ACPI / init: Switch over platform to the ACPI mode later
[linux/fpc-iii.git] / drivers / cpufreq / arm_big_little.c
blobe1a6ba66a7f5568fc2fbb5541e5c8ddb460f9ead
1 /*
2 * ARM big.LITTLE Platforms CPUFreq support
4 * Copyright (C) 2013 ARM Ltd.
5 * Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
7 * Copyright (C) 2013 Linaro.
8 * Viresh Kumar <viresh.kumar@linaro.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
14 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
15 * kind, whether express or implied; without even the implied warranty
16 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/clk.h>
23 #include <linux/cpu.h>
24 #include <linux/cpufreq.h>
25 #include <linux/cpumask.h>
26 #include <linux/export.h>
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/of_platform.h>
30 #include <linux/pm_opp.h>
31 #include <linux/slab.h>
32 #include <linux/topology.h>
33 #include <linux/types.h>
34 #include <asm/bL_switcher.h>
36 #include "arm_big_little.h"
38 /* Currently we support only two clusters */
39 #define A15_CLUSTER 0
40 #define A7_CLUSTER 1
41 #define MAX_CLUSTERS 2
43 #ifdef CONFIG_BL_SWITCHER
44 static bool bL_switching_enabled;
45 #define is_bL_switching_enabled() bL_switching_enabled
46 #define set_switching_enabled(x) (bL_switching_enabled = (x))
47 #else
48 #define is_bL_switching_enabled() false
49 #define set_switching_enabled(x) do { } while (0)
50 #endif
52 #define ACTUAL_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq << 1 : freq)
53 #define VIRT_FREQ(cluster, freq) ((cluster == A7_CLUSTER) ? freq >> 1 : freq)
55 static struct cpufreq_arm_bL_ops *arm_bL_ops;
56 static struct clk *clk[MAX_CLUSTERS];
57 static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
58 static atomic_t cluster_usage[MAX_CLUSTERS + 1];
60 static unsigned int clk_big_min; /* (Big) clock frequencies */
61 static unsigned int clk_little_max; /* Maximum clock frequency (Little) */
63 static DEFINE_PER_CPU(unsigned int, physical_cluster);
64 static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq);
66 static struct mutex cluster_lock[MAX_CLUSTERS];
68 static inline int raw_cpu_to_cluster(int cpu)
70 return topology_physical_package_id(cpu);
73 static inline int cpu_to_cluster(int cpu)
75 return is_bL_switching_enabled() ?
76 MAX_CLUSTERS : raw_cpu_to_cluster(cpu);
79 static unsigned int find_cluster_maxfreq(int cluster)
81 int j;
82 u32 max_freq = 0, cpu_freq;
84 for_each_online_cpu(j) {
85 cpu_freq = per_cpu(cpu_last_req_freq, j);
87 if ((cluster == per_cpu(physical_cluster, j)) &&
88 (max_freq < cpu_freq))
89 max_freq = cpu_freq;
92 pr_debug("%s: cluster: %d, max freq: %d\n", __func__, cluster,
93 max_freq);
95 return max_freq;
98 static unsigned int clk_get_cpu_rate(unsigned int cpu)
100 u32 cur_cluster = per_cpu(physical_cluster, cpu);
101 u32 rate = clk_get_rate(clk[cur_cluster]) / 1000;
103 /* For switcher we use virtual A7 clock rates */
104 if (is_bL_switching_enabled())
105 rate = VIRT_FREQ(cur_cluster, rate);
107 pr_debug("%s: cpu: %d, cluster: %d, freq: %u\n", __func__, cpu,
108 cur_cluster, rate);
110 return rate;
113 static unsigned int bL_cpufreq_get_rate(unsigned int cpu)
