Linux 5.1-rc1
[linux/fpc-iii.git] / net / core / flow_dissector.c
blobbb1a54747d64811a5545a78243f8cf021a4adf46
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/dsa.h>
8 #include <net/dst_metadata.h>
9 #include <net/ip.h>
10 #include <net/ipv6.h>
11 #include <net/gre.h>
12 #include <net/pptp.h>
13 #include <net/tipc.h>
14 #include <linux/igmp.h>
15 #include <linux/icmp.h>
16 #include <linux/sctp.h>
17 #include <linux/dccp.h>
18 #include <linux/if_tunnel.h>
19 #include <linux/if_pppox.h>
20 #include <linux/ppp_defs.h>
21 #include <linux/stddef.h>
22 #include <linux/if_ether.h>
23 #include <linux/mpls.h>
24 #include <linux/tcp.h>
25 #include <net/flow_dissector.h>
26 #include <scsi/fc/fc_fcoe.h>
27 #include <uapi/linux/batadv_packet.h>
28 #include <linux/bpf.h>
30 static DEFINE_MUTEX(flow_dissector_mutex);
32 static void dissector_set_key(struct flow_dissector *flow_dissector,
33 enum flow_dissector_key_id key_id)
35 flow_dissector->used_keys |= (1 << key_id);
38 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
39 const struct flow_dissector_key *key,
40 unsigned int key_count)
42 unsigned int i;
44 memset(flow_dissector, 0, sizeof(*flow_dissector));
46 for (i = 0; i < key_count; i++, key++) {
47 /* User should make sure that every key target offset is withing
48 * boundaries of unsigned short.
50 BUG_ON(key->offset > USHRT_MAX);
51 BUG_ON(dissector_uses_key(flow_dissector,
52 key->key_id));
54 dissector_set_key(flow_dissector, key->key_id);
55 flow_dissector->offset[key->key_id] = key->offset;
58 /* Ensure that the dissector always includes control and basic key.
59 * That way we are able to avoid handling lack of these in fast path.
61 BUG_ON(!dissector_uses_key(flow_dissector,
62 FLOW_DISSECTOR_KEY_CONTROL));
63 BUG_ON(!dissector_uses_key(flow_dissector,
64 FLOW_DISSECTOR_KEY_BASIC));
66 EXPORT_SYMBOL(skb_flow_dissector_init);
68 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
69 struct bpf_prog *prog)
71 struct bpf_prog *attached;
72 struct net *net;
74 net = current->nsproxy->net_ns;
75 mutex_lock(&flow_dissector_mutex);
76 attached = rcu_dereference_protected(net->flow_dissector_prog,
77 lockdep_is_held(&flow_dissector_mutex));
78 if (attached) {
79 /* Only one BPF program can be attached at a time */
80 mutex_unlock(&flow_dissector_mutex);
81 return -EEXIST;
83 rcu_assign_pointer(net->flow_dissector_prog, prog);
84 mutex_unlock(&flow_dissector_mutex);
85 return 0;
88 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
90 struct bpf_prog *attached;
91 struct net *net;
93 net = current->nsproxy->net_ns;
94 mutex_lock(&flow_dissector_mutex);
95 attached = rcu_dereference_protected(net->flow_dissector_prog,
96 lockdep_is_held(&flow_dissector_mutex));
97 if (!attached) {
98 mutex_unlock(&flow_dissector_mutex);
99 return -ENOENT;
101 bpf_prog_put(attached);
102 RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
103 mutex_unlock(&flow_dissector_mutex);
104 return 0;
107 * skb_flow_get_be16 - extract be16 entity
108 * @skb: sk_buff to extract from
109 * @poff: offset to extract at
110 * @data: raw buffer pointer to the packet
111 * @hlen: packet header length
113 * The function will try to retrieve a be32 entity at
114 * offset poff
116 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
117 void *data, int hlen)
119 __be16 *u, _u;
121 u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
122 if (u)
123 return *u;
125 return 0;
129 * __skb_flow_get_ports - extract the upper layer ports and return them
130 * @skb: sk_buff to extract the ports from
131 * @thoff: transport header offset
132 * @ip_proto: protocol for which to get port offset
133 * @data: raw buffer pointer to the packet, if NULL use skb->data
134 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
136 * The function will try to retrieve the ports at offset thoff + poff where poff
137 * is the protocol port offset returned from proto_ports_offset
139 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
140 void *data, int hlen)
142 int poff = proto_ports_offset(ip_proto);
144 if (!data) {
145 data = skb->data;
146 hlen = skb_headlen(skb);
149 if (poff >= 0) {
150 __be32 *ports, _ports;
152 ports = __skb_header_pointer(skb, thoff + poff,
153 sizeof(_ports), data, hlen, &_ports);
154 if (ports)
155 return *ports;
158 return 0;
160 EXPORT_SYMBOL(__skb_flow_get_ports);
162 static void
163 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
164 struct flow_dissector *flow_dissector,
165 void *target_container)
167 struct flow_dissector_key_control *ctrl;
169 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
170 return;
172 ctrl = skb_flow_dissector_target(flow_dissector,
173 FLOW_DISSECTOR_KEY_ENC_CONTROL,
174 target_container);
175 ctrl->addr_type = type;
178 void
179 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
180 struct flow_dissector *flow_dissector,
181 void *target_container)
183 struct ip_tunnel_info *info;
184 struct ip_tunnel_key *key;
186 /* A quick check to see if there might be something to do. */
187 if (!dissector_uses_key(flow_dissector,
188 FLOW_DISSECTOR_KEY_ENC_KEYID) &&
189 !dissector_uses_key(flow_dissector,
190 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
191 !dissector_uses_key(flow_dissector,
192 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
193 !dissector_uses_key(flow_dissector,
194 FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
195 !dissector_uses_key(flow_dissector,
196 FLOW_DISSECTOR_KEY_ENC_PORTS) &&
