4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache
*ino_entry_slab
;
27 struct kmem_cache
*inode_entry_slab
;
29 void f2fs_stop_checkpoint(struct f2fs_sb_info
*sbi
, bool end_io
)
31 set_ckpt_flags(sbi
, CP_ERROR_FLAG
);
33 f2fs_flush_merged_writes(sbi
);
37 * We guarantee no failure on the returned page.
39 struct page
*grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
41 struct address_space
*mapping
= META_MAPPING(sbi
);
42 struct page
*page
= NULL
;
44 page
= f2fs_grab_cache_page(mapping
, index
, false);
49 f2fs_wait_on_page_writeback(page
, META
, true);
50 if (!PageUptodate(page
))
51 SetPageUptodate(page
);
56 * We guarantee no failure on the returned page.
58 static struct page
*__get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
,
61 struct address_space
*mapping
= META_MAPPING(sbi
);
63 struct f2fs_io_info fio
= {
67 .op_flags
= REQ_META
| REQ_PRIO
,
70 .encrypted_page
= NULL
,
73 if (unlikely(!is_meta
))
74 fio
.op_flags
&= ~REQ_META
;
76 page
= f2fs_grab_cache_page(mapping
, index
, false);
81 if (PageUptodate(page
))
86 if (f2fs_submit_page_bio(&fio
)) {
87 f2fs_put_page(page
, 1);
92 if (unlikely(page
->mapping
!= mapping
)) {
93 f2fs_put_page(page
, 1);
98 * if there is any IO error when accessing device, make our filesystem
99 * readonly and make sure do not write checkpoint with non-uptodate
102 if (unlikely(!PageUptodate(page
)))
103 f2fs_stop_checkpoint(sbi
, false);
108 struct page
*get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
110 return __get_meta_page(sbi
, index
, true);
114 struct page
*get_tmp_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
116 return __get_meta_page(sbi
, index
, false);
119 bool is_valid_blkaddr(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int type
)
125 if (unlikely(blkaddr
>= SIT_BLK_CNT(sbi
)))
129 if (unlikely(blkaddr
>= MAIN_BLKADDR(sbi
) ||
130 blkaddr
< SM_I(sbi
)->ssa_blkaddr
))
134 if (unlikely(blkaddr
>= SIT_I(sbi
)->sit_base_addr
||
135 blkaddr
< __start_cp_addr(sbi
)))
139 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
140 blkaddr
< MAIN_BLKADDR(sbi
)))
151 * Readahead CP/NAT/SIT/SSA pages
153 int ra_meta_pages(struct f2fs_sb_info
*sbi
, block_t start
, int nrpages
,
157 block_t blkno
= start
;
158 struct f2fs_io_info fio
= {
162 .op_flags
= sync
? (REQ_META
| REQ_PRIO
) : REQ_RAHEAD
,
163 .encrypted_page
= NULL
,
166 struct blk_plug plug
;
168 if (unlikely(type
== META_POR
))
169 fio
.op_flags
&= ~REQ_META
;
171 blk_start_plug(&plug
);
172 for (; nrpages
-- > 0; blkno
++) {
174 if (!is_valid_blkaddr(sbi
, blkno
, type
))
179 if (unlikely(blkno
>=
180 NAT_BLOCK_OFFSET(NM_I(sbi
)->max_nid
)))
182 /* get nat block addr */
183 fio
.new_blkaddr
= current_nat_addr(sbi
,
184 blkno
* NAT_ENTRY_PER_BLOCK
);
187 /* get sit block addr */
188 fio
.new_blkaddr
= current_sit_addr(sbi
,
189 blkno
* SIT_ENTRY_PER_BLOCK
);
194 fio
.new_blkaddr
= blkno
;
200 page
= f2fs_grab_cache_page(META_MAPPING(sbi
),
201 fio
.new_blkaddr
, false);
204 if (PageUptodate(page
)) {
205 f2fs_put_page(page
, 1);
210 f2fs_submit_page_bio(&fio
);
211 f2fs_put_page(page
, 0);
214 blk_finish_plug(&plug
);
215 return blkno
- start
;
218 void ra_meta_pages_cond(struct f2fs_sb_info
*sbi
, pgoff_t index
)
221 bool readahead
= false;
223 page
= find_get_page(META_MAPPING(sbi
), index
);
224 if (!page
|| !PageUptodate(page
))
226 f2fs_put_page(page
, 0);
229 ra_meta_pages(sbi
, index
, BIO_MAX_PAGES
, META_POR
