2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
46 #include <trace/events/tcp.h>
48 /* Refresh clocks of a TCP socket,
49 * ensuring monotically increasing values.
51 void tcp_mstamp_refresh(struct tcp_sock
*tp
)
53 u64 val
= tcp_clock_ns();
55 if (val
> tp
->tcp_clock_cache
)
56 tp
->tcp_clock_cache
= val
;
58 val
= div_u64(val
, NSEC_PER_USEC
);
59 if (val
> tp
->tcp_mstamp
)
63 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
64 int push_one
, gfp_t gfp
);
66 /* Account for new data that has been sent to the network. */
67 static void tcp_event_new_data_sent(struct sock
*sk
, struct sk_buff
*skb
)
69 struct inet_connection_sock
*icsk
= inet_csk(sk
);
70 struct tcp_sock
*tp
= tcp_sk(sk
);
71 unsigned int prior_packets
= tp
->packets_out
;
73 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
75 __skb_unlink(skb
, &sk
->sk_write_queue
);
76 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, skb
);
78 tp
->packets_out
+= tcp_skb_pcount(skb
);
79 if (!prior_packets
|| icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
82 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
,
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
93 static inline __u32
tcp_acceptable_seq(const struct sock
*sk
)
95 const struct tcp_sock
*tp
= tcp_sk(sk
);
97 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
) ||
98 (tp
->rx_opt
.wscale_ok
&&
99 ((tp
->snd_nxt
- tcp_wnd_end(tp
)) < (1 << tp
->rx_opt
.rcv_wscale
))))
102 return tcp_wnd_end(tp
);
105 /* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
119 static __u16
tcp_advertise_mss(struct sock
*sk
)
121 struct tcp_sock
*tp
= tcp_sk(sk
);
122 const struct dst_entry
*dst
= __sk_dst_get(sk
);
123 int mss
= tp
->advmss
;
126 unsigned int metric
= dst_metric_advmss(dst
);
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
140 void tcp_cwnd_restart(struct sock
*sk
, s32 delta
)
142 struct tcp_sock
*tp
= tcp_sk(sk
);
143 u32 restart_cwnd
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
144 u32 cwnd
= tp
->snd_cwnd
;
146 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
148 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
149 restart_cwnd
= min(restart_cwnd
, cwnd
);
151 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
153 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
154 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
155 tp
->snd_cwnd_used
= 0;
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock
*tp
,
162 struct inet_connection_sock
*icsk
= inet_csk(sk
);
163 const u32 now
= tcp_jiffies32
;
165 if (tcp_packets_in_flight(tp
) == 0)
166 tcp_ca_event(sk
, CA_EVENT_TX_START
);
168 /* If this is the first data packet sent in response to the
169 * previous received data,
170 * and it is a reply for ato after last received packet,
171 * increase pingpong count.
173 if (before(tp
->lsndtime
, icsk
->icsk_ack
.lrcvtime
) &&
174 (u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
175 inet_csk_inc_pingpong_cnt(sk
);
180 /* Account for an ACK we sent. */
181 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
,
184 struct tcp_sock
*tp
= tcp_sk(sk
);
186 if (unlikely(tp
->compressed_ack
> TCP_FASTRETRANS_THRESH
)) {
187 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPACKCOMPRESSED
,
188 tp
->compressed_ack
- TCP_FASTRETRANS_THRESH
);
189 tp
->compressed_ack
= TCP_FASTRETRANS_THRESH
;
190 if (hrtimer_try_to_cancel(&tp
->compressed_ack_timer
) == 1)
194 if (unlikely(rcv_nxt
!= tp
->rcv_nxt
))
195 return; /* Special ACK sent by DCTCP to reflect ECN */
196 tcp_dec_quickack_mode(sk
, pkts
);
197 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
200 /* Determine a window scaling and initial window to offer.
201 * Based on the assumption that the given amount of space
202 * will be offered. Store the results in the tp structure.
203 * NOTE: for smooth operation initial space offering should
204 * be a multiple of mss if possible. We assume here that mss >= 1.
205 * This MUST be enforced by all callers.
207 void tcp_select_initial_window(const struct sock
*sk
, int __space
, __u32 mss
,
208 __u32
*rcv_wnd
, __u32
*window_clamp
,
209 int wscale_ok
, __u8
*rcv_wscale
,
212 unsigned int space
= (__space
< 0 ? 0 : __space
);
214 /* If no clamp set the clamp to the max possible scaled window */
215 if (*window_clamp
== 0)
216 (*window_clamp
) = (U16_MAX
<< TCP_MAX_WSCALE
);
217 space
= min(*window_clamp
, space
);
219 /* Quantize space offering to a multiple of mss if possible. */
221 space
= rounddown(space
, mss
);
223 /* NOTE: offering an initial window larger than 32767
224 * will break some buggy TCP stacks. If the admin tells us
225 * it is likely we could be speaking with such a buggy stack
226 * we will truncate our initial window offering to 32K-1
227 * unless the remote has sent us a window scaling option,
228 * which we interpret as a sign the remote TCP is not
229 * misinterpreting the window field as a signed quantity.
231 if (sock_net(sk
)->ipv4
.sysctl_tcp_workaround_signed_windows
)
232 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
234 (*rcv_wnd
) = min_t(u32
, space
, U16_MAX
);
237 *rcv_wnd
= min(*rcv_wnd
, init_rcv_wnd
* mss
);
241 /* Set window scaling on max possible window */
242 space
= max_t(u32
, space
, sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]);
243 space
= max_t(u32
, space
, sysctl_rmem_max
);
244 space
= min_t(u32
, space
, *window_clamp
);
245 *rcv_wscale
= clamp_t(int, ilog2(space
) - 15,
248 /* Set the clamp no higher than max representable value */
249 (*window_clamp
) = min_t(__u32
, U16_MAX
<< (*rcv_wscale
), *window_clamp
);
251 EXPORT_SYMBOL(tcp_select_initial_window
);
253 /* Chose a new window to advertise, update state in tcp_sock for the
254 * socket, and return result with RFC1323 scaling applied. The return
255 * value can be stuffed directly into th->window for an outgoing
258 static u16
tcp_select_window(struct sock
*sk
)
260 struct tcp_sock
*tp
= tcp_sk(sk
);
261 u32 old_win
= tp
->rcv_wnd
;
262 u32 cur_win
= tcp_receive_window(tp
);
263 u32 new_win
= __tcp_select_window(sk
);
265 /* Never shrink the offered window */
266 if (new_win
< cur_win
) {
267 /* Danger Will Robinson!
268 * Don't update rcv_wup/rcv_wnd here or else
269 * we will not be able to advertise a zero
270 * window in time. --DaveM
272 * Relax Will Robinson.
275 NET_INC_STATS(sock_net(sk
),
276 LINUX_MIB_TCPWANTZEROWINDOWADV
);
277 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
279 tp
->rcv_wnd
= new_win
;
280 tp
->rcv_wup
= tp
->rcv_nxt
;
282 /* Make sure we do not exceed the maximum possible
285 if (!tp
->rx_opt
.rcv_wscale
&&
286 sock_net(sk
)->ipv4
.sysctl_tcp_workaround_signed_windows
)
287 new_win
= min(new_win
, MAX_TCP_WINDOW
);
289 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
291 /* RFC1323 scaling applied */
292 new_win
>>= tp
->rx_opt
.rcv_wscale
;
294 /* If we advertise zero window, disable fast path. */
298 NET_INC_STATS(sock_net(sk
),
299 LINUX_MIB_TCPTOZEROWINDOWADV
);
300 } else if (old_win
== 0) {
301 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFROMZEROWINDOWADV
);
307 /* Packet ECN state for a SYN-ACK */
308 static void tcp_ecn_send_synack(struct sock
*sk
, struct sk_buff
*skb
)
310 const struct tcp_sock
*tp
= tcp_sk(sk
);
312 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_CWR
;
313 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
314 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_ECE
;
315 else if (tcp_ca_needs_ecn(sk
) ||
316 tcp_bpf_ca_needs_ecn(sk
))
320 /* Packet ECN state for a SYN. */
321 static void tcp_ecn_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
323 struct tcp_sock
*tp
= tcp_sk(sk
);
324 bool bpf_needs_ecn
= tcp_bpf_ca_needs_ecn(sk
);
325 bool use_ecn
= sock_net(sk
)->ipv4
.sysctl_tcp_ecn
== 1 ||
326 tcp_ca_needs_ecn(sk
) || bpf_needs_ecn
;
329 const struct dst_entry
*dst
= __sk_dst_get(sk
);
331 if (dst
&& dst_feature(dst
, RTAX_FEATURE_ECN
))
338 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ECE
| TCPHDR_CWR
;
339 tp
->ecn_flags
= TCP_ECN_OK
;
340 if (tcp_ca_needs_ecn(sk
) || bpf_needs_ecn
)
345 static void tcp_ecn_clear_syn(struct sock
*sk
, struct sk_buff
*skb
)
347 if (sock_net(sk
)->ipv4
.sysctl_tcp_ecn_fallback
)
348 /* tp->ecn_flags are cleared at a later point in time when
349 * SYN ACK is ultimatively being received.
351 TCP_SKB_CB(skb
)->tcp_flags
&= ~(TCPHDR_ECE
| TCPHDR_CWR
);
355 tcp_ecn_make_synack(const struct request_sock
*req
, struct tcphdr
*th
)
357 if (inet_rsk(req
)->ecn_ok
)
361 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
364 static void tcp_ecn_send(struct sock
*sk
, struct sk_buff
*skb
,
365 struct tcphdr
*th
, int tcp_header_len
)
367 struct tcp_sock
*tp
= tcp_sk(sk
);
369 if (tp
->ecn_flags
& TCP_ECN_OK
) {
370 /* Not-retransmitted data segment: set ECT and inject CWR. */
371 if (skb
->len
!= tcp_header_len
&&
372 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
374 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
375 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
377 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
379 } else if (!tcp_ca_needs_ecn(sk
)) {
380 /* ACK or retransmitted segment: clear ECT|CE */
381 INET_ECN_dontxmit(sk
);
383 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
388 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
389 * auto increment end seqno.
391 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
393 skb
->ip_summed
= CHECKSUM_PARTIAL
;
395 TCP_SKB_CB(skb
)->tcp_flags
= flags
;
396 TCP_SKB_CB(skb
)->sacked
= 0;
398 tcp_skb_pcount_set(skb
, 1);
400 TCP_SKB_CB(skb
)->seq
= seq
;
401 if (flags
& (TCPHDR_SYN
| TCPHDR_FIN
))
403 TCP_SKB_CB(skb
)->end_seq
= seq
;
406 static inline bool tcp_urg_mode(const struct tcp_sock
*tp
)
408 return tp
->snd_una
!= tp
->snd_up
;
411 #define OPTION_SACK_ADVERTISE (1 << 0)
412 #define OPTION_TS (1 << 1)
413 #define OPTION_MD5 (1 << 2)
414 #define OPTION_WSCALE (1 << 3)
415 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
416 #define OPTION_SMC (1 << 9)
418 static void smc_options_write(__be32
*ptr
, u16
*options
)
420 #if IS_ENABLED(CONFIG_SMC)
421 if (static_branch_unlikely(&tcp_have_smc
)) {
422 if (unlikely(OPTION_SMC
& *options
)) {
423 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
426 (TCPOLEN_EXP_SMC_BASE
));
427 *ptr
++ = htonl(TCPOPT_SMC_MAGIC
);
433 struct tcp_out_options
{
434 u16 options
; /* bit field of OPTION_* */
435 u16 mss
; /* 0 to disable */
436 u8 ws
; /* window scale, 0 to disable */
437 u8 num_sack_blocks
; /* number of SACK blocks to include */
438 u8 hash_size
; /* bytes in hash_location */
439 __u8
*hash_location
; /* temporary pointer, overloaded */
440 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
441 struct tcp_fastopen_cookie
*fastopen_cookie
; /* Fast open cookie */
444 /* Write previously computed TCP options to the packet.
446 * Beware: Something in the Internet is very sensitive to the ordering of
447 * TCP options, we learned this through the hard way, so be careful here.
448 * Luckily we can at least blame others for their non-compliance but from
449 * inter-operability perspective it seems that we're somewhat stuck with
450 * the ordering which we have been using if we want to keep working with
451 * those broken things (not that it currently hurts anybody as there isn't
452 * particular reason why the ordering would need to be changed).
454 * At least SACK_PERM as the first option is known to lead to a disaster
455 * (but it may well be that other scenarios fail similarly).
457 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
458 struct tcp_out_options
*opts
)
460 u16 options
= opts
->options
; /* mungable copy */
462 if (unlikely(OPTION_MD5
& options
)) {
463 *ptr
++ = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
464 (TCPOPT_MD5SIG
<< 8) | TCPOLEN_MD5SIG
);
465 /* overload cookie hash location */
466 opts
->hash_location
= (__u8
*)ptr
;
470 if (unlikely(opts
->mss
)) {
471 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
472 (TCPOLEN_MSS
<< 16) |
476 if (likely(OPTION_TS
& options
)) {
477 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
478 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
479 (TCPOLEN_SACK_PERM
<< 16) |
480 (TCPOPT_TIMESTAMP
<< 8) |
482 options
&= ~OPTION_SACK_ADVERTISE
;
484 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
486 (TCPOPT_TIMESTAMP
<< 8) |
489 *ptr
++ = htonl(opts
->tsval
);
490 *ptr
++ = htonl(opts
->tsecr
);
493 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
494 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
496 (TCPOPT_SACK_PERM
<< 8) |
500 if (unlikely(OPTION_WSCALE
& options
)) {
501 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
502 (TCPOPT_WINDOW
<< 16) |
503 (TCPOLEN_WINDOW
<< 8) |
507 if (unlikely(opts
->num_sack_blocks
)) {
508 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
509 tp
->duplicate_sack
: tp
->selective_acks
;
512 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
515 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
516 TCPOLEN_SACK_PERBLOCK
)));
518 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
520 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
521 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
524 tp
->rx_opt
.dsack
= 0;
527 if (unlikely(OPTION_FAST_OPEN_COOKIE
& options
)) {
528 struct tcp_fastopen_cookie
*foc
= opts
->fastopen_cookie
;
530 u32 len
; /* Fast Open option length */
533 len
= TCPOLEN_EXP_FASTOPEN_BASE
+ foc
->len
;
534 *ptr
= htonl((TCPOPT_EXP
<< 24) | (len
<< 16) |
535 TCPOPT_FASTOPEN_MAGIC
);
536 p
+= TCPOLEN_EXP_FASTOPEN_BASE
;
538 len
= TCPOLEN_FASTOPEN_BASE
+ foc
->len
;
539 *p
++ = TCPOPT_FASTOPEN
;
543 memcpy(p
, foc
->val
, foc
->len
);
544 if ((len
& 3) == 2) {
545 p
[foc
->len
] = TCPOPT_NOP
;
546 p
[foc
->len
+ 1] = TCPOPT_NOP
;
548 ptr
+= (len
+ 3) >> 2;
551 smc_options_write(ptr
, &options
);
554 static void smc_set_option(const struct tcp_sock
*tp
,
555 struct tcp_out_options
*opts
,
556 unsigned int *remaining
)
558 #if IS_ENABLED(CONFIG_SMC)
559 if (static_branch_unlikely(&tcp_have_smc
)) {
561 if (*remaining
>= TCPOLEN_EXP_SMC_BASE_ALIGNED
) {
562 opts
->options
|= OPTION_SMC
;
563 *remaining
-= TCPOLEN_EXP_SMC_BASE_ALIGNED
;
570 static void smc_set_option_cond(const struct tcp_sock
*tp
,
571 const struct inet_request_sock
*ireq
,
572 struct tcp_out_options
*opts
,
573 unsigned int *remaining
)
575 #if IS_ENABLED(CONFIG_SMC)
576 if (static_branch_unlikely(&tcp_have_smc
)) {
577 if (tp
->syn_smc
&& ireq
->smc_ok
) {
578 if (*remaining
>= TCPOLEN_EXP_SMC_BASE_ALIGNED
) {
579 opts
->options
|= OPTION_SMC
;
580 *remaining
-= TCPOLEN_EXP_SMC_BASE_ALIGNED
;
587 /* Compute TCP options for SYN packets. This is not the final
588 * network wire format yet.