197 !dissector_uses_key(flow_dissector,
198 FLOW_DISSECTOR_KEY_ENC_IP) &&
199 !dissector_uses_key(flow_dissector,
200 FLOW_DISSECTOR_KEY_ENC_OPTS))
201 return;
203 info = skb_tunnel_info(skb);
204 if (!info)
205 return;
207 key = &info->key;
209 switch (ip_tunnel_info_af(info)) {
210 case AF_INET:
211 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
212 flow_dissector,
213 target_container);
214 if (dissector_uses_key(flow_dissector,
215 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
216 struct flow_dissector_key_ipv4_addrs *ipv4;
218 ipv4 = skb_flow_dissector_target(flow_dissector,
219 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
220 target_container);
221 ipv4->src = key->u.ipv4.src;
222 ipv4->dst = key->u.ipv4.dst;
224 break;
225 case AF_INET6:
226 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
227 flow_dissector,
228 target_container);
229 if (dissector_uses_key(flow_dissector,
230 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
231 struct flow_dissector_key_ipv6_addrs *ipv6;
233 ipv6 = skb_flow_dissector_target(flow_dissector,
234 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
235 target_container);
236 ipv6->src = key->u.ipv6.src;
237 ipv6->dst = key->u.ipv6.dst;
239 break;
242 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
243 struct flow_dissector_key_keyid *keyid;
245 keyid = skb_flow_dissector_target(flow_dissector,
246 FLOW_DISSECTOR_KEY_ENC_KEYID,
247 target_container);
248 keyid->keyid = tunnel_id_to_key32(key->tun_id);
251 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
252 struct flow_dissector_key_ports *tp;
254 tp = skb_flow_dissector_target(flow_dissector,
255 FLOW_DISSECTOR_KEY_ENC_PORTS,
256 target_container);
257 tp->src = key->tp_src;
258 tp->dst = key->tp_dst;
261 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
262 struct flow_dissector_key_ip *ip;
264 ip = skb_flow_dissector_target(flow_dissector,
265 FLOW_DISSECTOR_KEY_ENC_IP,
266 target_container);
267 ip->tos = key->tos;
268 ip->ttl = key->ttl;
271 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
272 struct flow_dissector_key_enc_opts *enc_opt;
274 enc_opt = skb_flow_dissector_target(flow_dissector,
275 FLOW_DISSECTOR_KEY_ENC_OPTS,
276 target_container);
278 if (info->options_len) {
279 enc_opt->len = info->options_len;
280 ip_tunnel_info_opts_get(enc_opt->data, info);
281 enc_opt->dst_opt_type = info->key.tun_flags &
282 TUNNEL_OPTIONS_PRESENT;
286 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
288 static enum flow_dissect_ret
289 __skb_flow_dissect_mpls(const struct sk_buff *skb,
290 struct flow_dissector *flow_dissector,
291 void *target_container, void *data, int nhoff, int hlen)
293 struct flow_dissector_key_keyid *key_keyid;
294 struct mpls_label *hdr, _hdr[2];
295 u32 entry, label;
297 if (!dissector_uses_key(flow_dissector,
298 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
299 !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
300 return FLOW_DISSECT_RET_OUT_GOOD;
302 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
303 hlen, &_hdr);
304 if (!hdr)
305 return FLOW_DISSECT_RET_OUT_BAD;
307 entry = ntohl(hdr[0].entry);
308 label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
310 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
311 struct flow_dissector_key_mpls *key_mpls;
313 key_mpls = skb_flow_dissector_target(flow_dissector,
314 FLOW_DISSECTOR_KEY_MPLS,
315 target_container);
316 key_mpls->mpls_label = label;
317 key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
318 >> MPLS_LS_TTL_SHIFT;
319 key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
320 >> MPLS_LS_TC_SHIFT;
321 key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
322 >> MPLS_LS_S_SHIFT;
325 if (label == MPLS_LABEL_ENTROPY) {
326 key_keyid = skb_flow_dissector_target(flow_dissector,
327 FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
328 target_container);
329 key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
331 return FLOW_DISSECT_RET_OUT_GOOD;
334 static enum flow_dissect_ret
335 __skb_flow_dissect_arp(const struct sk_buff *skb,
336 struct flow_dissector *flow_dissector,
337 void *target_container, void *data, int nhoff, int hlen)
339 struct flow_dissector_key_arp *key_arp;
340 struct {
341 unsigned char ar_sha[ETH_ALEN];
342 unsigned char ar_sip[4];
343 unsigned char ar_tha[ETH_ALEN];
344 unsigned char ar_tip[4];
345 } *arp_eth, _arp_eth;
346 const struct arphdr *arp;
347 struct arphdr _arp;
349 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
350 return FLOW_DISSECT_RET_OUT_GOOD;
352 arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
353 hlen, &_arp);
354 if (!arp)
355 return FLOW_DISSECT_RET_OUT_BAD;
357 if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
358 arp->ar_pro != htons(ETH_P_IP) ||
359 arp->ar_hln != ETH_ALEN ||
360 arp->ar_pln != 4 ||
361 (arp->ar_op != htons(ARPOP_REPLY) &&
362 arp->ar_op != htons(ARPOP_REQUEST)))
363 return FLOW_DISSECT_RET_OUT_BAD;
365 arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
366 sizeof(_arp_eth), data,
367 hlen, &_arp_eth);
368 if (!arp_eth)
369 return FLOW_DISSECT_RET_OUT_BAD;
371 key_arp = skb_flow_dissector_target(flow_dissector,
372 FLOW_DISSECTOR_KEY_ARP,
373 target_container);
375 memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
376 memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
378 /* Only store the lower byte of the opcode;
379 * this covers ARPOP_REPLY and ARPOP_REQUEST.
