2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/pci-aspm.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <linux/bitmap.h>
46 #include <asm/uaccess.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/blkdev.h>
50 #include <linux/genhd.h>
51 #include <linux/completion.h>
52 #include <scsi/scsi.h>
54 #include <scsi/scsi_ioctl.h>
55 #include <linux/cdrom.h>
56 #include <linux/scatterlist.h>
57 #include <linux/kthread.h>
59 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
60 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
61 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
63 /* Embedded module documentation macros - see modules.h */
64 MODULE_AUTHOR("Hewlett-Packard Company");
65 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
66 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
67 MODULE_VERSION("3.6.26");
68 MODULE_LICENSE("GPL");
69 static int cciss_tape_cmds
= 6;
70 module_param(cciss_tape_cmds
, int, 0644);
71 MODULE_PARM_DESC(cciss_tape_cmds
,
72 "number of commands to allocate for tape devices (default: 6)");
73 static int cciss_simple_mode
;
74 module_param(cciss_simple_mode
, int, S_IRUGO
|S_IWUSR
);
75 MODULE_PARM_DESC(cciss_simple_mode
,
76 "Use 'simple mode' rather than 'performant mode'");
78 static int cciss_allow_hpsa
;
79 module_param(cciss_allow_hpsa
, int, S_IRUGO
|S_IWUSR
);
80 MODULE_PARM_DESC(cciss_allow_hpsa
,
81 "Prevent cciss driver from accessing hardware known to be "
82 " supported by the hpsa driver");
84 static DEFINE_MUTEX(cciss_mutex
);
85 static struct proc_dir_entry
*proc_cciss
;
87 #include "cciss_cmd.h"
89 #include <linux/cciss_ioctl.h>
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id cciss_pci_device_id
[] = {
93 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISS
, 0x0E11, 0x4070},
94 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4080},
95 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4082},
96 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4083},
97 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x4091},
98 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409A},
99 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409B},
100 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409C},
101 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409D},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSA
, 0x103C, 0x3225},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3223},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3234},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3235},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3211},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3212},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3213},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3214},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3215},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3237},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x323D},
116 MODULE_DEVICE_TABLE(pci
, cciss_pci_device_id
);
118 /* board_id = Subsystem Device ID & Vendor ID
119 * product = Marketing Name for the board
120 * access = Address of the struct of function pointers
122 static struct board_type products
[] = {
123 {0x40700E11, "Smart Array 5300", &SA5_access
},
124 {0x40800E11, "Smart Array 5i", &SA5B_access
},
125 {0x40820E11, "Smart Array 532", &SA5B_access
},
126 {0x40830E11, "Smart Array 5312", &SA5B_access
},
127 {0x409A0E11, "Smart Array 641", &SA5_access
},
128 {0x409B0E11, "Smart Array 642", &SA5_access
},
129 {0x409C0E11, "Smart Array 6400", &SA5_access
},
130 {0x409D0E11, "Smart Array 6400 EM", &SA5_access
},
131 {0x40910E11, "Smart Array 6i", &SA5_access
},
132 {0x3225103C, "Smart Array P600", &SA5_access
},
133 {0x3223103C, "Smart Array P800", &SA5_access
},
134 {0x3234103C, "Smart Array P400", &SA5_access
},
135 {0x3235103C, "Smart Array P400i", &SA5_access
},
136 {0x3211103C, "Smart Array E200i", &SA5_access
},
137 {0x3212103C, "Smart Array E200", &SA5_access
},
138 {0x3213103C, "Smart Array E200i", &SA5_access
},
139 {0x3214103C, "Smart Array E200i", &SA5_access
},
140 {0x3215103C, "Smart Array E200i", &SA5_access
},
141 {0x3237103C, "Smart Array E500", &SA5_access
},
142 {0x3223103C, "Smart Array P800", &SA5_access
},
143 {0x3234103C, "Smart Array P400", &SA5_access
},
144 {0x323D103C, "Smart Array P700m", &SA5_access
},
147 /* How long to wait (in milliseconds) for board to go into simple mode */
148 #define MAX_CONFIG_WAIT 30000
149 #define MAX_IOCTL_CONFIG_WAIT 1000
151 /*define how many times we will try a command because of bus resets */
152 #define MAX_CMD_RETRIES 3
156 /* Originally cciss driver only supports 8 major numbers */
157 #define MAX_CTLR_ORIG 8
159 static ctlr_info_t
*hba
[MAX_CTLR
];
161 static struct task_struct
*cciss_scan_thread
;
162 static DEFINE_MUTEX(scan_mutex
);
163 static LIST_HEAD(scan_q
);
165 static void do_cciss_request(struct request_queue
*q
);
166 static irqreturn_t
do_cciss_intx(int irq
, void *dev_id
);
167 static irqreturn_t
do_cciss_msix_intr(int irq
, void *dev_id
);
168 static int cciss_open(struct block_device
*bdev
, fmode_t mode
);
169 static int cciss_unlocked_open(struct block_device
*bdev
, fmode_t mode
);
170 static void cciss_release(struct gendisk
*disk
, fmode_t mode
);
171 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
172 unsigned int cmd
, unsigned long arg
);
173 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
);
175 static int cciss_revalidate(struct gendisk
*disk
);
176 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
, int via_ioctl
);
177 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
178 int clear_all
, int via_ioctl
);
180 static void cciss_read_capacity(ctlr_info_t
*h
, int logvol
,
181 sector_t
*total_size
, unsigned int *block_size
);
182 static void cciss_read_capacity_16(ctlr_info_t
*h
, int logvol
,
183 sector_t
*total_size
, unsigned int *block_size
);
184 static void cciss_geometry_inquiry(ctlr_info_t
*h
, int logvol
,
186 unsigned int block_size
, InquiryData_struct
*inq_buff
,
187 drive_info_struct
*drv
);
188 static void cciss_interrupt_mode(ctlr_info_t
*);
189 static int cciss_enter_simple_mode(struct ctlr_info
*h
);
190 static void start_io(ctlr_info_t
*h
);
191 static int sendcmd_withirq(ctlr_info_t
*h
, __u8 cmd
, void *buff
, size_t size
,
192 __u8 page_code
, unsigned char scsi3addr
[],
194 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
196 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
);
198 static int add_to_scan_list(struct ctlr_info
*h
);
199 static int scan_thread(void *data
);
200 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
);
201 static void cciss_hba_release(struct device
*dev
);
202 static void cciss_device_release(struct device
*dev
);
203 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
);
204 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
);
205 static inline u32
next_command(ctlr_info_t
*h
);
206 static int cciss_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
207 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
209 static int cciss_pci_find_memory_BAR(struct pci_dev
*pdev
,
210 unsigned long *memory_bar
);
211 static inline u32
cciss_tag_discard_error_bits(ctlr_info_t
*h
, u32 tag
);
212 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem
*cfgtable
);
214 /* performant mode helper functions */
215 static void calc_bucket_map(int *bucket
, int num_buckets
, int nsgs
,
217 static void cciss_put_controller_into_performant_mode(ctlr_info_t
*h
);
219 #ifdef CONFIG_PROC_FS
220 static void cciss_procinit(ctlr_info_t
*h
);
222 static void cciss_procinit(ctlr_info_t
*h
)
225 #endif /* CONFIG_PROC_FS */
228 static int cciss_compat_ioctl(struct block_device
*, fmode_t
,
229 unsigned, unsigned long);
232 static const struct block_device_operations cciss_fops
= {
233 .owner
= THIS_MODULE
,
234 .open
= cciss_unlocked_open
,
235 .release
= cciss_release
,
236 .ioctl
= cciss_ioctl
,
237 .getgeo
= cciss_getgeo
,
239 .compat_ioctl
= cciss_compat_ioctl
,
241 .revalidate_disk
= cciss_revalidate
,
244 /* set_performant_mode: Modify the tag for cciss performant
245 * set bit 0 for pull model, bits 3-1 for block fetch
248 static void set_performant_mode(ctlr_info_t
*h
, CommandList_struct
*c
)
250 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
))
251 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
255 * Enqueuing and dequeuing functions for cmdlists.
257 static inline void addQ(struct list_head
*list
, CommandList_struct
*c
)
259 list_add_tail(&c
->list
, list
);
262 static inline void removeQ(CommandList_struct
*c
)
265 * After kexec/dump some commands might still
266 * be in flight, which the firmware will try
267 * to complete. Resetting the firmware doesn't work
268 * with old fw revisions, so we have to mark
269 * them off as 'stale' to prevent the driver from
272 if (WARN_ON(list_empty(&c
->list
))) {
273 c
->cmd_type
= CMD_MSG_STALE
;
277 list_del_init(&c
->list
);
280 static void enqueue_cmd_and_start_io(ctlr_info_t
*h
,
281 CommandList_struct
*c
)
284 set_performant_mode(h
, c
);
285 spin_lock_irqsave(&h
->lock
, flags
);
288 if (h
->Qdepth
> h
->maxQsinceinit
)
289 h
->maxQsinceinit
= h
->Qdepth
;
291 spin_unlock_irqrestore(&h
->lock
, flags
);
294 static void cciss_free_sg_chain_blocks(SGDescriptor_struct
**cmd_sg_list
,
301 for (i
= 0; i
< nr_cmds
; i
++) {
302 kfree(cmd_sg_list
[i
]);
303 cmd_sg_list
[i
] = NULL
;
308 static SGDescriptor_struct
**cciss_allocate_sg_chain_blocks(
309 ctlr_info_t
*h
, int chainsize
, int nr_cmds
)
312 SGDescriptor_struct
**cmd_sg_list
;
317 cmd_sg_list
= kmalloc(sizeof(*cmd_sg_list
) * nr_cmds
, GFP_KERNEL
);
321 /* Build up chain blocks for each command */
322 for (j
= 0; j
< nr_cmds
; j
++) {
323 /* Need a block of chainsized s/g elements. */
324 cmd_sg_list
[j
] = kmalloc((chainsize
*
325 sizeof(*cmd_sg_list
[j
])), GFP_KERNEL
);
326 if (!cmd_sg_list
[j
]) {
327 dev_err(&h
->pdev
->dev
, "Cannot get memory "
328 "for s/g chains.\n");
334 cciss_free_sg_chain_blocks(cmd_sg_list
, nr_cmds
);
338 static void cciss_unmap_sg_chain_block(ctlr_info_t
*h
, CommandList_struct
*c
)
340 SGDescriptor_struct
*chain_sg
;
343 if (c
->Header
.SGTotal
<= h
->max_cmd_sgentries
)
346 chain_sg
= &c
->SG
[h
->max_cmd_sgentries
- 1];
347 temp64
.val32
.lower
= chain_sg
->Addr
.lower
;
348 temp64
.val32
.upper
= chain_sg
->Addr
.upper
;
349 pci_unmap_single(h
->pdev
, temp64
.val
, chain_sg
->Len
, PCI_DMA_TODEVICE
);
352 static void cciss_map_sg_chain_block(ctlr_info_t
*h
, CommandList_struct
*c
,
353 SGDescriptor_struct
*chain_block
, int len
)
355 SGDescriptor_struct
*chain_sg
;
358 chain_sg
= &c
->SG
[h
->max_cmd_sgentries
- 1];
359 chain_sg
->Ext
= CCISS_SG_CHAIN
;
361 temp64
.val
= pci_map_single(h
->pdev
, chain_block
, len
,
363 chain_sg
->Addr
.lower
= temp64
.val32
.lower
;
364 chain_sg
->Addr
.upper
= temp64
.val32
.upper
;
367 #include "cciss_scsi.c" /* For SCSI tape support */
369 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
372 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
374 #ifdef CONFIG_PROC_FS
377 * Report information about this controller.
379 #define ENG_GIG 1000000000
380 #define ENG_GIG_FACTOR (ENG_GIG/512)
381 #define ENGAGE_SCSI "engage scsi"
383 static void cciss_seq_show_header(struct seq_file
*seq
)
385 ctlr_info_t
*h
= seq
->private;
387 seq_printf(seq
, "%s: HP %s Controller\n"
388 "Board ID: 0x%08lx\n"
389 "Firmware Version: %c%c%c%c\n"
391 "Logical drives: %d\n"
392 "Current Q depth: %d\n"
393 "Current # commands on controller: %d\n"
394 "Max Q depth since init: %d\n"
395 "Max # commands on controller since init: %d\n"
396 "Max SG entries since init: %d\n",
399 (unsigned long)h
->board_id
,
400 h
->firm_ver
[0], h
->firm_ver
[1], h
->firm_ver
[2],
401 h
->firm_ver
[3], (unsigned int)h
->intr
[h
->intr_mode
],
403 h
->Qdepth
, h
->commands_outstanding
,
404 h
->maxQsinceinit
, h
->max_outstanding
, h
->maxSG
);
406 #ifdef CONFIG_CISS_SCSI_TAPE
407 cciss_seq_tape_report(seq
, h
);
408 #endif /* CONFIG_CISS_SCSI_TAPE */
411 static void *cciss_seq_start(struct seq_file
*seq
, loff_t
*pos
)
413 ctlr_info_t
*h
= seq
->private;
416 /* prevent displaying bogus info during configuration
417 * or deconfiguration of a logical volume
419 spin_lock_irqsave(&h
->lock
, flags
);
420 if (h
->busy_configuring
) {
421 spin_unlock_irqrestore(&h
->lock
, flags
);
422 return ERR_PTR(-EBUSY
);
424 h
->busy_configuring
= 1;
425 spin_unlock_irqrestore(&h
->lock
, flags
);
428 cciss_seq_show_header(seq
);
433 static int cciss_seq_show(struct seq_file
*seq
, void *v
)
435 sector_t vol_sz
, vol_sz_frac
;
436 ctlr_info_t
*h
= seq
->private;
437 unsigned ctlr
= h
->ctlr
;
439 drive_info_struct
*drv
= h
->drv
[*pos
];
441 if (*pos
> h
->highest_lun
)
444 if (drv
== NULL
) /* it's possible for h->drv[] to have holes. */
450 vol_sz
= drv
->nr_blocks
;
451 vol_sz_frac
= sector_div(vol_sz
, ENG_GIG_FACTOR
);
453 sector_div(vol_sz_frac
, ENG_GIG_FACTOR
);
455 if (drv
->raid_level
< 0 || drv
->raid_level
> RAID_UNKNOWN
)
456 drv
->raid_level
= RAID_UNKNOWN
;
457 seq_printf(seq
, "cciss/c%dd%d:"
458 "\t%4u.%02uGB\tRAID %s\n",
459 ctlr
, (int) *pos
, (int)vol_sz
, (int)vol_sz_frac
,
460 raid_label
[drv
->raid_level
]);
464 static void *cciss_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
466 ctlr_info_t
*h
= seq
->private;
468 if (*pos
> h
->highest_lun
)
475 static void cciss_seq_stop(struct seq_file
*seq
, void *v
)
477 ctlr_info_t
*h
= seq
->private;
479 /* Only reset h->busy_configuring if we succeeded in setting
480 * it during cciss_seq_start. */
481 if (v
== ERR_PTR(-EBUSY
))
484 h
->busy_configuring
= 0;
487 static const struct seq_operations cciss_seq_ops
= {
488 .start
= cciss_seq_start
,
489 .show
= cciss_seq_show
,
490 .next
= cciss_seq_next
,
491 .stop
= cciss_seq_stop
,
494 static int cciss_seq_open(struct inode
*inode
, struct file
*file
)
496 int ret
= seq_open(file
, &cciss_seq_ops
);
497 struct seq_file
*seq
= file
->private_data
;
500 seq
->private = PDE_DATA(inode
);
506 cciss_proc_write(struct file
*file
, const char __user
*buf
,
507 size_t length
, loff_t
*ppos
)
512 #ifndef CONFIG_CISS_SCSI_TAPE
516 if (!buf
|| length
> PAGE_SIZE
- 1)
519 buffer
= (char *)__get_free_page(GFP_KERNEL
);
524 if (copy_from_user(buffer
, buf
, length
))
526 buffer
[length
] = '\0';
528 #ifdef CONFIG_CISS_SCSI_TAPE
529 if (strncmp(ENGAGE_SCSI
, buffer
, sizeof ENGAGE_SCSI
- 1) == 0) {
530 struct seq_file
*seq
= file
->private_data
;
531 ctlr_info_t
*h
= seq
->private;
533 err
= cciss_engage_scsi(h
);
537 #endif /* CONFIG_CISS_SCSI_TAPE */
539 /* might be nice to have "disengage" too, but it's not
540 safely possible. (only 1 module use count, lock issues.) */
543 free_page((unsigned long)buffer
);
547 static const struct file_operations cciss_proc_fops
= {
548 .owner
= THIS_MODULE
,
549 .open
= cciss_seq_open
,
552 .release
= seq_release
,
553 .write
= cciss_proc_write
,
556 static void cciss_procinit(ctlr_info_t
*h
)
558 struct proc_dir_entry
*pde
;
560 if (proc_cciss
== NULL
)
561 proc_cciss
= proc_mkdir("driver/cciss", NULL
);
564 pde
= proc_create_data(h
->devname
, S_IWUSR
| S_IRUSR
| S_IRGRP
|
566 &cciss_proc_fops
, h
);
568 #endif /* CONFIG_PROC_FS */
570 #define MAX_PRODUCT_NAME_LEN 19
572 #define to_hba(n) container_of(n, struct ctlr_info, dev)
573 #define to_drv(n) container_of(n, drive_info_struct, dev)
575 /* List of controllers which cannot be hard reset on kexec with reset_devices */
576 static u32 unresettable_controller
[] = {
577 0x324a103C, /* Smart Array P712m */
578 0x324b103C, /* SmartArray P711m */
579 0x3223103C, /* Smart Array P800 */
580 0x3234103C, /* Smart Array P400 */
581 0x3235103C, /* Smart Array P400i */
582 0x3211103C, /* Smart Array E200i */
583 0x3212103C, /* Smart Array E200 */
584 0x3213103C, /* Smart Array E200i */
585 0x3214103C, /* Smart Array E200i */
586 0x3215103C, /* Smart Array E200i */
587 0x3237103C, /* Smart Array E500 */
588 0x323D103C, /* Smart Array P700m */
589 0x409C0E11, /* Smart Array 6400 */
590 0x409D0E11, /* Smart Array 6400 EM */
593 /* List of controllers which cannot even be soft reset */
594 static u32 soft_unresettable_controller
[] = {
595 0x409C0E11, /* Smart Array 6400 */
596 0x409D0E11, /* Smart Array 6400 EM */
599 static int ctlr_is_hard_resettable(u32 board_id
)
603 for (i
= 0; i
< ARRAY_SIZE(unresettable_controller
); i
++)
604 if (unresettable_controller
[i
] == board_id
)
609 static int ctlr_is_soft_resettable(u32 board_id
)
613 for (i
= 0; i
< ARRAY_SIZE(soft_unresettable_controller
); i
++)
614 if (soft_unresettable_controller
[i
] == board_id
)
619 static int ctlr_is_resettable(u32 board_id
)
621 return ctlr_is_hard_resettable(board_id
) ||
622 ctlr_is_soft_resettable(board_id
);
625 static ssize_t
host_show_resettable(struct device
*dev
,
626 struct device_attribute
*attr
,
629 struct ctlr_info
*h
= to_hba(dev
);
631 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
633 static DEVICE_ATTR(resettable
, S_IRUGO
, host_show_resettable
, NULL
);
635 static ssize_t
host_store_rescan(struct device
*dev
,
636 struct device_attribute
*attr
,
637 const char *buf
, size_t count
)
639 struct ctlr_info
*h
= to_hba(dev
);
642 wake_up_process(cciss_scan_thread
);
643 wait_for_completion_interruptible(&h
->scan_wait
);
647 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
649 static ssize_t
host_show_transport_mode(struct device
*dev
,
650 struct device_attribute
*attr
,
653 struct ctlr_info
*h
= to_hba(dev
);
655 return snprintf(buf
, 20, "%s\n",
656 h
->transMethod
& CFGTBL_Trans_Performant
?