, true);
232 static int __f2fs_write_meta_page(struct page
*page
,
233 struct writeback_control
*wbc
,
234 enum iostat_type io_type
)
236 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
238 trace_f2fs_writepage(page
, META
);
240 if (unlikely(f2fs_cp_error(sbi
))) {
241 dec_page_count(sbi
, F2FS_DIRTY_META
);
245 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
247 if (wbc
->for_reclaim
&& page
->index
< GET_SUM_BLOCK(sbi
, 0))
250 write_meta_page(sbi
, page
, io_type
);
251 dec_page_count(sbi
, F2FS_DIRTY_META
);
253 if (wbc
->for_reclaim
)
254 f2fs_submit_merged_write_cond(sbi
, page
->mapping
->host
,
255 0, page
->index
, META
);
259 if (unlikely(f2fs_cp_error(sbi
)))
260 f2fs_submit_merged_write(sbi
, META
);
265 redirty_page_for_writepage(wbc
, page
);
266 return AOP_WRITEPAGE_ACTIVATE
;
269 static int f2fs_write_meta_page(struct page
*page
,
270 struct writeback_control
*wbc
)
272 return __f2fs_write_meta_page(page
, wbc
, FS_META_IO
);
275 static int f2fs_write_meta_pages(struct address_space
*mapping
,
276 struct writeback_control
*wbc
)
278 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
281 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
284 /* collect a number of dirty meta pages and write together */
285 if (wbc
->for_kupdate
||
286 get_pages(sbi
, F2FS_DIRTY_META
) < nr_pages_to_skip(sbi
, META
))
289 /* if locked failed, cp will flush dirty pages instead */
290 if (!mutex_trylock(&sbi
->cp_mutex
))
293 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
294 diff
= nr_pages_to_write(sbi
, META
, wbc
);
295 written
= sync_meta_pages(sbi
, META
, wbc
->nr_to_write
, FS_META_IO
);
296 mutex_unlock(&sbi
->cp_mutex
);
297 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- written
- diff
);
301 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_META
);
302 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
306 long sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
307 long nr_to_write
, enum iostat_type io_type
)
309 struct address_space
*mapping
= META_MAPPING(sbi
);
310 pgoff_t index
= 0, prev
= ULONG_MAX
;
314 struct writeback_control wbc
= {
317 struct blk_plug plug
;
321 blk_start_plug(&plug
);
323 while ((nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
324 PAGECACHE_TAG_DIRTY
))) {
327 for (i
= 0; i
< nr_pages
; i
++) {
328 struct page
*page
= pvec
.pages
[i
];
330 if (prev
== ULONG_MAX
)
331 prev
= page
->index
- 1;
332 if (nr_to_write
!= LONG_MAX
&& page
->index
!= prev
+ 1) {
333 pagevec_release(&pvec
);
339 if (unlikely(page
->mapping
!= mapping
)) {
344 if (!PageDirty(page
)) {
345 /* someone wrote it for us */
346 goto continue_unlock
;
349 f2fs_wait_on_page_writeback(page
, META
, true);
351 BUG_ON(PageWriteback(page
));
352 if (!clear_page_dirty_for_io(page
))
353 goto continue_unlock
;
355 if (__f2fs_write_meta_page(page
, &wbc
, io_type
)) {
361 if (unlikely(nwritten
>= nr_to_write
))
364 pagevec_release(&pvec
);
369 f2fs_submit_merged_write(sbi
, type
);
371 blk_finish_plug(&plug
);
376 static int f2fs_set_meta_page_dirty(struct page
*page
)
378 trace_f2fs_set_page_dirty(page
, META
);
380 if (!PageUptodate(page
))
381 SetPageUptodate(page
);
382 if (!PageDirty(page
)) {
383 f2fs_set_page_dirty_nobuffers(page
);
384 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_META
);
385 SetPagePrivate(page
);
386 f2fs_trace_pid(page
);
392 const struct address_space_operations f2fs_meta_aops
= {
393 .writepage