381 key_arp->op = ntohs(arp->ar_op) & 0xff;
383 ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
384 ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
386 return FLOW_DISSECT_RET_OUT_GOOD;
389 static enum flow_dissect_ret
390 __skb_flow_dissect_gre(const struct sk_buff *skb,
391 struct flow_dissector_key_control *key_control,
392 struct flow_dissector *flow_dissector,
393 void *target_container, void *data,
394 __be16 *p_proto, int *p_nhoff, int *p_hlen,
395 unsigned int flags)
397 struct flow_dissector_key_keyid *key_keyid;
398 struct gre_base_hdr *hdr, _hdr;
399 int offset = 0;
400 u16 gre_ver;
402 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
403 data, *p_hlen, &_hdr);
404 if (!hdr)
405 return FLOW_DISSECT_RET_OUT_BAD;
407 /* Only look inside GRE without routing */
408 if (hdr->flags & GRE_ROUTING)
409 return FLOW_DISSECT_RET_OUT_GOOD;
411 /* Only look inside GRE for version 0 and 1 */
412 gre_ver = ntohs(hdr->flags & GRE_VERSION);
413 if (gre_ver > 1)
414 return FLOW_DISSECT_RET_OUT_GOOD;
416 *p_proto = hdr->protocol;
417 if (gre_ver) {
418 /* Version1 must be PPTP, and check the flags */
419 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
420 return FLOW_DISSECT_RET_OUT_GOOD;
423 offset += sizeof(struct gre_base_hdr);
425 if (hdr->flags & GRE_CSUM)
426 offset += FIELD_SIZEOF(struct gre_full_hdr, csum) +
427 FIELD_SIZEOF(struct gre_full_hdr, reserved1);
429 if (hdr->flags & GRE_KEY) {
430 const __be32 *keyid;
431 __be32 _keyid;
433 keyid = __skb_header_pointer(skb, *p_nhoff + offset,
434 sizeof(_keyid),
435 data, *p_hlen, &_keyid);
436 if (!keyid)
437 return FLOW_DISSECT_RET_OUT_BAD;
439 if (dissector_uses_key(flow_dissector,
440 FLOW_DISSECTOR_KEY_GRE_KEYID)) {
441 key_keyid = skb_flow_dissector_target(flow_dissector,
442 FLOW_DISSECTOR_KEY_GRE_KEYID,
443 target_container);
444 if (gre_ver == 0)
445 key_keyid->keyid = *keyid;
446 else
447 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
449 offset += FIELD_SIZEOF(struct gre_full_hdr, key);
452 if (hdr->flags & GRE_SEQ)
453 offset += FIELD_SIZEOF(struct pptp_gre_header, seq);
455 if (gre_ver == 0) {
456 if (*p_proto == htons(ETH_P_TEB)) {
457 const struct ethhdr *eth;
458 struct ethhdr _eth;
460 eth = __skb_header_pointer(skb, *p_nhoff + offset,
461 sizeof(_eth),
462 data, *p_hlen, &_eth);
463 if (!eth)
464 return FLOW_DISSECT_RET_OUT_BAD;
465 *p_proto = eth->h_proto;
466 offset += sizeof(*eth);
468 /* Cap headers that we access via pointers at the
469 * end of the Ethernet header as our maximum alignment
470 * at that point is only 2 bytes.
472 if (NET_IP_ALIGN)
473 *p_hlen = *p_nhoff + offset;
475 } else { /* version 1, must be PPTP */
476 u8 _ppp_hdr[PPP_HDRLEN];
477 u8 *ppp_hdr;
479 if (hdr->flags & GRE_ACK)
480 offset += FIELD_SIZEOF(struct pptp_gre_header, ack);
482 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
483 sizeof(_ppp_hdr),
484 data, *p_hlen, _ppp_hdr);
485 if (!ppp_hdr)
486 return FLOW_DISSECT_RET_OUT_BAD;
488 switch (PPP_PROTOCOL(ppp_hdr)) {
489 case PPP_IP:
490 *p_proto = htons(ETH_P_IP);
491 break;
492 case PPP_IPV6:
493 *p_proto = htons(ETH_P_IPV6);
494 break;
495 default:
496 /* Could probably catch some more like MPLS */
497 break;
500 offset += PPP_HDRLEN;
503 *p_nhoff += offset;
504 key_control->flags |= FLOW_DIS_ENCAPSULATION;
505 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
506 return FLOW_DISSECT_RET_OUT_GOOD;
508 return FLOW_DISSECT_RET_PROTO_AGAIN;
512 * __skb_flow_dissect_batadv() - dissect batman-adv header
513 * @skb: sk_buff to with the batman-adv header
514 * @key_control: flow dissectors control key
515 * @data: raw buffer pointer to the packet, if NULL use skb->data
516 * @p_proto: pointer used to update the protocol to process next
517 * @p_nhoff: pointer used to update inner network header offset
518 * @hlen: packet header length
519 * @flags: any combination of FLOW_DISSECTOR_F_*
521 * ETH_P_BATMAN packets are tried to be dissected. Only
522 * &struct batadv_unicast packets are actually processed because they contain an
523 * inner ethernet header and are usually followed by actual network header. This
524 * allows the flow dissector to continue processing the packet.