657 "performant" : "simple");
659 static DEVICE_ATTR(transport_mode
, S_IRUGO
, host_show_transport_mode
, NULL
);
661 static ssize_t
dev_show_unique_id(struct device
*dev
,
662 struct device_attribute
*attr
,
665 drive_info_struct
*drv
= to_drv(dev
);
666 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
671 spin_lock_irqsave(&h
->lock
, flags
);
672 if (h
->busy_configuring
)
675 memcpy(sn
, drv
->serial_no
, sizeof(sn
));
676 spin_unlock_irqrestore(&h
->lock
, flags
);
681 return snprintf(buf
, 16 * 2 + 2,
682 "%02X%02X%02X%02X%02X%02X%02X%02X"
683 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
684 sn
[0], sn
[1], sn
[2], sn
[3],
685 sn
[4], sn
[5], sn
[6], sn
[7],
686 sn
[8], sn
[9], sn
[10], sn
[11],
687 sn
[12], sn
[13], sn
[14], sn
[15]);
689 static DEVICE_ATTR(unique_id
, S_IRUGO
, dev_show_unique_id
, NULL
);
691 static ssize_t
dev_show_vendor(struct device
*dev
,
692 struct device_attribute
*attr
,
695 drive_info_struct
*drv
= to_drv(dev
);
696 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
697 char vendor
[VENDOR_LEN
+ 1];
701 spin_lock_irqsave(&h
->lock
, flags
);
702 if (h
->busy_configuring
)
705 memcpy(vendor
, drv
->vendor
, VENDOR_LEN
+ 1);
706 spin_unlock_irqrestore(&h
->lock
, flags
);
711 return snprintf(buf
, sizeof(vendor
) + 1, "%s\n", drv
->vendor
);
713 static DEVICE_ATTR(vendor
, S_IRUGO
, dev_show_vendor
, NULL
);
715 static ssize_t
dev_show_model(struct device
*dev
,
716 struct device_attribute
*attr
,
719 drive_info_struct
*drv
= to_drv(dev
);
720 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
721 char model
[MODEL_LEN
+ 1];
725 spin_lock_irqsave(&h
->lock
, flags
);
726 if (h
->busy_configuring
)
729 memcpy(model
, drv
->model
, MODEL_LEN
+ 1);
730 spin_unlock_irqrestore(&h
->lock
, flags
);
735 return snprintf(buf
, sizeof(model
) + 1, "%s\n", drv
->model
);
737 static DEVICE_ATTR(model
, S_IRUGO
, dev_show_model
, NULL
);
739 static ssize_t
dev_show_rev(struct device
*dev
,
740 struct device_attribute
*attr
,
743 drive_info_struct
*drv
= to_drv(dev
);
744 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
745 char rev
[REV_LEN
+ 1];
749 spin_lock_irqsave(&h
->lock
, flags
);
750 if (h
->busy_configuring
)
753 memcpy(rev
, drv
->rev
, REV_LEN
+ 1);
754 spin_unlock_irqrestore(&h
->lock
, flags
);
759 return snprintf(buf
, sizeof(rev
) + 1, "%s\n", drv
->rev
);
761 static DEVICE_ATTR(rev
, S_IRUGO
, dev_show_rev
, NULL
);
763 static ssize_t
cciss_show_lunid(struct device
*dev
,
764 struct device_attribute
*attr
, char *buf
)
766 drive_info_struct
*drv
= to_drv(dev
);
767 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
769 unsigned char lunid
[8];
771 spin_lock_irqsave(&h
->lock
, flags
);
772 if (h
->busy_configuring
) {
773 spin_unlock_irqrestore(&h
->lock
, flags
);
777 spin_unlock_irqrestore(&h
->lock
, flags
);
780 memcpy(lunid
, drv
->LunID
, sizeof(lunid
));
781 spin_unlock_irqrestore(&h
->lock
, flags
);
782 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
783 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
784 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
786 static DEVICE_ATTR(lunid
, S_IRUGO
, cciss_show_lunid
, NULL
);
788 static ssize_t
cciss_show_raid_level(struct device
*dev
,
789 struct device_attribute
*attr
, char *buf
)
791 drive_info_struct
*drv
= to_drv(dev
);
792 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
796 spin_lock_irqsave(&h
->lock
, flags
);
797 if (h
->busy_configuring
) {
798 spin_unlock_irqrestore(&h
->lock
, flags
);
801 raid
= drv
->raid_level
;
802 spin_unlock_irqrestore(&h
->lock
, flags
);
803 if (raid
< 0 || raid
> RAID_UNKNOWN
)
806 return snprintf(buf
, strlen(raid_label
[raid
]) + 7, "RAID %s\n",
809 static DEVICE_ATTR(raid_level
, S_IRUGO
, cciss_show_raid_level
, NULL
);
811 static ssize_t
cciss_show_usage_count(struct device
*dev
,
812 struct device_attribute
*attr
, char *buf
)
814 drive_info_struct
*drv
= to_drv(dev
);
815 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
819 spin_lock_irqsave(&h
->lock
, flags
);
820 if (h
->busy_configuring
) {
821 spin_unlock_irqrestore(&h
->lock
, flags
);
824 count
= drv
->usage_count
;
825 spin_unlock_irqrestore(&h
->lock
, flags
);
826 return snprintf(buf
, 20, "%d\n", count
);
828 static DEVICE_ATTR(usage_count
, S_IRUGO
, cciss_show_usage_count
, NULL
);
830 static struct attribute
*cciss_host_attrs
[] = {
831 &dev_attr_rescan
.attr
,
832 &dev_attr_resettable
.attr
,
833 &dev_attr_transport_mode
.attr
,
837 static struct attribute_group cciss_host_attr_group
= {
838 .attrs
= cciss_host_attrs
,
841 static const struct attribute_group
*cciss_host_attr_groups
[] = {
842 &cciss_host_attr_group
,
846 static struct device_type cciss_host_type
= {
847 .name
= "cciss_host",
848 .groups
= cciss_host_attr_groups
,
849 .release
= cciss_hba_release
,
852 static struct attribute
*cciss_dev_attrs
[] = {
853 &dev_attr_unique_id
.attr
,
854 &dev_attr_model
.attr
,
855 &dev_attr_vendor
.attr
,
857 &dev_attr_lunid
.attr
,
858 &dev_attr_raid_level
.attr
,
859 &dev_attr_usage_count
.attr
,
863 static struct attribute_group cciss_dev_attr_group
= {
864 .attrs
= cciss_dev_attrs
,
867 static const struct attribute_group
*cciss_dev_attr_groups
[] = {
868 &cciss_dev_attr_group
,
872 static struct device_type cciss_dev_type
= {
873 .name
= "cciss_device",
874 .groups
= cciss_dev_attr_groups
,
875 .release
= cciss_device_release
,
878 static struct bus_type cciss_bus_type
= {
883 * cciss_hba_release is called when the reference count
884 * of h->dev goes to zero.
886 static void cciss_hba_release(struct device
*dev
)
889 * nothing to do, but need this to avoid a warning
890 * about not having a release handler from lib/kref.c.
895 * Initialize sysfs entry for each controller. This sets up and registers
896 * the 'cciss#' directory for each individual controller under
897 * /sys/bus/pci/devices/<dev>/.
899 static int cciss_create_hba_sysfs_entry(struct ctlr_info
*h
)
901 device_initialize(&h
->dev
);
902 h
->dev
.type
= &cciss_host_type
;
903 h
->dev
.bus
= &cciss_bus_type
;
904 dev_set_name(&h
->dev
, "%s", h
->devname
);
905 h
->dev
.parent
= &h
->pdev
->dev
;
907 return device_add(&h
->dev
);
911 * Remove sysfs entries for an hba.
913 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info
*h
)
916 put_device(&h
->dev
); /* final put. */
919 /* cciss_device_release is called when the reference count
920 * of h->drv[x]dev goes to zero.
922 static void cciss_device_release(struct device
*dev
)
924 drive_info_struct
*drv
= to_drv(dev
);
929 * Initialize sysfs for each logical drive. This sets up and registers
930 * the 'c#d#' directory for each individual logical drive under
931 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
932 * /sys/block/cciss!c#d# to this entry.
934 static long cciss_create_ld_sysfs_entry(struct ctlr_info
*h
,
939 if (h
->drv
[drv_index
]->device_initialized
)
942 dev
= &h
->drv
[drv_index
]->dev
;
943 device_initialize(dev
);
944 dev
->type
= &cciss_dev_type
;
945 dev
->bus
= &cciss_bus_type
;
946 dev_set_name(dev
, "c%dd%d", h
->ctlr
, drv_index
);
947 dev
->parent
= &h
->dev
;
948 h
->drv
[drv_index
]->device_initialized
= 1;
949 return device_add(dev
);
953 * Remove sysfs entries for a logical drive.
955 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info
*h
, int drv_index
,
958 struct device
*dev
= &h
->drv
[drv_index
]->dev
;
960 /* special case for c*d0, we only destroy it on controller exit */
961 if (drv_index
== 0 && !ctlr_exiting
)
965 put_device(dev
); /* the "final" put. */
966 h
->drv
[drv_index
] = NULL
;
970 * For operations that cannot sleep, a command block is allocated at init,
971 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
972 * which ones are free or in use.
974 static CommandList_struct
*cmd_alloc(ctlr_info_t
*h
)
976 CommandList_struct
*c
;
979 dma_addr_t cmd_dma_handle
, err_dma_handle
;
982 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
985 } while (test_and_set_bit(i
, h
->cmd_pool_bits
) != 0);
987 memset(c
, 0, sizeof(CommandList_struct
));
988 cmd_dma_handle
= h
->cmd_pool_dhandle
+ i
* sizeof(CommandList_struct
);
989 c
->err_info
= h
->errinfo_pool
+ i
;
990 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
991 err_dma_handle
= h
->errinfo_pool_dhandle
992 + i
* sizeof(ErrorInfo_struct
);
997 INIT_LIST_HEAD(&c
->list
);
998 c
->busaddr
= (__u32
) cmd_dma_handle
;
999 temp64
.val
= (__u64
) err_dma_handle
;
1000 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
1001 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
1002 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
1008 /* allocate a command using pci_alloc_consistent, used for ioctls,
1009 * etc., not for the main i/o path.
1011 static CommandList_struct
*cmd_special_alloc(ctlr_info_t
*h
)
1013 CommandList_struct
*c
;
1015 dma_addr_t cmd_dma_handle
, err_dma_handle
;
1017 c
= pci_zalloc_consistent(h
->pdev
, sizeof(CommandList_struct
),
1024 c
->err_info
= pci_zalloc_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
1027 if (c
->err_info
== NULL
) {
1028 pci_free_consistent(h
->pdev
,
1029 sizeof(CommandList_struct
), c
, cmd_dma_handle
);
1033 INIT_LIST_HEAD(&c
->list
);
1034 c
->busaddr
= (__u32
) cmd_dma_handle
;
1035 temp64
.val
= (__u64
) err_dma_handle
;
1036 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
1037 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
1038 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
1044 static void cmd_free(ctlr_info_t
*h
, CommandList_struct
*c
)
1048 i
= c
- h
->cmd_pool
;
1049 clear_bit(i
, h
->cmd_pool_bits
);
1053 static void cmd_special_free(ctlr_info_t
*h
, CommandList_struct
*c
)
1057 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
1058 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
1059 pci_free_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
1060 c
->err_info
, (dma_addr_t
) temp64
.val
);
1061 pci_free_consistent(h
->pdev
, sizeof(CommandList_struct
), c
,
1062 (dma_addr_t
) cciss_tag_discard_error_bits(h
, (u32
) c
->busaddr
));
1065 static inline ctlr_info_t
*get_host(struct gendisk
*disk
)
1067 return disk
->queue
->queuedata
;
1070 static inline drive_info_struct
*get_drv(struct gendisk
*disk
)
1072 return disk
->private_data
;
1076 * Open. Make sure the device is really there.
1078 static int cciss_open(struct block_device
*bdev
, fmode_t mode
)
1080 ctlr_info_t
*h
= get_host(bdev
->bd_disk
);
1081 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1083 dev_dbg(&h
->pdev
->dev
, "cciss_open %s\n", bdev
->bd_disk
->disk_name
);
1084 if (drv
->busy_configuring
)
1087 * Root is allowed to open raw volume zero even if it's not configured
1088 * so array config can still work. Root is also allowed to open any
1089 * volume that has a LUN ID, so it can issue IOCTL to reread the
1090 * disk information. I don't think I really like this
1091 * but I'm already using way to many device nodes to claim another one
1092 * for "raw controller".
1094 if (drv
->heads
== 0) {
1095 if (MINOR(bdev
->bd_dev
) != 0) { /* not node 0? */
1096 /* if not node 0 make sure it is a partition = 0 */
1097 if (MINOR(bdev
->bd_dev
) & 0x0f) {
1099 /* if it is, make sure we have a LUN ID */
1100 } else if (memcmp(drv
->LunID
, CTLR_LUNID
,
1101 sizeof(drv
->LunID
))) {
1105 if (!capable(CAP_SYS_ADMIN
))
1113 static int cciss_unlocked_open(struct block_device
*bdev
, fmode_t mode
)
1117 mutex_lock(&cciss_mutex
);
1118 ret
= cciss_open(bdev
, mode
);
1119 mutex_unlock(&cciss_mutex
);
1125 * Close. Sync first.
1127 static void cciss_release(struct gendisk
*disk
, fmode_t mode
)
1130 drive_info_struct
*drv
;
1132 mutex_lock(&cciss_mutex
);
1134 drv
= get_drv(disk
);
1135 dev_dbg(&h
->pdev
->dev
, "cciss_release %s\n", disk
->disk_name
);
1138 mutex_unlock(&cciss_mutex
);
1141 #ifdef CONFIG_COMPAT
1143 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1144 unsigned cmd
, unsigned long arg
);
1145 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1146 unsigned cmd
, unsigned long arg
);
1148 static int cciss_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1149 unsigned cmd
, unsigned long arg
)
1152 case CCISS_GETPCIINFO
:
1153 case CCISS_GETINTINFO
:
1154 case CCISS_SETINTINFO
:
1155 case CCISS_GETNODENAME
:
1156 case CCISS_SETNODENAME
:
1157 case CCISS_GETHEARTBEAT
:
1158 case CCISS_GETBUSTYPES
:
1159 case CCISS_GETFIRMVER
:
1160 case CCISS_GETDRIVVER
:
1161 case CCISS_REVALIDVOLS
:
1162 case CCISS_DEREGDISK
:
1163 case CCISS_REGNEWDISK
:
1165 case CCISS_RESCANDISK
:
1166 case CCISS_GETLUNINFO
:
1167 return cciss_ioctl(bdev
, mode
, cmd
, arg
);
1169 case CCISS_PASSTHRU32
:
1170 return cciss_ioctl32_passthru(bdev
, mode
, cmd
, arg
);
1171 case CCISS_BIG_PASSTHRU32
:
1172 return cciss_ioctl32_big_passthru(bdev
, mode
, cmd
, arg
);
1175 return -ENOIOCTLCMD
;
1179 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1180 unsigned cmd
, unsigned long arg
)
1182 IOCTL32_Command_struct __user
*arg32
=
1183 (IOCTL32_Command_struct __user
*) arg
;
1184 IOCTL_Command_struct arg64
;
1185 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
1189 memset(&arg64
, 0, sizeof(arg64
));
1192 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1193 sizeof(arg64
.LUN_info
));
1195 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1196 sizeof(arg64
.Request
));
1198 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1199 sizeof(arg64
.error_info
));
1200 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1201 err
|= get_user(cp
, &arg32
->buf
);
1202 arg64
.buf
= compat_ptr(cp
);
1203 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1208 err
= cciss_ioctl(bdev
, mode
, CCISS_PASSTHRU
, (unsigned long)p
);
1212 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1213 sizeof(arg32
->error_info
));
1219 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1220 unsigned cmd
, unsigned long arg
)
1222 BIG_IOCTL32_Command_struct __user
*arg32
=
1223 (BIG_IOCTL32_Command_struct __user
*) arg
;
1224 BIG_IOCTL_Command_struct arg64
;
1225 BIG_IOCTL_Command_struct __user
*p
=
1226 compat_alloc_user_space(sizeof(arg64
));
1230 memset(&arg64
, 0, sizeof(arg64
));
1233 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1234 sizeof(arg64
.LUN_info
));
1236 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1237 sizeof(arg64
.Request
));
1239 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1240 sizeof(arg64
.error_info
));
1241 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1242 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
1243 err
|= get_user(cp
, &arg32
->buf
);
1244 arg64
.buf
= compat_ptr(cp
);
1245 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1250 err
= cciss_ioctl(bdev
, mode
, CCISS_BIG_PASSTHRU
, (unsigned long)p
);
1254 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1255 sizeof(arg32
->error_info
));
1262 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1264 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1266 if (!drv
->cylinders
)
1269 geo
->heads
= drv
->heads
;
1270 geo
->sectors
= drv
->sectors
;
1271 geo
->cylinders
= drv
->cylinders
;
1275 static void check_ioctl_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
1277 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
1278 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
1279 (void)check_for_unit_attention(h
, c
);
1282 static int cciss_getpciinfo(ctlr_info_t
*h
, void __user
*argp
)
1284 cciss_pci_info_struct pciinfo
;
1288 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
1289 pciinfo
.bus
= h
->pdev
->bus
->number
;
1290 pciinfo
.dev_fn
= h
->pdev
->devfn
;
1291 pciinfo
.board_id
= h
->board_id
;
1292 if (copy_to_user(argp
, &pciinfo
, sizeof(cciss_pci_info_struct
)))
1297 static int cciss_getintinfo(ctlr_info_t
*h
, void __user
*argp
)
1299 cciss_coalint_struct intinfo
;
1300 unsigned long flags
;
1304 spin_lock_irqsave(&h
->lock
, flags
);
1305 intinfo
.delay
= readl(&h
->cfgtable
->HostWrite
.CoalIntDelay
);
1306 intinfo
.count
= readl(&h
->cfgtable
->HostWrite
.CoalIntCount
);
1307 spin_unlock_irqrestore(&h
->lock
, flags
);
1309 (argp
, &intinfo
, sizeof(cciss_coalint_struct
)))
1314 static int cciss_setintinfo(ctlr_info_t
*h
, void __user
*argp
)
1316 cciss_coalint_struct intinfo
;
1317 unsigned long flags
;
1322 if (!capable(CAP_SYS_ADMIN
))
1324 if (copy_from_user(&intinfo
, argp
, sizeof(intinfo
)))
1326 if ((intinfo
.delay
== 0) && (intinfo
.count
== 0))
1328 spin_lock_irqsave(&h
->lock
, flags
);
1329 /* Update the field, and then ring the doorbell */
1330 writel(intinfo
.delay
, &(h
->cfgtable
->HostWrite
.CoalIntDelay
));
1331 writel(intinfo
.count
, &(h
->cfgtable
->HostWrite
.CoalIntCount
));
1332 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
1334 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1335 if (!(readl(h
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
1337 udelay(1000); /* delay and try again */
1339 spin_unlock_irqrestore(&h
->lock
, flags
);
1340 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1345 static int cciss_getnodename(ctlr_info_t
*h
, void __user
*argp
)
1347 NodeName_type NodeName
;
1348 unsigned long flags
;
1353 spin_lock_irqsave(&h
->lock
, flags
);
1354 for (i
= 0; i
< 16; i
++)
1355 NodeName
[i
] = readb(&h
->cfgtable
->ServerName
[i
]);
1356 spin_unlock_irqrestore(&h
->lock
, flags
);
1357 if (copy_to_user(argp
, NodeName
, sizeof(NodeName_type
)))
1362 static int cciss_setnodename(ctlr_info_t
*h
, void __user
*argp
)
1364 NodeName_type NodeName
;
1365 unsigned long flags
;
1370 if (!capable(CAP_SYS_ADMIN
))
1372 if (copy_from_user(NodeName
, argp
, sizeof(NodeName_type
)))
1374 spin_lock_irqsave(&h
->lock
, flags
);
1375 /* Update the field, and then ring the doorbell */
1376 for (i
= 0; i
< 16; i
++)
1377 writeb(NodeName
[i
], &h
->cfgtable
->ServerName
[i
]);
1378 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
1379 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1380 if (!(readl(h
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
1382 udelay(1000); /* delay and try again */
1384 spin_unlock_irqrestore(&h
->lock
, flags
);
1385 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1390 static int cciss_getheartbeat(ctlr_info_t
*h
, void __user
*argp
)
1392 Heartbeat_type heartbeat
;
1393 unsigned long flags
;
1397 spin_lock_irqsave(&h
->lock