590 static unsigned int tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
591 struct tcp_out_options
*opts
,
592 struct tcp_md5sig_key
**md5
)
594 struct tcp_sock
*tp
= tcp_sk(sk
);
595 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
596 struct tcp_fastopen_request
*fastopen
= tp
->fastopen_req
;
599 #ifdef CONFIG_TCP_MD5SIG
600 if (static_branch_unlikely(&tcp_md5_needed
) &&
601 rcu_access_pointer(tp
->md5sig_info
)) {
602 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
604 opts
->options
|= OPTION_MD5
;
605 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
610 /* We always get an MSS option. The option bytes which will be seen in
611 * normal data packets should timestamps be used, must be in the MSS
612 * advertised. But we subtract them from tp->mss_cache so that
613 * calculations in tcp_sendmsg are simpler etc. So account for this
614 * fact here if necessary. If we don't do this correctly, as a
615 * receiver we won't recognize data packets as being full sized when we
616 * should, and thus we won't abide by the delayed ACK rules correctly.
617 * SACKs don't matter, we never delay an ACK when we have any of those
619 opts
->mss
= tcp_advertise_mss(sk
);
620 remaining
-= TCPOLEN_MSS_ALIGNED
;
622 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_timestamps
&& !*md5
)) {
623 opts
->options
|= OPTION_TS
;
624 opts
->tsval
= tcp_skb_timestamp(skb
) + tp
->tsoffset
;
625 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
626 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
628 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_window_scaling
)) {
629 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
630 opts
->options
|= OPTION_WSCALE
;
631 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
633 if (likely(sock_net(sk
)->ipv4
.sysctl_tcp_sack
)) {
634 opts
->options
|= OPTION_SACK_ADVERTISE
;
635 if (unlikely(!(OPTION_TS
& opts
->options
)))
636 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
639 if (fastopen
&& fastopen
->cookie
.len
>= 0) {
640 u32 need
= fastopen
->cookie
.len
;
642 need
+= fastopen
->cookie
.exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
643 TCPOLEN_FASTOPEN_BASE
;
644 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
645 if (remaining
>= need
) {
646 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
647 opts
->fastopen_cookie
= &fastopen
->cookie
;
649 tp
->syn_fastopen
= 1;
650 tp
->syn_fastopen_exp
= fastopen
->cookie
.exp
? 1 : 0;
654 smc_set_option(tp
, opts
, &remaining
);
656 return MAX_TCP_OPTION_SPACE
- remaining
;
659 /* Set up TCP options for SYN-ACKs. */
660 static unsigned int tcp_synack_options(const struct sock
*sk
,
661 struct request_sock
*req
,
662 unsigned int mss
, struct sk_buff
*skb
,
663 struct tcp_out_options
*opts
,
664 const struct tcp_md5sig_key
*md5
,
665 struct tcp_fastopen_cookie
*foc
)
667 struct inet_request_sock
*ireq
= inet_rsk(req
);
668 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
670 #ifdef CONFIG_TCP_MD5SIG
672 opts
->options
|= OPTION_MD5
;
673 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
675 /* We can't fit any SACK blocks in a packet with MD5 + TS
676 * options. There was discussion about disabling SACK
677 * rather than TS in order to fit in better with old,
678 * buggy kernels, but that was deemed to be unnecessary.
680 ireq
->tstamp_ok
&= !ireq
->sack_ok
;
684 /* We always send an MSS option. */
686 remaining
-= TCPOLEN_MSS_ALIGNED
;
688 if (likely(ireq
->wscale_ok
)) {
689 opts
->ws
= ireq
->rcv_wscale
;
690 opts
->options
|= OPTION_WSCALE
;
691 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
693 if (likely(ireq
->tstamp_ok
)) {
694 opts
->options
|= OPTION_TS
;
695 opts
->tsval
= tcp_skb_timestamp(skb
) + tcp_rsk(req
)->ts_off
;
696 opts
->tsecr
= req
->ts_recent
;
697 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
699 if (likely(ireq
->sack_ok
)) {
700 opts
->options
|= OPTION_SACK_ADVERTISE
;
701 if (unlikely(!ireq
->tstamp_ok
))
702 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
704 if (foc
!= NULL
&& foc
->len
>= 0) {
707 need
+= foc
->exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
708 TCPOLEN_FASTOPEN_BASE
;
709 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
710 if (remaining
>= need
) {
711 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
712 opts
->fastopen_cookie
= foc
;
717 smc_set_option_cond(tcp_sk(sk
), ireq
, opts
, &remaining
);
719 return MAX_TCP_OPTION_SPACE
- remaining
;
722 /* Compute TCP options for ESTABLISHED sockets. This is not the
723 * final wire format yet.
725 static unsigned int tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
726 struct tcp_out_options
*opts
,
727 struct tcp_md5sig_key
**md5
)
729 struct tcp_sock
*tp
= tcp_sk(sk
);
730 unsigned int size
= 0;
731 unsigned int eff_sacks
;
736 #ifdef CONFIG_TCP_MD5SIG
737 if (static_branch_unlikely(&tcp_md5_needed
) &&
738 rcu_access_pointer(tp
->md5sig_info
)) {
739 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
741 opts
->options
|= OPTION_MD5
;
742 size
+= TCPOLEN_MD5SIG_ALIGNED
;
747 if (likely(tp
->rx_opt
.tstamp_ok
)) {
748 opts
->options
|= OPTION_TS
;
749 opts
->tsval
= skb
? tcp_skb_timestamp(skb
) + tp
->tsoffset
: 0;
750 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
751 size
+= TCPOLEN_TSTAMP_ALIGNED
;
754 eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
755 if (unlikely(eff_sacks
)) {
756 const unsigned int remaining
= MAX_TCP_OPTION_SPACE
- size
;
757 opts
->num_sack_blocks
=
758 min_t(unsigned int, eff_sacks
,
759 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
760 TCPOLEN_SACK_PERBLOCK
);
761 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
762 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
769 /* TCP SMALL QUEUES (TSQ)
771 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
772 * to reduce RTT and bufferbloat.
773 * We do this using a special skb destructor (tcp_wfree).
775 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
776 * needs to be reallocated in a driver.
777 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
779 * Since transmit from skb destructor is forbidden, we use a tasklet
780 * to process all sockets that eventually need to send more skbs.
781 * We use one tasklet per cpu, with its own queue of sockets.
784 struct tasklet_struct tasklet
;
785 struct list_head head
; /* queue of tcp sockets */
787 static DEFINE_PER_CPU(struct tsq_tasklet
, tsq_tasklet
);
789 static void tcp_tsq_write(struct sock
*sk
)
791 if ((1 << sk
->sk_state
) &
792 (TCPF_ESTABLISHED
| TCPF_FIN_WAIT1
| TCPF_CLOSING
|
793 TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
)) {
794 struct tcp_sock
*tp
= tcp_sk(sk
);
796 if (tp
->lost_out
> tp
->retrans_out
&&
797 tp
->snd_cwnd
> tcp_packets_in_flight(tp
)) {
798 tcp_mstamp_refresh(tp
);
799 tcp_xmit_retransmit_queue(sk
);
802 tcp_write_xmit(sk
, tcp_current_mss(sk
), tp
->nonagle
,
807 static void tcp_tsq_handler(struct sock
*sk
)
810 if (!sock_owned_by_user(sk
))
812 else if (!test_and_set_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
))
817 * One tasklet per cpu tries to send more skbs.
818 * We run in tasklet context but need to disable irqs when
819 * transferring tsq->head because tcp_wfree() might
820 * interrupt us (non NAPI drivers)
822 static void tcp_tasklet_func(unsigned long data
)
824 struct tsq_tasklet
*tsq
= (struct tsq_tasklet
*)data
;
827 struct list_head
*q
, *n
;
831 local_irq_save(flags
);
832 list_splice_init(&tsq
->head
, &list
);
833 local_irq_restore(flags
);
835 list_for_each_safe(q
, n
, &list
) {
836 tp
= list_entry(q
, struct tcp_sock
, tsq_node
);
837 list_del(&tp
->tsq_node
);
839 sk
= (struct sock
*)tp
;
840 smp_mb__before_atomic();
841 clear_bit(TSQ_QUEUED
, &sk
->sk_tsq_flags
);
848 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
849 TCPF_WRITE_TIMER_DEFERRED | \
850 TCPF_DELACK_TIMER_DEFERRED | \
851 TCPF_MTU_REDUCED_DEFERRED)
853 * tcp_release_cb - tcp release_sock() callback
856 * called from release_sock() to perform protocol dependent
857 * actions before socket release.
859 void tcp_release_cb(struct sock
*sk
)
861 unsigned long flags
, nflags
;
863 /* perform an atomic operation only if at least one flag is set */
865 flags
= sk
->sk_tsq_flags
;
866 if (!(flags
& TCP_DEFERRED_ALL
))
868 nflags
= flags
& ~TCP_DEFERRED_ALL
;
869 } while (cmpxchg(&sk
->sk_tsq_flags
, flags
, nflags
) != flags
);
871 if (flags
& TCPF_TSQ_DEFERRED
) {
875 /* Here begins the tricky part :
876 * We are called from release_sock() with :
878 * 2) sk_lock.slock spinlock held
879 * 3) socket owned by us (sk->sk_lock.owned == 1)
881 * But following code is meant to be called from BH handlers,
882 * so we should keep BH disabled, but early release socket ownership
884 sock_release_ownership(sk
);
886 if (flags
& TCPF_WRITE_TIMER_DEFERRED
) {
887 tcp_write_timer_handler(sk
);
890 if (flags
& TCPF_DELACK_TIMER_DEFERRED
) {
891 tcp_delack_timer_handler(sk
);
894 if (flags
& TCPF_MTU_REDUCED_DEFERRED
) {
895 inet_csk(sk
)->icsk_af_ops
->mtu_reduced(sk
);
899 EXPORT_SYMBOL(tcp_release_cb
);
901 void __init
tcp_tasklet_init(void)
905 for_each_possible_cpu(i
) {
906 struct tsq_tasklet
*tsq
= &per_cpu(tsq_tasklet
, i
);
908 INIT_LIST_HEAD(&tsq
->head
);
909 tasklet_init(&tsq
->tasklet
,
916 * Write buffer destructor automatically called from kfree_skb.
917 * We can't xmit new skbs from this context, as we might already
920 void tcp_wfree(struct sk_buff
*skb
)
922 struct sock
*sk
= skb
->sk
;
923 struct tcp_sock
*tp
= tcp_sk(sk
);
924 unsigned long flags
, nval
, oval
;
926 /* Keep one reference on sk_wmem_alloc.
927 * Will be released by sk_free() from here or tcp_tasklet_func()
929 WARN_ON(refcount_sub_and_test(skb
->truesize
- 1, &sk
->sk_wmem_alloc
));
931 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
932 * Wait until our queues (qdisc + devices) are drained.
934 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
935 * - chance for incoming ACK (processed by another cpu maybe)
936 * to migrate this flow (skb->ooo_okay will be eventually set)
938 if (refcount_read(&sk
->sk_wmem_alloc
) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current
)
941 for (oval
= READ_ONCE(sk
->sk_tsq_flags
);; oval
= nval
) {
942 struct tsq_tasklet
*tsq
;
945 if (!(oval
& TSQF_THROTTLED
) || (oval
& TSQF_QUEUED
))
948 nval
= (oval
& ~TSQF_THROTTLED
) | TSQF_QUEUED
;
949 nval
= cmpxchg(&sk
->sk_tsq_flags
, oval
, nval
);
953 /* queue this socket to tasklet queue */
954 local_irq_save(flags
);
955 tsq
= this_cpu_ptr(&tsq_tasklet
);
956 empty
= list_empty(&tsq
->head
);
957 list_add(&tp
->tsq_node
, &tsq
->head
);
959 tasklet_schedule(&tsq
->tasklet
);
960 local_irq_restore(flags
);
967 /* Note: Called under soft irq.
968 * We can call TCP stack right away, unless socket is owned by user.
970 enum hrtimer_restart
tcp_pace_kick(struct hrtimer
*timer
)
972 struct tcp_sock
*tp
= container_of(timer
, struct tcp_sock
, pacing_timer
);
973 struct sock
*sk
= (struct sock
*)tp
;
978 return HRTIMER_NORESTART
;
981 static void tcp_update_skb_after_send(struct sock
*sk
, struct sk_buff
*skb
,
984 struct tcp_sock
*tp
= tcp_sk(sk
);
986 if (sk
->sk_pacing_status
!= SK_PACING_NONE
) {
987 unsigned long rate
= sk
->sk_pacing_rate
;
989 /* Original sch_fq does not pace first 10 MSS
990 * Note that tp->data_segs_out overflows after 2^32 packets,
991 * this is a minor annoyance.
993 if (rate
!= ~0UL && rate
&& tp
->data_segs_out
>= 10) {
994 u64 len_ns
= div64_ul((u64
)skb
->len
* NSEC_PER_SEC
, rate
);
995 u64 credit
= tp
->tcp_wstamp_ns
- prior_wstamp
;
997 /* take into account OS jitter */
998 len_ns
-= min_t(u64
, len_ns
/ 2, credit
);
999 tp
->tcp_wstamp_ns
+= len_ns
;
1002 list_move_tail(&skb
->tcp_tsorted_anchor
, &tp
->tsorted_sent_queue
);
1005 /* This routine actually transmits TCP packets queued in by
1006 * tcp_do_sendmsg(). This is used by both the initial
1007 * transmission and possible later retransmissions.