526 * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
527 * FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
528 * otherwise FLOW_DISSECT_RET_OUT_BAD
530 static enum flow_dissect_ret
531 __skb_flow_dissect_batadv(const struct sk_buff *skb,
532 struct flow_dissector_key_control *key_control,
533 void *data, __be16 *p_proto, int *p_nhoff, int hlen,
534 unsigned int flags)
536 struct {
537 struct batadv_unicast_packet batadv_unicast;
538 struct ethhdr eth;
539 } *hdr, _hdr;
541 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
542 &_hdr);
543 if (!hdr)
544 return FLOW_DISSECT_RET_OUT_BAD;
546 if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
547 return FLOW_DISSECT_RET_OUT_BAD;
549 if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
550 return FLOW_DISSECT_RET_OUT_BAD;
552 *p_proto = hdr->eth.h_proto;
553 *p_nhoff += sizeof(*hdr);
555 key_control->flags |= FLOW_DIS_ENCAPSULATION;
556 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
557 return FLOW_DISSECT_RET_OUT_GOOD;
559 return FLOW_DISSECT_RET_PROTO_AGAIN;
562 static void
563 __skb_flow_dissect_tcp(const struct sk_buff *skb,
564 struct flow_dissector *flow_dissector,
565 void *target_container, void *data, int thoff, int hlen)
567 struct flow_dissector_key_tcp *key_tcp;
568 struct tcphdr *th, _th;
570 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
571 return;
573 th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
574 if (!th)
575 return;
577 if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
578 return;
580 key_tcp = skb_flow_dissector_target(flow_dissector,
581 FLOW_DISSECTOR_KEY_TCP,
582 target_container);
583 key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
586 static void
587 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
588 struct flow_dissector *flow_dissector,
589 void *target_container, void *data, const struct iphdr *iph)
591 struct flow_dissector_key_ip *key_ip;
593 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
594 return;
596 key_ip = skb_flow_dissector_target(flow_dissector,
597 FLOW_DISSECTOR_KEY_IP,
598 target_container);
599 key_ip->tos = iph->tos;
600 key_ip->ttl = iph->ttl;
603 static void
604 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
605 struct flow_dissector *flow_dissector,
606 void *target_container, void *data, const struct ipv6hdr *iph)
608 struct flow_dissector_key_ip *key_ip;
610 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
611 return;
613 key_ip = skb_flow_dissector_target(flow_dissector,
614 FLOW_DISSECTOR_KEY_IP,
615 target_container);
616 key_ip->tos = ipv6_get_dsfield(iph);
617 key_ip->ttl = iph->hop_limit;
620 /* Maximum number of protocol headers that can be parsed in
621 * __skb_flow_dissect
623 #define MAX_FLOW_DISSECT_HDRS 15
625 static bool skb_flow_dissect_allowed(int *num_hdrs)
627 ++*num_hdrs;
629 return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
632 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
633 struct flow_dissector *flow_dissector,
634 void *target_container)
636 struct flow_dissector_key_control *key_control;
637 struct flow_dissector_key_basic *key_basic;
638 struct flow_dissector_key_addrs *key_addrs;
639 struct flow_dissector_key_ports *key_ports;
641 key_control = skb_flow_dissector_target(flow_dissector,
642 FLOW_DISSECTOR_KEY_CONTROL,
643 target_container);
644 key_control->thoff = flow_keys->thoff;
645 if (flow_keys->is_frag)
646 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
647 if (flow_keys->is_first_frag)
648 key_control->flags |= FLOW_DIS_FIRST_FRAG;
649 if (flow_keys->is_encap)
650 key_control->flags |= FLOW_DIS_ENCAPSULATION;
652 key_basic = skb_flow_dissector_target(flow_dissector,
653 FLOW_DISSECTOR_KEY_BASIC,
654 target_container);
655 key_basic->n_proto = flow_keys->n_proto;
656 key_basic->ip_proto = flow_keys->ip_proto;
658 if (flow_keys->addr_proto == ETH_P_IP &&
659 dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
660 key_addrs = skb_flow_dissector_target(flow_dissector,
661 FLOW_DISSECTOR_KEY_IPV4_ADDRS,
662 target_container);
663 key_addrs->v4addrs.src = flow_keys->ipv4_src;
664 key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
665 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
666 } else if (flow_keys->addr_proto == ETH_P_IPV6 &&
667 dissector_uses_key(flow_dissector,
668 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
669 key_addrs = skb_flow_dissector_target(flow_dissector,
670 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
671 target_container);
672 memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
673 sizeof(key_addrs->v6addrs));
674 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
677 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) {
678 key_ports = skb_flow_dissector_target(flow_dissector,
679 FLOW_DISSECTOR_KEY_PORTS,
680 target_container);
681 key_ports->src = flow_keys->sport;
682 key_ports->dst = flow_keys->dport;
686 bool __skb_flow_bpf_dissect(struct bpf_prog *prog,
687 const struct sk_buff *skb,
688 struct flow_dissector *flow_dissector,
689 struct bpf_flow_keys *flow_keys)
691 struct bpf_skb_data_end cb_saved;
692 struct bpf_skb_data_end *cb;
693 u32 result;
695 /* Note that even though the const qualifier is discarded
696 * throughout the execution of the BPF program, all changes(the
697 * control block) are reverted after the BPF program returns.
698 * Therefore, __skb_flow_dissect does not alter the skb.
701 cb = (struct bpf_skb_data_end *)skb->cb;
703 /* Save Control Block */
704 memcpy(&cb_saved, cb, sizeof(cb_saved));
705 memset(cb, 0, sizeof(*cb));
707 /* Pass parameters to the BPF program */
708 memset(flow_keys, 0, sizeof(*flow_keys));
709 cb->qdisc_cb.flow_keys = flow_keys;
710 flow_keys->nhoff = skb_network_offset(skb);
711 flow_keys->thoff = flow_keys->nhoff;
713 bpf_compute_data_pointers((struct sk_buff *)skb);
714 result = BPF_PROG_RUN(prog, skb);
716 /* Restore state */
717 memcpy(cb, &cb_saved, sizeof(cb_saved));
719 flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, 0, skb->len);
720 flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
721 flow_keys->nhoff, skb->len);
723 return result == BPF_OK;
727 * __skb_flow_dissect - extract the flow_keys struct and return it
728 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
729 * @flow_dissector: list of keys to dissect
730 * @target_container: target structure to put dissected values into
731 * @data: raw buffer pointer to the packet, if NULL use skb->data
732 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
733 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
734 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
736 * The function will try to retrieve individual keys into target specified
737 * by flow_dissector from either the skbuff or a raw buffer specified by the
738 * rest parameters.