, flags
);
1398 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
1399 spin_unlock_irqrestore(&h
->lock
, flags
);
1400 if (copy_to_user(argp
, &heartbeat
, sizeof(Heartbeat_type
)))
1405 static int cciss_getbustypes(ctlr_info_t
*h
, void __user
*argp
)
1407 BusTypes_type BusTypes
;
1408 unsigned long flags
;
1412 spin_lock_irqsave(&h
->lock
, flags
);
1413 BusTypes
= readl(&h
->cfgtable
->BusTypes
);
1414 spin_unlock_irqrestore(&h
->lock
, flags
);
1415 if (copy_to_user(argp
, &BusTypes
, sizeof(BusTypes_type
)))
1420 static int cciss_getfirmver(ctlr_info_t
*h
, void __user
*argp
)
1422 FirmwareVer_type firmware
;
1426 memcpy(firmware
, h
->firm_ver
, 4);
1429 (argp
, firmware
, sizeof(FirmwareVer_type
)))
1434 static int cciss_getdrivver(ctlr_info_t
*h
, void __user
*argp
)
1436 DriverVer_type DriverVer
= DRIVER_VERSION
;
1440 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
1445 static int cciss_getluninfo(ctlr_info_t
*h
,
1446 struct gendisk
*disk
, void __user
*argp
)
1448 LogvolInfo_struct luninfo
;
1449 drive_info_struct
*drv
= get_drv(disk
);
1453 memcpy(&luninfo
.LunID
, drv
->LunID
, sizeof(luninfo
.LunID
));
1454 luninfo
.num_opens
= drv
->usage_count
;
1455 luninfo
.num_parts
= 0;
1456 if (copy_to_user(argp
, &luninfo
, sizeof(LogvolInfo_struct
)))
1461 static int cciss_passthru(ctlr_info_t
*h
, void __user
*argp
)
1463 IOCTL_Command_struct iocommand
;
1464 CommandList_struct
*c
;
1467 DECLARE_COMPLETION_ONSTACK(wait
);
1472 if (!capable(CAP_SYS_RAWIO
))
1476 (&iocommand
, argp
, sizeof(IOCTL_Command_struct
)))
1478 if ((iocommand
.buf_size
< 1) &&
1479 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
1482 if (iocommand
.buf_size
> 0) {
1483 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
1487 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
1488 /* Copy the data into the buffer we created */
1489 if (copy_from_user(buff
, iocommand
.buf
, iocommand
.buf_size
)) {
1494 memset(buff
, 0, iocommand
.buf_size
);
1496 c
= cmd_special_alloc(h
);
1501 /* Fill in the command type */
1502 c
->cmd_type
= CMD_IOCTL_PEND
;
1503 /* Fill in Command Header */
1504 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
1505 if (iocommand
.buf_size
> 0) { /* buffer to fill */
1506 c
->Header
.SGList
= 1;
1507 c
->Header
.SGTotal
= 1;
1508 } else { /* no buffers to fill */
1509 c
->Header
.SGList
= 0;
1510 c
->Header
.SGTotal
= 0;
1512 c
->Header
.LUN
= iocommand
.LUN_info
;
1513 /* use the kernel address the cmd block for tag */
1514 c
->Header
.Tag
.lower
= c
->busaddr
;
1516 /* Fill in Request block */
1517 c
->Request
= iocommand
.Request
;
1519 /* Fill in the scatter gather information */
1520 if (iocommand
.buf_size
> 0) {
1521 temp64
.val
= pci_map_single(h
->pdev
, buff
,
1522 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
1523 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
1524 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
1525 c
->SG
[0].Len
= iocommand
.buf_size
;
1526 c
->SG
[0].Ext
= 0; /* we are not chaining */
1530 enqueue_cmd_and_start_io(h
, c
);
1531 wait_for_completion(&wait
);
1533 /* unlock the buffers from DMA */
1534 temp64
.val32
.lower
= c
->SG
[0].Addr
.lower
;
1535 temp64
.val32
.upper
= c
->SG
[0].Addr
.upper
;
1536 pci_unmap_single(h
->pdev
, (dma_addr_t
) temp64
.val
, iocommand
.buf_size
,
1537 PCI_DMA_BIDIRECTIONAL
);
1538 check_ioctl_unit_attention(h
, c
);
1540 /* Copy the error information out */
1541 iocommand
.error_info
= *(c
->err_info
);
1542 if (copy_to_user(argp
, &iocommand
, sizeof(IOCTL_Command_struct
))) {
1544 cmd_special_free(h
, c
);
1548 if (iocommand
.Request
.Type
.Direction
== XFER_READ
) {
1549 /* Copy the data out of the buffer we created */
1550 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
1552 cmd_special_free(h
, c
);
1557 cmd_special_free(h
, c
);
1561 static int cciss_bigpassthru(ctlr_info_t
*h
, void __user
*argp
)
1563 BIG_IOCTL_Command_struct
*ioc
;
1564 CommandList_struct
*c
;
1565 unsigned char **buff
= NULL
;
1566 int *buff_size
= NULL
;
1571 DECLARE_COMPLETION_ONSTACK(wait
);
1574 BYTE __user
*data_ptr
;
1578 if (!capable(CAP_SYS_RAWIO
))
1580 ioc
= kmalloc(sizeof(*ioc
), GFP_KERNEL
);
1585 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
1589 if ((ioc
->buf_size
< 1) &&
1590 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
1594 /* Check kmalloc limits using all SGs */
1595 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
1599 if (ioc
->buf_size
> ioc
->malloc_size
* MAXSGENTRIES
) {
1603 buff
= kzalloc(MAXSGENTRIES
* sizeof(char *), GFP_KERNEL
);
1608 buff_size
= kmalloc(MAXSGENTRIES
* sizeof(int), GFP_KERNEL
);
1613 left
= ioc
->buf_size
;
1614 data_ptr
= ioc
->buf
;
1616 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
1617 buff_size
[sg_used
] = sz
;
1618 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
1619 if (buff
[sg_used
] == NULL
) {
1623 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
1624 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
1629 memset(buff
[sg_used
], 0, sz
);
1635 c
= cmd_special_alloc(h
);
1640 c
->cmd_type
= CMD_IOCTL_PEND
;
1641 c
->Header
.ReplyQueue
= 0;
1642 c
->Header
.SGList
= sg_used
;
1643 c
->Header
.SGTotal
= sg_used
;
1644 c
->Header
.LUN
= ioc
->LUN_info
;
1645 c
->Header
.Tag
.lower
= c
->busaddr
;
1647 c
->Request
= ioc
->Request
;
1648 for (i
= 0; i
< sg_used
; i
++) {
1649 temp64
.val
= pci_map_single(h
->pdev
, buff
[i
], buff_size
[i
],
1650 PCI_DMA_BIDIRECTIONAL
);
1651 c
->SG
[i
].Addr
.lower
= temp64
.val32
.lower
;
1652 c
->SG
[i
].Addr
.upper
= temp64
.val32
.upper
;
1653 c
->SG
[i
].Len
= buff_size
[i
];
1654 c
->SG
[i
].Ext
= 0; /* we are not chaining */
1657 enqueue_cmd_and_start_io(h
, c
);
1658 wait_for_completion(&wait
);
1659 /* unlock the buffers from DMA */
1660 for (i
= 0; i
< sg_used
; i
++) {
1661 temp64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1662 temp64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1663 pci_unmap_single(h
->pdev
,
1664 (dma_addr_t
) temp64
.val
, buff_size
[i
],
1665 PCI_DMA_BIDIRECTIONAL
);
1667 check_ioctl_unit_attention(h
, c
);
1668 /* Copy the error information out */
1669 ioc
->error_info
= *(c
->err_info
);
1670 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
1671 cmd_special_free(h
, c
);
1675 if (ioc
->Request
.Type
.Direction
== XFER_READ
) {
1676 /* Copy the data out of the buffer we created */
1677 BYTE __user
*ptr
= ioc
->buf
;
1678 for (i
= 0; i
< sg_used
; i
++) {
1679 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
1680 cmd_special_free(h
, c
);
1684 ptr
+= buff_size
[i
];
1687 cmd_special_free(h
, c
);
1691 for (i
= 0; i
< sg_used
; i
++)
1700 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
1701 unsigned int cmd
, unsigned long arg
)
1703 struct gendisk
*disk
= bdev
->bd_disk
;
1704 ctlr_info_t
*h
= get_host(disk
);
1705 void __user
*argp
= (void __user
*)arg
;
1707 dev_dbg(&h
->pdev
->dev
, "cciss_ioctl: Called with cmd=%x %lx\n",
1710 case CCISS_GETPCIINFO
:
1711 return cciss_getpciinfo(h
, argp
);
1712 case CCISS_GETINTINFO
:
1713 return cciss_getintinfo(h
, argp
);
1714 case CCISS_SETINTINFO
:
1715 return cciss_setintinfo(h
, argp
);
1716 case CCISS_GETNODENAME
:
1717 return cciss_getnodename(h
, argp
);
1718 case CCISS_SETNODENAME
:
1719 return cciss_setnodename(h
, argp
);
1720 case CCISS_GETHEARTBEAT
:
1721 return cciss_getheartbeat(h
, argp
);
1722 case CCISS_GETBUSTYPES
:
1723 return cciss_getbustypes(h
, argp
);
1724 case CCISS_GETFIRMVER
:
1725 return cciss_getfirmver(h
, argp
);
1726 case CCISS_GETDRIVVER
:
1727 return cciss_getdrivver(h
, argp
);
1728 case CCISS_DEREGDISK
:
1730 case CCISS_REVALIDVOLS
:
1731 return rebuild_lun_table(h
, 0, 1);
1732 case CCISS_GETLUNINFO
:
1733 return cciss_getluninfo(h
, disk
, argp
);
1734 case CCISS_PASSTHRU
:
1735 return cciss_passthru(h
, argp
);
1736 case CCISS_BIG_PASSTHRU
:
1737 return cciss_bigpassthru(h
, argp
);
1739 /* scsi_cmd_blk_ioctl handles these, below, though some are not */
1740 /* very meaningful for cciss. SG_IO is the main one people want. */
1742 case SG_GET_VERSION_NUM
:
1743 case SG_SET_TIMEOUT
:
1744 case SG_GET_TIMEOUT
:
1745 case SG_GET_RESERVED_SIZE
:
1746 case SG_SET_RESERVED_SIZE
:
1747 case SG_EMULATED_HOST
:
1749 case SCSI_IOCTL_SEND_COMMAND
:
1750 return scsi_cmd_blk_ioctl(bdev
, mode
, cmd
, argp
);
1752 /* scsi_cmd_blk_ioctl would normally handle these, below, but */
1753 /* they aren't a good fit for cciss, as CD-ROMs are */
1754 /* not supported, and we don't have any bus/target/lun */
1755 /* which we present to the kernel. */
1757 case CDROM_SEND_PACKET
:
1758 case CDROMCLOSETRAY
:
1760 case SCSI_IOCTL_GET_IDLUN
:
1761 case SCSI_IOCTL_GET_BUS_NUMBER
:
1767 static void cciss_check_queues(ctlr_info_t
*h
)
1769 int start_queue
= h
->next_to_run
;
1772 /* check to see if we have maxed out the number of commands that can
1773 * be placed on the queue. If so then exit. We do this check here
1774 * in case the interrupt we serviced was from an ioctl and did not
1775 * free any new commands.
1777 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
)
1780 /* We have room on the queue for more commands. Now we need to queue
1781 * them up. We will also keep track of the next queue to run so
1782 * that every queue gets a chance to be started first.
1784 for (i
= 0; i
< h
->highest_lun
+ 1; i
++) {
1785 int curr_queue
= (start_queue
+ i
) % (h
->highest_lun
+ 1);
1786 /* make sure the disk has been added and the drive is real
1787 * because this can be called from the middle of init_one.
1789 if (!h
->drv
[curr_queue
])
1791 if (!(h
->drv
[curr_queue
]->queue
) ||
1792 !(h
->drv
[curr_queue
]->heads
))
1794 blk_start_queue(h
->gendisk
[curr_queue
]->queue
);
1796 /* check to see if we have maxed out the number of commands
1797 * that can be placed on the queue.
1799 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
) {
1800 if (curr_queue
== start_queue
) {
1802 (start_queue
+ 1) % (h
->highest_lun
+ 1);
1805 h
->next_to_run
= curr_queue
;
1812 static void cciss_softirq_done(struct request
*rq
)
1814 CommandList_struct
*c
= rq
->completion_data
;
1815 ctlr_info_t
*h
= hba
[c
->ctlr
];
1816 SGDescriptor_struct
*curr_sg
= c
->SG
;
1818 unsigned long flags
;
1822 if (c
->Request
.Type
.Direction
== XFER_READ
)
1823 ddir
= PCI_DMA_FROMDEVICE
;
1825 ddir
= PCI_DMA_TODEVICE
;
1827 /* command did not need to be retried */
1828 /* unmap the DMA mapping for all the scatter gather elements */
1829 for (i
= 0; i
< c
->Header
.SGList
; i
++) {
1830 if (curr_sg
[sg_index
].Ext
== CCISS_SG_CHAIN
) {
1831 cciss_unmap_sg_chain_block(h
, c
);
1832 /* Point to the next block */
1833 curr_sg
= h
->cmd_sg_list
[c
->cmdindex
];
1836 temp64
.val32
.lower
= curr_sg
[sg_index
].Addr
.lower
;
1837 temp64
.val32
.upper
= curr_sg
[sg_index
].Addr
.upper
;
1838 pci_unmap_page(h
->pdev
, temp64
.val
, curr_sg
[sg_index
].Len
,
1843 dev_dbg(&h
->pdev
->dev
, "Done with %p\n", rq
);
1845 /* set the residual count for pc requests */
1846 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1847 rq
->resid_len
= c
->err_info
->ResidualCnt
;
1849 blk_end_request_all(rq
, (rq
->errors
== 0) ? 0 : -EIO
);
1851 spin_lock_irqsave(&h
->lock
, flags
);
1853 cciss_check_queues(h
);
1854 spin_unlock_irqrestore(&h
->lock
, flags
);
1857 static inline void log_unit_to_scsi3addr(ctlr_info_t
*h
,
1858 unsigned char scsi3addr
[], uint32_t log_unit
)
1860 memcpy(scsi3addr
, h
->drv
[log_unit
]->LunID
,
1861 sizeof(h
->drv
[log_unit
]->LunID
));
1864 /* This function gets the SCSI vendor, model, and revision of a logical drive
1865 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1866 * they cannot be read.
1868 static void cciss_get_device_descr(ctlr_info_t
*h
, int logvol
,
1869 char *vendor
, char *model
, char *rev
)
1872 InquiryData_struct
*inq_buf
;
1873 unsigned char scsi3addr
[8];
1879 inq_buf
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1883 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
1884 rc
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buf
, sizeof(*inq_buf
), 0,
1885 scsi3addr
, TYPE_CMD
);
1887 memcpy(vendor
, &inq_buf
->data_byte
[8], VENDOR_LEN
);
1888 vendor
[VENDOR_LEN
] = '\0';
1889 memcpy(model
, &inq_buf
->data_byte
[16], MODEL_LEN
);
1890 model
[MODEL_LEN
] = '\0';
1891 memcpy(rev
, &inq_buf
->data_byte
[32], REV_LEN
);
1892 rev
[REV_LEN
] = '\0';
1899 /* This function gets the serial number of a logical drive via
1900 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1901 * number cannot be had, for whatever reason, 16 bytes of 0xff
1902 * are returned instead.
1904 static void cciss_get_serial_no(ctlr_info_t
*h
, int logvol
,
1905 unsigned char *serial_no
, int buflen
)
1907 #define PAGE_83_INQ_BYTES 64
1910 unsigned char scsi3addr
[8];
1914 memset(serial_no
, 0xff, buflen
);
1915 buf
= kzalloc(PAGE_83_INQ_BYTES
, GFP_KERNEL
);
1918 memset(serial_no
, 0, buflen
);
1919 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
1920 rc
= sendcmd_withirq(h
, CISS_INQUIRY
, buf
,
1921 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1923 memcpy(serial_no
, &buf
[8], buflen
);
1929 * cciss_add_disk sets up the block device queue for a logical drive
1931 static int cciss_add_disk(ctlr_info_t
*h
, struct gendisk
*disk
,
1934 disk
->queue
= blk_init_queue(do_cciss_request
, &h
->lock
);
1936 goto init_queue_failure
;
1937 sprintf(disk
->disk_name
, "cciss/c%dd%d", h
->ctlr
, drv_index
);
1938 disk
->major
= h
->major
;
1939 disk
->first_minor
= drv_index
<< NWD_SHIFT
;
1940 disk
->fops
= &cciss_fops
;
1941 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
1943 disk
->private_data
= h
->drv
[drv_index
];
1944 disk
->driverfs_dev
= &h
->drv
[drv_index
]->dev
;
1946 /* Set up queue information */
1947 blk_queue_bounce_limit(disk
->queue
, h
->pdev
->dma_mask
);
1949 /* This is a hardware imposed limit. */
1950 blk_queue_max_segments(disk
->queue
, h
->maxsgentries
);
1952 blk_queue_max_hw_sectors(disk
->queue
, h
->cciss_max_sectors
);
1954 blk_queue_softirq_done(disk
->queue
, cciss_softirq_done
);
1956 disk
->queue
->queuedata
= h
;
1958 blk_queue_logical_block_size(disk
->queue
,
1959 h
->drv
[drv_index
]->block_size
);
1961 /* Make sure all queue data is written out before */
1962 /* setting h->drv[drv_index]->queue, as setting this */
1963 /* allows the interrupt handler to start the queue */
1965 h
->drv
[drv_index
]->queue
= disk
->queue
;
1970 blk_cleanup_queue(disk
->queue
);
1976 /* This function will check the usage_count of the drive to be updated/added.
1977 * If the usage_count is zero and it is a heretofore unknown drive, or,
1978 * the drive's capacity, geometry, or serial number has changed,
1979 * then the drive information will be updated and the disk will be
1980 * re-registered with the kernel. If these conditions don't hold,
1981 * then it will be left alone for the next reboot. The exception to this
1982 * is disk 0 which will always be left registered with the kernel since it
1983 * is also the controller node. Any changes to disk 0 will show up on
1986 static void cciss_update_drive_info(ctlr_info_t
*h
, int drv_index
,
1987 int first_time
, int via_ioctl
)
1989 struct gendisk
*disk
;
1990 InquiryData_struct
*inq_buff
= NULL
;
1991 unsigned int block_size
;
1992 sector_t total_size
;
1993 unsigned long flags
= 0;
1995 drive_info_struct
*drvinfo
;
1997 /* Get information about the disk and modify the driver structure */
1998 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1999 drvinfo
= kzalloc(sizeof(*drvinfo
), GFP_KERNEL
);
2000 if (inq_buff
== NULL
|| drvinfo
== NULL
)
2003 /* testing to see if 16-byte CDBs are already being used */
2004 if (h
->cciss_read
== CCISS_READ_16
) {
2005 cciss_read_capacity_16(h
, drv_index
,
2006 &total_size
, &block_size
);
2009 cciss_read_capacity(h
, drv_index
, &total_size
, &block_size
);
2010 /* if read_capacity returns all F's this volume is >2TB */
2011 /* in size so we switch to 16-byte CDB's for all */
2012 /* read/write ops */
2013 if (total_size
== 0xFFFFFFFFULL
) {
2014 cciss_read_capacity_16(h
, drv_index
,
2015 &total_size
, &block_size
);
2016 h
->cciss_read
= CCISS_READ_16
;
2017 h
->cciss_write
= CCISS_WRITE_16
;
2019 h
->cciss_read
= CCISS_READ_10
;
2020 h
->cciss_write
= CCISS_WRITE_10
;
2024 cciss_geometry_inquiry(h
, drv_index
, total_size
, block_size
,
2026 drvinfo
->block_size
= block_size
;
2027 drvinfo
->nr_blocks
= total_size
+ 1;
2029 cciss_get_device_descr(h
, drv_index
, drvinfo
->vendor
,
2030 drvinfo
->model
, drvinfo
->rev
);
2031 cciss_get_serial_no(h
, drv_index
, drvinfo
->serial_no
,
2032 sizeof(drvinfo
->serial_no
));
2033 /* Save the lunid in case we deregister the disk, below. */
2034 memcpy(drvinfo
->LunID
, h
->drv
[drv_index
]->LunID
,
2035 sizeof(drvinfo
->LunID
));
2037 /* Is it the same disk we already know, and nothing's changed? */
2038 if (h
->drv
[drv_index
]->raid_level
!= -1 &&
2039 ((memcmp(drvinfo
->serial_no
,
2040 h
->drv
[drv_index
]->serial_no
, 16) == 0) &&
2041 drvinfo
->block_size
== h
->drv
[drv_index
]->block_size
&&
2042 drvinfo
->nr_blocks
== h
->drv
[drv_index
]->nr_blocks
&&
2043 drvinfo
->heads
== h
->drv
[drv_index
]->heads
&&
2044 drvinfo
->sectors
== h
->drv
[drv_index
]->sectors
&&
2045 drvinfo
->cylinders
== h
->drv
[drv_index
]->cylinders
))
2046 /* The disk is unchanged, nothing to update */
2049 /* If we get here it's not the same disk, or something's changed,
2050 * so we need to * deregister it, and re-register it, if it's not
2052 * If the disk already exists then deregister it before proceeding
2053 * (unless it's the first disk (for the controller node).
2055 if (h
->drv
[drv_index
]->raid_level
!= -1 && drv_index
!= 0) {
2056 dev_warn(&h
->pdev
->dev
, "disk %d has changed.\n", drv_index
);
2057 spin_lock_irqsave(&h
->lock
, flags
);
2058 h
->drv
[drv_index
]->busy_configuring
= 1;
2059 spin_unlock_irqrestore(&h
->lock
, flags
);
2061 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2062 * which keeps the interrupt handler from starting
2065 ret
= deregister_disk(h
, drv_index
, 0, via_ioctl
);
2068 /* If the disk is in use return */
2072 /* Save the new information from cciss_geometry_inquiry
2073 * and serial number inquiry. If the disk was deregistered
2074 * above, then h->drv[drv_index] will be NULL.