1008 * All SKB's seen here are completely headerless. It is our
1009 * job to build the TCP header, and pass the packet down to
1010 * IP so it can do the same plus pass the packet off to the
1013 * We are working here with either a clone of the original
1014 * SKB, or a fresh unique copy made by the retransmit engine.
1016 static int __tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
,
1017 int clone_it
, gfp_t gfp_mask
, u32 rcv_nxt
)
1019 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1020 struct inet_sock
*inet
;
1021 struct tcp_sock
*tp
;
1022 struct tcp_skb_cb
*tcb
;
1023 struct tcp_out_options opts
;
1024 unsigned int tcp_options_size
, tcp_header_size
;
1025 struct sk_buff
*oskb
= NULL
;
1026 struct tcp_md5sig_key
*md5
;
1031 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
1033 prior_wstamp
= tp
->tcp_wstamp_ns
;
1034 tp
->tcp_wstamp_ns
= max(tp
->tcp_wstamp_ns
, tp
->tcp_clock_cache
);
1035 skb
->skb_mstamp_ns
= tp
->tcp_wstamp_ns
;
1037 TCP_SKB_CB(skb
)->tx
.in_flight
= TCP_SKB_CB(skb
)->end_seq
1041 tcp_skb_tsorted_save(oskb
) {
1042 if (unlikely(skb_cloned(oskb
)))
1043 skb
= pskb_copy(oskb
, gfp_mask
);
1045 skb
= skb_clone(oskb
, gfp_mask
);
1046 } tcp_skb_tsorted_restore(oskb
);
1053 tcb
= TCP_SKB_CB(skb
);
1054 memset(&opts
, 0, sizeof(opts
));
1056 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
))
1057 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
1059 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
1061 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
1063 /* if no packet is in qdisc/device queue, then allow XPS to select
1064 * another queue. We can be called from tcp_tsq_handler()
1065 * which holds one reference to sk.
1067 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1068 * One way to get this would be to set skb->truesize = 2 on them.
1070 skb
->ooo_okay
= sk_wmem_alloc_get(sk
) < SKB_TRUESIZE(1);
1072 /* If we had to use memory reserve to allocate this skb,
1073 * this might cause drops if packet is looped back :
1074 * Other socket might not have SOCK_MEMALLOC.
1075 * Packets not looped back do not care about pfmemalloc.
1077 skb
->pfmemalloc
= 0;
1079 skb_push(skb
, tcp_header_size
);
1080 skb_reset_transport_header(skb
);
1084 skb
->destructor
= skb_is_tcp_pure_ack(skb
) ? __sock_wfree
: tcp_wfree
;
1085 skb_set_hash_from_sk(skb
, sk
);
1086 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
1088 skb_set_dst_pending_confirm(skb
, sk
->sk_dst_pending_confirm
);
1090 /* Build TCP header and checksum it. */
1091 th
= (struct tcphdr
*)skb
->data
;
1092 th
->source
= inet
->inet_sport
;
1093 th
->dest
= inet
->inet_dport
;
1094 th
->seq
= htonl(tcb
->seq
);
1095 th
->ack_seq
= htonl(rcv_nxt
);
1096 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
1102 /* The urg_mode check is necessary during a below snd_una win probe */
1103 if (unlikely(tcp_urg_mode(tp
) && before(tcb
->seq
, tp
->snd_up
))) {
1104 if (before(tp
->snd_up
, tcb
->seq
+ 0x10000)) {
1105 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
1107 } else if (after(tcb
->seq
+ 0xFFFF, tp
->snd_nxt
)) {
1108 th
->urg_ptr
= htons(0xFFFF);
1113 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
1114 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
1115 if (likely(!(tcb
->tcp_flags
& TCPHDR_SYN
))) {
1116 th
->window
= htons(tcp_select_window(sk
));
1117 tcp_ecn_send(sk
, skb
, th
, tcp_header_size
);
1119 /* RFC1323: The window in SYN & SYN/ACK segments
1122 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
1124 #ifdef CONFIG_TCP_MD5SIG
1125 /* Calculate the MD5 hash, as we have all we need now */
1127 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
1128 tp
->af_specific
->calc_md5_hash(opts
.hash_location
,
1133 icsk
->icsk_af_ops
->send_check(sk
, skb
);
1135 if (likely(tcb
->tcp_flags
& TCPHDR_ACK
))
1136 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
), rcv_nxt
);
1138 if (skb
->len
!= tcp_header_size
) {
1139 tcp_event_data_sent(tp
, sk
);
1140 tp
->data_segs_out
+= tcp_skb_pcount(skb
);
1141 tp
->bytes_sent
+= skb
->len
- tcp_header_size
;
1144 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
1145 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
,
1146 tcp_skb_pcount(skb
));
1148 tp
->segs_out
+= tcp_skb_pcount(skb
);
1149 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1150 skb_shinfo(skb
)->gso_segs
= tcp_skb_pcount(skb
);
1151 skb_shinfo(skb
)->gso_size
= tcp_skb_mss(skb
);
1153 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1155 /* Cleanup our debris for IP stacks */
1156 memset(skb
->cb
, 0, max(sizeof(struct inet_skb_parm
),
1157 sizeof(struct inet6_skb_parm
)));
1159 err
= icsk
->icsk_af_ops
->queue_xmit(sk
, skb
, &inet
->cork
.fl
);
1161 if (unlikely(err
> 0)) {
1163 err
= net_xmit_eval(err
);
1166 tcp_update_skb_after_send(sk
, oskb
, prior_wstamp
);
1167 tcp_rate_skb_sent(sk
, oskb
);
1172 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
1175 return __tcp_transmit_skb(sk
, skb
, clone_it
, gfp_mask
,
1176 tcp_sk(sk
)->rcv_nxt
);
1179 /* This routine just queues the buffer for sending.
1181 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1182 * otherwise socket can stall.
1184 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
1186 struct tcp_sock
*tp
= tcp_sk(sk
);
1188 /* Advance write_seq and place onto the write_queue. */
1189 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
1190 __skb_header_release(skb
);
1191 tcp_add_write_queue_tail(sk
, skb
);
1192 sk
->sk_wmem_queued
+= skb
->truesize
;
1193 sk_mem_charge(sk
, skb
->truesize
);
1196 /* Initialize TSO segments for a packet. */
1197 static void tcp_set_skb_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1199 if (skb
->len
<= mss_now
) {
1200 /* Avoid the costly divide in the normal
1203 tcp_skb_pcount_set(skb
, 1);
1204 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1206 tcp_skb_pcount_set(skb
, DIV_ROUND_UP(skb
->len
, mss_now
));
1207 TCP_SKB_CB(skb
)->tcp_gso_size
= mss_now
;
1211 /* Pcount in the middle of the write queue got changed, we need to do various
1212 * tweaks to fix counters
1214 static void tcp_adjust_pcount(struct sock
*sk
, const struct sk_buff
*skb
, int decr
)
1216 struct tcp_sock
*tp
= tcp_sk(sk
);
1218 tp
->packets_out
-= decr
;
1220 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1221 tp
->sacked_out
-= decr
;
1222 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1223 tp
->retrans_out
-= decr
;
1224 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
1225 tp
->lost_out
-= decr
;
1227 /* Reno case is special. Sigh... */
1228 if (tcp_is_reno(tp
) && decr
> 0)
1229 tp
->sacked_out
-= min_t(u32
, tp
->sacked_out
, decr
);
1231 if (tp
->lost_skb_hint
&&
1232 before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
) &&
1233 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
1234 tp
->lost_cnt_hint
-= decr
;
1236 tcp_verify_left_out(tp
);
1239 static bool tcp_has_tx_tstamp(const struct sk_buff
*skb
)
1241 return TCP_SKB_CB(skb
)->txstamp_ack
||
1242 (skb_shinfo(skb
)->tx_flags
& SKBTX_ANY_TSTAMP
);
1245 static void tcp_fragment_tstamp(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1247 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1249 if (unlikely(tcp_has_tx_tstamp(skb
)) &&
1250 !before(shinfo
->tskey
, TCP_SKB_CB(skb2
)->seq
)) {
1251 struct skb_shared_info
*shinfo2
= skb_shinfo(skb2
);
1252 u8 tsflags
= shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
1254 shinfo
->tx_flags
&= ~tsflags
;
1255 shinfo2
->tx_flags
|= tsflags
;
1256 swap(shinfo
->tskey
, shinfo2
->tskey
);
1257 TCP_SKB_CB(skb2
)->txstamp_ack
= TCP_SKB_CB(skb
)->txstamp_ack
;
1258 TCP_SKB_CB(skb
)->txstamp_ack
= 0;
1262 static void tcp_skb_fragment_eor(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1264 TCP_SKB_CB(skb2
)->eor
= TCP_SKB_CB(skb
)->eor
;
1265 TCP_SKB_CB(skb
)->eor
= 0;
1268 /* Insert buff after skb on the write or rtx queue of sk. */
1269 static void tcp_insert_write_queue_after(struct sk_buff
*skb
,
1270 struct sk_buff
*buff
,
1272 enum tcp_queue tcp_queue
)
1274 if (tcp_queue
== TCP_FRAG_IN_WRITE_QUEUE
)
1275 __skb_queue_after(&sk
->sk_write_queue
, skb
, buff
);
1277 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, buff
);
1280 /* Function to create two new TCP segments. Shrinks the given segment
1281 * to the specified size and appends a new segment with the rest of the
1282 * packet to the list. This won't be called frequently, I hope.
1283 * Remember, these are still headerless SKBs at this point.
1285 int tcp_fragment(struct sock
*sk
, enum tcp_queue tcp_queue
,
1286 struct sk_buff
*skb
, u32 len
,
1287 unsigned int mss_now
, gfp_t gfp
)
1289 struct tcp_sock
*tp
= tcp_sk(sk
);
1290 struct sk_buff
*buff
;
1291 int nsize
, old_factor
;
1295 if (WARN_ON(len
> skb
->len
))
1298 nsize
= skb_headlen(skb
) - len
;
1302 if (skb_unclone(skb
, gfp
))
1305 /* Get a new skb... force flag on. */
1306 buff
= sk_stream_alloc_skb(sk
, nsize
, gfp
, true);
1308 return -ENOMEM
; /* We'll just try again later. */
1310 sk
->sk_wmem_queued
+= buff
->truesize
;
1311 sk_mem_charge(sk
, buff
->truesize
);
1312 nlen
= skb
->len
- len
- nsize
;
1313 buff
->truesize
+= nlen
;
1314 skb
->truesize
-= nlen
;
1316 /* Correct the sequence numbers. */
1317 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1318 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1319 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1321 /* PSH and FIN should only be set in the second packet. */
1322 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1323 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1324 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1325 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
1326 tcp_skb_fragment_eor(skb
, buff
);
1328 skb_split(skb
, buff
, len
);
1330 buff
->ip_summed
= CHECKSUM_PARTIAL
;
1332 buff
->tstamp
= skb
->tstamp
;
1333 tcp_fragment_tstamp(skb
, buff
);
1335 old_factor
= tcp_skb_pcount(skb
);
1337 /* Fix up tso_factor for both original and new SKB. */
1338 tcp_set_skb_tso_segs(skb
, mss_now
);
1339 tcp_set_skb_tso_segs(buff
, mss_now
);
1341 /* Update delivered info for the new segment */
1342 TCP_SKB_CB(buff
)->tx
= TCP_SKB_CB(skb
)->tx
;
1344 /* If this packet has been sent out already, we must
1345 * adjust the various packet counters.
1347 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
1348 int diff
= old_factor
- tcp_skb_pcount(skb
) -
1349 tcp_skb_pcount(buff
);
1352 tcp_adjust_pcount(sk
, skb
, diff
);
1355 /* Link BUFF into the send queue. */
1356 __skb_header_release(buff
);
1357 tcp_insert_write_queue_after(skb
, buff
, sk
, tcp_queue
);
1358 if (tcp_queue
== TCP_FRAG_IN_RTX_QUEUE
)
1359 list_add(&buff
->tcp_tsorted_anchor
, &skb
->tcp_tsorted_anchor
);
1364 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1365 * data is not copied, but immediately discarded.
1367 static int __pskb_trim_head(struct sk_buff
*skb
, int len
)
1369 struct skb_shared_info
*shinfo
;
1372 eat
= min_t(int, len
, skb_headlen(skb
));
1374 __skb_pull(skb
, eat
);
1381 shinfo
= skb_shinfo(skb
);
1382 for (i
= 0; i
< shinfo
->nr_frags
; i
++) {
1383 int size
= skb_frag_size(&shinfo
->frags
[i
]);
1386 skb_frag_unref(skb
, i
);
1389 shinfo
->frags
[k
] = shinfo
->frags
[i
];
1391 shinfo
->frags
[k
].page_offset
+= eat
;
1392 skb_frag_size_sub(&shinfo
->frags
[k
], eat
);
1398 shinfo
->nr_frags
= k
;
1400 skb
->data_len
-= len
;
1401 skb
->len
= skb
->data_len
;
1405 /* Remove acked data from a packet in the transmit queue. */
1406 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
1410 if (skb_unclone(skb
, GFP_ATOMIC
))
1413 delta_truesize
= __pskb_trim_head(skb
, len
);
1415 TCP_SKB_CB(skb
)->seq
+= len
;
1416 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1418 if (delta_truesize
) {
1419 skb
->truesize
-= delta_truesize
;
1420 sk
->sk_wmem_queued
-= delta_truesize
;
1421 sk_mem_uncharge(sk
, delta_truesize
);
1422 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
1425 /* Any change of skb->len requires recalculation of tso factor. */
1426 if (tcp_skb_pcount(skb
) > 1)
1427 tcp_set_skb_tso_segs(skb
, tcp_skb_mss(skb
));
1432 /* Calculate MSS not accounting any TCP options. */
1433 static inline int __tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1435 const struct tcp_sock
*tp
= tcp_sk(sk
);
1436 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1439 /* Calculate base mss without TCP options:
1440 It is MMS_S - sizeof(tcphdr) of rfc1122
1442 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
1444 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1445 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1446 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1448 if (dst
&& dst_allfrag(dst
))
1449 mss_now
-= icsk
->icsk_af_ops
->net_frag_header_len
;
1452 /* Clamp it (mss_clamp does not include tcp options) */
1453 if (mss_now
> tp
->rx_opt
.mss_clamp
)
1454 mss_now
= tp
->rx_opt
.mss_clamp
;
1456 /* Now subtract optional transport overhead */
1457 mss_now
-= icsk
->icsk_ext_hdr_len
;
1459 /* Then reserve room for full set of TCP options and 8 bytes of data */
1465 /* Calculate MSS. Not accounting for SACKs here. */
1466 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1468 /* Subtract TCP options size, not including SACKs */
1469 return __tcp_mtu_to_mss(sk
, pmtu
) -
1470 (tcp_sk(sk
)->tcp_header_len
- sizeof(struct tcphdr
));
1473 /* Inverse of above */
1474 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
1476 const struct tcp_sock
*tp
= tcp_sk(sk
);
1477 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1481 tp
->tcp_header_len
+
1482 icsk
->icsk_ext_hdr_len
+
1483 icsk
->icsk_af_ops
->net_header_len
;
1485 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1486 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1487 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1489 if (dst
&& dst_allfrag(dst
))
1490 mtu
+= icsk
->icsk_af_ops
->net_frag_header_len
;
1494 EXPORT_SYMBOL(tcp_mss_to_mtu
);
1496 /* MTU probing init per socket */
1497 void tcp_mtup_init(struct sock
*sk
)
1499 struct tcp_sock
*tp
= tcp_sk(sk
);
1500 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1501 struct net
*net
= sock_net(sk
);
1503 icsk
->icsk_mtup
.enabled
= net
->ipv4
.sysctl_tcp_mtu_probing
> 1;
1504 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
1505 icsk
->icsk_af_ops
->net_header_len
;
1506 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, net
->ipv4
.sysctl_tcp_base_mss
);
1507 icsk
->icsk_mtup
.probe_size
= 0;
1508 if (icsk
->icsk_mtup
.enabled
)
1509 icsk
->icsk_mtup
.probe_timestamp
= tcp_jiffies32
;
1511 EXPORT_SYMBOL(tcp_mtup_init
);
1513 /* This function synchronize snd mss to current pmtu/exthdr set.
