Staging: hv: delete ext_utils.c
[linux/fpc-iii.git] / kernel / timer.c
blobaeb6a54f2771691499ab474c3bf57d8e3e7d092f
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/perf_event.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
55 EXPORT_SYMBOL(jiffies_64);
58 * per-CPU timer vector definitions:
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
67 struct tvec {
68 struct list_head vec[TVN_SIZE];
71 struct tvec_root {
72 struct list_head vec[TVR_SIZE];
75 struct tvec_base {
76 spinlock_t lock;
77 struct timer_list *running_timer;
78 unsigned long timer_jiffies;
79 unsigned long next_timer;
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
85 } ____cacheline_aligned;
87 struct tvec_base boot_tvec_bases;
88 EXPORT_SYMBOL(boot_tvec_bases);
89 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
92 * Note that all tvec_bases are 2 byte aligned and lower bit of
93 * base in timer_list is guaranteed to be zero. Use the LSB for
94 * the new flag to indicate whether the timer is deferrable
96 #define TBASE_DEFERRABLE_FLAG (0x1)
98 /* Functions below help us manage 'deferrable' flag */
99 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
101 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
104 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
106 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
109 static inline void timer_set_deferrable(struct timer_list *timer)
111 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
112 TBASE_DEFERRABLE_FLAG));
115 static inline void
116 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
118 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
119 tbase_get_deferrable(timer->base));
122 static unsigned long round_jiffies_common(unsigned long j, int cpu,
123 bool force_up)
125 int rem;
126 unsigned long original = j;
129 * We don't want all cpus firing their timers at once hitting the
130 * same lock or cachelines, so we skew each extra cpu with an extra
131 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
132 * already did this.
133 * The skew is done by adding 3*cpunr, then round, then subtract this
134 * extra offset again.
136 j += cpu * 3;
138 rem = j % HZ;
141 * If the target jiffie is just after a whole second (which can happen
142 * due to delays of the timer irq, long irq off times etc etc) then
143 * we should round down to the whole second, not up. Use 1/4th second
144 * as cutoff for this rounding as an extreme upper bound for this.
145 * But never round down if @force_up is set.
147 if (rem < HZ/4 && !force_up) /* round down */
148 j = j - rem;
149 else /* round up */
150 j = j - rem + HZ;
152 /* now that we have rounded, subtract the extra skew again */
153 j -= cpu * 3;
155 if (j <= jiffies) /* rounding ate our timeout entirely; */
156 return original;
157 return j;
161 * __round_jiffies - function to round jiffies to a full second
162 * @j: the time in (absolute) jiffies that should be rounded
163 * @cpu: the processor number on which the timeout will happen
165 * __round_jiffies() rounds an absolute time in the future (in jiffies)
166 * up or down to (approximately) full seconds. This is useful for timers
167 * for which the exact time they fire does not matter too much, as long as
168 * they fire approximately every X seconds.
170 * By rounding these timers to whole seconds, all such timers will fire
171 * at the same time, rather than at various times spread out. The goal
172 * of this is to have the CPU wake up less, which saves power.
174 * The exact rounding is skewed for each processor to avoid all
175 * processors firing at the exact same time, which could lead
176 * to lock contention or spurious cache line bouncing.
178 * The return value is the rounded version of the @j parameter.
180 unsigned long __round_jiffies(unsigned long j, int cpu)
182 return round_jiffies_common(j, cpu, false);
184 EXPORT_SYMBOL_GPL(__round_jiffies);
187 * __round_jiffies_relative - function to round jiffies to a full second
188 * @j: the time in (relative) jiffies that should be rounded
189 * @cpu: the processor number on which the timeout will happen
191 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
192 * up or down to (approximately) full seconds. This is useful for timers
193 * for which the exact time they fire does not matter too much, as long as
194 * they fire approximately every X seconds.
196 * By rounding these timers to whole seconds, all such timers will fire
197 * at the same time, rather than at various times spread out. The goal
198 * of this is to have the CPU wake up less, which saves power.
200 * The exact rounding is skewed for each processor to avoid all
201 * processors firing at the exact same time, which could lead
202 * to lock contention or spurious cache line bouncing.
204 * The return value is the rounded version of the @j parameter.
206 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
208 unsigned long j0 = jiffies;
210 /* Use j0 because jiffies might change while we run */
211 return round_jiffies_common(j + j0, cpu, false) - j0;
213 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
216 * round_jiffies - function to round jiffies to a full second
217 * @j: the time in (absolute) jiffies that should be rounded
219 * round_jiffies() rounds an absolute time in the future (in jiffies)
220 * up or down to (approximately) full seconds. This is useful for timers
221 * for which the exact time they fire does not matter too much, as long as
222 * they fire approximately every X seconds.
224 * By rounding these timers to whole seconds, all such timers will fire
225 * at the same time, rather than at various times spread out. The goal
226 * of this is to have the CPU wake up less, which saves power.
228 * The return value is the rounded version of the @j parameter.
230 unsigned long round_jiffies(unsigned long j)
232 return round_jiffies_common(j, raw_smp_processor_id(), false);
234 EXPORT_SYMBOL_GPL(round_jiffies);
237 * round_jiffies_relative - function to round jiffies to a full second
238 * @j: the time in (relative) jiffies that should be rounded
240 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
241 * up or down to (approximately) full seconds. This is useful for timers
242 * for which the exact time they fire does not matter too much, as long as
243 * they fire approximately every X seconds.
245 * By rounding these timers to whole seconds, all such timers will fire
246 * at the same time, rather than at various times spread out. The goal
247 * of this is to have the CPU wake up less, which saves power.
249 * The return value is the rounded version of the @j parameter.