2076 if (h
->drv
[drv_index
] == NULL
) {
2077 drvinfo
->device_initialized
= 0;
2078 h
->drv
[drv_index
] = drvinfo
;
2079 drvinfo
= NULL
; /* so it won't be freed below. */
2081 /* special case for cxd0 */
2082 h
->drv
[drv_index
]->block_size
= drvinfo
->block_size
;
2083 h
->drv
[drv_index
]->nr_blocks
= drvinfo
->nr_blocks
;
2084 h
->drv
[drv_index
]->heads
= drvinfo
->heads
;
2085 h
->drv
[drv_index
]->sectors
= drvinfo
->sectors
;
2086 h
->drv
[drv_index
]->cylinders
= drvinfo
->cylinders
;
2087 h
->drv
[drv_index
]->raid_level
= drvinfo
->raid_level
;
2088 memcpy(h
->drv
[drv_index
]->serial_no
, drvinfo
->serial_no
, 16);
2089 memcpy(h
->drv
[drv_index
]->vendor
, drvinfo
->vendor
,
2091 memcpy(h
->drv
[drv_index
]->model
, drvinfo
->model
, MODEL_LEN
+ 1);
2092 memcpy(h
->drv
[drv_index
]->rev
, drvinfo
->rev
, REV_LEN
+ 1);
2096 disk
= h
->gendisk
[drv_index
];
2097 set_capacity(disk
, h
->drv
[drv_index
]->nr_blocks
);
2099 /* If it's not disk 0 (drv_index != 0)
2100 * or if it was disk 0, but there was previously
2101 * no actual corresponding configured logical drive
2102 * (raid_leve == -1) then we want to update the
2103 * logical drive's information.
2105 if (drv_index
|| first_time
) {
2106 if (cciss_add_disk(h
, disk
, drv_index
) != 0) {
2107 cciss_free_gendisk(h
, drv_index
);
2108 cciss_free_drive_info(h
, drv_index
);
2109 dev_warn(&h
->pdev
->dev
, "could not update disk %d\n",
2120 dev_err(&h
->pdev
->dev
, "out of memory\n");
2124 /* This function will find the first index of the controllers drive array
2125 * that has a null drv pointer and allocate the drive info struct and
2126 * will return that index This is where new drives will be added.
2127 * If the index to be returned is greater than the highest_lun index for
2128 * the controller then highest_lun is set * to this new index.
2129 * If there are no available indexes or if tha allocation fails, then -1
2130 * is returned. * "controller_node" is used to know if this is a real
2131 * logical drive, or just the controller node, which determines if this
2132 * counts towards highest_lun.
2134 static int cciss_alloc_drive_info(ctlr_info_t
*h
, int controller_node
)
2137 drive_info_struct
*drv
;
2139 /* Search for an empty slot for our drive info */
2140 for (i
= 0; i
< CISS_MAX_LUN
; i
++) {
2142 /* if not cxd0 case, and it's occupied, skip it. */
2143 if (h
->drv
[i
] && i
!= 0)
2146 * If it's cxd0 case, and drv is alloc'ed already, and a
2147 * disk is configured there, skip it.
2149 if (i
== 0 && h
->drv
[i
] && h
->drv
[i
]->raid_level
!= -1)
2153 * We've found an empty slot. Update highest_lun
2154 * provided this isn't just the fake cxd0 controller node.
2156 if (i
> h
->highest_lun
&& !controller_node
)
2159 /* If adding a real disk at cxd0, and it's already alloc'ed */
2160 if (i
== 0 && h
->drv
[i
] != NULL
)
2164 * Found an empty slot, not already alloc'ed. Allocate it.
2165 * Mark it with raid_level == -1, so we know it's new later on.
2167 drv
= kzalloc(sizeof(*drv
), GFP_KERNEL
);
2170 drv
->raid_level
= -1; /* so we know it's new */
2177 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
)
2179 kfree(h
->drv
[drv_index
]);
2180 h
->drv
[drv_index
] = NULL
;
2183 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
)
2185 put_disk(h
->gendisk
[drv_index
]);
2186 h
->gendisk
[drv_index
] = NULL
;
2189 /* cciss_add_gendisk finds a free hba[]->drv structure
2190 * and allocates a gendisk if needed, and sets the lunid
2191 * in the drvinfo structure. It returns the index into
2192 * the ->drv[] array, or -1 if none are free.
2193 * is_controller_node indicates whether highest_lun should
2194 * count this disk, or if it's only being added to provide
2195 * a means to talk to the controller in case no logical
2196 * drives have yet been configured.
2198 static int cciss_add_gendisk(ctlr_info_t
*h
, unsigned char lunid
[],
2199 int controller_node
)
2203 drv_index
= cciss_alloc_drive_info(h
, controller_node
);
2204 if (drv_index
== -1)
2207 /*Check if the gendisk needs to be allocated */
2208 if (!h
->gendisk
[drv_index
]) {
2209 h
->gendisk
[drv_index
] =
2210 alloc_disk(1 << NWD_SHIFT
);
2211 if (!h
->gendisk
[drv_index
]) {
2212 dev_err(&h
->pdev
->dev
,
2213 "could not allocate a new disk %d\n",
2215 goto err_free_drive_info
;
2218 memcpy(h
->drv
[drv_index
]->LunID
, lunid
,
2219 sizeof(h
->drv
[drv_index
]->LunID
));
2220 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
2222 /* Don't need to mark this busy because nobody */
2223 /* else knows about this disk yet to contend */
2224 /* for access to it. */
2225 h
->drv
[drv_index
]->busy_configuring
= 0;
2230 cciss_free_gendisk(h
, drv_index
);
2231 err_free_drive_info
:
2232 cciss_free_drive_info(h
, drv_index
);
2236 /* This is for the special case of a controller which
2237 * has no logical drives. In this case, we still need
2238 * to register a disk so the controller can be accessed
2239 * by the Array Config Utility.
2241 static void cciss_add_controller_node(ctlr_info_t
*h
)
2243 struct gendisk
*disk
;
2246 if (h
->gendisk
[0] != NULL
) /* already did this? Then bail. */
2249 drv_index
= cciss_add_gendisk(h
, CTLR_LUNID
, 1);
2250 if (drv_index
== -1)
2252 h
->drv
[drv_index
]->block_size
= 512;
2253 h
->drv
[drv_index
]->nr_blocks
= 0;
2254 h
->drv
[drv_index
]->heads
= 0;
2255 h
->drv
[drv_index
]->sectors
= 0;
2256 h
->drv
[drv_index
]->cylinders
= 0;
2257 h
->drv
[drv_index
]->raid_level
= -1;
2258 memset(h
->drv
[drv_index
]->serial_no
, 0, 16);
2259 disk
= h
->gendisk
[drv_index
];
2260 if (cciss_add_disk(h
, disk
, drv_index
) == 0)
2262 cciss_free_gendisk(h
, drv_index
);
2263 cciss_free_drive_info(h
, drv_index
);
2265 dev_warn(&h
->pdev
->dev
, "could not add disk 0.\n");
2269 /* This function will add and remove logical drives from the Logical
2270 * drive array of the controller and maintain persistency of ordering
2271 * so that mount points are preserved until the next reboot. This allows
2272 * for the removal of logical drives in the middle of the drive array
2273 * without a re-ordering of those drives.
2275 * h = The controller to perform the operations on
2277 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
,
2281 ReportLunData_struct
*ld_buff
= NULL
;
2287 unsigned char lunid
[8] = CTLR_LUNID
;
2288 unsigned long flags
;
2290 if (!capable(CAP_SYS_RAWIO
))
2293 /* Set busy_configuring flag for this operation */
2294 spin_lock_irqsave(&h
->lock
, flags
);
2295 if (h
->busy_configuring
) {
2296 spin_unlock_irqrestore(&h
->lock
, flags
);
2299 h
->busy_configuring
= 1;
2300 spin_unlock_irqrestore(&h
->lock
, flags
);
2302 ld_buff
= kzalloc(sizeof(ReportLunData_struct
), GFP_KERNEL
);
2303 if (ld_buff
== NULL
)
2306 return_code
= sendcmd_withirq(h
, CISS_REPORT_LOG
, ld_buff
,
2307 sizeof(ReportLunData_struct
),
2308 0, CTLR_LUNID
, TYPE_CMD
);
2310 if (return_code
== IO_OK
)
2311 listlength
= be32_to_cpu(*(__be32
*) ld_buff
->LUNListLength
);
2312 else { /* reading number of logical volumes failed */
2313 dev_warn(&h
->pdev
->dev
,
2314 "report logical volume command failed\n");
2319 num_luns
= listlength
/ 8; /* 8 bytes per entry */
2320 if (num_luns
> CISS_MAX_LUN
) {
2321 num_luns
= CISS_MAX_LUN
;
2322 dev_warn(&h
->pdev
->dev
, "more luns configured"
2323 " on controller than can be handled by"
2328 cciss_add_controller_node(h
);
2330 /* Compare controller drive array to driver's drive array
2331 * to see if any drives are missing on the controller due
2332 * to action of Array Config Utility (user deletes drive)
2333 * and deregister logical drives which have disappeared.
2335 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2339 /* skip holes in the array from already deleted drives */
2340 if (h
->drv
[i
] == NULL
)
2343 for (j
= 0; j
< num_luns
; j
++) {
2344 memcpy(lunid
, &ld_buff
->LUN
[j
][0], sizeof(lunid
));
2345 if (memcmp(h
->drv
[i
]->LunID
, lunid
,
2346 sizeof(lunid
)) == 0) {
2352 /* Deregister it from the OS, it's gone. */
2353 spin_lock_irqsave(&h
->lock
, flags
);
2354 h
->drv
[i
]->busy_configuring
= 1;
2355 spin_unlock_irqrestore(&h
->lock
, flags
);
2356 return_code
= deregister_disk(h
, i
, 1, via_ioctl
);
2357 if (h
->drv
[i
] != NULL
)
2358 h
->drv
[i
]->busy_configuring
= 0;
2362 /* Compare controller drive array to driver's drive array.
2363 * Check for updates in the drive information and any new drives
2364 * on the controller due to ACU adding logical drives, or changing
2365 * a logical drive's size, etc. Reregister any new/changed drives
2367 for (i
= 0; i
< num_luns
; i
++) {
2372 memcpy(lunid
, &ld_buff
->LUN
[i
][0], sizeof(lunid
));
2373 /* Find if the LUN is already in the drive array
2374 * of the driver. If so then update its info
2375 * if not in use. If it does not exist then find
2376 * the first free index and add it.
2378 for (j
= 0; j
<= h
->highest_lun
; j
++) {
2379 if (h
->drv
[j
] != NULL
&&
2380 memcmp(h
->drv
[j
]->LunID
, lunid
,
2381 sizeof(h
->drv
[j
]->LunID
)) == 0) {
2388 /* check if the drive was found already in the array */
2390 drv_index
= cciss_add_gendisk(h
, lunid
, 0);
2391 if (drv_index
== -1)
2394 cciss_update_drive_info(h
, drv_index
, first_time
, via_ioctl
);
2399 h
->busy_configuring
= 0;
2400 /* We return -1 here to tell the ACU that we have registered/updated
2401 * all of the drives that we can and to keep it from calling us
2406 dev_err(&h
->pdev
->dev
, "out of memory\n");
2407 h
->busy_configuring
= 0;
2411 static void cciss_clear_drive_info(drive_info_struct
*drive_info
)
2413 /* zero out the disk size info */
2414 drive_info
->nr_blocks
= 0;
2415 drive_info
->block_size
= 0;
2416 drive_info
->heads
= 0;
2417 drive_info
->sectors
= 0;
2418 drive_info
->cylinders
= 0;
2419 drive_info
->raid_level
= -1;
2420 memset(drive_info
->serial_no
, 0, sizeof(drive_info
->serial_no
));
2421 memset(drive_info
->model
, 0, sizeof(drive_info
->model
));
2422 memset(drive_info
->rev
, 0, sizeof(drive_info
->rev
));
2423 memset(drive_info
->vendor
, 0, sizeof(drive_info
->vendor
));
2425 * don't clear the LUNID though, we need to remember which
2430 /* This function will deregister the disk and it's queue from the
2431 * kernel. It must be called with the controller lock held and the
2432 * drv structures busy_configuring flag set. It's parameters are:
2434 * disk = This is the disk to be deregistered
2435 * drv = This is the drive_info_struct associated with the disk to be
2436 * deregistered. It contains information about the disk used
2438 * clear_all = This flag determines whether or not the disk information
2439 * is going to be completely cleared out and the highest_lun
2440 * reset. Sometimes we want to clear out information about
2441 * the disk in preparation for re-adding it. In this case
2442 * the highest_lun should be left unchanged and the LunID
2443 * should not be cleared.
2445 * This indicates whether we've reached this path via ioctl.
2446 * This affects the maximum usage count allowed for c0d0 to be messed with.
2447 * If this path is reached via ioctl(), then the max_usage_count will
2448 * be 1, as the process calling ioctl() has got to have the device open.
2449 * If we get here via sysfs, then the max usage count will be zero.
2451 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
2452 int clear_all
, int via_ioctl
)
2455 struct gendisk
*disk
;
2456 drive_info_struct
*drv
;
2457 int recalculate_highest_lun
;
2459 if (!capable(CAP_SYS_RAWIO
))
2462 drv
= h
->drv
[drv_index
];
2463 disk
= h
->gendisk
[drv_index
];
2465 /* make sure logical volume is NOT is use */
2466 if (clear_all
|| (h
->gendisk
[0] == disk
)) {
2467 if (drv
->usage_count
> via_ioctl
)
2469 } else if (drv
->usage_count
> 0)
2472 recalculate_highest_lun
= (drv
== h
->drv
[h
->highest_lun
]);
2474 /* invalidate the devices and deregister the disk. If it is disk
2475 * zero do not deregister it but just zero out it's values. This
2476 * allows us to delete disk zero but keep the controller registered.
2478 if (h
->gendisk
[0] != disk
) {
2479 struct request_queue
*q
= disk
->queue
;
2480 if (disk
->flags
& GENHD_FL_UP
) {
2481 cciss_destroy_ld_sysfs_entry(h
, drv_index
, 0);
2485 blk_cleanup_queue(q
);
2486 /* If clear_all is set then we are deleting the logical
2487 * drive, not just refreshing its info. For drives
2488 * other than disk 0 we will call put_disk. We do not
2489 * do this for disk 0 as we need it to be able to
2490 * configure the controller.
2493 /* This isn't pretty, but we need to find the
2494 * disk in our array and NULL our the pointer.
2495 * This is so that we will call alloc_disk if
2496 * this index is used again later.
2498 for (i
=0; i
< CISS_MAX_LUN
; i
++){
2499 if (h
->gendisk
[i
] == disk
) {
2500 h
->gendisk
[i
] = NULL
;
2507 set_capacity(disk
, 0);
2508 cciss_clear_drive_info(drv
);
2513 /* if it was the last disk, find the new hightest lun */
2514 if (clear_all
&& recalculate_highest_lun
) {
2515 int newhighest
= -1;
2516 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2517 /* if the disk has size > 0, it is available */
2518 if (h
->drv
[i
] && h
->drv
[i
]->heads
)
2521 h
->highest_lun
= newhighest
;
2526 static int fill_cmd(ctlr_info_t
*h
, CommandList_struct
*c
, __u8 cmd
, void *buff
,
2527 size_t size
, __u8 page_code
, unsigned char *scsi3addr
,
2530 u64bit buff_dma_handle
;
2533 c
->cmd_type
= CMD_IOCTL_PEND
;
2534 c
->Header
.ReplyQueue
= 0;
2536 c
->Header
.SGList
= 1;
2537 c
->Header
.SGTotal
= 1;
2539 c
->Header
.SGList
= 0;
2540 c
->Header
.SGTotal
= 0;
2542 c
->Header
.Tag
.lower
= c
->busaddr
;
2543 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
2545 c
->Request
.Type
.Type
= cmd_type
;
2546 if (cmd_type
== TYPE_CMD
) {
2549 /* are we trying to read a vital product page */
2550 if (page_code
!= 0) {
2551 c
->Request
.CDB
[1] = 0x01;
2552 c
->Request
.CDB
[2] = page_code
;
2554 c
->Request
.CDBLen
= 6;
2555 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2556 c
->Request
.Type
.Direction
= XFER_READ
;
2557 c
->Request
.Timeout
= 0;
2558 c
->Request
.CDB
[0] = CISS_INQUIRY
;
2559 c
->Request
.CDB
[4] = size
& 0xFF;
2561 case CISS_REPORT_LOG
:
2562 case CISS_REPORT_PHYS
:
2563 /* Talking to controller so It's a physical command
2564 mode = 00 target = 0. Nothing to write.
2566 c
->Request
.CDBLen
= 12;
2567 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2568 c
->Request
.Type
.Direction
= XFER_READ
;
2569 c
->Request
.Timeout
= 0;
2570 c
->Request
.CDB
[0] = cmd
;
2571 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
2572 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
2573 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
2574 c
->Request
.CDB
[9] = size
& 0xFF;
2577 case CCISS_READ_CAPACITY
:
2578 c
->Request
.CDBLen
= 10;
2579 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2580 c
->Request
.Type
.Direction
= XFER_READ
;
2581 c
->Request
.Timeout
= 0;
2582 c
->Request
.CDB
[0] = cmd
;
2584 case CCISS_READ_CAPACITY_16
:
2585 c
->Request
.CDBLen
= 16;
2586 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2587 c
->Request
.Type
.Direction
= XFER_READ
;
2588 c
->Request
.Timeout
= 0;
2589 c
->Request
.CDB
[0] = cmd
;
2590 c
->Request
.CDB
[1] = 0x10;
2591 c
->Request
.CDB
[10] = (size
>> 24) & 0xFF;
2592 c
->Request
.CDB
[11] = (size
>> 16) & 0xFF;
2593 c
->Request
.CDB
[12] = (size
>> 8) & 0xFF;
2594 c
->Request
.CDB
[13] = size
& 0xFF;
2595 c
->Request
.Timeout
= 0;
2596 c
->Request
.CDB
[0] = cmd
;
2598 case CCISS_CACHE_FLUSH
:
2599 c
->Request
.CDBLen
= 12;
2600 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2601 c
->Request
.Type
.Direction
= XFER_WRITE
;
2602 c
->Request
.Timeout
= 0;
2603 c
->Request
.CDB
[0] = BMIC_WRITE
;
2604 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
2605 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
2606 c
->Request
.CDB
[8] = size
& 0xFF;
2608 case TEST_UNIT_READY
:
2609 c
->Request
.CDBLen
= 6;
2610 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2611 c
->Request
.Type
.Direction
= XFER_NONE
;
2612 c
->Request
.Timeout
= 0;
2615 dev_warn(&h
->pdev
->dev
, "Unknown Command 0x%c\n", cmd
);
2618 } else if (cmd_type
== TYPE_MSG
) {
2620 case CCISS_ABORT_MSG
:
2621 c
->Request
.CDBLen
= 12;
2622 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2623 c
->Request
.Type
.Direction
= XFER_WRITE
;
2624 c
->Request
.Timeout
= 0;
2625 c
->Request
.CDB
[0] = cmd
; /* abort */
2626 c
->Request
.CDB
[1] = 0; /* abort a command */
2627 /* buff contains the tag of the command to abort */
2628 memcpy(&c
->Request
.CDB
[4], buff
, 8);
2630 case CCISS_RESET_MSG
:
2631 c
->Request
.CDBLen
= 16;
2632 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2633 c
->Request
.Type
.Direction
= XFER_NONE
;
2634 c
->Request
.Timeout
= 0;
2635 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
2636 c
->Request
.CDB
[0] = cmd
; /* reset */
2637 c
->Request
.CDB
[1] = CCISS_RESET_TYPE_TARGET
;
2639 case CCISS_NOOP_MSG
:
2640 c
->Request
.CDBLen
= 1;
2641 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2642 c
->Request
.Type
.Direction
= XFER_WRITE
;
2643 c
->Request
.Timeout
= 0;
2644 c
->Request
.CDB
[0] = cmd
;
2647 dev_warn(&h
->pdev
->dev
,
2648 "unknown message type %d\n", cmd
);
2652 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
2655 /* Fill in the scatter gather information */
2657 buff_dma_handle
.val
= (__u64
) pci_map_single(h
->pdev
,
2659 PCI_DMA_BIDIRECTIONAL
);
2660 c
->SG
[0].Addr
.lower
= buff_dma_handle
.val32
.lower
;
2661 c
->SG
[0].Addr
.upper
= buff_dma_handle
.val32
.upper
;
2662 c
->SG
[0].Len
= size
;
2663 c
->SG
[0].Ext
= 0; /* we are not chaining */
2668 static int cciss_send_reset(ctlr_info_t
*h
, unsigned char *scsi3addr
,
2671 CommandList_struct
*c
;
2677 return_status
= fill_cmd(h
, c
, CCISS_RESET_MSG
, NULL
, 0, 0,
2678 CTLR_LUNID
, TYPE_MSG
);
2679 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
2680 if (return_status
!= IO_OK
) {
2681 cmd_special_free(h
, c
);
2682 return return_status
;
2685 enqueue_cmd_and_start_io(h
, c
);
2686 /* Don't wait for completion, the reset won't complete. Don't free
2687 * the command either. This is the last command we will send before
2688 * re-initializing everything, so it doesn't matter and won't leak.