115 if (is_bL_switching_enabled()) {
116 pr_debug("%s: freq: %d\n", __func__, per_cpu(cpu_last_req_freq,
117 cpu));
119 return per_cpu(cpu_last_req_freq, cpu);
120 } else {
121 return clk_get_cpu_rate(cpu);
125 static unsigned int
126 bL_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate)
128 u32 new_rate, prev_rate;
129 int ret;
130 bool bLs = is_bL_switching_enabled();
132 mutex_lock(&cluster_lock[new_cluster]);
134 if (bLs) {
135 prev_rate = per_cpu(cpu_last_req_freq, cpu);
136 per_cpu(cpu_last_req_freq, cpu) = rate;
137 per_cpu(physical_cluster, cpu) = new_cluster;
139 new_rate = find_cluster_maxfreq(new_cluster);
140 new_rate = ACTUAL_FREQ(new_cluster, new_rate);
141 } else {
142 new_rate = rate;
145 pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d, freq: %d\n",
146 __func__, cpu, old_cluster, new_cluster, new_rate);
148 ret = clk_set_rate(clk[new_cluster], new_rate * 1000);
149 if (WARN_ON(ret)) {
150 pr_err("clk_set_rate failed: %d, new cluster: %d\n", ret,
151 new_cluster);
152 if (bLs) {
153 per_cpu(cpu_last_req_freq, cpu) = prev_rate;
154 per_cpu(physical_cluster, cpu) = old_cluster;
157 mutex_unlock(&cluster_lock[new_cluster]);
159 return ret;
162 mutex_unlock(&cluster_lock[new_cluster]);
164 /* Recalc freq for old cluster when switching clusters */
165 if (old_cluster != new_cluster) {
166 pr_debug("%s: cpu: %d, old cluster: %d, new cluster: %d\n",
167 __func__, cpu, old_cluster, new_cluster);
169 /* Switch cluster */
170 bL_switch_request(cpu, new_cluster);
172 mutex_lock(&cluster_lock[old_cluster]);
174 /* Set freq of old cluster if there are cpus left on it */
175 new_rate = find_cluster_maxfreq(old_cluster);
176 new_rate = ACTUAL_FREQ(old_cluster, new_rate);
178 if (new_rate) {
179 pr_debug("%s: Updating rate of old cluster: %d, to freq: %d\n",
180 __func__, old_cluster, new_rate);
182 if (clk_set_rate(clk[old_cluster], new_rate * 1000))
183 pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n",
184 __func__, ret, old_cluster);
186 mutex_unlock(&cluster_lock[old_cluster]);
189 return 0;
192 /* Set clock frequency */
193 static int bL_cpufreq_set_target(struct cpufreq_policy *policy,
194 unsigned int index)
196 u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
197 unsigned int freqs_new;
199 cur_cluster = cpu_to_cluster(cpu);
200 new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);
202 freqs_new = freq_table[cur_cluster][index].frequency;
204 if (is_bL_switching_enabled()) {
205 if ((actual_cluster == A15_CLUSTER) &&
206 (freqs_new < clk_big_min)) {
207 new_cluster = A7_CLUSTER;
208 } else if ((actual_cluster == A7_CLUSTER) &&
209 (freqs_new > clk_little_max)) {
210 new_cluster = A15_CLUSTER;
214 return bL_cpufreq_set_rate(cpu, actual_cluster, new_cluster, freqs_new);
217 static inline u32 get_table_count(struct cpufreq_frequency_table *table)
219 int count;
221 for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++)
224 return count;
227 /* get the minimum frequency in the cpufreq_frequency_table */
228 static inline u32 get_table_min(struct cpufreq_frequency_table *table)
230 struct cpufreq_frequency_table *pos;
231 uint32_t min_freq = ~0;
232 cpufreq_for_each_entry(pos, table)