251 unsigned long round_jiffies_relative(unsigned long j)
253 return __round_jiffies_relative(j, raw_smp_processor_id());
255 EXPORT_SYMBOL_GPL(round_jiffies_relative);
258 * __round_jiffies_up - function to round jiffies up to a full second
259 * @j: the time in (absolute) jiffies that should be rounded
260 * @cpu: the processor number on which the timeout will happen
262 * This is the same as __round_jiffies() except that it will never
263 * round down. This is useful for timeouts for which the exact time
264 * of firing does not matter too much, as long as they don't fire too
265 * early.
267 unsigned long __round_jiffies_up(unsigned long j, int cpu)
269 return round_jiffies_common(j, cpu, true);
271 EXPORT_SYMBOL_GPL(__round_jiffies_up);
274 * __round_jiffies_up_relative - function to round jiffies up to a full second
275 * @j: the time in (relative) jiffies that should be rounded
276 * @cpu: the processor number on which the timeout will happen
278 * This is the same as __round_jiffies_relative() except that it will never
279 * round down. This is useful for timeouts for which the exact time
280 * of firing does not matter too much, as long as they don't fire too
281 * early.
283 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
285 unsigned long j0 = jiffies;
287 /* Use j0 because jiffies might change while we run */
288 return round_jiffies_common(j + j0, cpu, true) - j0;
290 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
293 * round_jiffies_up - function to round jiffies up to a full second
294 * @j: the time in (absolute) jiffies that should be rounded
296 * This is the same as round_jiffies() except that it will never
297 * round down. This is useful for timeouts for which the exact time
298 * of firing does not matter too much, as long as they don't fire too
299 * early.
301 unsigned long round_jiffies_up(unsigned long j)
303 return round_jiffies_common(j, raw_smp_processor_id(), true);
305 EXPORT_SYMBOL_GPL(round_jiffies_up);
308 * round_jiffies_up_relative - function to round jiffies up to a full second
309 * @j: the time in (relative) jiffies that should be rounded
311 * This is the same as round_jiffies_relative() except that it will never
312 * round down. This is useful for timeouts for which the exact time
313 * of firing does not matter too much, as long as they don't fire too
314 * early.
316 unsigned long round_jiffies_up_relative(unsigned long j)
318 return __round_jiffies_up_relative(j, raw_smp_processor_id());
320 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
323 static inline void set_running_timer(struct tvec_base *base,
324 struct timer_list *timer)
326 #ifdef CONFIG_SMP
327 base->running_timer = timer;
328 #endif
331 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
333 unsigned long expires = timer->expires;
334 unsigned long idx = expires - base->timer_jiffies;
335 struct list_head *vec;
337 if (idx < TVR_SIZE) {
338 int i = expires & TVR_MASK;
339 vec = base->tv1.vec + i;
340 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
341 int i = (expires >> TVR_BITS) & TVN_MASK;
342 vec = base->tv2.vec + i;
343 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
344 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
345 vec = base->tv3.vec + i;
346 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
347 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
348 vec = base->tv4.vec + i;
349 } else if ((signed long) idx < 0) {
351 * Can happen if you add a timer with expires == jiffies,
352 * or you set a timer to go off in the past
354 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
355 } else {
356 int i;
357 /* If the timeout is larger than 0xffffffff on 64-bit
358 * architectures then we use the maximum timeout:
360 if (idx > 0xffffffffUL) {
361 idx = 0xffffffffUL;
362 expires = idx + base->timer_jiffies;
364 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
365 vec = base->tv5.vec + i;
368 * Timers are FIFO:
370 list_add_tail(&timer->entry, vec);
373 #ifdef CONFIG_TIMER_STATS
374 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
376 if (timer->start_site)
377 return;
379 timer->start_site = addr;
380 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
381 timer->start_pid = current->pid;
384 static void timer_stats_account_timer(struct timer_list *timer)
386 unsigned int flag = 0;
388 if (likely(!timer->start_site))
389 return;
390 if (unlikely(tbase_get_deferrable(timer->base)))
391 flag |= TIMER_STATS_FLAG_DEFERRABLE;
393 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
394 timer->function, timer->start_comm, flag);
397 #else
398 static void timer_stats_account_timer(struct timer_list *timer) {}
399 #endif
401 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
403 static struct debug_obj_descr timer_debug_descr;
406 * fixup_init is called when:
407 * - an active object is initialized
409 static int timer_fixup_init(void *addr, enum debug_obj_state state)
411 struct timer_list *timer = addr;
413 switch (state) {
414 case ODEBUG_STATE_ACTIVE:
415 del_timer_sync(timer);
416 debug_object_init(timer, &timer_debug_descr);
417 return 1;
418 default:
419 return 0;
424 * fixup_activate is called when:
425 * - an active object is activated
426 * - an unknown object is activated (might be a statically initialized object)
428 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
430 struct timer_list *timer = addr;
432 switch (state) {
434 case ODEBUG_STATE_NOTAVAILABLE:
436 * This is not really a fixup. The timer was
437 * statically initialized. We just make sure that it
438 * is tracked in the object tracker.