2693 static int check_target_status(ctlr_info_t
*h
, CommandList_struct
*c
)
2695 switch (c
->err_info
->ScsiStatus
) {
2698 case SAM_STAT_CHECK_CONDITION
:
2699 switch (0xf & c
->err_info
->SenseInfo
[2]) {
2700 case 0: return IO_OK
; /* no sense */
2701 case 1: return IO_OK
; /* recovered error */
2703 if (check_for_unit_attention(h
, c
))
2704 return IO_NEEDS_RETRY
;
2705 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x "
2706 "check condition, sense key = 0x%02x\n",
2707 c
->Request
.CDB
[0], c
->err_info
->SenseInfo
[2]);
2711 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x"
2712 "scsi status = 0x%02x\n",
2713 c
->Request
.CDB
[0], c
->err_info
->ScsiStatus
);
2719 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
)
2721 int return_status
= IO_OK
;
2723 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2726 switch (c
->err_info
->CommandStatus
) {
2727 case CMD_TARGET_STATUS
:
2728 return_status
= check_target_status(h
, c
);
2730 case CMD_DATA_UNDERRUN
:
2731 case CMD_DATA_OVERRUN
:
2732 /* expected for inquiry and report lun commands */
2735 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x is "
2736 "reported invalid\n", c
->Request
.CDB
[0]);
2737 return_status
= IO_ERROR
;
2739 case CMD_PROTOCOL_ERR
:
2740 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x has "
2741 "protocol error\n", c
->Request
.CDB
[0]);
2742 return_status
= IO_ERROR
;
2744 case CMD_HARDWARE_ERR
:
2745 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x had "
2746 " hardware error\n", c
->Request
.CDB
[0]);
2747 return_status
= IO_ERROR
;
2749 case CMD_CONNECTION_LOST
:
2750 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x had "
2751 "connection lost\n", c
->Request
.CDB
[0]);
2752 return_status
= IO_ERROR
;
2755 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x was "
2756 "aborted\n", c
->Request
.CDB
[0]);
2757 return_status
= IO_ERROR
;
2759 case CMD_ABORT_FAILED
:
2760 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x reports "
2761 "abort failed\n", c
->Request
.CDB
[0]);
2762 return_status
= IO_ERROR
;
2764 case CMD_UNSOLICITED_ABORT
:
2765 dev_warn(&h
->pdev
->dev
, "unsolicited abort 0x%02x\n",
2767 return_status
= IO_NEEDS_RETRY
;
2769 case CMD_UNABORTABLE
:
2770 dev_warn(&h
->pdev
->dev
, "cmd unabortable\n");
2771 return_status
= IO_ERROR
;
2774 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x returned "
2775 "unknown status %x\n", c
->Request
.CDB
[0],
2776 c
->err_info
->CommandStatus
);
2777 return_status
= IO_ERROR
;
2779 return return_status
;
2782 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
2785 DECLARE_COMPLETION_ONSTACK(wait
);
2786 u64bit buff_dma_handle
;
2787 int return_status
= IO_OK
;
2791 enqueue_cmd_and_start_io(h
, c
);
2793 wait_for_completion(&wait
);
2795 if (c
->err_info
->CommandStatus
== 0 || !attempt_retry
)
2798 return_status
= process_sendcmd_error(h
, c
);
2800 if (return_status
== IO_NEEDS_RETRY
&&
2801 c
->retry_count
< MAX_CMD_RETRIES
) {
2802 dev_warn(&h
->pdev
->dev
, "retrying 0x%02x\n",
2805 /* erase the old error information */
2806 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2807 return_status
= IO_OK
;
2808 reinit_completion(&wait
);
2813 /* unlock the buffers from DMA */
2814 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2815 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2816 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2817 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2818 return return_status
;
2821 static int sendcmd_withirq(ctlr_info_t
*h
, __u8 cmd
, void *buff
, size_t size
,
2822 __u8 page_code
, unsigned char scsi3addr
[],
2825 CommandList_struct
*c
;
2828 c
= cmd_special_alloc(h
);
2831 return_status
= fill_cmd(h
, c
, cmd
, buff
, size
, page_code
,
2832 scsi3addr
, cmd_type
);
2833 if (return_status
== IO_OK
)
2834 return_status
= sendcmd_withirq_core(h
, c
, 1);
2836 cmd_special_free(h
, c
);
2837 return return_status
;
2840 static void cciss_geometry_inquiry(ctlr_info_t
*h
, int logvol
,
2841 sector_t total_size
,
2842 unsigned int block_size
,
2843 InquiryData_struct
*inq_buff
,
2844 drive_info_struct
*drv
)
2848 unsigned char scsi3addr
[8];
2850 memset(inq_buff
, 0, sizeof(InquiryData_struct
));
2851 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2852 return_code
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buff
,
2853 sizeof(*inq_buff
), 0xC1, scsi3addr
, TYPE_CMD
);
2854 if (return_code
== IO_OK
) {
2855 if (inq_buff
->data_byte
[8] == 0xFF) {
2856 dev_warn(&h
->pdev
->dev
,
2857 "reading geometry failed, volume "
2858 "does not support reading geometry\n");
2860 drv
->sectors
= 32; /* Sectors per track */
2861 drv
->cylinders
= total_size
+ 1;
2862 drv
->raid_level
= RAID_UNKNOWN
;
2864 drv
->heads
= inq_buff
->data_byte
[6];
2865 drv
->sectors
= inq_buff
->data_byte
[7];
2866 drv
->cylinders
= (inq_buff
->data_byte
[4] & 0xff) << 8;
2867 drv
->cylinders
+= inq_buff
->data_byte
[5];
2868 drv
->raid_level
= inq_buff
->data_byte
[8];
2870 drv
->block_size
= block_size
;
2871 drv
->nr_blocks
= total_size
+ 1;
2872 t
= drv
->heads
* drv
->sectors
;
2874 sector_t real_size
= total_size
+ 1;
2875 unsigned long rem
= sector_div(real_size
, t
);
2878 drv
->cylinders
= real_size
;
2880 } else { /* Get geometry failed */
2881 dev_warn(&h
->pdev
->dev
, "reading geometry failed\n");
2886 cciss_read_capacity(ctlr_info_t
*h
, int logvol
, sector_t
*total_size
,
2887 unsigned int *block_size
)
2889 ReadCapdata_struct
*buf
;
2891 unsigned char scsi3addr
[8];
2893 buf
= kzalloc(sizeof(ReadCapdata_struct
), GFP_KERNEL
);
2895 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2899 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2900 return_code
= sendcmd_withirq(h
, CCISS_READ_CAPACITY
, buf
,
2901 sizeof(ReadCapdata_struct
), 0, scsi3addr
, TYPE_CMD
);
2902 if (return_code
== IO_OK
) {
2903 *total_size
= be32_to_cpu(*(__be32
*) buf
->total_size
);
2904 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2905 } else { /* read capacity command failed */
2906 dev_warn(&h
->pdev
->dev
, "read capacity failed\n");
2908 *block_size
= BLOCK_SIZE
;
2913 static void cciss_read_capacity_16(ctlr_info_t
*h
, int logvol
,
2914 sector_t
*total_size
, unsigned int *block_size
)
2916 ReadCapdata_struct_16
*buf
;
2918 unsigned char scsi3addr
[8];
2920 buf
= kzalloc(sizeof(ReadCapdata_struct_16
), GFP_KERNEL
);
2922 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2926 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2927 return_code
= sendcmd_withirq(h
, CCISS_READ_CAPACITY_16
,
2928 buf
, sizeof(ReadCapdata_struct_16
),
2929 0, scsi3addr
, TYPE_CMD
);
2930 if (return_code
== IO_OK
) {
2931 *total_size
= be64_to_cpu(*(__be64
*) buf
->total_size
);
2932 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2933 } else { /* read capacity command failed */
2934 dev_warn(&h
->pdev
->dev
, "read capacity failed\n");
2936 *block_size
= BLOCK_SIZE
;
2938 dev_info(&h
->pdev
->dev
, " blocks= %llu block_size= %d\n",
2939 (unsigned long long)*total_size
+1, *block_size
);
2943 static int cciss_revalidate(struct gendisk
*disk
)
2945 ctlr_info_t
*h
= get_host(disk
);
2946 drive_info_struct
*drv
= get_drv(disk
);
2949 unsigned int block_size
;
2950 sector_t total_size
;
2951 InquiryData_struct
*inq_buff
= NULL
;
2953 for (logvol
= 0; logvol
<= h
->highest_lun
; logvol
++) {
2954 if (!h
->drv
[logvol
])
2956 if (memcmp(h
->drv
[logvol
]->LunID
, drv
->LunID
,
2957 sizeof(drv
->LunID
)) == 0) {
2966 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
2967 if (inq_buff
== NULL
) {
2968 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2971 if (h
->cciss_read
== CCISS_READ_10
) {
2972 cciss_read_capacity(h
, logvol
,
2973 &total_size
, &block_size
);
2975 cciss_read_capacity_16(h
, logvol
,
2976 &total_size
, &block_size
);
2978 cciss_geometry_inquiry(h
, logvol
, total_size
, block_size
,
2981 blk_queue_logical_block_size(drv
->queue
, drv
->block_size
);
2982 set_capacity(disk
, drv
->nr_blocks
);
2989 * Map (physical) PCI mem into (virtual) kernel space
2991 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
2993 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
2994 ulong page_offs
= ((ulong
) base
) - page_base
;
2995 void __iomem
*page_remapped
= ioremap(page_base
, page_offs
+ size
);
2997 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
3001 * Takes jobs of the Q and sends them to the hardware, then puts it on
3002 * the Q to wait for completion.
3004 static void start_io(ctlr_info_t
*h
)
3006 CommandList_struct
*c
;
3008 while (!list_empty(&h
->reqQ
)) {
3009 c
= list_entry(h
->reqQ
.next
, CommandList_struct
, list
);
3010 /* can't do anything if fifo is full */
3011 if ((h
->access
.fifo_full(h
))) {
3012 dev_warn(&h
->pdev
->dev
, "fifo full\n");
3016 /* Get the first entry from the Request Q */
3020 /* Tell the controller execute command */
3021 h
->access
.submit_command(h
, c
);
3023 /* Put job onto the completed Q */
3028 /* Assumes that h->lock is held. */
3029 /* Zeros out the error record and then resends the command back */
3030 /* to the controller */
3031 static inline void resend_cciss_cmd(ctlr_info_t
*h
, CommandList_struct
*c
)
3033 /* erase the old error information */
3034 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
3036 /* add it to software queue and then send it to the controller */
3039 if (h
->Qdepth
> h
->maxQsinceinit
)
3040 h
->maxQsinceinit
= h
->Qdepth
;
3045 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte
,
3046 unsigned int msg_byte
, unsigned int host_byte
,
3047 unsigned int driver_byte
)
3049 /* inverse of macros in scsi.h */
3050 return (scsi_status_byte
& 0xff) |
3051 ((msg_byte
& 0xff) << 8) |
3052 ((host_byte
& 0xff) << 16) |
3053 ((driver_byte
& 0xff) << 24);
3056 static inline int evaluate_target_status(ctlr_info_t
*h
,
3057 CommandList_struct
*cmd
, int *retry_cmd
)
3059 unsigned char sense_key
;
3060 unsigned char status_byte
, msg_byte
, host_byte
, driver_byte
;
3064 /* If we get in here, it means we got "target status", that is, scsi status */
3065 status_byte
= cmd
->err_info
->ScsiStatus
;
3066 driver_byte
= DRIVER_OK
;
3067 msg_byte
= cmd
->err_info
->CommandStatus
; /* correct? seems too device specific */
3069 if (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
)
3070 host_byte
= DID_PASSTHROUGH
;
3074 error_value
= make_status_bytes(status_byte
, msg_byte
,
3075 host_byte
, driver_byte
);
3077 if (cmd
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
) {
3078 if (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
)
3079 dev_warn(&h
->pdev
->dev
, "cmd %p "
3080 "has SCSI Status 0x%x\n",
3081 cmd
, cmd
->err_info
->ScsiStatus
);
3085 /* check the sense key */
3086 sense_key
= 0xf & cmd
->err_info
->SenseInfo
[2];
3087 /* no status or recovered error */
3088 if (((sense_key
== 0x0) || (sense_key
== 0x1)) &&
3089 (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
))
3092 if (check_for_unit_attention(h
, cmd
)) {
3093 *retry_cmd
= !(cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
);
3097 /* Not SG_IO or similar? */
3098 if (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
) {
3099 if (error_value
!= 0)
3100 dev_warn(&h
->pdev
->dev
, "cmd %p has CHECK CONDITION"
3101 " sense key = 0x%x\n", cmd
, sense_key
);
3105 /* SG_IO or similar, copy sense data back */
3106 if (cmd
->rq
->sense
) {
3107 if (cmd
->rq
->sense_len
> cmd
->err_info
->SenseLen
)
3108 cmd
->rq
->sense_len
= cmd
->err_info
->SenseLen
;
3109 memcpy(cmd
->rq
->sense
, cmd
->err_info
->SenseInfo
,
3110 cmd
->rq
->sense_len
);
3112 cmd
->rq
->sense_len
= 0;
3117 /* checks the status of the job and calls complete buffers to mark all
3118 * buffers for the completed job. Note that this function does not need
3119 * to hold the hba/queue lock.
3121 static inline void complete_command(ctlr_info_t
*h
, CommandList_struct
*cmd
,
3125 struct request
*rq
= cmd
->rq
;
3130 rq
->errors
= make_status_bytes(0, 0, 0, DRIVER_TIMEOUT
);
3132 if (cmd
->err_info
->CommandStatus
== 0) /* no error has occurred */
3133 goto after_error_processing
;
3135 switch (cmd
->err_info
->CommandStatus
) {
3136 case CMD_TARGET_STATUS
:
3137 rq
->errors
= evaluate_target_status(h
, cmd
, &retry_cmd
);
3139 case CMD_DATA_UNDERRUN
:
3140 if (cmd
->rq
->cmd_type
== REQ_TYPE_FS
) {
3141 dev_warn(&h
->pdev
->dev
, "cmd %p has"
3142 " completed with data underrun "
3144 cmd
->rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
3147 case CMD_DATA_OVERRUN
:
3148 if (cmd
->rq
->cmd_type
== REQ_TYPE_FS
)
3149 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p has"
3150 " completed with data overrun "
3154 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p is "
3155 "reported invalid\n", cmd
);
3156 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3157 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3158 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3159 DID_PASSTHROUGH
: DID_ERROR
);
3161 case CMD_PROTOCOL_ERR
:
3162 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p has "
3163 "protocol error\n", cmd
);
3164 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3165 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3166 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3167 DID_PASSTHROUGH
: DID_ERROR
);
3169 case CMD_HARDWARE_ERR
:
3170 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p had "
3171 " hardware error\n", cmd
);
3172 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3173 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3174 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3175 DID_PASSTHROUGH
: DID_ERROR
);
3177 case CMD_CONNECTION_LOST
:
3178 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p had "
3179 "connection lost\n", cmd
);
3180 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3181 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3182 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3183 DID_PASSTHROUGH
: DID_ERROR
);
3186 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p was "
3188 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3189 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3190 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3191 DID_PASSTHROUGH
: DID_ABORT
);
3193 case CMD_ABORT_FAILED
:
3194 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p reports "
3195 "abort failed\n", cmd
);
3196 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3197 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3198 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3199 DID_PASSTHROUGH
: DID_ERROR
);
3201 case CMD_UNSOLICITED_ABORT
:
3202 dev_warn(&h
->pdev
->dev
, "cciss%d: unsolicited "
3203 "abort %p\n", h
->ctlr
, cmd
);
3204 if (cmd
->retry_count
< MAX_CMD_RETRIES
) {
3206 dev_warn(&h
->pdev
->dev
, "retrying %p\n", cmd
);
3209 dev_warn(&h
->pdev
->dev
,
3210 "%p retried too many times\n", cmd
);
3211 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3212 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3213 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3214 DID_PASSTHROUGH
: DID_ABORT
);
3217 dev_warn(&h
->pdev
->dev
, "cmd %p timedout\n", cmd
);
3218 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3219 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3220 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3221 DID_PASSTHROUGH
: DID_ERROR
);
3223 case CMD_UNABORTABLE
:
3224 dev_warn(&h
->pdev
->dev
, "cmd %p unabortable\n", cmd
);
3225 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3226 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3227 cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
?
3228 DID_PASSTHROUGH
: DID_ERROR
);
3231 dev_warn(&h
->pdev
->dev
, "cmd %p returned "
3232 "unknown status %x\n", cmd
,
3233 cmd
->err_info
->CommandStatus
);
3234 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3235 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3236 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3237 DID_PASSTHROUGH
: DID_ERROR
);
3240 after_error_processing
:
3242 /* We need to return this command */
3244 resend_cciss_cmd(h
, cmd
);
3247 cmd
->rq
->completion_data
= cmd
;
3248 blk_complete_request(cmd
->rq
);
3251 static inline u32
cciss_tag_contains_index(u32 tag
)
3253 #define DIRECT_LOOKUP_BIT 0x10
3254 return tag
& DIRECT_LOOKUP_BIT
;
3257 static inline u32
cciss_tag_to_index(u32 tag
)
3259 #define DIRECT_LOOKUP_SHIFT 5
3260 return tag
>> DIRECT_LOOKUP_SHIFT
;
3263 static inline u32
cciss_tag_discard_error_bits(ctlr_info_t
*h
, u32 tag
)
3265 #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3266 #define CCISS_SIMPLE_ERROR_BITS 0x03
3267 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
))
3268 return tag
& ~CCISS_PERF_ERROR_BITS
;
3269 return tag
& ~CCISS_SIMPLE_ERROR_BITS
;
3272 static inline void cciss_mark_tag_indexed(u32
*tag
)
3274 *tag
|= DIRECT_LOOKUP_BIT
;
3277 static inline void cciss_set_tag_index(u32
*tag
, u32 index
)
3279 *tag
|= (index
<< DIRECT_LOOKUP_SHIFT
);
3283 * Get a request and submit it to the controller.