233 if (pos->frequency < min_freq)
234 min_freq = pos->frequency;
235 return min_freq;
238 /* get the maximum frequency in the cpufreq_frequency_table */
239 static inline u32 get_table_max(struct cpufreq_frequency_table *table)
241 struct cpufreq_frequency_table *pos;
242 uint32_t max_freq = 0;
243 cpufreq_for_each_entry(pos, table)
244 if (pos->frequency > max_freq)
245 max_freq = pos->frequency;
246 return max_freq;
249 static int merge_cluster_tables(void)
251 int i, j, k = 0, count = 1;
252 struct cpufreq_frequency_table *table;
254 for (i = 0; i < MAX_CLUSTERS; i++)
255 count += get_table_count(freq_table[i]);
257 table = kzalloc(sizeof(*table) * count, GFP_KERNEL);
258 if (!table)
259 return -ENOMEM;
261 freq_table[MAX_CLUSTERS] = table;
263 /* Add in reverse order to get freqs in increasing order */
264 for (i = MAX_CLUSTERS - 1; i >= 0; i--) {
265 for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END;
266 j++) {
267 table[k].frequency = VIRT_FREQ(i,
268 freq_table[i][j].frequency);
269 pr_debug("%s: index: %d, freq: %d\n", __func__, k,
270 table[k].frequency);
271 k++;
275 table[k].driver_data = k;
276 table[k].frequency = CPUFREQ_TABLE_END;
278 pr_debug("%s: End, table: %p, count: %d\n", __func__, table, k);
280 return 0;
283 static void _put_cluster_clk_and_freq_table(struct device *cpu_dev)
285 u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
287 if (!freq_table[cluster])
288 return;
290 clk_put(clk[cluster]);
291 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
292 if (arm_bL_ops->free_opp_table)
293 arm_bL_ops->free_opp_table(cpu_dev);
294 dev_dbg(cpu_dev, "%s: cluster: %d\n", __func__, cluster);
297 static void put_cluster_clk_and_freq_table(struct device *cpu_dev)
299 u32 cluster = cpu_to_cluster(cpu_dev->id);
300 int i;
302 if (atomic_dec_return(&cluster_usage[cluster]))
303 return;
305 if (cluster < MAX_CLUSTERS)
306 return _put_cluster_clk_and_freq_table(cpu_dev);
308 for_each_present_cpu(i) {
309 struct device *cdev = get_cpu_device(i);
310 if (!cdev) {
311 pr_err("%s: failed to get cpu%d device\n", __func__, i);
312 return;
315 _put_cluster_clk_and_freq_table(cdev);
318 /* free virtual table */
319 kfree(freq_table[cluster]);
322 static int _get_cluster_clk_and_freq_table(struct device *cpu_dev)
324 u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
325 char name[14] = "cpu-cluster.";
326 int ret;
328 if (freq_table[cluster])
329 return 0;
331 ret = arm_bL_ops->init_opp_table(cpu_dev);
332 if (ret) {
333 dev_err(cpu_dev, "%s: init_opp_table failed, cpu: %d, err: %d\n",
334 __func__, cpu_dev->id, ret);
335 goto out;
338 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]);
339 if (ret) {
340 dev_err(cpu_dev, "%s: failed to init cpufreq table, cpu: %d, err: %d\n",
341 __func__, cpu_dev->id, ret);
342 goto free_opp_table;
345 name[12] = cluster + '0';
346 clk[cluster] = clk_get(cpu_dev, name);
347 if (!IS_ERR(clk[cluster])) {
348 dev_dbg(cpu_dev, "%s: clk: %p & freq table: %p, cluster: %d\n",
349 __func__, clk[cluster], freq_table[cluster],
350 cluster);
351 return 0;
354 dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n",
355 __func__, cpu_dev->id, cluster);