440 if (timer->entry.next == NULL &&
441 timer->entry.prev == TIMER_ENTRY_STATIC) {
442 debug_object_init(timer, &timer_debug_descr);
443 debug_object_activate(timer, &timer_debug_descr);
444 return 0;
445 } else {
446 WARN_ON_ONCE(1);
448 return 0;
450 case ODEBUG_STATE_ACTIVE:
451 WARN_ON(1);
453 default:
454 return 0;
459 * fixup_free is called when:
460 * - an active object is freed
462 static int timer_fixup_free(void *addr, enum debug_obj_state state)
464 struct timer_list *timer = addr;
466 switch (state) {
467 case ODEBUG_STATE_ACTIVE:
468 del_timer_sync(timer);
469 debug_object_free(timer, &timer_debug_descr);
470 return 1;
471 default:
472 return 0;
476 static struct debug_obj_descr timer_debug_descr = {
477 .name = "timer_list",
478 .fixup_init = timer_fixup_init,
479 .fixup_activate = timer_fixup_activate,
480 .fixup_free = timer_fixup_free,
483 static inline void debug_timer_init(struct timer_list *timer)
485 debug_object_init(timer, &timer_debug_descr);
488 static inline void debug_timer_activate(struct timer_list *timer)
490 debug_object_activate(timer, &timer_debug_descr);
493 static inline void debug_timer_deactivate(struct timer_list *timer)
495 debug_object_deactivate(timer, &timer_debug_descr);
498 static inline void debug_timer_free(struct timer_list *timer)
500 debug_object_free(timer, &timer_debug_descr);
503 static void __init_timer(struct timer_list *timer,
504 const char *name,
505 struct lock_class_key *key);
507 void init_timer_on_stack_key(struct timer_list *timer,
508 const char *name,
509 struct lock_class_key *key)
511 debug_object_init_on_stack(timer, &timer_debug_descr);
512 __init_timer(timer, name, key);
514 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
516 void destroy_timer_on_stack(struct timer_list *timer)
518 debug_object_free(timer, &timer_debug_descr);
520 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
522 #else
523 static inline void debug_timer_init(struct timer_list *timer) { }
524 static inline void debug_timer_activate(struct timer_list *timer) { }
525 static inline void debug_timer_deactivate(struct timer_list *timer) { }
526 #endif
528 static inline void debug_init(struct timer_list *timer)
530 debug_timer_init(timer);
531 trace_timer_init(timer);
534 static inline void
535 debug_activate(struct timer_list *timer, unsigned long expires)
537 debug_timer_activate(timer);
538 trace_timer_start(timer, expires);
541 static inline void debug_deactivate(struct timer_list *timer)
543 debug_timer_deactivate(timer);
544 trace_timer_cancel(timer);
547 static void __init_timer(struct timer_list *timer,
548 const char *name,
549 struct lock_class_key *key)
551 timer->entry.next = NULL;
552 timer->base = __raw_get_cpu_var(tvec_bases);
553 #ifdef CONFIG_TIMER_STATS
554 timer->start_site = NULL;
555 timer->start_pid = -1;
556 memset(timer->start_comm, 0, TASK_COMM_LEN);
557 #endif
558 lockdep_init_map(&timer->lockdep_map, name, key, 0);
562 * init_timer_key - initialize a timer
563 * @timer: the timer to be initialized
564 * @name: name of the timer
565 * @key: lockdep class key of the fake lock used for tracking timer
566 * sync lock dependencies
568 * init_timer_key() must be done to a timer prior calling *any* of the
569 * other timer functions.
571 void init_timer_key(struct timer_list *timer,
572 const char *name,
573 struct lock_class_key *key)
575 debug_init(timer);
576 __init_timer(timer, name, key);
578 EXPORT_SYMBOL(init_timer_key);
580 void init_timer_deferrable_key(struct timer_list *timer,
581 const char *name,
582 struct lock_class_key *key)
584 init_timer_key(timer, name, key);
585 timer_set_deferrable(timer);
587 EXPORT_SYMBOL(init_timer_deferrable_key);
589 static inline void detach_timer(struct timer_list *timer,
590 int clear_pending)
592 struct list_head *entry = &timer->entry;
594 debug_deactivate(timer);
596 __list_del(entry->prev, entry->next);
597 if (clear_pending)
598 entry->next = NULL;
599 entry->prev = LIST_POISON2;
603 * We are using hashed locking: holding per_cpu(tvec_bases).lock
604 * means that all timers which are tied to this base via timer->base are
605 * locked, and the base itself is locked too.
607 * So __run_timers/migrate_timers can safely modify all timers which could
608 * be found on ->tvX lists.
610 * When the timer's base is locked, and the timer removed from list, it is
611 * possible to set timer->base = NULL and drop the lock: the timer remains
612 * locked.
614 static struct tvec_base *lock_timer_base(struct timer_list *timer,
615 unsigned long *flags)
616 __acquires(timer->base->lock)
618 struct tvec_base *base;
620 for (;;) {
621 struct tvec_base *prelock_base = timer->base;
622 base = tbase_get_base(prelock_base);
623 if (likely(base != NULL)) {
624 spin_lock_irqsave(&base->lock, *flags);
625 if (likely(prelock_base == timer->base))
626 return base;
627 /* The timer has migrated to another CPU */
628 spin_unlock_irqrestore(&base->lock, *flags);
630 cpu_relax();
634 static inline int
635 __mod_timer(struct timer_list *timer, unsigned long expires,
636 bool pending_only, int pinned)
638 struct tvec_base *base, *new_base;
639 unsigned long flags;
640 int ret = 0 , cpu;
642 timer_stats_timer_set_start_info(timer);
643 BUG_ON(!timer->function);
645 base = lock_timer_base(timer, &flags);
647 if (timer_pending(timer)) {
648 detach_timer(timer, 0);
649 if (timer->expires == base->next_timer &&
650 !tbase_get_deferrable(timer->base))
651 base->next_timer = base->timer_jiffies;
652 ret = 1;
653 } else {
654 if (pending_only)
655 goto out_unlock;
658 debug_activate(timer, expires);
660 cpu = smp_processor_id();
662 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
663 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
664 int preferred_cpu = get_nohz_load_balancer();
666 if (preferred_cpu >= 0)
667 cpu = preferred_cpu;
669 #endif
670 new_base = per_cpu(tvec_bases, cpu);
672 if (base != new_base) {
674 * We are trying to schedule the timer on the local CPU.