3285 static void do_cciss_request(struct request_queue
*q
)
3287 ctlr_info_t
*h
= q
->queuedata
;
3288 CommandList_struct
*c
;
3291 struct request
*creq
;
3293 struct scatterlist
*tmp_sg
;
3294 SGDescriptor_struct
*curr_sg
;
3295 drive_info_struct
*drv
;
3301 creq
= blk_peek_request(q
);
3305 BUG_ON(creq
->nr_phys_segments
> h
->maxsgentries
);
3311 blk_start_request(creq
);
3313 tmp_sg
= h
->scatter_list
[c
->cmdindex
];
3314 spin_unlock_irq(q
->queue_lock
);
3316 c
->cmd_type
= CMD_RWREQ
;
3319 /* fill in the request */
3320 drv
= creq
->rq_disk
->private_data
;
3321 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
3322 /* got command from pool, so use the command block index instead */
3323 /* for direct lookups. */
3324 /* The first 2 bits are reserved for controller error reporting. */
3325 cciss_set_tag_index(&c
->Header
.Tag
.lower
, c
->cmdindex
);
3326 cciss_mark_tag_indexed(&c
->Header
.Tag
.lower
);
3327 memcpy(&c
->Header
.LUN
, drv
->LunID
, sizeof(drv
->LunID
));
3328 c
->Request
.CDBLen
= 10; /* 12 byte commands not in FW yet; */
3329 c
->Request
.Type
.Type
= TYPE_CMD
; /* It is a command. */
3330 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3331 c
->Request
.Type
.Direction
=
3332 (rq_data_dir(creq
) == READ
) ? XFER_READ
: XFER_WRITE
;
3333 c
->Request
.Timeout
= 0; /* Don't time out */
3335 (rq_data_dir(creq
) == READ
) ? h
->cciss_read
: h
->cciss_write
;
3336 start_blk
= blk_rq_pos(creq
);
3337 dev_dbg(&h
->pdev
->dev
, "sector =%d nr_sectors=%d\n",
3338 (int)blk_rq_pos(creq
), (int)blk_rq_sectors(creq
));
3339 sg_init_table(tmp_sg
, h
->maxsgentries
);
3340 seg
= blk_rq_map_sg(q
, creq
, tmp_sg
);
3342 /* get the DMA records for the setup */
3343 if (c
->Request
.Type
.Direction
== XFER_READ
)
3344 dir
= PCI_DMA_FROMDEVICE
;
3346 dir
= PCI_DMA_TODEVICE
;
3352 for (i
= 0; i
< seg
; i
++) {
3353 if (((sg_index
+1) == (h
->max_cmd_sgentries
)) &&
3354 !chained
&& ((seg
- i
) > 1)) {
3355 /* Point to next chain block. */
3356 curr_sg
= h
->cmd_sg_list
[c
->cmdindex
];
3360 curr_sg
[sg_index
].Len
= tmp_sg
[i
].length
;
3361 temp64
.val
= (__u64
) pci_map_page(h
->pdev
, sg_page(&tmp_sg
[i
]),
3363 tmp_sg
[i
].length
, dir
);
3364 curr_sg
[sg_index
].Addr
.lower
= temp64
.val32
.lower
;
3365 curr_sg
[sg_index
].Addr
.upper
= temp64
.val32
.upper
;
3366 curr_sg
[sg_index
].Ext
= 0; /* we are not chaining */
3370 cciss_map_sg_chain_block(h
, c
, h
->cmd_sg_list
[c
->cmdindex
],
3371 (seg
- (h
->max_cmd_sgentries
- 1)) *
3372 sizeof(SGDescriptor_struct
));
3374 /* track how many SG entries we are using */
3378 dev_dbg(&h
->pdev
->dev
, "Submitting %u sectors in %d segments "
3380 blk_rq_sectors(creq
), seg
, chained
);
3382 c
->Header
.SGTotal
= seg
+ chained
;
3383 if (seg
<= h
->max_cmd_sgentries
)
3384 c
->Header
.SGList
= c
->Header
.SGTotal
;
3386 c
->Header
.SGList
= h
->max_cmd_sgentries
;
3387 set_performant_mode(h
, c
);
3389 if (likely(creq
->cmd_type
== REQ_TYPE_FS
)) {
3390 if(h
->cciss_read
== CCISS_READ_10
) {
3391 c
->Request
.CDB
[1] = 0;
3392 c
->Request
.CDB
[2] = (start_blk
>> 24) & 0xff; /* MSB */
3393 c
->Request
.CDB
[3] = (start_blk
>> 16) & 0xff;
3394 c
->Request
.CDB
[4] = (start_blk
>> 8) & 0xff;
3395 c
->Request
.CDB
[5] = start_blk
& 0xff;
3396 c
->Request
.CDB
[6] = 0; /* (sect >> 24) & 0xff; MSB */
3397 c
->Request
.CDB
[7] = (blk_rq_sectors(creq
) >> 8) & 0xff;
3398 c
->Request
.CDB
[8] = blk_rq_sectors(creq
) & 0xff;
3399 c
->Request
.CDB
[9] = c
->Request
.CDB
[11] = c
->Request
.CDB
[12] = 0;
3401 u32 upper32
= upper_32_bits(start_blk
);
3403 c
->Request
.CDBLen
= 16;
3404 c
->Request
.CDB
[1]= 0;
3405 c
->Request
.CDB
[2]= (upper32
>> 24) & 0xff; /* MSB */
3406 c
->Request
.CDB
[3]= (upper32
>> 16) & 0xff;
3407 c
->Request
.CDB
[4]= (upper32
>> 8) & 0xff;
3408 c
->Request
.CDB
[5]= upper32
& 0xff;
3409 c
->Request
.CDB
[6]= (start_blk
>> 24) & 0xff;
3410 c
->Request
.CDB
[7]= (start_blk
>> 16) & 0xff;
3411 c
->Request
.CDB
[8]= (start_blk
>> 8) & 0xff;
3412 c
->Request
.CDB
[9]= start_blk
& 0xff;
3413 c
->Request
.CDB
[10]= (blk_rq_sectors(creq
) >> 24) & 0xff;
3414 c
->Request
.CDB
[11]= (blk_rq_sectors(creq
) >> 16) & 0xff;
3415 c
->Request
.CDB
[12]= (blk_rq_sectors(creq
) >> 8) & 0xff;
3416 c
->Request
.CDB
[13]= blk_rq_sectors(creq
) & 0xff;
3417 c
->Request
.CDB
[14] = c
->Request
.CDB
[15] = 0;
3419 } else if (creq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
3420 c
->Request
.CDBLen
= creq
->cmd_len
;
3421 memcpy(c
->Request
.CDB
, creq
->cmd
, BLK_MAX_CDB
);
3423 dev_warn(&h
->pdev
->dev
, "bad request type %d\n",
3428 spin_lock_irq(q
->queue_lock
);
3432 if (h
->Qdepth
> h
->maxQsinceinit
)
3433 h
->maxQsinceinit
= h
->Qdepth
;
3439 /* We will already have the driver lock here so not need
3445 static inline unsigned long get_next_completion(ctlr_info_t
*h
)
3447 return h
->access
.command_completed(h
);
3450 static inline int interrupt_pending(ctlr_info_t
*h
)
3452 return h
->access
.intr_pending(h
);
3455 static inline long interrupt_not_for_us(ctlr_info_t
*h
)
3457 return ((h
->access
.intr_pending(h
) == 0) ||
3458 (h
->interrupts_enabled
== 0));
3461 static inline int bad_tag(ctlr_info_t
*h
, u32 tag_index
,
3464 if (unlikely(tag_index
>= h
->nr_cmds
)) {
3465 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
3471 static inline void finish_cmd(ctlr_info_t
*h
, CommandList_struct
*c
,
3475 if (likely(c
->cmd_type
== CMD_RWREQ
))
3476 complete_command(h
, c
, 0);
3477 else if (c
->cmd_type
== CMD_IOCTL_PEND
)
3478 complete(c
->waiting
);
3479 #ifdef CONFIG_CISS_SCSI_TAPE
3480 else if (c
->cmd_type
== CMD_SCSI
)
3481 complete_scsi_command(c
, 0, raw_tag
);
3485 static inline u32
next_command(ctlr_info_t
*h
)
3489 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
3490 return h
->access
.command_completed(h
);
3492 if ((*(h
->reply_pool_head
) & 1) == (h
->reply_pool_wraparound
)) {
3493 a
= *(h
->reply_pool_head
); /* Next cmd in ring buffer */
3494 (h
->reply_pool_head
)++;
3495 h
->commands_outstanding
--;
3499 /* Check for wraparound */
3500 if (h
->reply_pool_head
== (h
->reply_pool
+ h
->max_commands
)) {
3501 h
->reply_pool_head
= h
->reply_pool
;
3502 h
->reply_pool_wraparound
^= 1;
3507 /* process completion of an indexed ("direct lookup") command */
3508 static inline u32
process_indexed_cmd(ctlr_info_t
*h
, u32 raw_tag
)
3511 CommandList_struct
*c
;
3513 tag_index
= cciss_tag_to_index(raw_tag
);
3514 if (bad_tag(h
, tag_index
, raw_tag
))
3515 return next_command(h
);
3516 c
= h
->cmd_pool
+ tag_index
;
3517 finish_cmd(h
, c
, raw_tag
);
3518 return next_command(h
);
3521 /* process completion of a non-indexed command */
3522 static inline u32
process_nonindexed_cmd(ctlr_info_t
*h
, u32 raw_tag
)
3524 CommandList_struct
*c
= NULL
;
3525 __u32 busaddr_masked
, tag_masked
;
3527 tag_masked
= cciss_tag_discard_error_bits(h
, raw_tag
);
3528 list_for_each_entry(c
, &h
->cmpQ
, list
) {
3529 busaddr_masked
= cciss_tag_discard_error_bits(h
, c
->busaddr
);
3530 if (busaddr_masked
== tag_masked
) {
3531 finish_cmd(h
, c
, raw_tag
);
3532 return next_command(h
);
3535 bad_tag(h
, h
->nr_cmds
+ 1, raw_tag
);
3536 return next_command(h
);
3539 /* Some controllers, like p400, will give us one interrupt
3540 * after a soft reset, even if we turned interrupts off.
3541 * Only need to check for this in the cciss_xxx_discard_completions
3544 static int ignore_bogus_interrupt(ctlr_info_t
*h
)
3546 if (likely(!reset_devices
))
3549 if (likely(h
->interrupts_enabled
))
3552 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
3553 "(known firmware bug.) Ignoring.\n");
3558 static irqreturn_t
cciss_intx_discard_completions(int irq
, void *dev_id
)
3560 ctlr_info_t
*h
= dev_id
;
3561 unsigned long flags
;
3564 if (ignore_bogus_interrupt(h
))
3567 if (interrupt_not_for_us(h
))
3569 spin_lock_irqsave(&h
->lock
, flags
);
3570 while (interrupt_pending(h
)) {
3571 raw_tag
= get_next_completion(h
);
3572 while (raw_tag
!= FIFO_EMPTY
)
3573 raw_tag
= next_command(h
);
3575 spin_unlock_irqrestore(&h
->lock
, flags
);
3579 static irqreturn_t
cciss_msix_discard_completions(int irq
, void *dev_id
)
3581 ctlr_info_t
*h
= dev_id
;
3582 unsigned long flags
;
3585 if (ignore_bogus_interrupt(h
))
3588 spin_lock_irqsave(&h
->lock
, flags
);
3589 raw_tag
= get_next_completion(h
);
3590 while (raw_tag
!= FIFO_EMPTY
)
3591 raw_tag
= next_command(h
);
3592 spin_unlock_irqrestore(&h
->lock
, flags
);
3596 static irqreturn_t
do_cciss_intx(int irq
, void *dev_id
)
3598 ctlr_info_t
*h
= dev_id
;
3599 unsigned long flags
;
3602 if (interrupt_not_for_us(h
))
3604 spin_lock_irqsave(&h
->lock
, flags
);
3605 while (interrupt_pending(h
)) {
3606 raw_tag
= get_next_completion(h
);
3607 while (raw_tag
!= FIFO_EMPTY
) {
3608 if (cciss_tag_contains_index(raw_tag
))
3609 raw_tag
= process_indexed_cmd(h
, raw_tag
);
3611 raw_tag
= process_nonindexed_cmd(h
, raw_tag
);
3614 spin_unlock_irqrestore(&h
->lock
, flags
);
3618 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3619 * check the interrupt pending register because it is not set.
3621 static irqreturn_t
do_cciss_msix_intr(int irq
, void *dev_id
)
3623 ctlr_info_t
*h
= dev_id
;
3624 unsigned long flags
;
3627 spin_lock_irqsave(&h
->lock
, flags
);
3628 raw_tag
= get_next_completion(h
);
3629 while (raw_tag
!= FIFO_EMPTY
) {
3630 if (cciss_tag_contains_index(raw_tag
))
3631 raw_tag
= process_indexed_cmd(h
, raw_tag
);
3633 raw_tag
= process_nonindexed_cmd(h
, raw_tag
);
3635 spin_unlock_irqrestore(&h
->lock
, flags
);
3640 * add_to_scan_list() - add controller to rescan queue
3641 * @h: Pointer to the controller.
3643 * Adds the controller to the rescan queue if not already on the queue.
3645 * returns 1 if added to the queue, 0 if skipped (could be on the
3646 * queue already, or the controller could be initializing or shutting
3649 static int add_to_scan_list(struct ctlr_info
*h
)
3651 struct ctlr_info
*test_h
;
3655 if (h
->busy_initializing
)
3658 if (!mutex_trylock(&h
->busy_shutting_down
))
3661 mutex_lock(&scan_mutex
);
3662 list_for_each_entry(test_h
, &scan_q
, scan_list
) {
3668 if (!found
&& !h
->busy_scanning
) {
3669 reinit_completion(&h
->scan_wait
);
3670 list_add_tail(&h
->scan_list
, &scan_q
);
3673 mutex_unlock(&scan_mutex
);
3674 mutex_unlock(&h
->busy_shutting_down
);
3680 * remove_from_scan_list() - remove controller from rescan queue
3681 * @h: Pointer to the controller.
3683 * Removes the controller from the rescan queue if present. Blocks if
3684 * the controller is currently conducting a rescan. The controller
3685 * can be in one of three states:
3686 * 1. Doesn't need a scan
3687 * 2. On the scan list, but not scanning yet (we remove it)
3688 * 3. Busy scanning (and not on the list). In this case we want to wait for
3689 * the scan to complete to make sure the scanning thread for this
3690 * controller is completely idle.
3692 static void remove_from_scan_list(struct ctlr_info
*h
)
3694 struct ctlr_info
*test_h
, *tmp_h
;
3696 mutex_lock(&scan_mutex
);
3697 list_for_each_entry_safe(test_h
, tmp_h
, &scan_q
, scan_list
) {
3698 if (test_h
== h
) { /* state 2. */
3699 list_del(&h
->scan_list
);
3700 complete_all(&h
->scan_wait
);
3701 mutex_unlock(&scan_mutex
);
3705 if (h
->busy_scanning
) { /* state 3. */
3706 mutex_unlock(&scan_mutex
);
3707 wait_for_completion(&h
->scan_wait
);
3708 } else { /* state 1, nothing to do. */
3709 mutex_unlock(&scan_mutex
);
3714 * scan_thread() - kernel thread used to rescan controllers
3717 * A kernel thread used scan for drive topology changes on
3718 * controllers. The thread processes only one controller at a time
3719 * using a queue. Controllers are added to the queue using
3720 * add_to_scan_list() and removed from the queue either after done
3721 * processing or using remove_from_scan_list().
3725 static int scan_thread(void *data
)
3727 struct ctlr_info
*h
;
3730 set_current_state(TASK_INTERRUPTIBLE
);
3732 if (kthread_should_stop())
3736 mutex_lock(&scan_mutex
);
3737 if (list_empty(&scan_q
)) {
3738 mutex_unlock(&scan_mutex
);
3742 h
= list_entry(scan_q
.next
,
3745 list_del(&h
->scan_list
);
3746 h
->busy_scanning
= 1;
3747 mutex_unlock(&scan_mutex
);
3749 rebuild_lun_table(h
, 0, 0);
3750 complete_all(&h
->scan_wait
);
3751 mutex_lock(&scan_mutex
);
3752 h
->busy_scanning
= 0;
3753 mutex_unlock(&scan_mutex
);
3760 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
3762 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
3765 switch (c
->err_info
->SenseInfo
[12]) {
3767 dev_warn(&h
->pdev
->dev
, "a state change "
3768 "detected, command retried\n");
3772 dev_warn(&h
->pdev
->dev
, "LUN failure "
3773 "detected, action required\n");
3776 case REPORT_LUNS_CHANGED
:
3777 dev_warn(&h
->pdev
->dev
, "report LUN data changed\n");
3779 * Here, we could call add_to_scan_list and wake up the scan thread,
3780 * except that it's quite likely that we will get more than one
3781 * REPORT_LUNS_CHANGED condition in quick succession, which means
3782 * that those which occur after the first one will likely happen
3783 * *during* the scan_thread's rescan. And the rescan code is not
3784 * robust enough to restart in the middle, undoing what it has already
3785 * done, and it's not clear that it's even possible to do this, since
3786 * part of what it does is notify the block layer, which starts
3787 * doing it's own i/o to read partition tables and so on, and the
3788 * driver doesn't have visibility to know what might need undoing.
3789 * In any event, if possible, it is horribly complicated to get right
3790 * so we just don't do it for now.
3792 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3796 case POWER_OR_RESET
:
3797 dev_warn(&h
->pdev
->dev
,
3798 "a power on or device reset detected\n");
3801 case UNIT_ATTENTION_CLEARED
:
3802 dev_warn(&h
->pdev
->dev
,
3803 "unit attention cleared by another initiator\n");
3807 dev_warn(&h
->pdev
->dev
, "unknown unit attention detected\n");
3813 * We cannot read the structure directly, for portability we must use
3815 * This is for debug only.
3817 static void print_cfg_table(ctlr_info_t
*h
)
3821 CfgTable_struct
*tb
= h
->cfgtable
;
3823 dev_dbg(&h
->pdev
->dev
, "Controller Configuration information\n");
3824 dev_dbg(&h
->pdev
->dev
, "------------------------------------\n");
3825 for (i
= 0; i
< 4; i
++)
3826 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
3827 temp_name
[4] = '\0';
3828 dev_dbg(&h
->pdev
->dev
, " Signature = %s\n", temp_name
);
3829 dev_dbg(&h
->pdev
->dev
, " Spec Number = %d\n",
3830 readl(&(tb
->SpecValence
)));
3831 dev_dbg(&h
->pdev
->dev
, " Transport methods supported = 0x%x\n",
3832 readl(&(tb
->TransportSupport
)));
3833 dev_dbg(&h
->pdev
->dev
, " Transport methods active = 0x%x\n",
3834 readl(&(tb
->TransportActive
)));
3835 dev_dbg(&h
->pdev
->dev
, " Requested transport Method = 0x%x\n",
3836 readl(&(tb
->HostWrite
.TransportRequest
)));
3837 dev_dbg(&h
->pdev
->dev
, " Coalesce Interrupt Delay = 0x%x\n",
3838 readl(&(tb
->HostWrite
.CoalIntDelay
)));
3839 dev_dbg(&h
->pdev
->dev
, " Coalesce Interrupt Count = 0x%x\n",
3840 readl(&(tb
->HostWrite
.CoalIntCount
)));
3841 dev_dbg(&h
->pdev
->dev
, " Max outstanding commands = 0x%d\n",
3842 readl(&(tb
->CmdsOutMax
)));
3843 dev_dbg(&h
->pdev
->dev
, " Bus Types = 0x%x\n",
3844 readl(&(tb
->BusTypes
)));
3845 for (i
= 0; i
< 16; i
++)
3846 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
3847 temp_name
[16] = '\0';
3848 dev_dbg(&h
->pdev
->dev
, " Server Name = %s\n", temp_name
);
3849 dev_dbg(&h
->pdev
->dev
, " Heartbeat Counter = 0x%x\n\n\n",
3850 readl(&(tb
->HeartBeat
)));
3853 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
3855 int i
, offset
, mem_type
, bar_type
;
3856 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
3859 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3860 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
3861 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
3864 mem_type
= pci_resource_flags(pdev
, i
) &
3865 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
3867 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
3868 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
3869 offset
+= 4; /* 32 bit */
3871 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
3874 default: /* reserved in PCI 2.2 */
3875 dev_warn(&pdev
->dev
,
3876 "Base address is invalid\n");
3881 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
3887 /* Fill in bucket_map[], given nsgs (the max number of
3888 * scatter gather elements supported) and bucket[],
3889 * which is an array of 8 integers. The bucket[] array
3890 * contains 8 different DMA transfer sizes (in 16
3891 * byte increments) which the controller uses to fetch
3892 * commands. This function fills in bucket_map[], which
3893 * maps a given number of scatter gather elements to one of
3894 * the 8 DMA transfer sizes. The point of it is to allow the
3895 * controller to only do as much DMA as needed to fetch the
3896 * command, with the DMA transfer size encoded in the lower
3897 * bits of the command address.
3899 static void calc_bucket_map(int bucket
[], int num_buckets
,
3900 int nsgs
, int *bucket_map
)
3904 /* even a command with 0 SGs requires 4 blocks */
3905 #define MINIMUM_TRANSFER_BLOCKS 4
3906 #define NUM_BUCKETS 8
3907 /* Note, bucket_map must have nsgs+1 entries. */
3908 for (i
= 0; i
<= nsgs
; i
++) {
3909 /* Compute size of a command with i SG entries */
3910 size
= i
+ MINIMUM_TRANSFER_BLOCKS
;
3911 b
= num_buckets
; /* Assume the biggest bucket */
3912 /* Find the bucket that is just big enough */
3913 for (j
= 0; j
< 8; j
++) {
3914 if (bucket
[j
] >= size
) {
3919 /* for a command with i SG entries, use bucket b. */
3924 static void cciss_wait_for_mode_change_ack(ctlr_info_t
*h
)
3928 /* under certain very rare conditions, this can take awhile.
3929 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3930 * as we enter this code.) */
3931 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
3932 if (!(readl(h
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
3934 usleep_range(10000, 20000);
3938 static void cciss_enter_performant_mode(ctlr_info_t
*h
, u32 use_short_tags
)
3940 /* This is a bit complicated. There are 8 registers on
3941 * the controller which we write to to tell it 8 different
3942 * sizes of commands which there may be. It's a way of
3943 * reducing the DMA done to fetch each command. Encoded into
3944 * each command's tag are 3 bits which communicate to the controller
3945 * which of the eight sizes that command fits within. The size of
3946 * each command depends on how many scatter gather entries there are.
3947 * Each SG entry requires 16 bytes. The eight registers are programmed
3948 * with the number of 16-byte blocks a command of that size requires.
3949 * The smallest command possible requires 5 such 16 byte blocks.
3950 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3951 * blocks. Note, this only extends to the SG entries contained
3952 * within the command block, and does not extend to chained blocks
3953 * of SG elements. bft[] contains the eight values we write to
3954 * the registers. They are not evenly distributed, but have more
3955 * sizes for small commands, and fewer sizes for larger commands.