1515 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1516 for TCP options, but includes only bare TCP header.
1518 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1519 It is minimum of user_mss and mss received with SYN.
1520 It also does not include TCP options.
1522 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1524 tp->mss_cache is current effective sending mss, including
1525 all tcp options except for SACKs. It is evaluated,
1526 taking into account current pmtu, but never exceeds
1527 tp->rx_opt.mss_clamp.
1529 NOTE1. rfc1122 clearly states that advertised MSS
1530 DOES NOT include either tcp or ip options.
1532 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1533 are READ ONLY outside this function. --ANK (980731)
1535 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
1537 struct tcp_sock
*tp
= tcp_sk(sk
);
1538 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1541 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1542 icsk
->icsk_mtup
.search_high
= pmtu
;
1544 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1545 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1547 /* And store cached results */
1548 icsk
->icsk_pmtu_cookie
= pmtu
;
1549 if (icsk
->icsk_mtup
.enabled
)
1550 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1551 tp
->mss_cache
= mss_now
;
1555 EXPORT_SYMBOL(tcp_sync_mss
);
1557 /* Compute the current effective MSS, taking SACKs and IP options,
1558 * and even PMTU discovery events into account.
1560 unsigned int tcp_current_mss(struct sock
*sk
)
1562 const struct tcp_sock
*tp
= tcp_sk(sk
);
1563 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1565 unsigned int header_len
;
1566 struct tcp_out_options opts
;
1567 struct tcp_md5sig_key
*md5
;
1569 mss_now
= tp
->mss_cache
;
1572 u32 mtu
= dst_mtu(dst
);
1573 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1574 mss_now
= tcp_sync_mss(sk
, mtu
);
1577 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1578 sizeof(struct tcphdr
);
1579 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1580 * some common options. If this is an odd packet (because we have SACK
1581 * blocks etc) then our calculated header_len will be different, and
1582 * we have to adjust mss_now correspondingly */
1583 if (header_len
!= tp
->tcp_header_len
) {
1584 int delta
= (int) header_len
- tp
->tcp_header_len
;
1591 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1592 * As additional protections, we do not touch cwnd in retransmission phases,
1593 * and if application hit its sndbuf limit recently.
1595 static void tcp_cwnd_application_limited(struct sock
*sk
)
1597 struct tcp_sock
*tp
= tcp_sk(sk
);
1599 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
1600 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1601 /* Limited by application or receiver window. */
1602 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
1603 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
1604 if (win_used
< tp
->snd_cwnd
) {
1605 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1606 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
1608 tp
->snd_cwnd_used
= 0;
1610 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
1613 static void tcp_cwnd_validate(struct sock
*sk
, bool is_cwnd_limited
)
1615 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
1616 struct tcp_sock
*tp
= tcp_sk(sk
);
1618 /* Track the maximum number of outstanding packets in each
1619 * window, and remember whether we were cwnd-limited then.
1621 if (!before(tp
->snd_una
, tp
->max_packets_seq
) ||
1622 tp
->packets_out
> tp
->max_packets_out
) {
1623 tp
->max_packets_out
= tp
->packets_out
;
1624 tp
->max_packets_seq
= tp
->snd_nxt
;
1625 tp
->is_cwnd_limited
= is_cwnd_limited
;
1628 if (tcp_is_cwnd_limited(sk
)) {
1629 /* Network is feed fully. */
1630 tp
->snd_cwnd_used
= 0;
1631 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
1633 /* Network starves. */
1634 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1635 tp
->snd_cwnd_used
= tp
->packets_out
;
1637 if (sock_net(sk
)->ipv4
.sysctl_tcp_slow_start_after_idle
&&
1638 (s32
)(tcp_jiffies32
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
&&
1639 !ca_ops
->cong_control
)
1640 tcp_cwnd_application_limited(sk
);
1642 /* The following conditions together indicate the starvation
1643 * is caused by insufficient sender buffer:
1644 * 1) just sent some data (see tcp_write_xmit)
1645 * 2) not cwnd limited (this else condition)
1646 * 3) no more data to send (tcp_write_queue_empty())
1647 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1649 if (tcp_write_queue_empty(sk
) && sk
->sk_socket
&&
1650 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
) &&
1651 (1 << sk
->sk_state
) & (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
))
1652 tcp_chrono_start(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1656 /* Minshall's variant of the Nagle send check. */
1657 static bool tcp_minshall_check(const struct tcp_sock
*tp
)
1659 return after(tp
->snd_sml
, tp
->snd_una
) &&
1660 !after(tp
->snd_sml
, tp
->snd_nxt
);
1663 /* Update snd_sml if this skb is under mss
1664 * Note that a TSO packet might end with a sub-mss segment
1665 * The test is really :
1666 * if ((skb->len % mss) != 0)
1667 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1668 * But we can avoid doing the divide again given we already have
1669 * skb_pcount = skb->len / mss_now
1671 static void tcp_minshall_update(struct tcp_sock
*tp
, unsigned int mss_now
,
1672 const struct sk_buff
*skb
)
1674 if (skb
->len
< tcp_skb_pcount(skb
) * mss_now
)
1675 tp
->snd_sml
= TCP_SKB_CB(skb
)->end_seq
;
1678 /* Return false, if packet can be sent now without violation Nagle's rules:
1679 * 1. It is full sized. (provided by caller in %partial bool)
1680 * 2. Or it contains FIN. (already checked by caller)
1681 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1682 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1683 * With Minshall's modification: all sent small packets are ACKed.
1685 static bool tcp_nagle_check(bool partial
, const struct tcp_sock
*tp
,
1689 ((nonagle
& TCP_NAGLE_CORK
) ||
1690 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
)));
1693 /* Return how many segs we'd like on a TSO packet,
1694 * to send one TSO packet per ms
1696 static u32
tcp_tso_autosize(const struct sock
*sk
, unsigned int mss_now
,
1701 bytes
= min_t(unsigned long,
1702 sk
->sk_pacing_rate
>> sk
->sk_pacing_shift
,
1703 sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
);
1705 /* Goal is to send at least one packet per ms,
1706 * not one big TSO packet every 100 ms.
1707 * This preserves ACK clocking and is consistent
1708 * with tcp_tso_should_defer() heuristic.
1710 segs
= max_t(u32
, bytes
/ mss_now
, min_tso_segs
);
1715 /* Return the number of segments we want in the skb we are transmitting.
1716 * See if congestion control module wants to decide; otherwise, autosize.
1718 static u32
tcp_tso_segs(struct sock
*sk
, unsigned int mss_now
)
1720 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
1721 u32 min_tso
, tso_segs
;
1723 min_tso
= ca_ops
->min_tso_segs
?
1724 ca_ops
->min_tso_segs(sk
) :
1725 sock_net(sk
)->ipv4
.sysctl_tcp_min_tso_segs
;
1727 tso_segs
= tcp_tso_autosize(sk
, mss_now
, min_tso
);
1728 return min_t(u32
, tso_segs
, sk
->sk_gso_max_segs
);
1731 /* Returns the portion of skb which can be sent right away */
1732 static unsigned int tcp_mss_split_point(const struct sock
*sk
,
1733 const struct sk_buff
*skb
,
1734 unsigned int mss_now
,
1735 unsigned int max_segs
,
1738 const struct tcp_sock
*tp
= tcp_sk(sk
);
1739 u32 partial
, needed
, window
, max_len
;
1741 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1742 max_len
= mss_now
* max_segs
;
1744 if (likely(max_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1747 needed
= min(skb
->len
, window
);
1749 if (max_len
<= needed
)
1752 partial
= needed
% mss_now
;
1753 /* If last segment is not a full MSS, check if Nagle rules allow us
1754 * to include this last segment in this skb.
1755 * Otherwise, we'll split the skb at last MSS boundary
1757 if (tcp_nagle_check(partial
!= 0, tp
, nonagle
))
1758 return needed
- partial
;
1763 /* Can at least one segment of SKB be sent right now, according to the
1764 * congestion window rules? If so, return how many segments are allowed.
1766 static inline unsigned int tcp_cwnd_test(const struct tcp_sock
*tp
,
1767 const struct sk_buff
*skb
)
1769 u32 in_flight
, cwnd
, halfcwnd
;
1771 /* Don't be strict about the congestion window for the final FIN. */
1772 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) &&
1773 tcp_skb_pcount(skb
) == 1)
1776 in_flight
= tcp_packets_in_flight(tp
);
1777 cwnd
= tp
->snd_cwnd
;
1778 if (in_flight
>= cwnd
)
1781 /* For better scheduling, ensure we have at least
1782 * 2 GSO packets in flight.
1784 halfcwnd
= max(cwnd
>> 1, 1U);
1785 return min(halfcwnd
, cwnd
- in_flight
);
1788 /* Initialize TSO state of a skb.
1789 * This must be invoked the first time we consider transmitting
1790 * SKB onto the wire.
1792 static int tcp_init_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1794 int tso_segs
= tcp_skb_pcount(skb
);
1796 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1797 tcp_set_skb_tso_segs(skb
, mss_now
);
1798 tso_segs
= tcp_skb_pcount(skb
);
1804 /* Return true if the Nagle test allows this packet to be
1807 static inline bool tcp_nagle_test(const struct tcp_sock
*tp
, const struct sk_buff
*skb
,
1808 unsigned int cur_mss
, int nonagle
)
1810 /* Nagle rule does not apply to frames, which sit in the middle of the
1811 * write_queue (they have no chances to get new data).
1813 * This is implemented in the callers, where they modify the 'nonagle'
1814 * argument based upon the location of SKB in the send queue.
1816 if (nonagle
& TCP_NAGLE_PUSH
)
1819 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1820 if (tcp_urg_mode(tp
) || (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
))
1823 if (!tcp_nagle_check(skb
->len
< cur_mss
, tp
, nonagle
))
1829 /* Does at least the first segment of SKB fit into the send window? */
1830 static bool tcp_snd_wnd_test(const struct tcp_sock
*tp
,
1831 const struct sk_buff
*skb
,
1832 unsigned int cur_mss
)
1834 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1836 if (skb
->len
> cur_mss
)
1837 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1839 return !after(end_seq
, tcp_wnd_end(tp
));
1842 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1843 * which is put after SKB on the list. It is very much like
1844 * tcp_fragment() except that it may make several kinds of assumptions
1845 * in order to speed up the splitting operation. In particular, we
1846 * know that all the data is in scatter-gather pages, and that the
1847 * packet has never been sent out before (and thus is not cloned).
1849 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1850 unsigned int mss_now
, gfp_t gfp
)
1852 int nlen
= skb
->len
- len
;
1853 struct sk_buff
*buff
;
1856 /* All of a TSO frame must be composed of paged data. */
1857 if (skb
->len
!= skb
->data_len
)
1858 return tcp_fragment(sk
, TCP_FRAG_IN_WRITE_QUEUE
,
1859 skb
, len
, mss_now
, gfp
);
1861 buff
= sk_stream_alloc_skb(sk
, 0, gfp
, true);
1862 if (unlikely(!buff
))
1865 sk
->sk_wmem_queued
+= buff
->truesize
;
1866 sk_mem_charge(sk
, buff
->truesize
);
1867 buff
->truesize
+= nlen
;
1868 skb
->truesize
-= nlen
;
1870 /* Correct the sequence numbers. */
1871 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1872 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1873 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1875 /* PSH and FIN should only be set in the second packet. */
1876 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1877 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1878 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1880 /* This packet was never sent out yet, so no SACK bits. */
1881 TCP_SKB_CB(buff
)->sacked
= 0;
1883 tcp_skb_fragment_eor(skb
, buff
);
1885 buff
->ip_summed
= CHECKSUM_PARTIAL
;
1886 skb_split(skb
, buff
, len
);
1887 tcp_fragment_tstamp(skb
, buff
);
1889 /* Fix up tso_factor for both original and new SKB. */
1890 tcp_set_skb_tso_segs(skb
, mss_now
);
1891 tcp_set_skb_tso_segs(buff
, mss_now
);
1893 /* Link BUFF into the send queue. */
1894 __skb_header_release(buff
);
1895 tcp_insert_write_queue_after(skb
, buff
, sk
, TCP_FRAG_IN_WRITE_QUEUE
);
1900 /* Try to defer sending, if possible, in order to minimize the amount
1901 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1903 * This algorithm is from John Heffner.
1905 static bool tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
,
1906 bool *is_cwnd_limited
,
1907 bool *is_rwnd_limited
,
1910 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1911 u32 send_win
, cong_win
, limit
, in_flight
;
1912 struct tcp_sock
*tp
= tcp_sk(sk
);
1913 struct sk_buff
*head
;
1917 if (icsk
->icsk_ca_state
>= TCP_CA_Recovery
)
1920 /* Avoid bursty behavior by allowing defer
1921 * only if the last write was recent (1 ms).
1922 * Note that tp->tcp_wstamp_ns can be in the future if we have
1923 * packets waiting in a qdisc or device for EDT delivery.