356 ret = PTR_ERR(clk[cluster]);
357 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
359 free_opp_table:
360 if (arm_bL_ops->free_opp_table)
361 arm_bL_ops->free_opp_table(cpu_dev);
362 out:
363 dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
364 cluster);
365 return ret;
368 static int get_cluster_clk_and_freq_table(struct device *cpu_dev)
370 u32 cluster = cpu_to_cluster(cpu_dev->id);
371 int i, ret;
373 if (atomic_inc_return(&cluster_usage[cluster]) != 1)
374 return 0;
376 if (cluster < MAX_CLUSTERS) {
377 ret = _get_cluster_clk_and_freq_table(cpu_dev);
378 if (ret)
379 atomic_dec(&cluster_usage[cluster]);
380 return ret;
384 * Get data for all clusters and fill virtual cluster with a merge of
385 * both
387 for_each_present_cpu(i) {
388 struct device *cdev = get_cpu_device(i);
389 if (!cdev) {
390 pr_err("%s: failed to get cpu%d device\n", __func__, i);
391 return -ENODEV;
394 ret = _get_cluster_clk_and_freq_table(cdev);
395 if (ret)
396 goto put_clusters;
399 ret = merge_cluster_tables();
400 if (ret)
401 goto put_clusters;
403 /* Assuming 2 cluster, set clk_big_min and clk_little_max */
404 clk_big_min = get_table_min(freq_table[0]);
405 clk_little_max = VIRT_FREQ(1, get_table_max(freq_table[1]));
407 pr_debug("%s: cluster: %d, clk_big_min: %d, clk_little_max: %d\n",
408 __func__, cluster, clk_big_min, clk_little_max);
410 return 0;
412 put_clusters:
413 for_each_present_cpu(i) {
414 struct device *cdev = get_cpu_device(i);
415 if (!cdev) {
416 pr_err("%s: failed to get cpu%d device\n", __func__, i);
417 return -ENODEV;
420 _put_cluster_clk_and_freq_table(cdev);
423 atomic_dec(&cluster_usage[cluster]);
425 return ret;
428 /* Per-CPU initialization */
429 static int bL_cpufreq_init(struct cpufreq_policy *policy)
431 u32 cur_cluster = cpu_to_cluster(policy->cpu);
432 struct device *cpu_dev;
433 int ret;
435 cpu_dev = get_cpu_device(policy->cpu);
436 if (!cpu_dev) {
437 pr_err("%s: failed to get cpu%d device\n", __func__,
438 policy->cpu);
439 return -ENODEV;
442 ret = get_cluster_clk_and_freq_table(cpu_dev);
443 if (ret)
444 return ret;
446 ret = cpufreq_table_validate_and_show(policy, freq_table[cur_cluster]);
447 if (ret) {
448 dev_err(cpu_dev, "CPU %d, cluster: %d invalid freq table\n",
449 policy->cpu, cur_cluster);
450 put_cluster_clk_and_freq_table(cpu_dev);
451 return ret;
454 if (cur_cluster < MAX_CLUSTERS) {
455 int cpu;
457 cpumask_copy(policy->cpus, topology_core_cpumask(policy->cpu));
459 for_each_cpu(cpu, policy->cpus)
460 per_cpu(physical_cluster, cpu) = cur_cluster;
461 } else {
462 /* Assumption: during init, we are always running on A15 */
463 per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
466 if (arm_bL_ops->get_transition_latency)
467 policy->cpuinfo.transition_latency =
468 arm_bL_ops->get_transition_latency(cpu_dev);
469 else
470 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
472 if (is_bL_switching_enabled())
473 per_cpu(cpu_last_req_freq, policy->cpu) = clk_get_cpu_rate(policy->cpu);
475 dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu);
476 return 0;
479 static int bL_cpufreq_exit(struct cpufreq_policy *policy)
481 struct device *cpu_dev;