740 * Caller must take care of zeroing target container memory.
742 bool __skb_flow_dissect(const struct sk_buff *skb,
743 struct flow_dissector *flow_dissector,
744 void *target_container,
745 void *data, __be16 proto, int nhoff, int hlen,
746 unsigned int flags)
748 struct flow_dissector_key_control *key_control;
749 struct flow_dissector_key_basic *key_basic;
750 struct flow_dissector_key_addrs *key_addrs;
751 struct flow_dissector_key_ports *key_ports;
752 struct flow_dissector_key_icmp *key_icmp;
753 struct flow_dissector_key_tags *key_tags;
754 struct flow_dissector_key_vlan *key_vlan;
755 enum flow_dissect_ret fdret;
756 enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
757 int num_hdrs = 0;
758 u8 ip_proto = 0;
759 bool ret;
761 if (!data) {
762 data = skb->data;
763 proto = skb_vlan_tag_present(skb) ?
764 skb->vlan_proto : skb->protocol;
765 nhoff = skb_network_offset(skb);
766 hlen = skb_headlen(skb);
767 #if IS_ENABLED(CONFIG_NET_DSA)
768 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
769 const struct dsa_device_ops *ops;
770 int offset;
772 ops = skb->dev->dsa_ptr->tag_ops;
773 if (ops->flow_dissect &&
774 !ops->flow_dissect(skb, &proto, &offset)) {
775 hlen -= offset;
776 nhoff += offset;
779 #endif
782 /* It is ensured by skb_flow_dissector_init() that control key will
783 * be always present.
785 key_control = skb_flow_dissector_target(flow_dissector,
786 FLOW_DISSECTOR_KEY_CONTROL,
787 target_container);
789 /* It is ensured by skb_flow_dissector_init() that basic key will
790 * be always present.
792 key_basic = skb_flow_dissector_target(flow_dissector,
793 FLOW_DISSECTOR_KEY_BASIC,
794 target_container);
796 if (skb) {
797 struct bpf_flow_keys flow_keys;
798 struct bpf_prog *attached = NULL;
800 rcu_read_lock();
802 if (skb->dev)
803 attached = rcu_dereference(dev_net(skb->dev)->flow_dissector_prog);
804 else if (skb->sk)
805 attached = rcu_dereference(sock_net(skb->sk)->flow_dissector_prog);
806 else
807 WARN_ON_ONCE(1);
809 if (attached) {
810 ret = __skb_flow_bpf_dissect(attached, skb,
811 flow_dissector,
812 &flow_keys);
813 __skb_flow_bpf_to_target(&flow_keys, flow_dissector,
814 target_container);
815 rcu_read_unlock();
816 return ret;
818 rcu_read_unlock();
821 if (dissector_uses_key(flow_dissector,
822 FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
823 struct ethhdr *eth = eth_hdr(skb);
824 struct flow_dissector_key_eth_addrs *key_eth_addrs;
826 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
827 FLOW_DISSECTOR_KEY_ETH_ADDRS,
828 target_container);
829 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
832 proto_again:
833 fdret = FLOW_DISSECT_RET_CONTINUE;
835 switch (proto) {
836 case htons(ETH_P_IP): {
837 const struct iphdr *iph;
838 struct iphdr _iph;
840 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
841 if (!iph || iph->ihl < 5) {
842 fdret = FLOW_DISSECT_RET_OUT_BAD;
843 break;
846 nhoff += iph->ihl * 4;
848 ip_proto = iph->protocol;
850 if (dissector_uses_key(flow_dissector,
851 FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
852 key_addrs = skb_flow_dissector_target(flow_dissector,
853 FLOW_DISSECTOR_KEY_IPV4_ADDRS,
854 target_container);
856 memcpy(&key_addrs->v4addrs, &iph->saddr,
857 sizeof(key_addrs->v4addrs));
858 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
861 if (ip_is_fragment(iph)) {
862 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
864 if (iph->frag_off & htons(IP_OFFSET)) {
865 fdret = FLOW_DISSECT_RET_OUT_GOOD;
866 break;
867 } else {
868 key_control->flags |= FLOW_DIS_FIRST_FRAG;
869 if (!(flags &
870 FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
871 fdret = FLOW_DISSECT_RET_OUT_GOOD;
872 break;
877 __skb_flow_dissect_ipv4(skb, flow_dissector,
878 target_container, data, iph);
880 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) {
881 fdret = FLOW_DISSECT_RET_OUT_GOOD;
882 break;
885 break;
887 case htons(ETH_P_IPV6): {
888 const struct ipv6hdr *iph;
889 struct ipv6hdr _iph;
891 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
892 if (!iph) {
893 fdret = FLOW_DISSECT_RET_OUT_BAD;
894 break;
897 ip_proto = iph->nexthdr;
898 nhoff += sizeof(struct ipv6hdr);
900 if (dissector_uses_key(flow_dissector,
901 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
902 key_addrs = skb_flow_dissector_target(flow_dissector,
903 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
904 target_container);
906 memcpy(&key_addrs->v6addrs, &iph->saddr,
907 sizeof(key_addrs->v6addrs));
908 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
911 if ((dissector_uses_key(flow_dissector,
912 FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
913 (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
914 ip6_flowlabel(iph)) {
915 __be32 flow_label = ip6_flowlabel(iph);
917 if (dissector_uses_key(flow_dissector,
918 FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
919 key_tags = skb_flow_dissector_target(flow_dissector,
920 FLOW_DISSECTOR_KEY_FLOW_LABEL,
921 target_container);
922 key_tags->flow_label = ntohl(flow_label);
924 if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
925 fdret = FLOW_DISSECT_RET_OUT_GOOD;
926 break;
930 __skb_flow_dissect_ipv6(skb, flow_dissector,
931 target_container, data, iph);
933 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
934 fdret = FLOW_DISSECT_RET_OUT_GOOD;
936 break;
938 case htons(ETH_P_8021AD):
939 case htons(ETH_P_8021Q): {
940 const struct vlan_hdr *vlan = NULL;
941 struct vlan_hdr _vlan;
942 __be16 saved_vlan_tpid = proto;
944 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
945 skb && skb_vlan_tag_present(skb)) {
946 proto = skb->protocol;
947 } else {
948 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
949 data, hlen, &_vlan);
950 if (!vlan) {
951 fdret = FLOW_DISSECT_RET_OUT_BAD;
952 break;
955 proto = vlan->h_vlan_encapsulated_proto;
956 nhoff += sizeof(*vlan);
959 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
960 dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
961 } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