3958 int bft
[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES
+ 4};
3960 * 5 = 1 s/g entry or 4k
3961 * 6 = 2 s/g entry or 8k
3962 * 8 = 4 s/g entry or 16k
3963 * 10 = 6 s/g entry or 24k
3965 unsigned long register_value
;
3966 BUILD_BUG_ON(28 > MAXSGENTRIES
+ 4);
3968 h
->reply_pool_wraparound
= 1; /* spec: init to 1 */
3970 /* Controller spec: zero out this buffer. */
3971 memset(h
->reply_pool
, 0, h
->max_commands
* sizeof(__u64
));
3972 h
->reply_pool_head
= h
->reply_pool
;
3974 trans_offset
= readl(&(h
->cfgtable
->TransMethodOffset
));
3975 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->maxsgentries
,
3976 h
->blockFetchTable
);
3977 writel(bft
[0], &h
->transtable
->BlockFetch0
);
3978 writel(bft
[1], &h
->transtable
->BlockFetch1
);
3979 writel(bft
[2], &h
->transtable
->BlockFetch2
);
3980 writel(bft
[3], &h
->transtable
->BlockFetch3
);
3981 writel(bft
[4], &h
->transtable
->BlockFetch4
);
3982 writel(bft
[5], &h
->transtable
->BlockFetch5
);
3983 writel(bft
[6], &h
->transtable
->BlockFetch6
);
3984 writel(bft
[7], &h
->transtable
->BlockFetch7
);
3986 /* size of controller ring buffer */
3987 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
3988 writel(1, &h
->transtable
->RepQCount
);
3989 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
3990 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
3991 writel(h
->reply_pool_dhandle
, &h
->transtable
->RepQAddr0Low32
);
3992 writel(0, &h
->transtable
->RepQAddr0High32
);
3993 writel(CFGTBL_Trans_Performant
| use_short_tags
,
3994 &(h
->cfgtable
->HostWrite
.TransportRequest
));
3996 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
3997 cciss_wait_for_mode_change_ack(h
);
3998 register_value
= readl(&(h
->cfgtable
->TransportActive
));
3999 if (!(register_value
& CFGTBL_Trans_Performant
))
4000 dev_warn(&h
->pdev
->dev
, "cciss: unable to get board into"
4001 " performant mode\n");
4004 static void cciss_put_controller_into_performant_mode(ctlr_info_t
*h
)
4006 __u32 trans_support
;
4008 if (cciss_simple_mode
)
4011 dev_dbg(&h
->pdev
->dev
, "Trying to put board into Performant mode\n");
4012 /* Attempt to put controller into performant mode if supported */
4013 /* Does board support performant mode? */
4014 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
4015 if (!(trans_support
& PERFORMANT_MODE
))
4018 dev_dbg(&h
->pdev
->dev
, "Placing controller into performant mode\n");
4019 /* Performant mode demands commands on a 32 byte boundary
4020 * pci_alloc_consistent aligns on page boundarys already.
4021 * Just need to check if divisible by 32
4023 if ((sizeof(CommandList_struct
) % 32) != 0) {
4024 dev_warn(&h
->pdev
->dev
, "%s %d %s\n",
4025 "cciss info: command size[",
4026 (int)sizeof(CommandList_struct
),
4027 "] not divisible by 32, no performant mode..\n");
4031 /* Performant mode ring buffer and supporting data structures */
4032 h
->reply_pool
= (__u64
*)pci_alloc_consistent(
4033 h
->pdev
, h
->max_commands
* sizeof(__u64
),
4034 &(h
->reply_pool_dhandle
));
4036 /* Need a block fetch table for performant mode */
4037 h
->blockFetchTable
= kmalloc(((h
->maxsgentries
+1) *
4038 sizeof(__u32
)), GFP_KERNEL
);
4040 if ((h
->reply_pool
== NULL
) || (h
->blockFetchTable
== NULL
))
4043 cciss_enter_performant_mode(h
,
4044 trans_support
& CFGTBL_Trans_use_short_tags
);
4046 /* Change the access methods to the performant access methods */
4047 h
->access
= SA5_performant_access
;
4048 h
->transMethod
= CFGTBL_Trans_Performant
;
4052 kfree(h
->blockFetchTable
);
4054 pci_free_consistent(h
->pdev
,
4055 h
->max_commands
* sizeof(__u64
),
4057 h
->reply_pool_dhandle
);
4060 } /* cciss_put_controller_into_performant_mode */
4062 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4063 * controllers that are capable. If not, we use IO-APIC mode.
4066 static void cciss_interrupt_mode(ctlr_info_t
*h
)
4068 #ifdef CONFIG_PCI_MSI
4070 struct msix_entry cciss_msix_entries
[4] = { {0, 0}, {0, 1},
4074 /* Some boards advertise MSI but don't really support it */
4075 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
4076 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
4077 goto default_int_mode
;
4079 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
4080 err
= pci_enable_msix_exact(h
->pdev
, cciss_msix_entries
, 4);
4082 h
->intr
[0] = cciss_msix_entries
[0].vector
;
4083 h
->intr
[1] = cciss_msix_entries
[1].vector
;
4084 h
->intr
[2] = cciss_msix_entries
[2].vector
;
4085 h
->intr
[3] = cciss_msix_entries
[3].vector
;
4089 dev_warn(&h
->pdev
->dev
,
4090 "MSI-X init failed %d\n", err
);
4093 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
4094 if (!pci_enable_msi(h
->pdev
))
4097 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
4100 #endif /* CONFIG_PCI_MSI */
4101 /* if we get here we're going to use the default interrupt mode */
4102 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
4106 static int cciss_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
4109 u32 subsystem_vendor_id
, subsystem_device_id
;
4111 subsystem_vendor_id
= pdev
->subsystem_vendor
;
4112 subsystem_device_id
= pdev
->subsystem_device
;
4113 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
4114 subsystem_vendor_id
;
4116 for (i
= 0; i
< ARRAY_SIZE(products
); i
++) {
4117 /* Stand aside for hpsa driver on request */
4118 if (cciss_allow_hpsa
)
4120 if (*board_id
== products
[i
].board_id
)
4123 dev_warn(&pdev
->dev
, "unrecognized board ID: 0x%08x, ignoring.\n",
4128 static inline bool cciss_board_disabled(ctlr_info_t
*h
)
4132 (void) pci_read_config_word(h
->pdev
, PCI_COMMAND
, &command
);
4133 return ((command
& PCI_COMMAND_MEMORY
) == 0);
4136 static int cciss_pci_find_memory_BAR(struct pci_dev
*pdev
,
4137 unsigned long *memory_bar
)
4141 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
4142 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
4143 /* addressing mode bits already removed */
4144 *memory_bar
= pci_resource_start(pdev
, i
);
4145 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
4149 dev_warn(&pdev
->dev
, "no memory BAR found\n");
4153 static int cciss_wait_for_board_state(struct pci_dev
*pdev
,
4154 void __iomem
*vaddr
, int wait_for_ready
)
4155 #define BOARD_READY 1
4156 #define BOARD_NOT_READY 0
4162 iterations
= CCISS_BOARD_READY_ITERATIONS
;
4164 iterations
= CCISS_BOARD_NOT_READY_ITERATIONS
;
4166 for (i
= 0; i
< iterations
; i
++) {
4167 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
4168 if (wait_for_ready
) {
4169 if (scratchpad
== CCISS_FIRMWARE_READY
)
4172 if (scratchpad
!= CCISS_FIRMWARE_READY
)
4175 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS
);
4177 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
4181 static int cciss_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
4182 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
4185 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
4186 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
4187 *cfg_base_addr
&= (u32
) 0x0000ffff;
4188 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
4189 if (*cfg_base_addr_index
== -1) {
4190 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index, "
4191 "*cfg_base_addr = 0x%08x\n", *cfg_base_addr
);
4197 static int cciss_find_cfgtables(ctlr_info_t
*h
)
4201 u64 cfg_base_addr_index
;
4205 rc
= cciss_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
4206 &cfg_base_addr_index
, &cfg_offset
);
4209 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4210 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
4213 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
4216 /* Find performant mode table. */
4217 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
4218 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4219 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
4220 sizeof(*h
->transtable
));
4226 static void cciss_get_max_perf_mode_cmds(struct ctlr_info
*h
)
4228 h
->max_commands
= readl(&(h
->cfgtable
->MaxPerformantModeCommands
));
4230 /* Limit commands in memory limited kdump scenario. */
4231 if (reset_devices
&& h
->max_commands
> 32)
4232 h
->max_commands
= 32;
4234 if (h
->max_commands
< 16) {
4235 dev_warn(&h
->pdev
->dev
, "Controller reports "
4236 "max supported commands of %d, an obvious lie. "
4237 "Using 16. Ensure that firmware is up to date.\n",
4239 h
->max_commands
= 16;
4243 /* Interrogate the hardware for some limits:
4244 * max commands, max SG elements without chaining, and with chaining,
4245 * SG chain block size, etc.
4247 static void cciss_find_board_params(ctlr_info_t
*h
)
4249 cciss_get_max_perf_mode_cmds(h
);
4250 h
->nr_cmds
= h
->max_commands
- 4 - cciss_tape_cmds
;
4251 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxSGElements
));
4253 * The P600 may exhibit poor performnace under some workloads
4254 * if we use the value in the configuration table. Limit this
4255 * controller to MAXSGENTRIES (32) instead.
4257 if (h
->board_id
== 0x3225103C)
4258 h
->maxsgentries
= MAXSGENTRIES
;
4260 * Limit in-command s/g elements to 32 save dma'able memory.
4261 * Howvever spec says if 0, use 31
4263 h
->max_cmd_sgentries
= 31;
4264 if (h
->maxsgentries
> 512) {
4265 h
->max_cmd_sgentries
= 32;
4266 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sgentries
+ 1;
4267 h
->maxsgentries
--; /* save one for chain pointer */
4269 h
->maxsgentries
= 31; /* default to traditional values */
4274 static inline bool CISS_signature_present(ctlr_info_t
*h
)
4276 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
4277 dev_warn(&h
->pdev
->dev
, "not a valid CISS config table\n");
4283 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4284 static inline void cciss_enable_scsi_prefetch(ctlr_info_t
*h
)
4289 prefetch
= readl(&(h
->cfgtable
->SCSI_Prefetch
));
4291 writel(prefetch
, &(h
->cfgtable
->SCSI_Prefetch
));
4295 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4296 * in a prefetch beyond physical memory.
4298 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t
*h
)
4303 if (h
->board_id
!= 0x3225103C)
4305 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
4306 dma_prefetch
|= 0x8000;
4307 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
4308 pci_read_config_dword(h
->pdev
, PCI_COMMAND_PARITY
, &dma_refetch
);
4310 pci_write_config_dword(h
->pdev
, PCI_COMMAND_PARITY
, dma_refetch
);
4313 static int cciss_pci_init(ctlr_info_t
*h
)
4315 int prod_index
, err
;
4317 prod_index
= cciss_lookup_board_id(h
->pdev
, &h
->board_id
);
4320 h
->product_name
= products
[prod_index
].product_name
;
4321 h
->access
= *(products
[prod_index
].access
);
4323 if (cciss_board_disabled(h
)) {
4324 dev_warn(&h
->pdev
->dev
, "controller appears to be disabled\n");
4328 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
4329 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
4331 err
= pci_enable_device(h
->pdev
);
4333 dev_warn(&h
->pdev
->dev
, "Unable to Enable PCI device\n");
4337 err
= pci_request_regions(h
->pdev
, "cciss");
4339 dev_warn(&h
->pdev
->dev
,
4340 "Cannot obtain PCI resources, aborting\n");
4344 dev_dbg(&h
->pdev
->dev
, "irq = %x\n", h
->pdev
->irq
);
4345 dev_dbg(&h
->pdev
->dev
, "board_id = %x\n", h
->board_id
);
4347 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4348 * else we use the IO-APIC interrupt assigned to us by system ROM.
4350 cciss_interrupt_mode(h
);
4351 err
= cciss_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
4353 goto err_out_free_res
;
4354 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
4357 goto err_out_free_res
;
4359 err
= cciss_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
4361 goto err_out_free_res
;
4362 err
= cciss_find_cfgtables(h
);
4364 goto err_out_free_res
;
4366 cciss_find_board_params(h
);
4368 if (!CISS_signature_present(h
)) {
4370 goto err_out_free_res
;
4372 cciss_enable_scsi_prefetch(h
);
4373 cciss_p600_dma_prefetch_quirk(h
);
4374 err
= cciss_enter_simple_mode(h
);
4376 goto err_out_free_res
;
4377 cciss_put_controller_into_performant_mode(h
);
4382 * Deliberately omit pci_disable_device(): it does something nasty to
4383 * Smart Array controllers that pci_enable_device does not undo
4386 iounmap(h
->transtable
);
4388 iounmap(h
->cfgtable
);
4391 pci_release_regions(h
->pdev
);
4395 /* Function to find the first free pointer into our hba[] array
4396 * Returns -1 if no free entries are left.
4398 static int alloc_cciss_hba(struct pci_dev
*pdev
)
4402 for (i
= 0; i
< MAX_CTLR
; i
++) {
4406 h
= kzalloc(sizeof(ctlr_info_t
), GFP_KERNEL
);
4413 dev_warn(&pdev
->dev
, "This driver supports a maximum"
4414 " of %d controllers.\n", MAX_CTLR
);
4417 dev_warn(&pdev
->dev
, "out of memory.\n");
4421 static void free_hba(ctlr_info_t
*h
)
4425 hba
[h
->ctlr
] = NULL
;
4426 for (i
= 0; i
< h
->highest_lun
+ 1; i
++)
4427 if (h
->gendisk
[i
] != NULL
)
4428 put_disk(h
->gendisk
[i
]);
4432 /* Send a message CDB to the firmware. */
4433 static int cciss_message(struct pci_dev
*pdev
, unsigned char opcode
,
4437 CommandListHeader_struct CommandHeader
;
4438 RequestBlock_struct Request
;
4439 ErrDescriptor_struct ErrorDescriptor
;
4441 static const size_t cmd_sz
= sizeof(Command
) + sizeof(ErrorInfo_struct
);
4444 uint32_t paddr32
, tag
;
4445 void __iomem
*vaddr
;
4448 vaddr
= ioremap_nocache(pci_resource_start(pdev
, 0), pci_resource_len(pdev
, 0));
4452 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4453 CCISS commands, so they must be allocated from the lower 4GiB of
4455 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4461 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
4467 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4468 although there's no guarantee, we assume that the address is at
4469 least 4-byte aligned (most likely, it's page-aligned). */
4472 cmd
->CommandHeader
.ReplyQueue
= 0;
4473 cmd
->CommandHeader
.SGList
= 0;
4474 cmd
->CommandHeader
.SGTotal
= 0;
4475 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
4476 cmd
->CommandHeader
.Tag
.upper
= 0;
4477 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
4479 cmd
->Request
.CDBLen
= 16;
4480 cmd
->Request
.Type
.Type
= TYPE_MSG
;
4481 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
4482 cmd
->Request
.Type
.Direction
= XFER_NONE
;
4483 cmd
->Request
.Timeout
= 0; /* Don't time out */
4484 cmd
->Request
.CDB
[0] = opcode
;
4485 cmd
->Request
.CDB
[1] = type
;
4486 memset(&cmd
->Request
.CDB
[2], 0, 14); /* the rest of the CDB is reserved */
4488 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(Command
);
4489 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
4490 cmd
->ErrorDescriptor
.Len
= sizeof(ErrorInfo_struct
);
4492 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
4494 for (i
= 0; i
< 10; i
++) {
4495 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
4496 if ((tag
& ~3) == paddr32
)
4498 msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS
);
4503 /* we leak the DMA buffer here ... no choice since the controller could
4504 still complete the command. */
4507 "controller message %02x:%02x timed out\n",
4512 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
4515 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
4520 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
4525 #define cciss_noop(p) cciss_message(p, 3, 0)
4527 static int cciss_controller_hard_reset(struct pci_dev
*pdev
,
4528 void * __iomem vaddr
, u32 use_doorbell
)
4534 /* For everything after the P600, the PCI power state method
4535 * of resetting the controller doesn't work, so we have this
4536 * other way using the doorbell register.
4538 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
4539 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
4540 } else { /* Try to do it the PCI power state way */
4542 /* Quoting from the Open CISS Specification: "The Power
4543 * Management Control/Status Register (CSR) controls the power
4544 * state of the device. The normal operating state is D0,
4545 * CSR=00h. The software off state is D3, CSR=03h. To reset
4546 * the controller, place the interface device in D3 then to D0,
4547 * this causes a secondary PCI reset which will reset the
4550 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
4553 "cciss_controller_hard_reset: "
4554 "PCI PM not supported\n");
4557 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
4558 /* enter the D3hot power management state */
4559 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
4560 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4562 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4566 /* enter the D0 power management state */
4567 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4569 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4572 * The P600 requires a small delay when changing states.
4573 * Otherwise we may think the board did not reset and we bail.
4574 * This for kdump only and is particular to the P600.
4581 static void init_driver_version(char *driver_version
, int len
)
4583 memset(driver_version
, 0, len
);
4584 strncpy(driver_version
, "cciss " DRIVER_NAME
, len
- 1);
4587 static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem
*cfgtable
)
4589 char *driver_version
;
4590 int i
, size
= sizeof(cfgtable
->driver_version
);
4592 driver_version
= kmalloc(size
, GFP_KERNEL
);
4593 if (!driver_version
)
4596 init_driver_version(driver_version
, size
);
4597 for (i
= 0; i
< size
; i
++)
4598 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
4599 kfree(driver_version
);
4603 static void read_driver_ver_from_cfgtable(CfgTable_struct __iomem
*cfgtable
,
4604 unsigned char *driver_ver
)
4608 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
4609 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
4612 static int controller_reset_failed(CfgTable_struct __iomem
*cfgtable
)
4615 char *driver_ver
, *old_driver_ver
;
4616 int rc
, size
= sizeof(cfgtable
->driver_version
);
4618 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
4619 if (!old_driver_ver
)
4621 driver_ver
= old_driver_ver
+ size
;
4623 /* After a reset, the 32 bytes of "driver version" in the cfgtable
4624 * should have been changed, otherwise we know the reset failed.
4626 init_driver_version(old_driver_ver
, size
);
4627 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
4628 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
4629 kfree(old_driver_ver
);
4633 /* This does a hard reset of the controller using PCI power management
4634 * states or using the doorbell register. */
4635 static int cciss_kdump_hard_reset_controller(struct pci_dev
*pdev
)
4639 u64 cfg_base_addr_index
;
4640 void __iomem
*vaddr
;
4641 unsigned long paddr
;
4642 u32 misc_fw_support
;
4644 CfgTable_struct __iomem
*cfgtable
;
4647 u16 command_register
;
4649 /* For controllers as old a the p600, this is very nearly
4652 * pci_save_state(pci_dev);
4653 * pci_set_power_state(pci_dev, PCI_D3hot);
4654 * pci_set_power_state(pci_dev, PCI_D0);
4655 * pci_restore_state(pci_dev);
4657 * For controllers newer than the P600, the pci power state
4658 * method of resetting doesn't work so we have another way
4659 * using the doorbell register.
4662 /* Exclude 640x boards. These are two pci devices in one slot
4663 * which share a battery backed cache module. One controls the
4664 * cache, the other accesses the cache through the one that controls
4665 * it. If we reset the one controlling the cache, the other will
4666 * likely not be happy. Just forbid resetting this conjoined mess.
4668 cciss_lookup_board_id(pdev
, &board_id
);
4669 if (!ctlr_is_resettable(board_id
)) {
4670 dev_warn(&pdev
->dev
, "Cannot reset Smart Array 640x "
4671 "due to shared cache module.");
4675 /* if controller is soft- but not hard resettable... */
4676 if (!ctlr_is_hard_resettable(board_id
))
4677 return -ENOTSUPP
; /* try soft reset later. */
4679 /* Save the PCI command register */
4680 pci_read_config_word(pdev
, 4, &command_register
);
4681 /* Turn the board off. This is so that later pci_restore_state()
4682 * won't turn the board on before the rest of config space is ready.
4684 pci_disable_device(pdev
);
4685 pci_save_state(pdev
);
4687 /* find the first memory BAR, so we can find the cfg table */
4688 rc
= cciss_pci_find_memory_BAR(pdev
, &paddr
);
4691 vaddr
= remap_pci_mem(paddr
, 0x250);
4695 /* find cfgtable in order to check if reset via doorbell is supported */
4696 rc
= cciss_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
4697 &cfg_base_addr_index
, &cfg_offset
);
4700 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
4701 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
4706 rc
= write_driver_ver_to_cfgtable(cfgtable
);
4710 /* If reset via doorbell register is supported, use that.
4711 * There are two such methods. Favor the newest method.