675 * However we can't change timer's base while it is running,
676 * otherwise del_timer_sync() can't detect that the timer's
677 * handler yet has not finished. This also guarantees that
678 * the timer is serialized wrt itself.
680 if (likely(base->running_timer != timer)) {
681 /* See the comment in lock_timer_base() */
682 timer_set_base(timer, NULL);
683 spin_unlock(&base->lock);
684 base = new_base;
685 spin_lock(&base->lock);
686 timer_set_base(timer, base);
690 timer->expires = expires;
691 if (time_before(timer->expires, base->next_timer) &&
692 !tbase_get_deferrable(timer->base))
693 base->next_timer = timer->expires;
694 internal_add_timer(base, timer);
696 out_unlock:
697 spin_unlock_irqrestore(&base->lock, flags);
699 return ret;
703 * mod_timer_pending - modify a pending timer's timeout
704 * @timer: the pending timer to be modified
705 * @expires: new timeout in jiffies
707 * mod_timer_pending() is the same for pending timers as mod_timer(),
708 * but will not re-activate and modify already deleted timers.
710 * It is useful for unserialized use of timers.
712 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
714 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
716 EXPORT_SYMBOL(mod_timer_pending);
719 * mod_timer - modify a timer's timeout
720 * @timer: the timer to be modified
721 * @expires: new timeout in jiffies
723 * mod_timer() is a more efficient way to update the expire field of an
724 * active timer (if the timer is inactive it will be activated)
726 * mod_timer(timer, expires) is equivalent to:
728 * del_timer(timer); timer->expires = expires; add_timer(timer);
730 * Note that if there are multiple unserialized concurrent users of the
731 * same timer, then mod_timer() is the only safe way to modify the timeout,
732 * since add_timer() cannot modify an already running timer.
734 * The function returns whether it has modified a pending timer or not.
735 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
736 * active timer returns 1.)
738 int mod_timer(struct timer_list *timer, unsigned long expires)
741 * This is a common optimization triggered by the
742 * networking code - if the timer is re-modified
743 * to be the same thing then just return:
745 if (timer_pending(timer) && timer->expires == expires)
746 return 1;
748 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
750 EXPORT_SYMBOL(mod_timer);
753 * mod_timer_pinned - modify a timer's timeout
754 * @timer: the timer to be modified
755 * @expires: new timeout in jiffies
757 * mod_timer_pinned() is a way to update the expire field of an
758 * active timer (if the timer is inactive it will be activated)
759 * and not allow the timer to be migrated to a different CPU.
761 * mod_timer_pinned(timer, expires) is equivalent to:
763 * del_timer(timer); timer->expires = expires; add_timer(timer);
765 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
767 if (timer->expires == expires && timer_pending(timer))
768 return 1;
770 return __mod_timer(timer, expires, false, TIMER_PINNED);
772 EXPORT_SYMBOL(mod_timer_pinned);
775 * add_timer - start a timer
776 * @timer: the timer to be added
778 * The kernel will do a ->function(->data) callback from the
779 * timer interrupt at the ->expires point in the future. The
780 * current time is 'jiffies'.
782 * The timer's ->expires, ->function (and if the handler uses it, ->data)
783 * fields must be set prior calling this function.
785 * Timers with an ->expires field in the past will be executed in the next
786 * timer tick.
788 void add_timer(struct timer_list *timer)
790 BUG_ON(timer_pending(timer));
791 mod_timer(timer, timer->expires);
793 EXPORT_SYMBOL(add_timer);
796 * add_timer_on - start a timer on a particular CPU
797 * @timer: the timer to be added
798 * @cpu: the CPU to start it on
800 * This is not very scalable on SMP. Double adds are not possible.
802 void add_timer_on(struct timer_list *timer, int cpu)
804 struct tvec_base *base = per_cpu(tvec_bases, cpu);
805 unsigned long flags;
807 timer_stats_timer_set_start_info(timer);
808 BUG_ON(timer_pending(timer) || !timer->function);
809 spin_lock_irqsave(&base->lock, flags);
810 timer_set_base(timer, base);
811 debug_activate(timer, timer->expires);
812 if (time_before(timer->expires, base->next_timer) &&
813 !tbase_get_deferrable(timer->base))
814 base->next_timer = timer->expires;
815 internal_add_timer(base, timer);
817 * Check whether the other CPU is idle and needs to be
818 * triggered to reevaluate the timer wheel when nohz is
819 * active. We are protected against the other CPU fiddling
820 * with the timer by holding the timer base lock. This also
821 * makes sure that a CPU on the way to idle can not evaluate
822 * the timer wheel.
824 wake_up_idle_cpu(cpu);
825 spin_unlock_irqrestore(&base->lock, flags);
827 EXPORT_SYMBOL_GPL(add_timer_on);
830 * del_timer - deactive a timer.
831 * @timer: the timer to be deactivated
833 * del_timer() deactivates a timer - this works on both active and inactive
834 * timers.
836 * The function returns whether it has deactivated a pending timer or not.
837 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
838 * active timer returns 1.)
840 int del_timer(struct timer_list *timer)
842 struct tvec_base *base;
843 unsigned long flags;
844 int ret = 0;
846 timer_stats_timer_clear_start_info(timer);
847 if (timer_pending(timer)) {
848 base = lock_timer_base(timer, &flags);
849 if (timer_pending(timer)) {
850 detach_timer(timer, 1);
851 if (timer->expires == base->next_timer &&
852 !tbase_get_deferrable(timer->base))
853 base->next_timer = base->timer_jiffies;
854 ret = 1;
856 spin_unlock_irqrestore(&base->lock, flags);
859 return ret;
861 EXPORT_SYMBOL(del_timer);
863 #ifdef CONFIG_SMP
865 * try_to_del_timer_sync - Try to deactivate a timer
866 * @timer: timer do del
868 * This function tries to deactivate a timer. Upon successful (ret >= 0)
869 * exit the timer is not queued and the handler is not running on any CPU.
