467 .init = arp_net_init,
1468 .exit = arp_net_exit,
1471 static int __init arp_proc_init(void)
1473 return register_pernet_subsys(&arp_net_ops);
1476 #else /* CONFIG_PROC_FS */
1478 static int __init arp_proc_init(void)
1480 return 0;
1483 #endif /* CONFIG_PROC_FS */