= f2fs_write_meta_page
,
394 .writepages
= f2fs_write_meta_pages
,
395 .set_page_dirty
= f2fs_set_meta_page_dirty
,
396 .invalidatepage
= f2fs_invalidate_page
,
397 .releasepage
= f2fs_release_page
,
398 #ifdef CONFIG_MIGRATION
399 .migratepage
= f2fs_migrate_page
,
403 static void __add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
,
404 unsigned int devidx
, int type
)
406 struct inode_management
*im
= &sbi
->im
[type
];
407 struct ino_entry
*e
, *tmp
;
409 tmp
= f2fs_kmem_cache_alloc(ino_entry_slab
, GFP_NOFS
);
411 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
413 spin_lock(&im
->ino_lock
);
414 e
= radix_tree_lookup(&im
->ino_root
, ino
);
417 if (unlikely(radix_tree_insert(&im
->ino_root
, ino
, e
)))
420 memset(e
, 0, sizeof(struct ino_entry
));
423 list_add_tail(&e
->list
, &im
->ino_list
);
424 if (type
!= ORPHAN_INO
)
428 if (type
== FLUSH_INO
)
429 f2fs_set_bit(devidx
, (char *)&e
->dirty_device
);
431 spin_unlock(&im
->ino_lock
);
432 radix_tree_preload_end();
435 kmem_cache_free(ino_entry_slab
, tmp
);
438 static void __remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
440 struct inode_management
*im
= &sbi
->im
[type
];
443 spin_lock(&im
->ino_lock
);
444 e
= radix_tree_lookup(&im
->ino_root
, ino
);
447 radix_tree_delete(&im
->ino_root
, ino
);
449 spin_unlock(&im
->ino_lock
);
450 kmem_cache_free(ino_entry_slab
, e
);
453 spin_unlock(&im
->ino_lock
);
456 void add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
458 /* add new dirty ino entry into list */
459 __add_ino_entry(sbi
, ino
, 0, type
);
462 void remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
464 /* remove dirty ino entry from list */
465 __remove_ino_entry(sbi
, ino
, type
);
468 /* mode should be APPEND_INO or UPDATE_INO */
469 bool exist_written_data(struct f2fs_sb_info
*sbi
, nid_t ino
, int mode
)
471 struct inode_management
*im
= &sbi
->im
[mode
];
474 spin_lock(&im
->ino_lock
);
475 e
= radix_tree_lookup(&im
->ino_root
, ino
);
476 spin_unlock(&im
->ino_lock
);
477 return e
? true : false;
480 void release_ino_entry(struct f2fs_sb_info
*sbi
, bool all
)
482 struct ino_entry
*e
, *tmp
;
485 for (i
= all
? ORPHAN_INO
: APPEND_INO
; i
< MAX_INO_ENTRY
; i
++) {
486 struct inode_management
*im
= &sbi
->im
[i
];
488 spin_lock(&im
->ino_lock
);
489 list_for_each_entry_safe(e
, tmp
, &im
->ino_list
, list
) {
491 radix_tree_delete(&im
->ino_root
, e
->ino
);
492 kmem_cache_free(ino_entry_slab
, e
);
495 spin_unlock(&im
->ino_lock
);
499 void set_dirty_device(struct f2fs_sb_info
*sbi
, nid_t ino
,
500 unsigned int devidx
, int type
)
502 __add_ino_entry(sbi
, ino
, devidx
, type
);
505 bool is_dirty_device(struct f2fs_sb_info
*sbi
, nid_t ino
,
506 unsigned int devidx
, int type
)
508 struct inode_management
*im
= &sbi
->im
[type
];
510 bool is_dirty
= false;
512 spin_lock(&im
->ino_lock
);
513 e
= radix_tree_lookup(&im
->ino_root
, ino
);
514 if (e
&& f2fs_test_bit(devidx
, (char *)&e
->dirty_device
))
516 spin_unlock(&im
->ino_lock
);
520 int acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
522 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
525 spin_lock(&im
->ino_lock
);
527 #ifdef CONFIG_F2FS_FAULT_INJECTION
528 if (time_to_inject(sbi
, FAULT_ORPHAN
)) {
529 spin_unlock(&im
->ino_lock
);
530 f2fs_show_injection_info(FAULT_ORPHAN
);
534 if (unlikely(im
->ino_num
>= sbi
->max_orphans
))
538 spin_unlock(&im
->ino_lock
);
543 void release_orphan_inode(struct f2fs_sb_info