962 dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
963 } else {
964 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
965 break;
968 if (dissector_uses_key(flow_dissector, dissector_vlan)) {
969 key_vlan = skb_flow_dissector_target(flow_dissector,
970 dissector_vlan,
971 target_container);
973 if (!vlan) {
974 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
975 key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
976 } else {
977 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
978 VLAN_VID_MASK;
979 key_vlan->vlan_priority =
980 (ntohs(vlan->h_vlan_TCI) &
981 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
983 key_vlan->vlan_tpid = saved_vlan_tpid;
986 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
987 break;
989 case htons(ETH_P_PPP_SES): {
990 struct {
991 struct pppoe_hdr hdr;
992 __be16 proto;
993 } *hdr, _hdr;
994 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
995 if (!hdr) {
996 fdret = FLOW_DISSECT_RET_OUT_BAD;
997 break;
1000 proto = hdr->proto;
1001 nhoff += PPPOE_SES_HLEN;
1002 switch (proto) {
1003 case htons(PPP_IP):
1004 proto = htons(ETH_P_IP);
1005 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1006 break;
1007 case htons(PPP_IPV6):
1008 proto = htons(ETH_P_IPV6);
1009 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1010 break;
1011 default:
1012 fdret = FLOW_DISSECT_RET_OUT_BAD;
1013 break;
1015 break;
1017 case htons(ETH_P_TIPC): {
1018 struct tipc_basic_hdr *hdr, _hdr;
1020 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1021 data, hlen, &_hdr);
1022 if (!hdr) {
1023 fdret = FLOW_DISSECT_RET_OUT_BAD;
1024 break;
1027 if (dissector_uses_key(flow_dissector,
1028 FLOW_DISSECTOR_KEY_TIPC)) {
1029 key_addrs = skb_flow_dissector_target(flow_dissector,
1030 FLOW_DISSECTOR_KEY_TIPC,
1031 target_container);
1032 key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1033 key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1035 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1036 break;
1039 case htons(ETH_P_MPLS_UC):
1040 case htons(ETH_P_MPLS_MC):
1041 fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1042 target_container, data,
1043 nhoff, hlen);
1044 break;
1045 case htons(ETH_P_FCOE):
1046 if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1047 fdret = FLOW_DISSECT_RET_OUT_BAD;
1048 break;
1051 nhoff += FCOE_HEADER_LEN;
1052 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1053 break;
1055 case htons(ETH_P_ARP):
1056 case htons(ETH_P_RARP):
1057 fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1058 target_container, data,
1059 nhoff, hlen);
1060 break;
1062 case htons(ETH_P_BATMAN):
1063 fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1064 &proto, &nhoff, hlen, flags);
1065 break;
1067 default:
1068 fdret = FLOW_DISSECT_RET_OUT_BAD;
1069 break;
1072 /* Process result of proto processing */
1073 switch (fdret) {
1074 case FLOW_DISSECT_RET_OUT_GOOD:
1075 goto out_good;
1076 case FLOW_DISSECT_RET_PROTO_AGAIN:
1077 if (skb_flow_dissect_allowed(&num_hdrs))
1078 goto proto_again;
1079 goto out_good;
1080 case FLOW_DISSECT_RET_CONTINUE:
1081 case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1082 break;
1083 case FLOW_DISSECT_RET_OUT_BAD:
1084 default:
1085 goto out_bad;
1088 ip_proto_again:
1089 fdret = FLOW_DISSECT_RET_CONTINUE;
1091 switch (ip_proto) {
1092 case IPPROTO_GRE:
1093 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1094 target_container, data,
1095 &proto, &nhoff, &hlen, flags);
1096 break;
1098 case NEXTHDR_HOP:
1099 case NEXTHDR_ROUTING:
1100 case NEXTHDR_DEST: {
1101 u8 _opthdr[2], *opthdr;
1103 if (proto != htons(ETH_P_IPV6))
1104 break;
1106 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1107 data, hlen, &_opthdr);
1108 if (!opthdr) {
1109 fdret = FLOW_DISSECT_RET_OUT_BAD;
1110 break;
1113 ip_proto = opthdr[0];
1114 nhoff += (opthdr[1] + 1) << 3;
1116 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1117 break;
1119 case NEXTHDR_FRAGMENT: {
1120 struct frag_hdr _fh, *fh;
1122 if (proto != htons(ETH_P_IPV6))
1123 break;
1125 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1126 data, hlen, &_fh);
1128 if (!fh) {
1129 fdret = FLOW_DISSECT_RET_OUT_BAD;
1130 break;
1133 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1135 nhoff += sizeof(_fh);
1136 ip_proto = fh->nexthdr;
1138 if (!(fh->frag_off & htons(IP6_OFFSET))) {
1139 key_control->flags |= FLOW_DIS_FIRST_FRAG;
1140 if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1141 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1142 break;
1146 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1147 break;
1149 case IPPROTO_IPIP:
1150 proto = htons(ETH_P_IP);
1152 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1153 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1154 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1155 break;
1158 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1159 break;
1161 case IPPROTO_IPV6:
1162 proto = htons(ETH_P_IPV6);
1164 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1165 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1166 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1167 break;
1170 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1171 break;
1174 case IPPROTO_MPLS:
1175 proto = htons(ETH_P_MPLS_UC);
1176 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1177 break;
1179 case IPPROTO_TCP:
1180 __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1181 data, nhoff, hlen);
1182 break;
1184 default:
1185 break;
1188 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS) &&
1189 !(key_control->flags & FLOW_DIS_IS_FRAGMENT)) {
1190 key_ports = skb_flow_dissector_target(flow_dissector,
1191 FLOW_DISSECTOR_KEY_PORTS,
1192 target_container);
1193 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
1194 data, hlen);
1197 if (dissector_uses_key(flow_dissector,
1198 FLOW_DISSECTOR_KEY_ICMP)) {
1199 key_icmp = skb_flow_dissector_target(flow_dissector,
1200 FLOW_DISSECTOR_KEY_ICMP,
1201 target_container);
1202 key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