871 * It must not be called from interrupt contexts.
873 int try_to_del_timer_sync(struct timer_list *timer)
875 struct tvec_base *base;
876 unsigned long flags;
877 int ret = -1;
879 base = lock_timer_base(timer, &flags);
881 if (base->running_timer == timer)
882 goto out;
884 timer_stats_timer_clear_start_info(timer);
885 ret = 0;
886 if (timer_pending(timer)) {
887 detach_timer(timer, 1);
888 if (timer->expires == base->next_timer &&
889 !tbase_get_deferrable(timer->base))
890 base->next_timer = base->timer_jiffies;
891 ret = 1;
893 out:
894 spin_unlock_irqrestore(&base->lock, flags);
896 return ret;
898 EXPORT_SYMBOL(try_to_del_timer_sync);
901 * del_timer_sync - deactivate a timer and wait for the handler to finish.
902 * @timer: the timer to be deactivated
904 * This function only differs from del_timer() on SMP: besides deactivating
905 * the timer it also makes sure the handler has finished executing on other
906 * CPUs.
908 * Synchronization rules: Callers must prevent restarting of the timer,
909 * otherwise this function is meaningless. It must not be called from
910 * interrupt contexts. The caller must not hold locks which would prevent
911 * completion of the timer's handler. The timer's handler must not call
912 * add_timer_on(). Upon exit the timer is not queued and the handler is
913 * not running on any CPU.
915 * The function returns whether it has deactivated a pending timer or not.
917 int del_timer_sync(struct timer_list *timer)
919 #ifdef CONFIG_LOCKDEP
920 unsigned long flags;
922 local_irq_save(flags);
923 lock_map_acquire(&timer->lockdep_map);
924 lock_map_release(&timer->lockdep_map);
925 local_irq_restore(flags);
926 #endif
928 for (;;) {
929 int ret = try_to_del_timer_sync(timer);
930 if (ret >= 0)
931 return ret;
932 cpu_relax();
935 EXPORT_SYMBOL(del_timer_sync);
936 #endif
938 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
940 /* cascade all the timers from tv up one level */
941 struct timer_list *timer, *tmp;
942 struct list_head tv_list;
944 list_replace_init(tv->vec + index, &tv_list);
947 * We are removing _all_ timers from the list, so we
948 * don't have to detach them individually.
950 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
951 BUG_ON(tbase_get_base(timer->base) != base);
952 internal_add_timer(base, timer);
955 return index;
958 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
961 * __run_timers - run all expired timers (if any) on this CPU.
962 * @base: the timer vector to be processed.
964 * This function cascades all vectors and executes all expired timer
965 * vectors.
967 static inline void __run_timers(struct tvec_base *base)
969 struct timer_list *timer;
971 spin_lock_irq(&base->lock);
972 while (time_after_eq(jiffies, base->timer_jiffies)) {
973 struct list_head work_list;
974 struct list_head *head = &work_list;
975 int index = base->timer_jiffies & TVR_MASK;
978 * Cascade timers:
980 if (!index &&
981 (!cascade(base, &base->tv2, INDEX(0))) &&
982 (!cascade(base, &base->tv3, INDEX(1))) &&
983 !cascade(base, &base->tv4, INDEX(2)))
984 cascade(base, &base->tv5, INDEX(3));
985 ++base->timer_jiffies;
986 list_replace_init(base->tv1.vec + index, &work_list);
987 while (!list_empty(head)) {
988 void (*fn)(unsigned long);
989 unsigned long data;
991 timer = list_first_entry(head, struct timer_list,entry);
992 fn = timer->function;
993 data = timer->data;
995 timer_stats_account_timer(timer);
997 set_running_timer(base, timer);
998 detach_timer(timer, 1);
1000 spin_unlock_irq(&base->lock);
1002 int preempt_count = preempt_count();
1004 #ifdef CONFIG_LOCKDEP
1006 * It is permissible to free the timer from
1007 * inside the function that is called from
1008 * it, this we need to take into account for
1009 * lockdep too. To avoid bogus "held lock
1010 * freed" warnings as well as problems when
1011 * looking into timer->lockdep_map, make a
1012 * copy and use that here.
1014 struct lockdep_map lockdep_map =
1015 timer->lockdep_map;
1016 #endif
1018 * Couple the lock chain with the lock chain at
1019 * del_timer_sync() by acquiring the lock_map
1020 * around the fn() call here and in
1021 * del_timer_sync().
1023 lock_map_acquire(&lockdep_map);
1025 trace_timer_expire_entry(timer);
1026 fn(data);
1027 trace_timer_expire_exit(timer);
1029 lock_map_release(&lockdep_map);
1031 if (preempt_count != preempt_count()) {
1032 printk(KERN_ERR "huh, entered %p "
1033 "with preempt_count %08x, exited"
1034 " with %08x?\n",
1035 fn, preempt_count,
1036 preempt_count());
1037 BUG();
1040 spin_lock_irq(&base->lock);
1043 set_running_timer(base, NULL);
1044 spin_unlock_irq(&base->lock);
1047 #ifdef CONFIG_NO_HZ
1049 * Find out when the next timer event is due to happen. This
1050 * is used on S/390 to stop all activity when a CPU is idle.
1051 * This function needs to be called with interrupts disabled.