1925 delta
= tp
->tcp_clock_cache
- tp
->tcp_wstamp_ns
- NSEC_PER_MSEC
;
1929 in_flight
= tcp_packets_in_flight(tp
);
1931 BUG_ON(tcp_skb_pcount(skb
) <= 1);
1932 BUG_ON(tp
->snd_cwnd
<= in_flight
);
1934 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1936 /* From in_flight test above, we know that cwnd > in_flight. */
1937 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1939 limit
= min(send_win
, cong_win
);
1941 /* If a full-sized TSO skb can be sent, do it. */
1942 if (limit
>= max_segs
* tp
->mss_cache
)
1945 /* Middle in queue won't get any more data, full sendable already? */
1946 if ((skb
!= tcp_write_queue_tail(sk
)) && (limit
>= skb
->len
))
1949 win_divisor
= READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_tso_win_divisor
);
1951 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1953 /* If at least some fraction of a window is available,
1956 chunk
/= win_divisor
;
1960 /* Different approach, try not to defer past a single
1961 * ACK. Receiver should ACK every other full sized
1962 * frame, so if we have space for more than 3 frames
1965 if (limit
> tcp_max_tso_deferred_mss(tp
) * tp
->mss_cache
)
1969 /* TODO : use tsorted_sent_queue ? */
1970 head
= tcp_rtx_queue_head(sk
);
1973 delta
= tp
->tcp_clock_cache
- head
->tstamp
;
1974 /* If next ACK is likely to come too late (half srtt), do not defer */
1975 if ((s64
)(delta
- (u64
)NSEC_PER_USEC
* (tp
->srtt_us
>> 4)) < 0)
1978 /* Ok, it looks like it is advisable to defer.
1979 * Three cases are tracked :
1980 * 1) We are cwnd-limited
1981 * 2) We are rwnd-limited
1982 * 3) We are application limited.
1984 if (cong_win
< send_win
) {
1985 if (cong_win
<= skb
->len
) {
1986 *is_cwnd_limited
= true;
1990 if (send_win
<= skb
->len
) {
1991 *is_rwnd_limited
= true;
1996 /* If this packet won't get more data, do not wait. */
1997 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) ||
1998 TCP_SKB_CB(skb
)->eor
)
2007 static inline void tcp_mtu_check_reprobe(struct sock
*sk
)
2009 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2010 struct tcp_sock
*tp
= tcp_sk(sk
);
2011 struct net
*net
= sock_net(sk
);
2015 interval
= net
->ipv4
.sysctl_tcp_probe_interval
;
2016 delta
= tcp_jiffies32
- icsk
->icsk_mtup
.probe_timestamp
;
2017 if (unlikely(delta
>= interval
* HZ
)) {
2018 int mss
= tcp_current_mss(sk
);
2020 /* Update current search range */
2021 icsk
->icsk_mtup
.probe_size
= 0;
2022 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+
2023 sizeof(struct tcphdr
) +
2024 icsk
->icsk_af_ops
->net_header_len
;
2025 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, mss
);
2027 /* Update probe time stamp */
2028 icsk
->icsk_mtup
.probe_timestamp
= tcp_jiffies32
;
2032 static bool tcp_can_coalesce_send_queue_head(struct sock
*sk
, int len
)
2034 struct sk_buff
*skb
, *next
;
2036 skb
= tcp_send_head(sk
);
2037 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
2038 if (len
<= skb
->len
)
2041 if (unlikely(TCP_SKB_CB(skb
)->eor
))
2050 /* Create a new MTU probe if we are ready.
2051 * MTU probe is regularly attempting to increase the path MTU by
2052 * deliberately sending larger packets. This discovers routing
2053 * changes resulting in larger path MTUs.
2055 * Returns 0 if we should wait to probe (no cwnd available),
2056 * 1 if a probe was sent,
2059 static int tcp_mtu_probe(struct sock
*sk
)
2061 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2062 struct tcp_sock
*tp
= tcp_sk(sk
);
2063 struct sk_buff
*skb
, *nskb
, *next
;
2064 struct net
*net
= sock_net(sk
);
2071 /* Not currently probing/verifying,
2073 * have enough cwnd, and
2074 * not SACKing (the variable headers throw things off)
2076 if (likely(!icsk
->icsk_mtup
.enabled
||
2077 icsk
->icsk_mtup
.probe_size
||
2078 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
2079 tp
->snd_cwnd
< 11 ||
2080 tp
->rx_opt
.num_sacks
|| tp
->rx_opt
.dsack
))
2083 /* Use binary search for probe_size between tcp_mss_base,
2084 * and current mss_clamp. if (search_high - search_low)
2085 * smaller than a threshold, backoff from probing.
2087 mss_now
= tcp_current_mss(sk
);
2088 probe_size
= tcp_mtu_to_mss(sk
, (icsk
->icsk_mtup
.search_high
+
2089 icsk
->icsk_mtup
.search_low
) >> 1);
2090 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
2091 interval
= icsk
->icsk_mtup
.search_high
- icsk
->icsk_mtup
.search_low
;
2092 /* When misfortune happens, we are reprobing actively,
2093 * and then reprobe timer has expired. We stick with current
2094 * probing process by not resetting search range to its orignal.
2096 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
) ||
2097 interval
< net
->ipv4
.sysctl_tcp_probe_threshold
) {
2098 /* Check whether enough time has elaplased for
2099 * another round of probing.
2101 tcp_mtu_check_reprobe(sk
);
2105 /* Have enough data in the send queue to probe? */
2106 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
2109 if (tp
->snd_wnd
< size_needed
)
2111 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
2114 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2115 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
2116 if (!tcp_packets_in_flight(tp
))
2122 if (!tcp_can_coalesce_send_queue_head(sk
, probe_size
))
2125 /* We're allowed to probe. Build it now. */
2126 nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
, false);
2129 sk
->sk_wmem_queued
+= nskb
->truesize
;
2130 sk_mem_charge(sk
, nskb
->truesize
);
2132 skb
= tcp_send_head(sk
);
2134 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
2135 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
2136 TCP_SKB_CB(nskb
)->tcp_flags
= TCPHDR_ACK
;
2137 TCP_SKB_CB(nskb
)->sacked
= 0;
2139 nskb
->ip_summed
= CHECKSUM_PARTIAL
;
2141 tcp_insert_write_queue_before(nskb
, skb
, sk
);
2142 tcp_highest_sack_replace(sk
, skb
, nskb
);
2145 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
2146 copy
= min_t(int, skb
->len
, probe_size
- len
);
2147 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
2149 if (skb
->len
<= copy
) {
2150 /* We've eaten all the data from this skb.
2152 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
2153 /* If this is the last SKB we copy and eor is set
2154 * we need to propagate it to the new skb.
2156 TCP_SKB_CB(nskb
)->eor
= TCP_SKB_CB(skb
)->eor
;
2157 tcp_unlink_write_queue(skb
, sk
);
2158 sk_wmem_free_skb(sk
, skb
);
2160 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
&
2161 ~(TCPHDR_FIN
|TCPHDR_PSH
);
2162 if (!skb_shinfo(skb
)->nr_frags
) {
2163 skb_pull(skb
, copy
);
2165 __pskb_trim_head(skb
, copy
);
2166 tcp_set_skb_tso_segs(skb
, mss_now
);
2168 TCP_SKB_CB(skb
)->seq
+= copy
;
2173 if (len
>= probe_size
)
2176 tcp_init_tso_segs(nskb
, nskb
->len
);
2178 /* We're ready to send. If this fails, the probe will
2179 * be resegmented into mss-sized pieces by tcp_write_xmit().
2181 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
2182 /* Decrement cwnd here because we are sending
2183 * effectively two packets. */
2185 tcp_event_new_data_sent(sk
, nskb
);
2187 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
2188 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
2189 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
2197 static bool tcp_pacing_check(struct sock
*sk
)
2199 struct tcp_sock
*tp
= tcp_sk(sk
);
2201 if (!tcp_needs_internal_pacing(sk
))
2204 if (tp
->tcp_wstamp_ns
<= tp
->tcp_clock_cache
)
2207 if (!hrtimer_is_queued(&tp
->pacing_timer
)) {
2208 hrtimer_start(&tp
->pacing_timer
,
2209 ns_to_ktime(tp
->tcp_wstamp_ns
),
2210 HRTIMER_MODE_ABS_PINNED_SOFT
);
2216 /* TCP Small Queues :
2217 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2218 * (These limits are doubled for retransmits)
2220 * - better RTT estimation and ACK scheduling
2223 * Alas, some drivers / subsystems require a fair amount
2224 * of queued bytes to ensure line rate.
2225 * One example is wifi aggregation (802.11 AMPDU)
2227 static bool tcp_small_queue_check(struct sock
*sk
, const struct sk_buff
*skb
,
2228 unsigned int factor
)
2230 unsigned long limit
;
2232 limit
= max_t(unsigned long,
2234 sk
->sk_pacing_rate
>> sk
->sk_pacing_shift
);
2235 if (sk
->sk_pacing_status
== SK_PACING_NONE
)
2236 limit
= min_t(unsigned long, limit
,
2237 sock_net(sk
)->ipv4
.sysctl_tcp_limit_output_bytes
);
2240 if (refcount_read(&sk
->sk_wmem_alloc
) > limit
) {
2241 /* Always send skb if rtx queue is empty.
2242 * No need to wait for TX completion to call us back,
2243 * after softirq/tasklet schedule.
2244 * This helps when TX completions are delayed too much.
2246 if (tcp_rtx_queue_empty(sk
))
2249 set_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
);
2250 /* It is possible TX completion already happened
2251 * before we set TSQ_THROTTLED, so we must
2252 * test again the condition.
2254 smp_mb__after_atomic();
2255 if (refcount_read(&sk
->sk_wmem_alloc
) > limit
)
2261 static void tcp_chrono_set(struct tcp_sock
*tp
, const enum tcp_chrono
new)
2263 const u32 now
= tcp_jiffies32
;
2264 enum tcp_chrono old
= tp
->chrono_type
;
2266 if (old
> TCP_CHRONO_UNSPEC
)
2267 tp
->chrono_stat
[old
- 1] += now
- tp
->chrono_start
;
2268 tp
->chrono_start
= now
;
2269 tp
->chrono_type
= new;
2272 void tcp_chrono_start(struct sock
*sk
, const enum tcp_chrono type
)
2274 struct tcp_sock
*tp
= tcp_sk(sk
);
2276 /* If there are multiple conditions worthy of tracking in a
2277 * chronograph then the highest priority enum takes precedence
2278 * over the other conditions. So that if something "more interesting"
2279 * starts happening, stop the previous chrono and start a new one.
2281 if (type
> tp
->chrono_type
)
2282 tcp_chrono_set(tp
, type
);
2285 void tcp_chrono_stop(struct sock
*sk
, const enum tcp_chrono type
)
2287 struct tcp_sock
*tp
= tcp_sk(sk
);
2290 /* There are multiple conditions worthy of tracking in a
2291 * chronograph, so that the highest priority enum takes
2292 * precedence over the other conditions (see tcp_chrono_start).
2293 * If a condition stops, we only stop chrono tracking if
2294 * it's the "most interesting" or current chrono we are
2295 * tracking and starts busy chrono if we have pending data.
2297 if (tcp_rtx_and_write_queues_empty(sk
))
2298 tcp_chrono_set(tp
, TCP_CHRONO_UNSPEC
);
2299 else if (type
== tp
->chrono_type
)
2300 tcp_chrono_set(tp
, TCP_CHRONO_BUSY
);
2303 /* This routine writes packets to the network. It advances the
2304 * send_head. This happens as incoming acks open up the remote
2307 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2308 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2309 * account rare use of URG, this is not a big flaw.
2311 * Send at most one packet when push_one > 0. Temporarily ignore
2312 * cwnd limit to force at most one packet out when push_one == 2.
2314 * Returns true, if no segments are in flight and we have queued segments,
2315 * but cannot send anything now because of SWS or another problem.
2317 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
2318 int push_one
, gfp_t gfp
)
2320 struct tcp_sock
*tp
= tcp_sk(sk
);
2321 struct sk_buff
*skb
;
2322 unsigned int tso_segs
, sent_pkts
;
2325 bool is_cwnd_limited
= false, is_rwnd_limited
= false;
2330 tcp_mstamp_refresh(tp
);
2332 /* Do MTU probing. */
2333 result
= tcp_mtu_probe(sk
);
2336 } else if (result
> 0) {
2341 max_segs
= tcp_tso_segs(sk
, mss_now
);
2342 while ((skb
= tcp_send_head(sk
))) {
2345 if (unlikely(tp
->repair
) && tp
->repair_queue
== TCP_SEND_QUEUE
) {
2346 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2347 skb
->skb_mstamp_ns
= tp
->tcp_wstamp_ns
= tp
->tcp_clock_cache
;
2348 list_move_tail(&skb
->tcp_tsorted_anchor
, &tp
->tsorted_sent_queue
);
2349 tcp_init_tso_segs(skb
, mss_now
);
2350 goto repair
; /* Skip network transmission */
2353 if (tcp_pacing_check(sk
))
2356 tso_segs
= tcp_init_tso_segs(skb
, mss_now
);
2359 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
2362 /* Force out a loss probe pkt. */
2368 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
))) {
2369 is_rwnd_limited
= true;
2373 if (tso_segs
== 1) {
2374 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
2375 (tcp_skb_is_last(sk
, skb
) ?
2376 nonagle
: TCP_NAGLE_PUSH
))))
2380 tcp_tso_should_defer(sk
, skb
, &is_cwnd_limited
,
2381 &is_rwnd_limited
, max_segs
))
2386 if (tso_segs
> 1 && !tcp_urg_mode(tp
))
2387 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
2393 if (skb
->len
> limit
&&
2394 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
, gfp
)))
2397 if (tcp_small_queue_check(sk
, skb
, 0))
2400 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, gfp
)))
2404 /* Advance the send_head. This one is sent out.
2405 * This call will increment packets_out.
2407 tcp_event_new_data_sent(sk
, skb
);
2409 tcp_minshall_update(tp
, mss_now
, skb
);
2410 sent_pkts
+= tcp_skb_pcount(skb
);
2416 if (is_rwnd_limited
)
2417 tcp_chrono_start(sk
, TCP_CHRONO_RWND_LIMITED
);
2419 tcp_chrono_stop(sk
, TCP_CHRONO_RWND_LIMITED
);
2421 if (likely(sent_pkts
)) {
2422 if (tcp_in_cwnd_reduction(sk
))
2423 tp
->prr_out
+= sent_pkts
;
2425 /* Send one loss probe per tail loss episode. */
2427 tcp_schedule_loss_probe(sk
, false);
2428 is_cwnd_limited
|= (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
);
2429 tcp_cwnd_validate(sk
, is_cwnd_limited
);
2432 return !tp
->packets_out
&& !tcp_write_queue_empty(sk
);
2435 bool tcp_schedule_loss_probe(struct sock
*sk
, bool advancing_rto
)
2437 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2438 struct tcp_sock
*tp
= tcp_sk(sk
);
2439 u32 timeout
, rto_delta_us
;
2442 /* Don't do any loss probe on a Fast Open connection before 3WHS
2445 if (tp
->fastopen_rsk
)
2448 early_retrans
= sock_net(sk
)->ipv4
.sysctl_tcp_early_retrans
;
2449 /* Schedule a loss probe in 2*RTT for SACK capable connections
2450 * not in loss recovery, that are either limited by cwnd or application.