*sbi
)
545 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
547 spin_lock(&im
->ino_lock
);
548 f2fs_bug_on(sbi
, im
->ino_num
== 0);
550 spin_unlock(&im
->ino_lock
);
553 void add_orphan_inode(struct inode
*inode
)
555 /* add new orphan ino entry into list */
556 __add_ino_entry(F2FS_I_SB(inode
), inode
->i_ino
, 0, ORPHAN_INO
);
557 update_inode_page(inode
);
560 void remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
562 /* remove orphan entry from orphan list */
563 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
566 static int recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
570 int err
= acquire_orphan_inode(sbi
);
573 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
574 f2fs_msg(sbi
->sb
, KERN_WARNING
,
575 "%s: orphan failed (ino=%x), run fsck to fix.",
580 __add_ino_entry(sbi
, ino
, 0, ORPHAN_INO
);
582 inode
= f2fs_iget_retry(sbi
->sb
, ino
);
585 * there should be a bug that we can't find the entry
588 f2fs_bug_on(sbi
, PTR_ERR(inode
) == -ENOENT
);
589 return PTR_ERR(inode
);
594 /* truncate all the data during iput */
597 get_node_info(sbi
, ino
, &ni
);
599 /* ENOMEM was fully retried in f2fs_evict_inode. */
600 if (ni
.blk_addr
!= NULL_ADDR
) {
601 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
602 f2fs_msg(sbi
->sb
, KERN_WARNING
,
603 "%s: orphan failed (ino=%x) by kernel, retry mount.",
607 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
611 int recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
613 block_t start_blk
, orphan_blocks
, i
, j
;
614 unsigned int s_flags
= sbi
->sb
->s_flags
;
620 if (!is_set_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
))
623 if (s_flags
& SB_RDONLY
) {
624 f2fs_msg(sbi
->sb
, KERN_INFO
, "orphan cleanup on readonly fs");
625 sbi
->sb
->s_flags
&= ~SB_RDONLY
;
629 /* Needed for iput() to work correctly and not trash data */
630 sbi
->sb
->s_flags
|= SB_ACTIVE
;
632 /* Turn on quotas so that they are updated correctly */
633 quota_enabled
= f2fs_enable_quota_files(sbi
, s_flags
& SB_RDONLY
);
636 start_blk
= __start_cp_addr(sbi
) + 1 + __cp_payload(sbi
);
637 orphan_blocks
= __start_sum_addr(sbi
) - 1 - __cp_payload(sbi
);
639 ra_meta_pages(sbi
, start_blk
, orphan_blocks
, META_CP
, true);
641 for (i
= 0; i
< orphan_blocks
; i
++) {
642 struct page
*page
= get_meta_page(sbi
, start_blk
+ i
);
643 struct f2fs_orphan_block
*orphan_blk
;
645 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
646 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
647 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
648 err
= recover_orphan_inode(sbi
, ino
);
650 f2fs_put_page(page
, 1);
654 f2fs_put_page(page
, 1);
656 /* clear Orphan Flag */
657 clear_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
);
660 /* Turn quotas off */
662 f2fs_quota_off_umount(sbi
->sb
);
664 sbi
->sb
->s_flags
= s_flags
; /* Restore SB_RDONLY status */
669 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
671 struct list_head
*head
;
672 struct f2fs_orphan_block
*orphan_blk
= NULL
;
673 unsigned int nentries
= 0;
674 unsigned short index
= 1;
675 unsigned short orphan_blocks
;
676 struct page
*page
= NULL
;
677 struct ino_entry
*orphan
= NULL
;
678 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
680 orphan_blocks
= GET_ORPHAN_BLOCKS(im
->ino_num
);
683 * we don't need to do spin_lock(&im->ino_lock) here, since all the
684 * orphan inode operations are covered under f2fs_lock_op().