1205 /* Process result of IP proto processing */
1206 switch (fdret) {
1207 case FLOW_DISSECT_RET_PROTO_AGAIN:
1208 if (skb_flow_dissect_allowed(&num_hdrs))
1209 goto proto_again;
1210 break;
1211 case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1212 if (skb_flow_dissect_allowed(&num_hdrs))
1213 goto ip_proto_again;
1214 break;
1215 case FLOW_DISSECT_RET_OUT_GOOD:
1216 case FLOW_DISSECT_RET_CONTINUE:
1217 break;
1218 case FLOW_DISSECT_RET_OUT_BAD:
1219 default:
1220 goto out_bad;
1223 out_good:
1224 ret = true;
1226 out:
1227 key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1228 key_basic->n_proto = proto;
1229 key_basic->ip_proto = ip_proto;
1231 return ret;
1233 out_bad:
1234 ret = false;
1235 goto out;
1237 EXPORT_SYMBOL(__skb_flow_dissect);
1239 static u32 hashrnd __read_mostly;
1240 static __always_inline void __flow_hash_secret_init(void)
1242 net_get_random_once(&hashrnd, sizeof(hashrnd));
1245 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
1246 u32 keyval)
1248 return jhash2(words, length, keyval);
1251 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
1253 const void *p = flow;
1255 BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
1256 return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
1259 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1261 size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1262 BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1263 BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
1264 sizeof(*flow) - sizeof(flow->addrs));
1266 switch (flow->control.addr_type) {
1267 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1268 diff -= sizeof(flow->addrs.v4addrs);
1269 break;
1270 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1271 diff -= sizeof(flow->addrs.v6addrs);
1272 break;
1273 case FLOW_DISSECTOR_KEY_TIPC:
1274 diff -= sizeof(flow->addrs.tipckey);
1275 break;
1277 return (sizeof(*flow) - diff) / sizeof(u32);
1280 __be32 flow_get_u32_src(const struct flow_keys *flow)
1282 switch (flow->control.addr_type) {
1283 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1284 return flow->addrs.v4addrs.src;
1285 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1286 return (__force __be32)ipv6_addr_hash(
1287 &flow->addrs.v6addrs.src);
1288 case FLOW_DISSECTOR_KEY_TIPC:
1289 return flow->addrs.tipckey.key;
1290 default:
1291 return 0;
1294 EXPORT_SYMBOL(flow_get_u32_src);
1296 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1298 switch (flow->control.addr_type) {
1299 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1300 return flow->addrs.v4addrs.dst;
1301 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1302 return (__force __be32)ipv6_addr_hash(
1303 &flow->addrs.v6addrs.dst);
1304 default:
1305 return 0;
1308 EXPORT_SYMBOL(flow_get_u32_dst);
1310 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1312 int addr_diff, i;
1314 switch (keys->control.addr_type) {
1315 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1316 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1317 (__force u32)keys->addrs.v4addrs.src;
1318 if ((addr_diff < 0) ||
1319 (addr_diff == 0 &&
1320 ((__force u16)keys->ports.dst <
1321 (__force u16)keys->ports.src))) {
1322 swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1323 swap(keys->ports.src, keys->ports.dst);
1325 break;
1326 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1327 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1328 &keys->addrs.v6addrs.src,
1329 sizeof(keys->addrs.v6addrs.dst));
1330 if ((addr_diff < 0) ||
1331 (addr_diff == 0 &&
1332 ((__force u16)keys->ports.dst <
1333 (__force u16)keys->ports.src))) {
1334 for (i = 0; i < 4; i++)
1335 swap(keys->addrs.v6addrs.src.s6_addr32[i],
1336 keys->addrs.v6addrs.dst.s6_addr32[i]);
1337 swap(keys->ports.src, keys->ports.dst);
1339 break;
1343 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
1345 u32 hash;
1347 __flow_hash_consistentify(keys);
1349 hash = __flow_hash_words(flow_keys_hash_start(keys),
1350 flow_keys_hash_length(keys), keyval);
1351 if (!hash)
1352 hash = 1;
1354 return hash;
1357 u32 flow_hash_from_keys(struct flow_keys *keys)
1359 __flow_hash_secret_init();
1360 return __flow_hash_from_keys(keys, hashrnd);
1362 EXPORT_SYMBOL(flow_hash_from_keys);
1364 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1365 struct flow_keys *keys, u32 keyval)
1367 skb_flow_dissect_flow_keys(skb, keys,
1368 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1370 return __flow_hash_from_keys(keys, keyval);
1373 struct _flow_keys_digest_data {
1374 __be16 n_proto;
1375 u8 ip_proto;
1376 u8 padding;
1377 __be32 ports;
1378 __be32 src;
1379 __be32 dst;
1382 void make_flow_keys_digest(struct flow_keys_digest *digest,
1383 const struct flow_keys *flow)
1385 struct _flow_keys_digest_data *data =
1386 (struct _flow_keys_digest_data *)digest;
1388 BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1390 memset(digest, 0, sizeof(*digest));
1392 data->n_proto = flow->basic.n_proto;
1393 data->ip_proto = flow->basic.ip_proto;
1394 data->ports = flow->ports.ports;
1395 data->src = flow->addrs.v4addrs.src;
1396 data->dst = flow->addrs.v4addrs.dst;
1398 EXPORT_SYMBOL(make_flow_keys_digest);
1400 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1402 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1404 struct flow_keys keys;
1406 __flow_hash_secret_init();
1408 memset(&keys, 0, sizeof(keys));
1409 __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
1410 NULL, 0, 0, 0,
1411 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1413 return __flow_hash_from_keys(&keys, hashrnd);
1415 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1418 * __skb_get_hash: calculate a flow hash
1419 * @skb: sk_buff to calculate flow hash from
1421 * This function calculates a flow hash based on src/dst addresses
1422 * and src/dst port numbers. Sets hash in skb to non-zero hash value
1423 * on success, zero indicates no valid hash. Also, sets l4_hash in skb
1424 * if hash is a canonical 4-tuple hash over transport ports.