1053 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1055 unsigned long timer_jiffies = base->timer_jiffies;
1056 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1057 int index, slot, array, found = 0;
1058 struct timer_list *nte;
1059 struct tvec *varray[4];
1061 /* Look for timer events in tv1. */
1062 index = slot = timer_jiffies & TVR_MASK;
1063 do {
1064 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1065 if (tbase_get_deferrable(nte->base))
1066 continue;
1068 found = 1;
1069 expires = nte->expires;
1070 /* Look at the cascade bucket(s)? */
1071 if (!index || slot < index)
1072 goto cascade;
1073 return expires;
1075 slot = (slot + 1) & TVR_MASK;
1076 } while (slot != index);
1078 cascade:
1079 /* Calculate the next cascade event */
1080 if (index)
1081 timer_jiffies += TVR_SIZE - index;
1082 timer_jiffies >>= TVR_BITS;
1084 /* Check tv2-tv5. */
1085 varray[0] = &base->tv2;
1086 varray[1] = &base->tv3;
1087 varray[2] = &base->tv4;
1088 varray[3] = &base->tv5;
1090 for (array = 0; array < 4; array++) {
1091 struct tvec *varp = varray[array];
1093 index = slot = timer_jiffies & TVN_MASK;
1094 do {
1095 list_for_each_entry(nte, varp->vec + slot, entry) {
1096 if (tbase_get_deferrable(nte->base))
1097 continue;
1099 found = 1;
1100 if (time_before(nte->expires, expires))
1101 expires = nte->expires;
1104 * Do we still search for the first timer or are
1105 * we looking up the cascade buckets ?
1107 if (found) {
1108 /* Look at the cascade bucket(s)? */
1109 if (!index || slot < index)
1110 break;
1111 return expires;
1113 slot = (slot + 1) & TVN_MASK;
1114 } while (slot != index);
1116 if (index)
1117 timer_jiffies += TVN_SIZE - index;
1118 timer_jiffies >>= TVN_BITS;
1120 return expires;
1124 * Check, if the next hrtimer event is before the next timer wheel
1125 * event:
1127 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1128 unsigned long expires)
1130 ktime_t hr_delta = hrtimer_get_next_event();
1131 struct timespec tsdelta;
1132 unsigned long delta;
1134 if (hr_delta.tv64 == KTIME_MAX)
1135 return expires;
1138 * Expired timer available, let it expire in the next tick
1140 if (hr_delta.tv64 <= 0)
1141 return now + 1;
1143 tsdelta = ktime_to_timespec(hr_delta);
1144 delta = timespec_to_jiffies(&tsdelta);
1147 * Limit the delta to the max value, which is checked in
1148 * tick_nohz_stop_sched_tick():
1150 if (delta > NEXT_TIMER_MAX_DELTA)
1151 delta = NEXT_TIMER_MAX_DELTA;
1154 * Take rounding errors in to account and make sure, that it
1155 * expires in the next tick. Otherwise we go into an endless
1156 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1157 * the timer softirq
1159 if (delta < 1)
1160 delta = 1;
1161 now += delta;
1162 if (time_before(now, expires))
1163 return now;
1164 return expires;
1168 * get_next_timer_interrupt - return the jiffy of the next pending timer
1169 * @now: current time (in jiffies)
1171 unsigned long get_next_timer_interrupt(unsigned long now)
1173 struct tvec_base *base = __get_cpu_var(tvec_bases);
1174 unsigned long expires;
1176 spin_lock(&base->lock);
1177 if (time_before_eq(base->next_timer, base->timer_jiffies))
1178 base->next_timer = __next_timer_interrupt(base);
1179 expires = base->next_timer;
1180 spin_unlock(&base->lock);
1182 if (time_before_eq(expires, now))
1183 return now;
1185 return cmp_next_hrtimer_event(now, expires);
1187 #endif
1190 * Called from the timer interrupt handler to charge one tick to the current
1191 * process. user_tick is 1 if the tick is user time, 0 for system.
1193 void update_process_times(int user_tick)
1195 struct task_struct *p = current;
1196 int cpu = smp_processor_id();
1198 /* Note: this timer irq context must be accounted for as well. */
1199 account_process_tick(p, user_tick);
1200 run_local_timers();
1201 rcu_check_callbacks(cpu, user_tick);
1202 printk_tick();
1203 perf_event_do_pending();
1204 scheduler_tick();
1205 run_posix_cpu_timers(p);
1209 * This function runs timers and the timer-tq in bottom half context.
1211 static void run_timer_softirq(struct softirq_action *h)
1213 struct tvec_base *base = __get_cpu_var(tvec_bases);
1215 hrtimer_run_pending();
1217 if (time_after_eq(jiffies, base->timer_jiffies))
1218 __run_timers(base);
1222 * Called by the local, per-CPU timer interrupt on SMP.
1224 void run_local_timers(void)
1226 hrtimer_run_queues();
1227 raise_softirq(TIMER_SOFTIRQ);
1228 softlockup_tick();
1232 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1233 * without sampling the sequence number in xtime_lock.
1234 * jiffies is defined in the linker script...
1237 void do_timer(unsigned long ticks)
1239 jiffies_64 += ticks;
1240 update_wall_time();
1241 calc_global_load();
1244 #ifdef __ARCH_WANT_SYS_ALARM
1247 * For backwards compatibility? This can be done in libc so Alpha
1248 * and all newer ports shouldn't need it.
1250 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1252 return alarm_setitimer(seconds);
1255 #endif
1257 #ifndef __alpha__
1260 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1261 * should be moved into arch/i386 instead?
1265 * sys_getpid - return the thread group id of the current process
1267 * Note, despite the name, this returns the tgid not the pid. The tgid and
1268 * the pid are identical unless CLONE_THREAD was specified on clone() in
1269 * which case the tgid is the same in all threads of the same group.
1271 * This is SMP safe as current->tgid does not change.
1273 SYSCALL_DEFINE0(getpid)
1275 return task_tgid_vnr(current);
1279 * Accessing ->real_parent is not SMP-safe, it could
1280 * change from under us. However, we can use a stale
1281 * value of ->real_parent under rcu_read_lock(), see
1282 * release_task()->call_rcu(delayed_put_task_struct).