685 * And, spin_lock should be avoided due to page operations below.
687 head
= &im
->ino_list
;
689 /* loop for each orphan inode entry and write them in Jornal block */
690 list_for_each_entry(orphan
, head
, list
) {
692 page
= grab_meta_page(sbi
, start_blk
++);
694 (struct f2fs_orphan_block
*)page_address(page
);
695 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
698 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
700 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
702 * an orphan block is full of 1020 entries,
703 * then we need to flush current orphan blocks
704 * and bring another one in memory
706 orphan_blk
->blk_addr
= cpu_to_le16(index
);
707 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
708 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
709 set_page_dirty(page
);
710 f2fs_put_page(page
, 1);
718 orphan_blk
->blk_addr
= cpu_to_le16(index
);
719 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
720 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
721 set_page_dirty(page
);
722 f2fs_put_page(page
, 1);
726 static int get_checkpoint_version(struct f2fs_sb_info
*sbi
, block_t cp_addr
,
727 struct f2fs_checkpoint
**cp_block
, struct page
**cp_page
,
728 unsigned long long *version
)
730 unsigned long blk_size
= sbi
->blocksize
;
731 size_t crc_offset
= 0;
734 *cp_page
= get_meta_page(sbi
, cp_addr
);
735 *cp_block
= (struct f2fs_checkpoint
*)page_address(*cp_page
);
737 crc_offset
= le32_to_cpu((*cp_block
)->checksum_offset
);
738 if (crc_offset
> (blk_size
- sizeof(__le32
))) {
739 f2fs_msg(sbi
->sb
, KERN_WARNING
,
740 "invalid crc_offset: %zu", crc_offset
);
744 crc
= cur_cp_crc(*cp_block
);
745 if (!f2fs_crc_valid(sbi
, crc
, *cp_block
, crc_offset
)) {
746 f2fs_msg(sbi
->sb
, KERN_WARNING
, "invalid crc value");
750 *version
= cur_cp_version(*cp_block
);
754 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
755 block_t cp_addr
, unsigned long long *version
)
757 struct page
*cp_page_1
= NULL
, *cp_page_2
= NULL
;
758 struct f2fs_checkpoint
*cp_block
= NULL
;
759 unsigned long long cur_version
= 0, pre_version
= 0;
762 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
763 &cp_page_1
, version
);
766 pre_version
= *version
;
768 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
769 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
770 &cp_page_2
, version
);
773 cur_version
= *version
;
775 if (cur_version
== pre_version
) {
776 *version
= cur_version
;
777 f2fs_put_page(cp_page_2
, 1);
781 f2fs_put_page(cp_page_2
, 1);
783 f2fs_put_page(cp_page_1
, 1);
787 int get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
789 struct f2fs_checkpoint
*cp_block
;
790 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
791 struct page
*cp1
, *cp2
, *cur_page
;
792 unsigned long blk_size
= sbi
->blocksize
;
793 unsigned long long cp1_version
= 0, cp2_version
= 0;
794 unsigned long long cp_start_blk_no
;
795 unsigned int cp_blks
= 1 + __cp_payload(sbi
);
799 sbi
->ckpt
= f2fs_kzalloc(sbi
, cp_blks
* blk_size
, GFP_KERNEL
);
803 * Finding out valid cp block involves read both
804 * sets( cp pack1 and cp pack 2)
806 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