483 cpu_dev = get_cpu_device(policy->cpu);
484 if (!cpu_dev) {
485 pr_err("%s: failed to get cpu%d device\n", __func__,
486 policy->cpu);
487 return -ENODEV;
490 put_cluster_clk_and_freq_table(cpu_dev);
491 dev_dbg(cpu_dev, "%s: Exited, cpu: %d\n", __func__, policy->cpu);
493 return 0;
496 static struct cpufreq_driver bL_cpufreq_driver = {
497 .name = "arm-big-little",
498 .flags = CPUFREQ_STICKY |
499 CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
500 CPUFREQ_NEED_INITIAL_FREQ_CHECK,
501 .verify = cpufreq_generic_frequency_table_verify,
502 .target_index = bL_cpufreq_set_target,
503 .get = bL_cpufreq_get_rate,
504 .init = bL_cpufreq_init,
505 .exit = bL_cpufreq_exit,
506 .attr = cpufreq_generic_attr,
509 static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb,
510 unsigned long action, void *_arg)
512 pr_debug("%s: action: %ld\n", __func__, action);
514 switch (action) {
515 case BL_NOTIFY_PRE_ENABLE:
516 case BL_NOTIFY_PRE_DISABLE:
517 cpufreq_unregister_driver(&bL_cpufreq_driver);
518 break;
520 case BL_NOTIFY_POST_ENABLE:
521 set_switching_enabled(true);
522 cpufreq_register_driver(&bL_cpufreq_driver);
523 break;
525 case BL_NOTIFY_POST_DISABLE:
526 set_switching_enabled(false);
527 cpufreq_register_driver(&bL_cpufreq_driver);
528 break;
530 default:
531 return NOTIFY_DONE;
534 return NOTIFY_OK;
537 static struct notifier_block bL_switcher_notifier = {
538 .notifier_call = bL_cpufreq_switcher_notifier,
541 int bL_cpufreq_register(struct cpufreq_arm_bL_ops *ops)
543 int ret, i;
545 if (arm_bL_ops) {
546 pr_debug("%s: Already registered: %s, exiting\n", __func__,
547 arm_bL_ops->name);
548 return -EBUSY;
551 if (!ops || !strlen(ops->name) || !ops->init_opp_table) {
552 pr_err("%s: Invalid arm_bL_ops, exiting\n", __func__);
553 return -ENODEV;
556 arm_bL_ops = ops;
558 ret = bL_switcher_get_enabled();
559 set_switching_enabled(ret);
561 for (i = 0; i < MAX_CLUSTERS; i++)
562 mutex_init(&cluster_lock[i]);
564 ret = cpufreq_register_driver(&bL_cpufreq_driver);
565 if (ret) {
566 pr_info("%s: Failed registering platform driver: %s, err: %d\n",
567 __func__, ops->name, ret);
568 arm_bL_ops = NULL;
569 } else {
570 ret = bL_switcher_register_notifier(&bL_switcher_notifier);
571 if (ret) {
572 cpufreq_unregister_driver(&bL_cpufreq_driver);
573 arm_bL_ops = NULL;
574 } else {
575 pr_info("%s: Registered platform driver: %s\n",
576 __func__, ops->name);
580 bL_switcher_put_enabled();
581 return ret;
583 EXPORT_SYMBOL_GPL(bL_cpufreq_register);
585 void bL_cpufreq_unregister(struct cpufreq_arm_bL_ops *ops)
587 if (arm_bL_ops != ops) {
588 pr_err("%s: Registered with: %s, can't unregister, exiting\n",
589 __func__, arm_bL_ops->name);
590 return;
593 bL_switcher_get_enabled();
594 bL_switcher_unregister_notifier(&bL_switcher_notifier);
595 cpufreq_unregister_driver(&bL_cpufreq_driver);
596 bL_switcher_put_enabled();
597 pr_info("%s: Un-registered platform driver: %s\n", __func__,
598 arm_bL_ops->name);
599 arm_bL_ops = NULL;
601 EXPORT_SYMBOL_GPL(bL_cpufreq_unregister);
603 MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
604 MODULE_DESCRIPTION("Generic ARM big LITTLE cpufreq driver");
605 MODULE_LICENSE("GPL v2");