2452 if ((early_retrans
!= 3 && early_retrans
!= 4) ||
2453 !tp
->packets_out
|| !tcp_is_sack(tp
) ||
2454 (icsk
->icsk_ca_state
!= TCP_CA_Open
&&
2455 icsk
->icsk_ca_state
!= TCP_CA_CWR
))
2458 /* Probe timeout is 2*rtt. Add minimum RTO to account
2459 * for delayed ack when there's one outstanding packet. If no RTT
2460 * sample is available then probe after TCP_TIMEOUT_INIT.
2463 timeout
= usecs_to_jiffies(tp
->srtt_us
>> 2);
2464 if (tp
->packets_out
== 1)
2465 timeout
+= TCP_RTO_MIN
;
2467 timeout
+= TCP_TIMEOUT_MIN
;
2469 timeout
= TCP_TIMEOUT_INIT
;
2472 /* If the RTO formula yields an earlier time, then use that time. */
2473 rto_delta_us
= advancing_rto
?
2474 jiffies_to_usecs(inet_csk(sk
)->icsk_rto
) :
2475 tcp_rto_delta_us(sk
); /* How far in future is RTO? */
2476 if (rto_delta_us
> 0)
2477 timeout
= min_t(u32
, timeout
, usecs_to_jiffies(rto_delta_us
));
2479 tcp_reset_xmit_timer(sk
, ICSK_TIME_LOSS_PROBE
, timeout
,
2484 /* Thanks to skb fast clones, we can detect if a prior transmit of
2485 * a packet is still in a qdisc or driver queue.
2486 * In this case, there is very little point doing a retransmit !
2488 static bool skb_still_in_host_queue(const struct sock
*sk
,
2489 const struct sk_buff
*skb
)
2491 if (unlikely(skb_fclone_busy(sk
, skb
))) {
2492 NET_INC_STATS(sock_net(sk
),
2493 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES
);
2499 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2500 * retransmit the last segment.
2502 void tcp_send_loss_probe(struct sock
*sk
)
2504 struct tcp_sock
*tp
= tcp_sk(sk
);
2505 struct sk_buff
*skb
;
2507 int mss
= tcp_current_mss(sk
);
2509 skb
= tcp_send_head(sk
);
2510 if (skb
&& tcp_snd_wnd_test(tp
, skb
, mss
)) {
2511 pcount
= tp
->packets_out
;
2512 tcp_write_xmit(sk
, mss
, TCP_NAGLE_OFF
, 2, GFP_ATOMIC
);
2513 if (tp
->packets_out
> pcount
)
2517 skb
= skb_rb_last(&sk
->tcp_rtx_queue
);
2518 if (unlikely(!skb
)) {
2519 WARN_ONCE(tp
->packets_out
,
2520 "invalid inflight: %u state %u cwnd %u mss %d\n",
2521 tp
->packets_out
, sk
->sk_state
, tp
->snd_cwnd
, mss
);
2522 inet_csk(sk
)->icsk_pending
= 0;
2526 /* At most one outstanding TLP retransmission. */
2527 if (tp
->tlp_high_seq
)
2530 if (skb_still_in_host_queue(sk
, skb
))
2533 pcount
= tcp_skb_pcount(skb
);
2534 if (WARN_ON(!pcount
))
2537 if ((pcount
> 1) && (skb
->len
> (pcount
- 1) * mss
)) {
2538 if (unlikely(tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
2539 (pcount
- 1) * mss
, mss
,
2542 skb
= skb_rb_next(skb
);
2545 if (WARN_ON(!skb
|| !tcp_skb_pcount(skb
)))
2548 if (__tcp_retransmit_skb(sk
, skb
, 1))
2551 /* Record snd_nxt for loss detection. */
2552 tp
->tlp_high_seq
= tp
->snd_nxt
;
2555 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSPROBES
);
2556 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2557 inet_csk(sk
)->icsk_pending
= 0;
2562 /* Push out any pending frames which were held back due to
2563 * TCP_CORK or attempt at coalescing tiny packets.
2564 * The socket must be locked by the caller.
2566 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
2569 /* If we are closed, the bytes will have to remain here.
2570 * In time closedown will finish, we empty the write queue and
2571 * all will be happy.
2573 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
2576 if (tcp_write_xmit(sk
, cur_mss
, nonagle
, 0,
2577 sk_gfp_mask(sk
, GFP_ATOMIC
)))
2578 tcp_check_probe_timer(sk
);
2581 /* Send _single_ skb sitting at the send head. This function requires
2582 * true push pending frames to setup probe timer etc.
2584 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
2586 struct sk_buff
*skb
= tcp_send_head(sk
);
2588 BUG_ON(!skb
|| skb
->len
< mss_now
);
2590 tcp_write_xmit(sk
, mss_now
, TCP_NAGLE_PUSH
, 1, sk
->sk_allocation
);
2593 /* This function returns the amount that we can raise the
2594 * usable window based on the following constraints
2596 * 1. The window can never be shrunk once it is offered (RFC 793)
2597 * 2. We limit memory per socket
2600 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2601 * RECV.NEXT + RCV.WIN fixed until:
2602 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2604 * i.e. don't raise the right edge of the window until you can raise
2605 * it at least MSS bytes.
2607 * Unfortunately, the recommended algorithm breaks header prediction,
2608 * since header prediction assumes th->window stays fixed.
2610 * Strictly speaking, keeping th->window fixed violates the receiver
2611 * side SWS prevention criteria. The problem is that under this rule
2612 * a stream of single byte packets will cause the right side of the
2613 * window to always advance by a single byte.
2615 * Of course, if the sender implements sender side SWS prevention
2616 * then this will not be a problem.
2618 * BSD seems to make the following compromise:
2620 * If the free space is less than the 1/4 of the maximum
2621 * space available and the free space is less than 1/2 mss,
2622 * then set the window to 0.
2623 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2624 * Otherwise, just prevent the window from shrinking
2625 * and from being larger than the largest representable value.
2627 * This prevents incremental opening of the window in the regime
2628 * where TCP is limited by the speed of the reader side taking
2629 * data out of the TCP receive queue. It does nothing about
2630 * those cases where the window is constrained on the sender side
2631 * because the pipeline is full.
2633 * BSD also seems to "accidentally" limit itself to windows that are a
2634 * multiple of MSS, at least until the free space gets quite small.
2635 * This would appear to be a side effect of the mbuf implementation.
2636 * Combining these two algorithms results in the observed behavior
2637 * of having a fixed window size at almost all times.
2639 * Below we obtain similar behavior by forcing the offered window to
2640 * a multiple of the mss when it is feasible to do so.
2642 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2643 * Regular options like TIMESTAMP are taken into account.
2645 u32
__tcp_select_window(struct sock
*sk
)
2647 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2648 struct tcp_sock
*tp
= tcp_sk(sk
);
2649 /* MSS for the peer's data. Previous versions used mss_clamp
2650 * here. I don't know if the value based on our guesses
2651 * of peer's MSS is better for the performance. It's more correct
2652 * but may be worse for the performance because of rcv_mss
2653 * fluctuations. --SAW 1998/11/1
2655 int mss
= icsk
->icsk_ack
.rcv_mss
;
2656 int free_space
= tcp_space(sk
);
2657 int allowed_space
= tcp_full_space(sk
);
2658 int full_space
= min_t(int, tp
->window_clamp
, allowed_space
);
2661 if (unlikely(mss
> full_space
)) {
2666 if (free_space
< (full_space
>> 1)) {
2667 icsk
->icsk_ack
.quick
= 0;
2669 if (tcp_under_memory_pressure(sk
))
2670 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
2673 /* free_space might become our new window, make sure we don't
2674 * increase it due to wscale.
2676 free_space
= round_down(free_space
, 1 << tp
->rx_opt
.rcv_wscale
);
2678 /* if free space is less than mss estimate, or is below 1/16th
2679 * of the maximum allowed, try to move to zero-window, else
2680 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2681 * new incoming data is dropped due to memory limits.
2682 * With large window, mss test triggers way too late in order
2683 * to announce zero window in time before rmem limit kicks in.
2685 if (free_space
< (allowed_space
>> 4) || free_space
< mss
)
2689 if (free_space
> tp
->rcv_ssthresh
)
2690 free_space
= tp
->rcv_ssthresh
;
2692 /* Don't do rounding if we are using window scaling, since the
2693 * scaled window will not line up with the MSS boundary anyway.
2695 if (tp
->rx_opt
.rcv_wscale
) {
2696 window
= free_space
;
2698 /* Advertise enough space so that it won't get scaled away.
2699 * Import case: prevent zero window announcement if
2700 * 1<<rcv_wscale > mss.
2702 window
= ALIGN(window
, (1 << tp
->rx_opt
.rcv_wscale
));
2704 window
= tp
->rcv_wnd
;
2705 /* Get the largest window that is a nice multiple of mss.
2706 * Window clamp already applied above.
2707 * If our current window offering is within 1 mss of the
2708 * free space we just keep it. This prevents the divide
2709 * and multiply from happening most of the time.
2710 * We also don't do any window rounding when the free space
2713 if (window
<= free_space
- mss
|| window
> free_space
)
2714 window
= rounddown(free_space
, mss
);
2715 else if (mss
== full_space
&&
2716 free_space
> window
+ (full_space
>> 1))
2717 window
= free_space
;
2723 void tcp_skb_collapse_tstamp(struct sk_buff
*skb
,
2724 const struct sk_buff
*next_skb
)
2726 if (unlikely(tcp_has_tx_tstamp(next_skb
))) {
2727 const struct skb_shared_info
*next_shinfo
=
2728 skb_shinfo(next_skb
);
2729 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
2731 shinfo
->tx_flags
|= next_shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
2732 shinfo
->tskey
= next_shinfo
->tskey
;
2733 TCP_SKB_CB(skb
)->txstamp_ack
|=
2734 TCP_SKB_CB(next_skb
)->txstamp_ack
;
2738 /* Collapses two adjacent SKB's during retransmission. */
2739 static bool tcp_collapse_retrans(struct sock
*sk
, struct sk_buff
*skb
)
2741 struct tcp_sock
*tp
= tcp_sk(sk
);
2742 struct sk_buff
*next_skb
= skb_rb_next(skb
);
2745 next_skb_size
= next_skb
->len
;
2747 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
2749 if (next_skb_size
) {
2750 if (next_skb_size
<= skb_availroom(skb
))
2751 skb_copy_bits(next_skb
, 0, skb_put(skb
, next_skb_size
),
2753 else if (!skb_shift(skb
, next_skb
, next_skb_size
))
2756 tcp_highest_sack_replace(sk
, next_skb
, skb
);
2758 /* Update sequence range on original skb. */
2759 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
2761 /* Merge over control information. This moves PSH/FIN etc. over */
2762 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(next_skb
)->tcp_flags
;
2764 /* All done, get rid of second SKB and account for it so
2765 * packet counting does not break.
2767 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
2768 TCP_SKB_CB(skb
)->eor
= TCP_SKB_CB(next_skb
)->eor
;
2770 /* changed transmit queue under us so clear hints */
2771 tcp_clear_retrans_hints_partial(tp
);
2772 if (next_skb
== tp
->retransmit_skb_hint
)
2773 tp
->retransmit_skb_hint
= skb
;
2775 tcp_adjust_pcount(sk
, next_skb
, tcp_skb_pcount(next_skb
));
2777 tcp_skb_collapse_tstamp(skb
, next_skb
);
2779 tcp_rtx_queue_unlink_and_free(next_skb
, sk
);
2783 /* Check if coalescing SKBs is legal. */
2784 static bool tcp_can_collapse(const struct sock
*sk
, const struct sk_buff
*skb
)
2786 if (tcp_skb_pcount(skb
) > 1)
2788 if (skb_cloned(skb
))
2790 /* Some heuristics for collapsing over SACK'd could be invented */
2791 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
2797 /* Collapse packets in the retransmit queue to make to create
2798 * less packets on the wire. This is only done on retransmission.
2800 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*to
,
2803 struct tcp_sock
*tp
= tcp_sk(sk
);
2804 struct sk_buff
*skb
= to
, *tmp
;
2807 if (!sock_net(sk
)->ipv4
.sysctl_tcp_retrans_collapse
)
2809 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2812 skb_rbtree_walk_from_safe(skb
, tmp
) {
2813 if (!tcp_can_collapse(sk
, skb
))
2816 if (!tcp_skb_can_collapse_to(to
))
2829 if (after(TCP_SKB_CB(skb
)->end_seq
, tcp_wnd_end(tp
)))
2832 if (!tcp_collapse_retrans(sk
, to
))
2837 /* This retransmits one SKB. Policy decisions and retransmit queue
2838 * state updates are done by the caller. Returns non-zero if an
2839 * error occurred which prevented the send.
2841 int __tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int segs
)
2843 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2844 struct tcp_sock
*tp
= tcp_sk(sk
);
2845 unsigned int cur_mss
;
2849 /* Inconclusive MTU probe */
2850 if (icsk
->icsk_mtup
.probe_size
)
2851 icsk
->icsk_mtup
.probe_size
= 0;
2853 /* Do not sent more than we queued. 1/4 is reserved for possible
2854 * copying overhead: fragmentation, tunneling, mangling etc.
2856 if (refcount_read(&sk
->sk_wmem_alloc
) >
2857 min_t(u32
, sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2),
2861 if (skb_still_in_host_queue(sk
, skb
))
2864 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
2865 if (unlikely(before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))) {
2869 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2873 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
2874 return -EHOSTUNREACH
; /* Routing failure or similar. */
2876 cur_mss
= tcp_current_mss(sk
);
2878 /* If receiver has shrunk his window, and skb is out of
2879 * new window, do not retransmit it. The exception is the
2880 * case, when window is shrunk to zero. In this case
2881 * our retransmit serves as a zero window probe.
2883 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
)) &&
2884 TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
2887 len
= cur_mss
* segs
;
2888 if (skb
->len
> len
) {
2889 if (tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
, len
,
2890 cur_mss
, GFP_ATOMIC
))
2891 return -ENOMEM
; /* We'll try again later. */
2893 if (skb_unclone(skb
, GFP_ATOMIC
))
2896 diff
= tcp_skb_pcount(skb
);
2897 tcp_set_skb_tso_segs(skb
, cur_mss
);
2898 diff
-= tcp_skb_pcount(skb
);
2900 tcp_adjust_pcount(sk
, skb
, diff
);
2901 if (skb
->len
< cur_mss
)
2902 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
2905 /* RFC3168, section 6.1.1.1. ECN fallback */
2906 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN_ECN
) == TCPHDR_SYN_ECN
)
2907 tcp_ecn_clear_syn(sk
, skb
);
2909 /* Update global and local TCP statistics. */
2910 segs
= tcp_skb_pcount(skb
);
2911 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
, segs
);
2912 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2913 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
2914 tp
->total_retrans
+= segs
;
2915 tp
->bytes_retrans
+= skb
->len
;
2917 /* make sure skb->data is aligned on arches that require it
2918 * and check if ack-trimming & collapsing extended the headroom
2919 * beyond what csum_start can cover.