807 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
809 /* The second checkpoint pack should start at the next segment */
810 cp_start_blk_no
+= ((unsigned long long)1) <<
811 le32_to_cpu(fsb
->log_blocks_per_seg
);
812 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
815 if (ver_after(cp2_version
, cp1_version
))
827 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
828 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
830 /* Sanity checking of checkpoint */
831 if (sanity_check_ckpt(sbi
))
832 goto free_fail_no_cp
;
835 sbi
->cur_cp_pack
= 1;
837 sbi
->cur_cp_pack
= 2;
842 cp_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
844 cp_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
846 for (i
= 1; i
< cp_blks
; i
++) {
847 void *sit_bitmap_ptr
;
848 unsigned char *ckpt
= (unsigned char *)sbi
->ckpt
;
850 cur_page
= get_meta_page(sbi
, cp_blk_no
+ i
);
851 sit_bitmap_ptr
= page_address(cur_page
);
852 memcpy(ckpt
+ i
* blk_size
, sit_bitmap_ptr
, blk_size
);
853 f2fs_put_page(cur_page
, 1);
856 f2fs_put_page(cp1
, 1);
857 f2fs_put_page(cp2
, 1);
861 f2fs_put_page(cp1
, 1);
862 f2fs_put_page(cp2
, 1);
868 static void __add_dirty_inode(struct inode
*inode
, enum inode_type type
)
870 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
871 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
873 if (is_inode_flag_set(inode
, flag
))
876 set_inode_flag(inode
, flag
);
877 if (!f2fs_is_volatile_file(inode
))
878 list_add_tail(&F2FS_I(inode
)->dirty_list
,
879 &sbi
->inode_list
[type
]);
880 stat_inc_dirty_inode(sbi
, type
);
883 static void __remove_dirty_inode(struct inode
*inode
, enum inode_type type
)
885 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
887 if (get_dirty_pages(inode
) || !is_inode_flag_set(inode
, flag
))
890 list_del_init(&F2FS_I(inode
)->dirty_list
);
891 clear_inode_flag(inode
, flag
);
892 stat_dec_dirty_inode(F2FS_I_SB(inode
), type
);
895 void update_dirty_page(struct inode
*inode
, struct page
*page
)
897 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
898 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
900 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
901 !S_ISLNK(inode
->i_mode
))
904 spin_lock(&sbi
->inode_lock
[type
]);
905 if (type
!= FILE_INODE
|| test_opt(sbi
, DATA_FLUSH
))
906 __add_dirty_inode(inode
, type
);
907 inode_inc_dirty_pages(inode
);
908 spin_unlock(&sbi
->inode_lock
[type
]);
910 SetPagePrivate(page
);
911 f2fs_trace_pid(page
);
914 void remove_dirty_inode(struct inode
*inode
)
916 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
917 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
919 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
920 !S_ISLNK(inode
->i_mode
))
923 if (type
== FILE_INODE
&& !test_opt(sbi
, DATA_FLUSH
))
926 spin_lock(&sbi
->inode_lock
[type
]);
927 __remove_dirty_inode(inode
, type
);
928 spin_unlock(&sbi
->inode_lock
[type
]);
931 int sync_dirty_inodes(struct f2fs_sb_info
*sbi
, enum inode_type type
)
933 struct list_head
*head
;
935 struct f2fs_inode_info
*fi
;
936 bool is_dir
= (type
== DIR_INODE
);
937 unsigned long ino
= 0;
939 trace_f2fs_sync_dirty_inodes_enter(sbi
->sb
, is_dir
,
940 get_pages(sbi
, is_dir
?