1284 SYSCALL_DEFINE0(getppid)
1286 int pid;
1288 rcu_read_lock();
1289 pid = task_tgid_vnr(current->real_parent);
1290 rcu_read_unlock();
1292 return pid;
1295 SYSCALL_DEFINE0(getuid)
1297 /* Only we change this so SMP safe */
1298 return current_uid();
1301 SYSCALL_DEFINE0(geteuid)
1303 /* Only we change this so SMP safe */
1304 return current_euid();
1307 SYSCALL_DEFINE0(getgid)
1309 /* Only we change this so SMP safe */
1310 return current_gid();
1313 SYSCALL_DEFINE0(getegid)
1315 /* Only we change this so SMP safe */
1316 return current_egid();
1319 #endif
1321 static void process_timeout(unsigned long __data)
1323 wake_up_process((struct task_struct *)__data);
1327 * schedule_timeout - sleep until timeout
1328 * @timeout: timeout value in jiffies
1330 * Make the current task sleep until @timeout jiffies have
1331 * elapsed. The routine will return immediately unless
1332 * the current task state has been set (see set_current_state()).
1334 * You can set the task state as follows -
1336 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1337 * pass before the routine returns. The routine will return 0
1339 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1340 * delivered to the current task. In this case the remaining time
1341 * in jiffies will be returned, or 0 if the timer expired in time
1343 * The current task state is guaranteed to be TASK_RUNNING when this
1344 * routine returns.
1346 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1347 * the CPU away without a bound on the timeout. In this case the return
1348 * value will be %MAX_SCHEDULE_TIMEOUT.
1350 * In all cases the return value is guaranteed to be non-negative.
1352 signed long __sched schedule_timeout(signed long timeout)
1354 struct timer_list timer;
1355 unsigned long expire;
1357 switch (timeout)
1359 case MAX_SCHEDULE_TIMEOUT:
1361 * These two special cases are useful to be comfortable
1362 * in the caller. Nothing more. We could take
1363 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1364 * but I' d like to return a valid offset (>=0) to allow
1365 * the caller to do everything it want with the retval.
1367 schedule();
1368 goto out;
1369 default:
1371 * Another bit of PARANOID. Note that the retval will be
1372 * 0 since no piece of kernel is supposed to do a check
1373 * for a negative retval of schedule_timeout() (since it
1374 * should never happens anyway). You just have the printk()
1375 * that will tell you if something is gone wrong and where.
1377 if (timeout < 0) {
1378 printk(KERN_ERR "schedule_timeout: wrong timeout "
1379 "value %lx\n", timeout);
1380 dump_stack();
1381 current->state = TASK_RUNNING;
1382 goto out;
1386 expire = timeout + jiffies;
1388 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1389 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1390 schedule();
1391 del_singleshot_timer_sync(&timer);
1393 /* Remove the timer from the object tracker */
1394 destroy_timer_on_stack(&timer);
1396 timeout = expire - jiffies;
1398 out:
1399 return timeout < 0 ? 0 : timeout;
1401 EXPORT_SYMBOL(schedule_timeout);
1404 * We can use __set_current_state() here because schedule_timeout() calls
1405 * schedule() unconditionally.
1407 signed long __sched schedule_timeout_interruptible(signed long timeout)
1409 __set_current_state(TASK_INTERRUPTIBLE);
1410 return schedule_timeout(timeout);
1412 EXPORT_SYMBOL(schedule_timeout_interruptible);
1414 signed long __sched schedule_timeout_killable(signed long timeout)
1416 __set_current_state(TASK_KILLABLE);
1417 return schedule_timeout(timeout);
1419 EXPORT_SYMBOL(schedule_timeout_killable);
1421 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1423 __set_current_state(TASK_UNINTERRUPTIBLE);
1424 return schedule_timeout(timeout);
1426 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1428 /* Thread ID - the internal kernel "pid" */
1429 SYSCALL_DEFINE0(gettid)
1431 return task_pid_vnr(current);
1435 * do_sysinfo - fill in sysinfo struct
1436 * @info: pointer to buffer to fill
1438 int do_sysinfo(struct sysinfo *info)
1440 unsigned long mem_total, sav_total;
1441 unsigned int mem_unit, bitcount;
1442 struct timespec tp;
1444 memset(info, 0, sizeof(struct sysinfo));
1446 ktime_get_ts(&tp);
1447 monotonic_to_bootbased(&tp);
1448 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1450 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1452 info->procs = nr_threads;
1454 si_meminfo(info);
1455 si_swapinfo(info);
1458 * If the sum of all the available memory (i.e. ram + swap)
1459 * is less than can be stored in a 32 bit unsigned long then
1460 * we can be binary compatible with 2.2.x kernels. If not,
1461 * well, in that case 2.2.x was broken anyways...
1463 * -Erik Andersen <andersee@debian.org>
1466 mem_total = info->totalram + info->totalswap;
1467 if (mem_total < info->totalram || mem_total < info->totalswap)
1468 goto out;
1469 bitcount = 0;
1470 mem_unit = info->mem_unit;
1471 while (mem_unit > 1) {
1472 bitcount++;
1473 mem_unit >>= 1;
1474 sav_total = mem_total;
1475 mem_total <<= 1;
1476 if (mem_total < sav_total)
1477 goto out;
1481 * If mem_total did not overflow, multiply all memory values by
1482 * info->mem_unit and set it to 1. This leaves things compatible
1483 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1484 * kernels...