1426 void __skb_get_hash(struct sk_buff *skb)
1428 struct flow_keys keys;
1429 u32 hash;
1431 __flow_hash_secret_init();
1433 hash = ___skb_get_hash(skb, &keys, hashrnd);
1435 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1437 EXPORT_SYMBOL(__skb_get_hash);
1439 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
1441 struct flow_keys keys;
1443 return ___skb_get_hash(skb, &keys, perturb);
1445 EXPORT_SYMBOL(skb_get_hash_perturb);
1447 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1448 const struct flow_keys_basic *keys, int hlen)
1450 u32 poff = keys->control.thoff;
1452 /* skip L4 headers for fragments after the first */
1453 if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1454 !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1455 return poff;
1457 switch (keys->basic.ip_proto) {
1458 case IPPROTO_TCP: {
1459 /* access doff as u8 to avoid unaligned access */
1460 const u8 *doff;
1461 u8 _doff;
1463 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1464 data, hlen, &_doff);
1465 if (!doff)
1466 return poff;
1468 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1469 break;
1471 case IPPROTO_UDP:
1472 case IPPROTO_UDPLITE:
1473 poff += sizeof(struct udphdr);
1474 break;
1475 /* For the rest, we do not really care about header
1476 * extensions at this point for now.
1478 case IPPROTO_ICMP:
1479 poff += sizeof(struct icmphdr);
1480 break;
1481 case IPPROTO_ICMPV6:
1482 poff += sizeof(struct icmp6hdr);
1483 break;
1484 case IPPROTO_IGMP:
1485 poff += sizeof(struct igmphdr);
1486 break;
1487 case IPPROTO_DCCP:
1488 poff += sizeof(struct dccp_hdr);
1489 break;
1490 case IPPROTO_SCTP:
1491 poff += sizeof(struct sctphdr);
1492 break;
1495 return poff;
1499 * skb_get_poff - get the offset to the payload
1500 * @skb: sk_buff to get the payload offset from
1502 * The function will get the offset to the payload as far as it could
1503 * be dissected. The main user is currently BPF, so that we can dynamically
1504 * truncate packets without needing to push actual payload to the user
1505 * space and can analyze headers only, instead.
1507 u32 skb_get_poff(const struct sk_buff *skb)
1509 struct flow_keys_basic keys;
1511 if (!skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
1512 return 0;
1514 return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1517 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1519 memset(keys, 0, sizeof(*keys));
1521 memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1522 sizeof(keys->addrs.v6addrs.src));
1523 memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1524 sizeof(keys->addrs.v6addrs.dst));
1525 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1526 keys->ports.src = fl6->fl6_sport;
1527 keys->ports.dst = fl6->fl6_dport;
1528 keys->keyid.keyid = fl6->fl6_gre_key;
1529 keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1530 keys->basic.ip_proto = fl6->flowi6_proto;
1532 return flow_hash_from_keys(keys);
1534 EXPORT_SYMBOL(__get_hash_from_flowi6);
1536 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1538 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1539 .offset = offsetof(struct flow_keys, control),
1542 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1543 .offset = offsetof(struct flow_keys, basic),
1546 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1547 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1550 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1551 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1554 .key_id = FLOW_DISSECTOR_KEY_TIPC,
1555 .offset = offsetof(struct flow_keys, addrs.tipckey),
1558 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1559 .offset = offsetof(struct flow_keys, ports),
1562 .key_id = FLOW_DISSECTOR_KEY_VLAN,
1563 .offset = offsetof(struct flow_keys, vlan),
1566 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1567 .offset = offsetof(struct flow_keys, tags),
1570 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1571 .offset = offsetof(struct flow_keys, keyid),
1575 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1577 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1578 .offset = offsetof(struct flow_keys, control),
1581 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1582 .offset = offsetof(struct flow_keys, basic),
1585 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1586 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1589 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1590 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1593 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1594 .offset = offsetof(struct flow_keys, ports),
1598 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1600 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1601 .offset = offsetof(struct flow_keys, control),
1604 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1605 .offset = offsetof(struct flow_keys, basic),
1609 struct flow_dissector flow_keys_dissector __read_mostly;
1610 EXPORT_SYMBOL(flow_keys_dissector);
1612 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1613 EXPORT_SYMBOL(flow_keys_basic_dissector);
1615 static int __init init_default_flow_dissectors(void)
1617 skb_flow_dissector_init(&flow_keys_dissector,
1618 flow_keys_dissector_keys,
1619 ARRAY_SIZE(flow_keys_dissector_keys));
1620 skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1621 flow_keys_dissector_symmetric_keys,
1622 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1623 skb_flow_dissector_init(&flow_keys_basic_dissector,
1624 flow_keys_basic_dissector_keys,
1625 ARRAY_SIZE(flow_keys_basic_dissector_keys));
1626 return 0;
1629 core_initcall(init_default_flow_dissectors);