941 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
943 if (unlikely(f2fs_cp_error(sbi
)))
946 spin_lock(&sbi
->inode_lock
[type
]);
948 head
= &sbi
->inode_list
[type
];
949 if (list_empty(head
)) {
950 spin_unlock(&sbi
->inode_lock
[type
]);
951 trace_f2fs_sync_dirty_inodes_exit(sbi
->sb
, is_dir
,
952 get_pages(sbi
, is_dir
?
953 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
956 fi
= list_first_entry(head
, struct f2fs_inode_info
, dirty_list
);
957 inode
= igrab(&fi
->vfs_inode
);
958 spin_unlock(&sbi
->inode_lock
[type
]);
960 unsigned long cur_ino
= inode
->i_ino
;
963 F2FS_I(inode
)->cp_task
= current
;
965 filemap_fdatawrite(inode
->i_mapping
);
968 F2FS_I(inode
)->cp_task
= NULL
;
971 /* We need to give cpu to another writers. */
972 if (ino
== cur_ino
) {
973 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
980 * We should submit bio, since it exists several
981 * wribacking dentry pages in the freeing inode.
983 f2fs_submit_merged_write(sbi
, DATA
);
989 int f2fs_sync_inode_meta(struct f2fs_sb_info
*sbi
)
991 struct list_head
*head
= &sbi
->inode_list
[DIRTY_META
];
993 struct f2fs_inode_info
*fi
;
994 s64 total
= get_pages(sbi
, F2FS_DIRTY_IMETA
);
997 if (unlikely(f2fs_cp_error(sbi
)))
1000 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
1001 if (list_empty(head
)) {
1002 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1005 fi
= list_first_entry(head
, struct f2fs_inode_info
,
1007 inode
= igrab(&fi
->vfs_inode
);
1008 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1010 sync_inode_metadata(inode
, 0);
1012 /* it's on eviction */
1013 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
))
1014 update_inode_page(inode
);
1021 static void __prepare_cp_block(struct f2fs_sb_info
*sbi
)
1023 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1024 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1025 nid_t last_nid
= nm_i
->next_scan_nid
;
1027 next_free_nid(sbi
, &last_nid
);
1028 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
1029 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
1030 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
1031 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
1035 * Freeze all the FS-operations for checkpoint.
1037 static int block_operations(struct f2fs_sb_info
*sbi
)
1039 struct writeback_control wbc
= {
1040 .sync_mode
= WB_SYNC_ALL
,
1041 .nr_to_write
= LONG_MAX
,
1044 struct blk_plug plug
;
1047 blk_start_plug(&plug
);
1051 /* write all the dirty dentry pages */
1052 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
1053 f2fs_unlock_all(sbi
);
1054 err
= sync_dirty_inodes(sbi
, DIR_INODE
);
1058 goto retry_flush_dents
;
1062 * POR: we should ensure that there are no dirty node pages
1063 * until finishing nat/sit flush. inode->i_blocks can be updated.
1065 down_write(&sbi
->node_change
);
1067 if (get_pages(sbi
, F2FS_DIRTY_IMETA
)) {
1068 up_write(&sbi
->node_change
);
1069 f2fs_unlock_all(sbi
);
1070 err
= f2fs_sync_inode_meta(sbi
);
1074 goto retry_flush_dents
;
1078 down_write(&sbi
->node_write
);
1080 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
1081 up_write(&sbi
->node_write
);
1082 err
= sync_node_pages(sbi
, &wbc
, false, FS_CP_NODE_IO
);
1084 up_write(&sbi
->node_change
);
1085 f2fs_unlock_all(sbi
);
1089 goto retry_flush_nodes
;
1093 * sbi->node_change is used only for AIO write_begin path which produces
1094 * dirty node blocks and some checkpoint values by block allocation.