1487 info->mem_unit = 1;
1488 info->totalram <<= bitcount;
1489 info->freeram <<= bitcount;
1490 info->sharedram <<= bitcount;
1491 info->bufferram <<= bitcount;
1492 info->totalswap <<= bitcount;
1493 info->freeswap <<= bitcount;
1494 info->totalhigh <<= bitcount;
1495 info->freehigh <<= bitcount;
1497 out:
1498 return 0;
1501 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1503 struct sysinfo val;
1505 do_sysinfo(&val);
1507 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1508 return -EFAULT;
1510 return 0;
1513 static int __cpuinit init_timers_cpu(int cpu)
1515 int j;
1516 struct tvec_base *base;
1517 static char __cpuinitdata tvec_base_done[NR_CPUS];
1519 if (!tvec_base_done[cpu]) {
1520 static char boot_done;
1522 if (boot_done) {
1524 * The APs use this path later in boot
1526 base = kmalloc_node(sizeof(*base),
1527 GFP_KERNEL | __GFP_ZERO,
1528 cpu_to_node(cpu));
1529 if (!base)
1530 return -ENOMEM;
1532 /* Make sure that tvec_base is 2 byte aligned */
1533 if (tbase_get_deferrable(base)) {
1534 WARN_ON(1);
1535 kfree(base);
1536 return -ENOMEM;
1538 per_cpu(tvec_bases, cpu) = base;
1539 } else {
1541 * This is for the boot CPU - we use compile-time
1542 * static initialisation because per-cpu memory isn't
1543 * ready yet and because the memory allocators are not
1544 * initialised either.
1546 boot_done = 1;
1547 base = &boot_tvec_bases;
1549 tvec_base_done[cpu] = 1;
1550 } else {
1551 base = per_cpu(tvec_bases, cpu);
1554 spin_lock_init(&base->lock);
1556 for (j = 0; j < TVN_SIZE; j++) {
1557 INIT_LIST_HEAD(base->tv5.vec + j);
1558 INIT_LIST_HEAD(base->tv4.vec + j);
1559 INIT_LIST_HEAD(base->tv3.vec + j);
1560 INIT_LIST_HEAD(base->tv2.vec + j);
1562 for (j = 0; j < TVR_SIZE; j++)
1563 INIT_LIST_HEAD(base->tv1.vec + j);
1565 base->timer_jiffies = jiffies;
1566 base->next_timer = base->timer_jiffies;
1567 return 0;
1570 #ifdef CONFIG_HOTPLUG_CPU
1571 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1573 struct timer_list *timer;
1575 while (!list_empty(head)) {
1576 timer = list_first_entry(head, struct timer_list, entry);
1577 detach_timer(timer, 0);
1578 timer_set_base(timer, new_base);
1579 if (time_before(timer->expires, new_base->next_timer) &&
1580 !tbase_get_deferrable(timer->base))
1581 new_base->next_timer = timer->expires;
1582 internal_add_timer(new_base, timer);
1586 static void __cpuinit migrate_timers(int cpu)
1588 struct tvec_base *old_base;
1589 struct tvec_base *new_base;
1590 int i;
1592 BUG_ON(cpu_online(cpu));
1593 old_base = per_cpu(tvec_bases, cpu);
1594 new_base = get_cpu_var(tvec_bases);
1596 * The caller is globally serialized and nobody else
1597 * takes two locks at once, deadlock is not possible.
1599 spin_lock_irq(&new_base->lock);
1600 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1602 BUG_ON(old_base->running_timer);
1604 for (i = 0; i < TVR_SIZE; i++)
1605 migrate_timer_list(new_base, old_base->tv1.vec + i);
1606 for (i = 0; i < TVN_SIZE; i++) {
1607 migrate_timer_list(new_base, old_base->tv2.vec + i);
1608 migrate_timer_list(new_base, old_base->tv3.vec + i);
1609 migrate_timer_list(new_base, old_base->tv4.vec + i);
1610 migrate_timer_list(new_base, old_base->tv5.vec + i);
1613 spin_unlock(&old_base->lock);
1614 spin_unlock_irq(&new_base->lock);
1615 put_cpu_var(tvec_bases);
1617 #endif /* CONFIG_HOTPLUG_CPU */
1619 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1620 unsigned long action, void *hcpu)
1622 long cpu = (long)hcpu;
1623 switch(action) {
1624 case CPU_UP_PREPARE:
1625 case CPU_UP_PREPARE_FROZEN:
1626 if (init_timers_cpu(cpu) < 0)
1627 return NOTIFY_BAD;
1628 break;
1629 #ifdef CONFIG_HOTPLUG_CPU
1630 case CPU_DEAD:
1631 case CPU_DEAD_FROZEN:
1632 migrate_timers(cpu);
1633 break;
1634 #endif
1635 default:
1636 break;
1638 return NOTIFY_OK;
1641 static struct notifier_block __cpuinitdata timers_nb = {
1642 .notifier_call = timer_cpu_notify,
1646 void __init init_timers(void)
1648 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1649 (void *)(long)smp_processor_id());
1651 init_timer_stats();
1653 BUG_ON(err == NOTIFY_BAD);
1654 register_cpu_notifier(&timers_nb);
1655 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1659 * msleep - sleep safely even with waitqueue interruptions
1660 * @msecs: Time in milliseconds to sleep for
1662 void msleep(unsigned int msecs)
1664 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1666 while (timeout)
1667 timeout = schedule_timeout_uninterruptible(timeout);
1670 EXPORT_SYMBOL(msleep);
1673 * msleep_interruptible - sleep waiting for signals
1674 * @msecs: Time in milliseconds to sleep for
1676 unsigned long msleep_interruptible(unsigned int msecs)
1678 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1680 while (timeout && !signal_pending(current))
1681 timeout = schedule_timeout_interruptible(timeout);
1682 return jiffies_to_msecs(timeout);
1685 EXPORT_SYMBOL(msleep_interruptible);