2921 if (unlikely((NET_IP_ALIGN
&& ((unsigned long)skb
->data
& 3)) ||
2922 skb_headroom(skb
) >= 0xFFFF)) {
2923 struct sk_buff
*nskb
;
2925 tcp_skb_tsorted_save(skb
) {
2926 nskb
= __pskb_copy(skb
, MAX_TCP_HEADER
, GFP_ATOMIC
);
2927 err
= nskb
? tcp_transmit_skb(sk
, nskb
, 0, GFP_ATOMIC
) :
2929 } tcp_skb_tsorted_restore(skb
);
2932 tcp_update_skb_after_send(sk
, skb
, tp
->tcp_wstamp_ns
);
2933 tcp_rate_skb_sent(sk
, skb
);
2936 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2939 /* To avoid taking spuriously low RTT samples based on a timestamp
2940 * for a transmit that never happened, always mark EVER_RETRANS
2942 TCP_SKB_CB(skb
)->sacked
|= TCPCB_EVER_RETRANS
;
2944 if (BPF_SOCK_OPS_TEST_FLAG(tp
, BPF_SOCK_OPS_RETRANS_CB_FLAG
))
2945 tcp_call_bpf_3arg(sk
, BPF_SOCK_OPS_RETRANS_CB
,
2946 TCP_SKB_CB(skb
)->seq
, segs
, err
);
2949 trace_tcp_retransmit_skb(sk
, skb
);
2950 } else if (err
!= -EBUSY
) {
2951 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPRETRANSFAIL
, segs
);
2956 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int segs
)
2958 struct tcp_sock
*tp
= tcp_sk(sk
);
2959 int err
= __tcp_retransmit_skb(sk
, skb
, segs
);
2962 #if FASTRETRANS_DEBUG > 0
2963 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2964 net_dbg_ratelimited("retrans_out leaked\n");
2967 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
2968 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2971 /* Save stamp of the first (attempted) retransmit. */
2972 if (!tp
->retrans_stamp
)
2973 tp
->retrans_stamp
= tcp_skb_timestamp(skb
);
2975 if (tp
->undo_retrans
< 0)
2976 tp
->undo_retrans
= 0;
2977 tp
->undo_retrans
+= tcp_skb_pcount(skb
);
2981 /* This gets called after a retransmit timeout, and the initially
2982 * retransmitted data is acknowledged. It tries to continue
2983 * resending the rest of the retransmit queue, until either
2984 * we've sent it all or the congestion window limit is reached.
2986 void tcp_xmit_retransmit_queue(struct sock
*sk
)
2988 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2989 struct sk_buff
*skb
, *rtx_head
, *hole
= NULL
;
2990 struct tcp_sock
*tp
= tcp_sk(sk
);
2994 if (!tp
->packets_out
)
2997 rtx_head
= tcp_rtx_queue_head(sk
);
2998 skb
= tp
->retransmit_skb_hint
?: rtx_head
;
2999 max_segs
= tcp_tso_segs(sk
, tcp_current_mss(sk
));
3000 skb_rbtree_walk_from(skb
) {
3004 if (tcp_pacing_check(sk
))
3007 /* we could do better than to assign each time */
3009 tp
->retransmit_skb_hint
= skb
;
3011 segs
= tp
->snd_cwnd
- tcp_packets_in_flight(tp
);
3014 sacked
= TCP_SKB_CB(skb
)->sacked
;
3015 /* In case tcp_shift_skb_data() have aggregated large skbs,
3016 * we need to make sure not sending too bigs TSO packets
3018 segs
= min_t(int, segs
, max_segs
);
3020 if (tp
->retrans_out
>= tp
->lost_out
) {
3022 } else if (!(sacked
& TCPCB_LOST
)) {
3023 if (!hole
&& !(sacked
& (TCPCB_SACKED_RETRANS
|TCPCB_SACKED_ACKED
)))
3028 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
3029 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
3031 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
3034 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
3037 if (tcp_small_queue_check(sk
, skb
, 1))
3040 if (tcp_retransmit_skb(sk
, skb
, segs
))
3043 NET_ADD_STATS(sock_net(sk
), mib_idx
, tcp_skb_pcount(skb
));
3045 if (tcp_in_cwnd_reduction(sk
))
3046 tp
->prr_out
+= tcp_skb_pcount(skb
);
3048 if (skb
== rtx_head
&&
3049 icsk
->icsk_pending
!= ICSK_TIME_REO_TIMEOUT
)
3050 tcp_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3051 inet_csk(sk
)->icsk_rto
,
3057 /* We allow to exceed memory limits for FIN packets to expedite
3058 * connection tear down and (memory) recovery.
3059 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3060 * or even be forced to close flow without any FIN.
3061 * In general, we want to allow one skb per socket to avoid hangs
3062 * with edge trigger epoll()
3064 void sk_forced_mem_schedule(struct sock
*sk
, int size
)
3068 if (size
<= sk
->sk_forward_alloc
)
3070 amt
= sk_mem_pages(size
);
3071 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
3072 sk_memory_allocated_add(sk
, amt
);
3074 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
3075 mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
);
3078 /* Send a FIN. The caller locks the socket for us.
3079 * We should try to send a FIN packet really hard, but eventually give up.
3081 void tcp_send_fin(struct sock
*sk
)
3083 struct sk_buff
*skb
, *tskb
= tcp_write_queue_tail(sk
);
3084 struct tcp_sock
*tp
= tcp_sk(sk
);
3086 /* Optimization, tack on the FIN if we have one skb in write queue and
3087 * this skb was not yet sent, or we are under memory pressure.
3088 * Note: in the latter case, FIN packet will be sent after a timeout,
3089 * as TCP stack thinks it has already been transmitted.
3091 if (!tskb
&& tcp_under_memory_pressure(sk
))
3092 tskb
= skb_rb_last(&sk
->tcp_rtx_queue
);
3096 TCP_SKB_CB(tskb
)->tcp_flags
|= TCPHDR_FIN
;
3097 TCP_SKB_CB(tskb
)->end_seq
++;
3099 if (tcp_write_queue_empty(sk
)) {
3100 /* This means tskb was already sent.
3101 * Pretend we included the FIN on previous transmit.
3102 * We need to set tp->snd_nxt to the value it would have
3103 * if FIN had been sent. This is because retransmit path
3104 * does not change tp->snd_nxt.
3110 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, sk
->sk_allocation
);
3111 if (unlikely(!skb
)) {
3116 INIT_LIST_HEAD(&skb
->tcp_tsorted_anchor
);
3117 skb_reserve(skb
, MAX_TCP_HEADER
);
3118 sk_forced_mem_schedule(sk
, skb
->truesize
);
3119 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3120 tcp_init_nondata_skb(skb
, tp
->write_seq
,
3121 TCPHDR_ACK
| TCPHDR_FIN
);
3122 tcp_queue_skb(sk
, skb
);
3124 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
), TCP_NAGLE_OFF
);
3127 /* We get here when a process closes a file descriptor (either due to
3128 * an explicit close() or as a byproduct of exit()'ing) and there
3129 * was unread data in the receive queue. This behavior is recommended
3130 * by RFC 2525, section 2.17. -DaveM
3132 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
3134 struct sk_buff
*skb
;
3136 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
3138 /* NOTE: No TCP options attached and we never retransmit this. */
3139 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
3141 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
3145 /* Reserve space for headers and prepare control bits. */
3146 skb_reserve(skb
, MAX_TCP_HEADER
);
3147 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
3148 TCPHDR_ACK
| TCPHDR_RST
);
3149 tcp_mstamp_refresh(tcp_sk(sk
));
3151 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
3152 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
3154 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3155 * skb here is different to the troublesome skb, so use NULL
3157 trace_tcp_send_reset(sk
, NULL
);
3160 /* Send a crossed SYN-ACK during socket establishment.
3161 * WARNING: This routine must only be called when we have already sent
3162 * a SYN packet that crossed the incoming SYN that caused this routine
3163 * to get called. If this assumption fails then the initial rcv_wnd
3164 * and rcv_wscale values will not be correct.
3166 int tcp_send_synack(struct sock
*sk
)
3168 struct sk_buff
*skb
;
3170 skb
= tcp_rtx_queue_head(sk
);
3171 if (!skb
|| !(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
3172 pr_err("%s: wrong queue state\n", __func__
);
3175 if (!(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_ACK
)) {
3176 if (skb_cloned(skb
)) {
3177 struct sk_buff
*nskb
;
3179 tcp_skb_tsorted_save(skb
) {
3180 nskb
= skb_copy(skb
, GFP_ATOMIC
);
3181 } tcp_skb_tsorted_restore(skb
);
3184 INIT_LIST_HEAD(&nskb
->tcp_tsorted_anchor
);
3185 tcp_rtx_queue_unlink_and_free(skb
, sk
);
3186 __skb_header_release(nskb
);
3187 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, nskb
);
3188 sk
->sk_wmem_queued
+= nskb
->truesize
;
3189 sk_mem_charge(sk
, nskb
->truesize
);
3193 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ACK
;
3194 tcp_ecn_send_synack(sk
, skb
);
3196 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3200 * tcp_make_synack - Prepare a SYN-ACK.
3201 * sk: listener socket
3202 * dst: dst entry attached to the SYNACK
3203 * req: request_sock pointer
3205 * Allocate one skb and build a SYNACK packet.
3206 * @dst is consumed : Caller should not use it again.
3208 struct sk_buff
*tcp_make_synack(const struct sock
*sk
, struct dst_entry
*dst
,
3209 struct request_sock
*req
,
3210 struct tcp_fastopen_cookie
*foc
,
3211 enum tcp_synack_type synack_type
)
3213 struct inet_request_sock
*ireq
= inet_rsk(req
);
3214 const struct tcp_sock
*tp
= tcp_sk(sk
);
3215 struct tcp_md5sig_key
*md5
= NULL
;
3216 struct tcp_out_options opts
;
3217 struct sk_buff
*skb
;
3218 int tcp_header_size
;
3222 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
3223 if (unlikely(!skb
)) {
3227 /* Reserve space for headers. */
3228 skb_reserve(skb
, MAX_TCP_HEADER
);
3230 switch (synack_type
) {
3231 case TCP_SYNACK_NORMAL
:
3232 skb_set_owner_w(skb
, req_to_sk(req
));
3234 case TCP_SYNACK_COOKIE
:
3235 /* Under synflood, we do not attach skb to a socket,
3236 * to avoid false sharing.
3239 case TCP_SYNACK_FASTOPEN
:
3240 /* sk is a const pointer, because we want to express multiple
3241 * cpu might call us concurrently.
3242 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3244 skb_set_owner_w(skb
, (struct sock
*)sk
);
3247 skb_dst_set(skb
, dst
);
3249 mss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
3251 memset(&opts
, 0, sizeof(opts
));
3252 #ifdef CONFIG_SYN_COOKIES
3253 if (unlikely(req
->cookie_ts
))
3254 skb
->skb_mstamp_ns
= cookie_init_timestamp(req
);
3257 skb
->skb_mstamp_ns
= tcp_clock_ns();
3259 #ifdef CONFIG_TCP_MD5SIG
3261 md5
= tcp_rsk(req
)->af_specific
->req_md5_lookup(sk
, req_to_sk(req
));
3263 skb_set_hash(skb
, tcp_rsk(req
)->txhash
, PKT_HASH_TYPE_L4
);
3264 tcp_header_size
= tcp_synack_options(sk
, req
, mss
, skb
, &opts
, md5
,
3267 skb_push(skb
, tcp_header_size
);
3268 skb_reset_transport_header(skb
);
3270 th
= (struct tcphdr
*)skb
->data
;
3271 memset(th
, 0, sizeof(struct tcphdr
));
3274 tcp_ecn_make_synack(req
, th
);
3275 th
->source
= htons(ireq
->ir_num
);
3276 th
->dest
= ireq
->ir_rmt_port
;
3277 skb
->mark
= ireq
->ir_mark
;
3278 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3279 th
->seq
= htonl(tcp_rsk(req
)->snt_isn
);
3280 /* XXX data is queued and acked as is. No buffer/window check */
3281 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_nxt
);
3283 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3284 th
->window
= htons(min(req
->rsk_rcv_wnd
, 65535U));
3285 tcp_options_write((__be32
*)(th
+ 1), NULL
, &opts
);
3286 th
->doff
= (tcp_header_size
>> 2);
3287 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
);
3289 #ifdef CONFIG_TCP_MD5SIG
3290 /* Okay, we have all we need - do the md5 hash if needed */
3292 tcp_rsk(req
)->af_specific
->calc_md5_hash(opts
.hash_location
,
3293 md5
, req_to_sk(req
), skb
);
3297 /* Do not fool tcpdump (if any), clean our debris */
3301 EXPORT_SYMBOL(tcp_make_synack
);
3303 static void tcp_ca_dst_init(struct sock
*sk
, const struct dst_entry
*dst
)
3305 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3306 const struct tcp_congestion_ops
*ca
;
3307 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
3309 if (ca_key
== TCP_CA_UNSPEC
)
3313 ca
= tcp_ca_find_key(ca_key
);
3314 if (likely(ca
&& try_module_get(ca
->owner
))) {
3315 module_put(icsk
->icsk_ca_ops
->owner
);
3316 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
3317 icsk
->icsk_ca_ops
= ca
;
3322 /* Do all connect socket setups that can be done AF independent. */
3323 static void tcp_connect_init(struct sock
*sk
)
3325 const struct dst_entry
*dst
= __sk_dst_get(sk
);
3326 struct tcp_sock
*tp
= tcp_sk(sk
);
3330 /* We'll fix this up when we get a response from the other end.