4713 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
4714 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
4716 use_doorbell
= DOORBELL_CTLR_RESET2
;
4718 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
4720 dev_warn(&pdev
->dev
, "Controller claims that "
4721 "'Bit 2 doorbell reset' is "
4722 "supported, but not 'bit 5 doorbell reset'. "
4723 "Firmware update is recommended.\n");
4724 rc
= -ENOTSUPP
; /* use the soft reset */
4725 goto unmap_cfgtable
;
4729 rc
= cciss_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
4731 goto unmap_cfgtable
;
4732 pci_restore_state(pdev
);
4733 rc
= pci_enable_device(pdev
);
4735 dev_warn(&pdev
->dev
, "failed to enable device.\n");
4736 goto unmap_cfgtable
;
4738 pci_write_config_word(pdev
, 4, command_register
);
4740 /* Some devices (notably the HP Smart Array 5i Controller)
4741 need a little pause here */
4742 msleep(CCISS_POST_RESET_PAUSE_MSECS
);
4744 /* Wait for board to become not ready, then ready. */
4745 dev_info(&pdev
->dev
, "Waiting for board to reset.\n");
4746 rc
= cciss_wait_for_board_state(pdev
, vaddr
, BOARD_NOT_READY
);
4748 dev_warn(&pdev
->dev
, "Failed waiting for board to hard reset."
4749 " Will try soft reset.\n");
4750 rc
= -ENOTSUPP
; /* Not expected, but try soft reset later */
4751 goto unmap_cfgtable
;
4753 rc
= cciss_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
4755 dev_warn(&pdev
->dev
,
4756 "failed waiting for board to become ready "
4757 "after hard reset\n");
4758 goto unmap_cfgtable
;
4761 rc
= controller_reset_failed(vaddr
);
4763 goto unmap_cfgtable
;
4765 dev_warn(&pdev
->dev
, "Unable to successfully hard reset "
4766 "controller. Will try soft reset.\n");
4767 rc
= -ENOTSUPP
; /* Not expected, but try soft reset later */
4769 dev_info(&pdev
->dev
, "Board ready after hard reset.\n");
4780 static int cciss_init_reset_devices(struct pci_dev
*pdev
)
4787 /* Reset the controller with a PCI power-cycle or via doorbell */
4788 rc
= cciss_kdump_hard_reset_controller(pdev
);
4790 /* -ENOTSUPP here means we cannot reset the controller
4791 * but it's already (and still) up and running in
4792 * "performant mode". Or, it might be 640x, which can't reset
4793 * due to concerns about shared bbwc between 6402/6404 pair.
4795 if (rc
== -ENOTSUPP
)
4796 return rc
; /* just try to do the kdump anyhow. */
4800 /* Now try to get the controller to respond to a no-op */
4801 dev_warn(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
4802 for (i
= 0; i
< CCISS_POST_RESET_NOOP_RETRIES
; i
++) {
4803 if (cciss_noop(pdev
) == 0)
4806 dev_warn(&pdev
->dev
, "no-op failed%s\n",
4807 (i
< CCISS_POST_RESET_NOOP_RETRIES
- 1 ?
4808 "; re-trying" : ""));
4809 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS
);
4814 static int cciss_allocate_cmd_pool(ctlr_info_t
*h
)
4816 h
->cmd_pool_bits
= kmalloc(BITS_TO_LONGS(h
->nr_cmds
) *
4817 sizeof(unsigned long), GFP_KERNEL
);
4818 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
4819 h
->nr_cmds
* sizeof(CommandList_struct
),
4820 &(h
->cmd_pool_dhandle
));
4821 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
4822 h
->nr_cmds
* sizeof(ErrorInfo_struct
),
4823 &(h
->errinfo_pool_dhandle
));
4824 if ((h
->cmd_pool_bits
== NULL
)
4825 || (h
->cmd_pool
== NULL
)
4826 || (h
->errinfo_pool
== NULL
)) {
4827 dev_err(&h
->pdev
->dev
, "out of memory");
4833 static int cciss_allocate_scatterlists(ctlr_info_t
*h
)
4837 /* zero it, so that on free we need not know how many were alloc'ed */
4838 h
->scatter_list
= kzalloc(h
->max_commands
*
4839 sizeof(struct scatterlist
*), GFP_KERNEL
);
4840 if (!h
->scatter_list
)
4843 for (i
= 0; i
< h
->nr_cmds
; i
++) {
4844 h
->scatter_list
[i
] = kmalloc(sizeof(struct scatterlist
) *
4845 h
->maxsgentries
, GFP_KERNEL
);
4846 if (h
->scatter_list
[i
] == NULL
) {
4847 dev_err(&h
->pdev
->dev
, "could not allocate "
4855 static void cciss_free_scatterlists(ctlr_info_t
*h
)
4859 if (h
->scatter_list
) {
4860 for (i
= 0; i
< h
->nr_cmds
; i
++)
4861 kfree(h
->scatter_list
[i
]);
4862 kfree(h
->scatter_list
);
4866 static void cciss_free_cmd_pool(ctlr_info_t
*h
)
4868 kfree(h
->cmd_pool_bits
);
4870 pci_free_consistent(h
->pdev
,
4871 h
->nr_cmds
* sizeof(CommandList_struct
),
4872 h
->cmd_pool
, h
->cmd_pool_dhandle
);
4873 if (h
->errinfo_pool
)
4874 pci_free_consistent(h
->pdev
,
4875 h
->nr_cmds
* sizeof(ErrorInfo_struct
),
4876 h
->errinfo_pool
, h
->errinfo_pool_dhandle
);
4879 static int cciss_request_irq(ctlr_info_t
*h
,
4880 irqreturn_t (*msixhandler
)(int, void *),
4881 irqreturn_t (*intxhandler
)(int, void *))
4883 if (h
->msix_vector
|| h
->msi_vector
) {
4884 if (!request_irq(h
->intr
[h
->intr_mode
], msixhandler
,
4887 dev_err(&h
->pdev
->dev
, "Unable to get msi irq %d"
4888 " for %s\n", h
->intr
[h
->intr_mode
],
4893 if (!request_irq(h
->intr
[h
->intr_mode
], intxhandler
,
4894 IRQF_SHARED
, h
->devname
, h
))
4896 dev_err(&h
->pdev
->dev
, "Unable to get irq %d for %s\n",
4897 h
->intr
[h
->intr_mode
], h
->devname
);
4901 static int cciss_kdump_soft_reset(ctlr_info_t
*h
)
4903 if (cciss_send_reset(h
, CTLR_LUNID
, CCISS_RESET_TYPE_CONTROLLER
)) {
4904 dev_warn(&h
->pdev
->dev
, "Resetting array controller failed.\n");
4908 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
4909 if (cciss_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
)) {
4910 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
4914 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
4915 if (cciss_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
)) {
4916 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
4917 "after soft reset.\n");
4924 static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t
*h
)
4928 free_irq(h
->intr
[h
->intr_mode
], h
);
4929 #ifdef CONFIG_PCI_MSI
4931 pci_disable_msix(h
->pdev
);
4932 else if (h
->msi_vector
)
4933 pci_disable_msi(h
->pdev
);
4934 #endif /* CONFIG_PCI_MSI */
4935 cciss_free_sg_chain_blocks(h
->cmd_sg_list
, h
->nr_cmds
);
4936 cciss_free_scatterlists(h
);
4937 cciss_free_cmd_pool(h
);
4938 kfree(h
->blockFetchTable
);
4940 pci_free_consistent(h
->pdev
, h
->max_commands
* sizeof(__u64
),
4941 h
->reply_pool
, h
->reply_pool_dhandle
);
4943 iounmap(h
->transtable
);
4945 iounmap(h
->cfgtable
);
4948 unregister_blkdev(h
->major
, h
->devname
);
4949 cciss_destroy_hba_sysfs_entry(h
);
4950 pci_release_regions(h
->pdev
);
4956 * This is it. Find all the controllers and register them. I really hate
4957 * stealing all these major device numbers.
4958 * returns the number of block devices registered.
4960 static int cciss_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
4965 int try_soft_reset
= 0;
4966 int dac
, return_code
;
4967 InquiryData_struct
*inq_buff
;
4969 unsigned long flags
;
4972 * By default the cciss driver is used for all older HP Smart Array
4973 * controllers. There are module paramaters that allow a user to
4974 * override this behavior and instead use the hpsa SCSI driver. If
4975 * this is the case cciss may be loaded first from the kdump initrd
4976 * image and cause a kernel panic. So if reset_devices is true and
4977 * cciss_allow_hpsa is set just bail.
4979 if ((reset_devices
) && (cciss_allow_hpsa
== 1))
4981 rc
= cciss_init_reset_devices(pdev
);
4983 if (rc
!= -ENOTSUPP
)
4985 /* If the reset fails in a particular way (it has no way to do
4986 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4987 * a soft reset once we get the controller configured up to the
4988 * point that it can accept a command.
4994 reinit_after_soft_reset
:
4996 i
= alloc_cciss_hba(pdev
);
5002 h
->busy_initializing
= 1;
5003 h
->intr_mode
= cciss_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
5004 INIT_LIST_HEAD(&h
->cmpQ
);
5005 INIT_LIST_HEAD(&h
->reqQ
);
5006 mutex_init(&h
->busy_shutting_down
);
5008 if (cciss_pci_init(h
) != 0)
5009 goto clean_no_release_regions
;
5011 sprintf(h
->devname
, "cciss%d", i
);
5014 if (cciss_tape_cmds
< 2)
5015 cciss_tape_cmds
= 2;
5016 if (cciss_tape_cmds
> 16)
5017 cciss_tape_cmds
= 16;
5019 init_completion(&h
->scan_wait
);
5021 if (cciss_create_hba_sysfs_entry(h
))
5024 /* configure PCI DMA stuff */
5025 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)))
5027 else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))
5030 dev_err(&h
->pdev
->dev
, "no suitable DMA available\n");
5035 * register with the major number, or get a dynamic major number
5036 * by passing 0 as argument. This is done for greater than
5037 * 8 controller support.
5039 if (i
< MAX_CTLR_ORIG
)
5040 h
->major
= COMPAQ_CISS_MAJOR
+ i
;
5041 rc
= register_blkdev(h
->major
, h
->devname
);
5042 if (rc
== -EBUSY
|| rc
== -EINVAL
) {
5043 dev_err(&h
->pdev
->dev
,
5044 "Unable to get major number %d for %s "
5045 "on hba %d\n", h
->major
, h
->devname
, i
);
5048 if (i
>= MAX_CTLR_ORIG
)
5052 /* make sure the board interrupts are off */
5053 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
5054 rc
= cciss_request_irq(h
, do_cciss_msix_intr
, do_cciss_intx
);
5058 dev_info(&h
->pdev
->dev
, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5059 h
->devname
, pdev
->device
, pci_name(pdev
),
5060 h
->intr
[h
->intr_mode
], dac
? "" : " not");
5062 if (cciss_allocate_cmd_pool(h
))
5065 if (cciss_allocate_scatterlists(h
))
5068 h
->cmd_sg_list
= cciss_allocate_sg_chain_blocks(h
,
5069 h
->chainsize
, h
->nr_cmds
);
5070 if (!h
->cmd_sg_list
&& h
->chainsize
> 0)
5073 spin_lock_init(&h
->lock
);
5075 /* Initialize the pdev driver private data.
5076 have it point to h. */
5077 pci_set_drvdata(pdev
, h
);
5078 /* command and error info recs zeroed out before
5080 bitmap_zero(h
->cmd_pool_bits
, h
->nr_cmds
);
5083 h
->highest_lun
= -1;
5084 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
5086 h
->gendisk
[j
] = NULL
;
5089 /* At this point, the controller is ready to take commands.
5090 * Now, if reset_devices and the hard reset didn't work, try
5091 * the soft reset and see if that works.
5093 if (try_soft_reset
) {
5095 /* This is kind of gross. We may or may not get a completion
5096 * from the soft reset command, and if we do, then the value
5097 * from the fifo may or may not be valid. So, we wait 10 secs
5098 * after the reset throwing away any completions we get during
5099 * that time. Unregister the interrupt handler and register
5100 * fake ones to scoop up any residual completions.
5102 spin_lock_irqsave(&h
->lock
, flags
);
5103 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
5104 spin_unlock_irqrestore(&h
->lock
, flags
);
5105 free_irq(h
->intr
[h
->intr_mode
], h
);
5106 rc
= cciss_request_irq(h
, cciss_msix_discard_completions
,
5107 cciss_intx_discard_completions
);
5109 dev_warn(&h
->pdev
->dev
, "Failed to request_irq after "
5114 rc
= cciss_kdump_soft_reset(h
);
5116 dev_warn(&h
->pdev
->dev
, "Soft reset failed.\n");
5120 dev_info(&h
->pdev
->dev
, "Board READY.\n");
5121 dev_info(&h
->pdev
->dev
,
5122 "Waiting for stale completions to drain.\n");
5123 h
->access
.set_intr_mask(h
, CCISS_INTR_ON
);
5125 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
5127 rc
= controller_reset_failed(h
->cfgtable
);
5129 dev_info(&h
->pdev
->dev
,
5130 "Soft reset appears to have failed.\n");
5132 /* since the controller's reset, we have to go back and re-init
5133 * everything. Easiest to just forget what we've done and do it
5136 cciss_undo_allocations_after_kdump_soft_reset(h
);
5139 /* don't go to clean4, we already unallocated */
5142 goto reinit_after_soft_reset
;
5145 cciss_scsi_setup(h
);
5147 /* Turn the interrupts on so we can service requests */
5148 h
->access
.set_intr_mask(h
, CCISS_INTR_ON
);
5150 /* Get the firmware version */
5151 inq_buff
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
5152 if (inq_buff
== NULL
) {
5153 dev_err(&h
->pdev
->dev
, "out of memory\n");
5157 return_code
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buff
,
5158 sizeof(InquiryData_struct
), 0, CTLR_LUNID
, TYPE_CMD
);
5159 if (return_code
== IO_OK
) {
5160 h
->firm_ver
[0] = inq_buff
->data_byte
[32];
5161 h
->firm_ver
[1] = inq_buff
->data_byte
[33];
5162 h
->firm_ver
[2] = inq_buff
->data_byte
[34];
5163 h
->firm_ver
[3] = inq_buff
->data_byte
[35];
5164 } else { /* send command failed */
5165 dev_warn(&h
->pdev
->dev
, "unable to determine firmware"
5166 " version of controller\n");
5172 h
->cciss_max_sectors
= 8192;
5174 rebuild_lun_table(h
, 1, 0);
5175 cciss_engage_scsi(h
);
5176 h
->busy_initializing
= 0;
5180 cciss_free_cmd_pool(h
);
5181 cciss_free_scatterlists(h
);
5182 cciss_free_sg_chain_blocks(h
->cmd_sg_list
, h
->nr_cmds
);
5183 free_irq(h
->intr
[h
->intr_mode
], h
);
5185 unregister_blkdev(h
->major
, h
->devname
);
5187 cciss_destroy_hba_sysfs_entry(h
);
5189 pci_release_regions(pdev
);
5190 clean_no_release_regions
:
5191 h
->busy_initializing
= 0;
5194 * Deliberately omit pci_disable_device(): it does something nasty to
5195 * Smart Array controllers that pci_enable_device does not undo
5197 pci_set_drvdata(pdev
, NULL
);
5202 static void cciss_shutdown(struct pci_dev
*pdev
)
5208 h
= pci_get_drvdata(pdev
);
5209 flush_buf
= kzalloc(4, GFP_KERNEL
);
5211 dev_warn(&h
->pdev
->dev
, "cache not flushed, out of memory.\n");
5214 /* write all data in the battery backed cache to disk */
5215 return_code
= sendcmd_withirq(h
, CCISS_CACHE_FLUSH
, flush_buf
,
5216 4, 0, CTLR_LUNID
, TYPE_CMD
);
5218 if (return_code
!= IO_OK
)
5219 dev_warn(&h
->pdev
->dev
, "Error flushing cache\n");
5220 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
5221 free_irq(h
->intr
[h
->intr_mode
], h
);
5224 static int cciss_enter_simple_mode(struct ctlr_info
*h
)
5228 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
5229 if (!(trans_support
& SIMPLE_MODE
))
5232 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
5233 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
5234 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
5235 cciss_wait_for_mode_change_ack(h
);
5237 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
)) {
5238 dev_warn(&h
->pdev
->dev
, "unable to get board into simple mode\n");
5241 h
->transMethod
= CFGTBL_Trans_Simple
;
5246 static void cciss_remove_one(struct pci_dev
*pdev
)
5251 if (pci_get_drvdata(pdev
) == NULL
) {
5252 dev_err(&pdev
->dev
, "Unable to remove device\n");
5256 h
= pci_get_drvdata(pdev
);
5258 if (hba
[i
] == NULL
) {
5259 dev_err(&pdev
->dev
, "device appears to already be removed\n");
5263 mutex_lock(&h
->busy_shutting_down
);
5265 remove_from_scan_list(h
);
5266 remove_proc_entry(h
->devname
, proc_cciss
);
5267 unregister_blkdev(h
->major
, h
->devname
);
5269 /* remove it from the disk list */
5270 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
5271 struct gendisk
*disk
= h
->gendisk
[j
];
5273 struct request_queue
*q
= disk
->queue
;
5275 if (disk
->flags
& GENHD_FL_UP
) {
5276 cciss_destroy_ld_sysfs_entry(h
, j
, 1);
5280 blk_cleanup_queue(q
);
5284 #ifdef CONFIG_CISS_SCSI_TAPE
5285 cciss_unregister_scsi(h
); /* unhook from SCSI subsystem */
5288 cciss_shutdown(pdev
);
5290 #ifdef CONFIG_PCI_MSI
5292 pci_disable_msix(h
->pdev
);
5293 else if (h
->msi_vector
)
5294 pci_disable_msi(h
->pdev
);
5295 #endif /* CONFIG_PCI_MSI */
5297 iounmap(h
->transtable
);
5298 iounmap(h
->cfgtable
);
5301 cciss_free_cmd_pool(h
);
5302 /* Free up sg elements */
5303 for (j
= 0; j
< h
->nr_cmds
; j
++)
5304 kfree(h
->scatter_list
[j
]);
5305 kfree(h
->scatter_list
);
5306 cciss_free_sg_chain_blocks(h
->cmd_sg_list
, h
->nr_cmds
);
5307 kfree(h
->blockFetchTable
);
5309 pci_free_consistent(h
->pdev
, h
->max_commands
* sizeof(__u64
),
5310 h
->reply_pool
, h
->reply_pool_dhandle
);
5312 * Deliberately omit pci_disable_device(): it does something nasty to
5313 * Smart Array controllers that pci_enable_device does not undo
5315 pci_release_regions(pdev
);
5316 pci_set_drvdata(pdev
, NULL
);
5317 cciss_destroy_hba_sysfs_entry(h
);
5318 mutex_unlock(&h
->busy_shutting_down
);
5322 static struct pci_driver cciss_pci_driver
= {
5324 .probe
= cciss_init_one
,
5325 .remove
= cciss_remove_one
,
5326 .id_table
= cciss_pci_device_id
, /* id_table */
5327 .shutdown
= cciss_shutdown
,
5331 * This is it. Register the PCI driver information for the cards we control
5332 * the OS will call our registered routines when it finds one of our cards.
5334 static int __init
cciss_init(void)
5339 * The hardware requires that commands are aligned on a 64-bit
5340 * boundary. Given that we use pci_alloc_consistent() to allocate an
5341 * array of them, the size must be a multiple of 8 bytes.
5343 BUILD_BUG_ON(sizeof(CommandList_struct
) % COMMANDLIST_ALIGNMENT
);
5344 printk(KERN_INFO DRIVER_NAME
"\n");
5346 err
= bus_register(&cciss_bus_type
);
5350 /* Start the scan thread */
5351 cciss_scan_thread
= kthread_run(scan_thread
, NULL
, "cciss_scan");
5352 if (IS_ERR(cciss_scan_thread
)) {
5353 err
= PTR_ERR(cciss_scan_thread
);
5354 goto err_bus_unregister
;
5357 /* Register for our PCI devices */
5358 err
= pci_register_driver(&cciss_pci_driver
);
5360 goto err_thread_stop
;
5365 kthread_stop(cciss_scan_thread
);
5367 bus_unregister(&cciss_bus_type
);
5372 static void __exit
cciss_cleanup(void)
5376 pci_unregister_driver(&cciss_pci_driver
);
5377 /* double check that all controller entrys have been removed */
5378 for (i
= 0; i
< MAX_CTLR
; i
++) {
5379 if (hba
[i
] != NULL
) {
5380 dev_warn(&hba
[i
]->pdev
->dev
,
5381 "had to remove controller\n");
5382 cciss_remove_one(hba
[i
]->pdev
);
5385 kthread_stop(cciss_scan_thread
);
5387 remove_proc_entry("driver/cciss", NULL
);
5388 bus_unregister(&cciss_bus_type
);
5391 module_init(cciss_init
);
5392 module_exit(cciss_cleanup
);