3331 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3333 tp
->tcp_header_len
= sizeof(struct tcphdr
);
3334 if (sock_net(sk
)->ipv4
.sysctl_tcp_timestamps
)
3335 tp
->tcp_header_len
+= TCPOLEN_TSTAMP_ALIGNED
;
3337 #ifdef CONFIG_TCP_MD5SIG
3338 if (tp
->af_specific
->md5_lookup(sk
, sk
))
3339 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
3342 /* If user gave his TCP_MAXSEG, record it to clamp */
3343 if (tp
->rx_opt
.user_mss
)
3344 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3347 tcp_sync_mss(sk
, dst_mtu(dst
));
3349 tcp_ca_dst_init(sk
, dst
);
3351 if (!tp
->window_clamp
)
3352 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
3353 tp
->advmss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
3355 tcp_initialize_rcv_mss(sk
);
3357 /* limit the window selection if the user enforce a smaller rx buffer */
3358 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
3359 (tp
->window_clamp
> tcp_full_space(sk
) || tp
->window_clamp
== 0))
3360 tp
->window_clamp
= tcp_full_space(sk
);
3362 rcv_wnd
= tcp_rwnd_init_bpf(sk
);
3364 rcv_wnd
= dst_metric(dst
, RTAX_INITRWND
);
3366 tcp_select_initial_window(sk
, tcp_full_space(sk
),
3367 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
3370 sock_net(sk
)->ipv4
.sysctl_tcp_window_scaling
,
3374 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
3375 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
3378 sock_reset_flag(sk
, SOCK_DONE
);
3381 tcp_write_queue_purge(sk
);
3382 tp
->snd_una
= tp
->write_seq
;
3383 tp
->snd_sml
= tp
->write_seq
;
3384 tp
->snd_up
= tp
->write_seq
;
3385 tp
->snd_nxt
= tp
->write_seq
;
3387 if (likely(!tp
->repair
))
3390 tp
->rcv_tstamp
= tcp_jiffies32
;
3391 tp
->rcv_wup
= tp
->rcv_nxt
;
3392 tp
->copied_seq
= tp
->rcv_nxt
;
3394 inet_csk(sk
)->icsk_rto
= tcp_timeout_init(sk
);
3395 inet_csk(sk
)->icsk_retransmits
= 0;
3396 tcp_clear_retrans(tp
);
3399 static void tcp_connect_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
3401 struct tcp_sock
*tp
= tcp_sk(sk
);
3402 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
3404 tcb
->end_seq
+= skb
->len
;
3405 __skb_header_release(skb
);
3406 sk
->sk_wmem_queued
+= skb
->truesize
;
3407 sk_mem_charge(sk
, skb
->truesize
);
3408 tp
->write_seq
= tcb
->end_seq
;
3409 tp
->packets_out
+= tcp_skb_pcount(skb
);
3412 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3413 * queue a data-only packet after the regular SYN, such that regular SYNs
3414 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3415 * only the SYN sequence, the data are retransmitted in the first ACK.
3416 * If cookie is not cached or other error occurs, falls back to send a
3417 * regular SYN with Fast Open cookie request option.
3419 static int tcp_send_syn_data(struct sock
*sk
, struct sk_buff
*syn
)
3421 struct tcp_sock
*tp
= tcp_sk(sk
);
3422 struct tcp_fastopen_request
*fo
= tp
->fastopen_req
;
3424 struct sk_buff
*syn_data
;
3426 tp
->rx_opt
.mss_clamp
= tp
->advmss
; /* If MSS is not cached */
3427 if (!tcp_fastopen_cookie_check(sk
, &tp
->rx_opt
.mss_clamp
, &fo
->cookie
))
3430 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3431 * user-MSS. Reserve maximum option space for middleboxes that add
3432 * private TCP options. The cost is reduced data space in SYN :(
3434 tp
->rx_opt
.mss_clamp
= tcp_mss_clamp(tp
, tp
->rx_opt
.mss_clamp
);
3436 space
= __tcp_mtu_to_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
) -
3437 MAX_TCP_OPTION_SPACE
;
3439 space
= min_t(size_t, space
, fo
->size
);
3441 /* limit to order-0 allocations */
3442 space
= min_t(size_t, space
, SKB_MAX_HEAD(MAX_TCP_HEADER
));
3444 syn_data
= sk_stream_alloc_skb(sk
, space
, sk
->sk_allocation
, false);
3447 syn_data
->ip_summed
= CHECKSUM_PARTIAL
;
3448 memcpy(syn_data
->cb
, syn
->cb
, sizeof(syn
->cb
));
3450 int copied
= copy_from_iter(skb_put(syn_data
, space
), space
,
3451 &fo
->data
->msg_iter
);
3452 if (unlikely(!copied
)) {
3453 tcp_skb_tsorted_anchor_cleanup(syn_data
);
3454 kfree_skb(syn_data
);
3457 if (copied
!= space
) {
3458 skb_trim(syn_data
, copied
);
3461 skb_zcopy_set(syn_data
, fo
->uarg
, NULL
);
3463 /* No more data pending in inet_wait_for_connect() */
3464 if (space
== fo
->size
)
3468 tcp_connect_queue_skb(sk
, syn_data
);
3470 tcp_chrono_start(sk
, TCP_CHRONO_BUSY
);
3472 err
= tcp_transmit_skb(sk
, syn_data
, 1, sk
->sk_allocation
);
3474 syn
->skb_mstamp_ns
= syn_data
->skb_mstamp_ns
;
3476 /* Now full SYN+DATA was cloned and sent (or not),
3477 * remove the SYN from the original skb (syn_data)
3478 * we keep in write queue in case of a retransmit, as we
3479 * also have the SYN packet (with no data) in the same queue.
3481 TCP_SKB_CB(syn_data
)->seq
++;
3482 TCP_SKB_CB(syn_data
)->tcp_flags
= TCPHDR_ACK
| TCPHDR_PSH
;
3484 tp
->syn_data
= (fo
->copied
> 0);
3485 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, syn_data
);
3486 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
);
3490 /* data was not sent, put it in write_queue */
3491 __skb_queue_tail(&sk
->sk_write_queue
, syn_data
);
3492 tp
->packets_out
-= tcp_skb_pcount(syn_data
);
3495 /* Send a regular SYN with Fast Open cookie request option */
3496 if (fo
->cookie
.len
> 0)
3498 err
= tcp_transmit_skb(sk
, syn
, 1, sk
->sk_allocation
);
3500 tp
->syn_fastopen
= 0;
3502 fo
->cookie
.len
= -1; /* Exclude Fast Open option for SYN retries */
3506 /* Build a SYN and send it off. */
3507 int tcp_connect(struct sock
*sk
)
3509 struct tcp_sock
*tp
= tcp_sk(sk
);
3510 struct sk_buff
*buff
;
3513 tcp_call_bpf(sk
, BPF_SOCK_OPS_TCP_CONNECT_CB
, 0, NULL
);
3515 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
3516 return -EHOSTUNREACH
; /* Routing failure or similar. */
3518 tcp_connect_init(sk
);
3520 if (unlikely(tp
->repair
)) {
3521 tcp_finish_connect(sk
, NULL
);
3525 buff
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
, true);
3526 if (unlikely(!buff
))
3529 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPHDR_SYN
);
3530 tcp_mstamp_refresh(tp
);
3531 tp
->retrans_stamp
= tcp_time_stamp(tp
);
3532 tcp_connect_queue_skb(sk
, buff
);
3533 tcp_ecn_send_syn(sk
, buff
);
3534 tcp_rbtree_insert(&sk
->tcp_rtx_queue
, buff
);
3536 /* Send off SYN; include data in Fast Open. */
3537 err
= tp
->fastopen_req
? tcp_send_syn_data(sk
, buff
) :
3538 tcp_transmit_skb(sk
, buff
, 1, sk
->sk_allocation
);
3539 if (err
== -ECONNREFUSED
)
3542 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3543 * in order to make this packet get counted in tcpOutSegs.
3545 tp
->snd_nxt
= tp
->write_seq
;
3546 tp
->pushed_seq
= tp
->write_seq
;
3547 buff
= tcp_send_head(sk
);
3548 if (unlikely(buff
)) {
3549 tp
->snd_nxt
= TCP_SKB_CB(buff
)->seq
;
3550 tp
->pushed_seq
= TCP_SKB_CB(buff
)->seq
;
3552 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
3554 /* Timer for repeating the SYN until an answer. */
3555 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3556 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3559 EXPORT_SYMBOL(tcp_connect
);
3561 /* Send out a delayed ack, the caller does the policy checking
3562 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3565 void tcp_send_delayed_ack(struct sock
*sk
)
3567 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3568 int ato
= icsk
->icsk_ack
.ato
;
3569 unsigned long timeout
;
3571 if (ato
> TCP_DELACK_MIN
) {
3572 const struct tcp_sock
*tp
= tcp_sk(sk
);
3573 int max_ato
= HZ
/ 2;
3575 if (inet_csk_in_pingpong_mode(sk
) ||
3576 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
3577 max_ato
= TCP_DELACK_MAX
;
3579 /* Slow path, intersegment interval is "high". */
3581 /* If some rtt estimate is known, use it to bound delayed ack.
3582 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3586 int rtt
= max_t(int, usecs_to_jiffies(tp
->srtt_us
>> 3),
3593 ato
= min(ato
, max_ato
);
3596 /* Stay within the limit we were given */
3597 timeout
= jiffies
+ ato
;
3599 /* Use new timeout only if there wasn't a older one earlier. */
3600 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
3601 /* If delack timer was blocked or is about to expire,
3604 if (icsk
->icsk_ack
.blocked
||
3605 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
3610 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
3611 timeout
= icsk
->icsk_ack
.timeout
;
3613 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
3614 icsk
->icsk_ack
.timeout
= timeout
;
3615 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
3618 /* This routine sends an ack and also updates the window. */
3619 void __tcp_send_ack(struct sock
*sk
, u32 rcv_nxt
)
3621 struct sk_buff
*buff
;
3623 /* If we have been reset, we may not send again. */
3624 if (sk
->sk_state
== TCP_CLOSE
)
3627 /* We are not putting this on the write queue, so
3628 * tcp_transmit_skb() will set the ownership to this
3631 buff
= alloc_skb(MAX_TCP_HEADER
,
3632 sk_gfp_mask(sk
, GFP_ATOMIC
| __GFP_NOWARN
));
3633 if (unlikely(!buff
)) {
3634 inet_csk_schedule_ack(sk
);
3635 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
3636 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
3637 TCP_DELACK_MAX
, TCP_RTO_MAX
);
3641 /* Reserve space for headers and prepare control bits. */
3642 skb_reserve(buff
, MAX_TCP_HEADER
);
3643 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPHDR_ACK
);
3645 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3647 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3649 skb_set_tcp_pure_ack(buff
);
3651 /* Send it off, this clears delayed acks for us. */
3652 __tcp_transmit_skb(sk
, buff
, 0, (__force gfp_t
)0, rcv_nxt
);
3654 EXPORT_SYMBOL_GPL(__tcp_send_ack
);
3656 void tcp_send_ack(struct sock
*sk
)
3658 __tcp_send_ack(sk
, tcp_sk(sk
)->rcv_nxt
);
3661 /* This routine sends a packet with an out of date sequence
3662 * number. It assumes the other end will try to ack it.
3664 * Question: what should we make while urgent mode?
3665 * 4.4BSD forces sending single byte of data. We cannot send
3666 * out of window data, because we have SND.NXT==SND.MAX...
3668 * Current solution: to send TWO zero-length segments in urgent mode:
3669 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3670 * out-of-date with SND.UNA-1 to probe window.
3672 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
, int mib
)
3674 struct tcp_sock
*tp
= tcp_sk(sk
);
3675 struct sk_buff
*skb
;
3677 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3678 skb
= alloc_skb(MAX_TCP_HEADER
,
3679 sk_gfp_mask(sk
, GFP_ATOMIC
| __GFP_NOWARN
));
3683 /* Reserve space for headers and set control bits. */
3684 skb_reserve(skb
, MAX_TCP_HEADER
);
3685 /* Use a previous sequence. This should cause the other
3686 * end to send an ack. Don't queue or clone SKB, just
3689 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPHDR_ACK
);
3690 NET_INC_STATS(sock_net(sk
), mib
);
3691 return tcp_transmit_skb(sk
, skb
, 0, (__force gfp_t
)0);
3694 /* Called from setsockopt( ... TCP_REPAIR ) */
3695 void tcp_send_window_probe(struct sock
*sk
)
3697 if (sk
->sk_state
== TCP_ESTABLISHED
) {
3698 tcp_sk(sk
)->snd_wl1
= tcp_sk(sk
)->rcv_nxt
- 1;
3699 tcp_mstamp_refresh(tcp_sk(sk
));
3700 tcp_xmit_probe_skb(sk
, 0, LINUX_MIB_TCPWINPROBE
);
3704 /* Initiate keepalive or window probe from timer. */
3705 int tcp_write_wakeup(struct sock
*sk
, int mib
)
3707 struct tcp_sock
*tp
= tcp_sk(sk
);
3708 struct sk_buff
*skb
;
3710 if (sk
->sk_state
== TCP_CLOSE
)
3713 skb
= tcp_send_head(sk
);
3714 if (skb
&& before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
3716 unsigned int mss
= tcp_current_mss(sk
);
3717 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
3719 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
3720 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
3722 /* We are probing the opening of a window
3723 * but the window size is != 0
3724 * must have been a result SWS avoidance ( sender )
3726 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
3728 seg_size
= min(seg_size
, mss
);
3729 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3730 if (tcp_fragment(sk
, TCP_FRAG_IN_WRITE_QUEUE
,
3731 skb
, seg_size
, mss
, GFP_ATOMIC
))
3733 } else if (!tcp_skb_pcount(skb
))
3734 tcp_set_skb_tso_segs(skb
, mss
);
3736 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3737 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3739 tcp_event_new_data_sent(sk
, skb
);
3742 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
3743 tcp_xmit_probe_skb(sk
, 1, mib
);
3744 return tcp_xmit_probe_skb(sk
, 0, mib
);
3748 /* A window probe timeout has occurred. If window is not closed send
3749 * a partial packet else a zero probe.
3751 void tcp_send_probe0(struct sock
*sk
)
3753 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3754 struct tcp_sock
*tp
= tcp_sk(sk
);
3755 struct net
*net
= sock_net(sk
);
3756 unsigned long timeout
;
3759 err
= tcp_write_wakeup(sk
, LINUX_MIB_TCPWINPROBE
);
3761 if (tp
->packets_out
|| tcp_write_queue_empty(sk
)) {
3762 /* Cancel probe timer, if it is not required. */
3763 icsk
->icsk_probes_out
= 0;
3764 icsk
->icsk_backoff
= 0;
3768 icsk
->icsk_probes_out
++;
3770 if (icsk
->icsk_backoff
< net
->ipv4
.sysctl_tcp_retries2
)
3771 icsk
->icsk_backoff
++;
3772 timeout
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3774 /* If packet was not sent due to local congestion,
3775 * Let senders fight for local resources conservatively.
3777 timeout
= TCP_RESOURCE_PROBE_INTERVAL
;
3779 tcp_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
, timeout
, TCP_RTO_MAX
, NULL
);
3782 int tcp_rtx_synack(const struct sock
*sk
, struct request_sock
*req
)
3784 const struct tcp_request_sock_ops
*af_ops
= tcp_rsk(req
)->af_specific
;
3788 tcp_rsk(req
)->txhash
= net_tx_rndhash();
3789 res
= af_ops
->send_synack(sk
, NULL
, &fl
, req
, NULL
, TCP_SYNACK_NORMAL
);
3791 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
3792 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
3793 if (unlikely(tcp_passive_fastopen(sk
)))
3794 tcp_sk(sk
)->total_retrans
++;
3795 trace_tcp_retransmit_synack(sk
, req
);
3799 EXPORT_SYMBOL(tcp_rtx_synack
);