1096 __prepare_cp_block(sbi
);
1097 up_write(&sbi
->node_change
);
1099 blk_finish_plug(&plug
);
1103 static void unblock_operations(struct f2fs_sb_info
*sbi
)
1105 up_write(&sbi
->node_write
);
1106 f2fs_unlock_all(sbi
);
1109 static void wait_on_all_pages_writeback(struct f2fs_sb_info
*sbi
)
1114 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
1116 if (!get_pages(sbi
, F2FS_WB_CP_DATA
))
1119 io_schedule_timeout(5*HZ
);
1121 finish_wait(&sbi
->cp_wait
, &wait
);
1124 static void update_ckpt_flags(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1126 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
1127 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1128 unsigned long flags
;
1130 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1132 if ((cpc
->reason
& CP_UMOUNT
) &&
1133 le32_to_cpu(ckpt
->cp_pack_total_block_count
) >
1134 sbi
->blocks_per_seg
- NM_I(sbi
)->nat_bits_blocks
)
1135 disable_nat_bits(sbi
, false);
1137 if (cpc
->reason
& CP_TRIMMED
)
1138 __set_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1140 if (cpc
->reason
& CP_UMOUNT
)
1141 __set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1143 __clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1145 if (cpc
->reason
& CP_FASTBOOT
)
1146 __set_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1148 __clear_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1151 __set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1153 __clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1155 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1156 __set_ckpt_flags(ckpt
, CP_FSCK_FLAG
);
1158 /* set this flag to activate crc|cp_ver for recovery */
1159 __set_ckpt_flags(ckpt
, CP_CRC_RECOVERY_FLAG
);
1160 __clear_ckpt_flags(ckpt
, CP_NOCRC_RECOVERY_FLAG
);
1162 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1165 static int do_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1167 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1168 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1169 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
, flags
;
1171 unsigned int data_sum_blocks
, orphan_blocks
;
1174 int cp_payload_blks
= __cp_payload(sbi
);
1175 struct super_block
*sb
= sbi
->sb
;
1176 struct curseg_info
*seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
1180 /* Flush all the NAT/SIT pages */
1181 while (get_pages(sbi
, F2FS_DIRTY_META
)) {
1182 sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1183 if (unlikely(f2fs_cp_error(sbi
)))
1189 * version number is already updated
1191 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
));
1192 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
1193 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
1194 ckpt
->cur_node_segno
[i
] =
1195 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
1196 ckpt
->cur_node_blkoff
[i
] =
1197 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
1198 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
1199 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
1201 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
1202 ckpt
->cur_data_segno
[i
] =
1203 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
1204 ckpt
->cur_data_blkoff
[i
] =
1205 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
1206 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
1207 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
1210 /* 2 cp + n data seg summary + orphan inode blocks */
1211 data_sum_blocks
= npages_for_summary_flush(sbi
, false);
1212 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1213 if (data_sum_blocks
< NR_CURSEG_DATA_TYPE
)
1214 __set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1216 __clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1217 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1219 orphan_blocks
= GET_ORPHAN_BLOCKS(orphan_num
);
1220 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + cp_payload_blks
+
1223 if (__remain_node_summaries(cpc
->reason
))
1224 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1225 cp_payload_blks
+ data_sum_blocks
+
1226 orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
1228 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1229 cp_payload_blks
+ data_sum_blocks
+
1232 /* update ckpt flag for checkpoint */
1233 update_ckpt_flags(sbi
, cpc
);
1235 /* update SIT/NAT bitmap */
1236 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
1237 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
1239 crc32
= f2fs_crc32(sbi
, ckpt
, le32_to_cpu(ckpt
->checksum_offset
));
1240 *((__le32
*)((unsigned char *)ckpt
+
1241 le32_to_cpu(ckpt
->checksum_offset
)))
1242 = cpu_to_le32(crc32
);
1244 start_blk
= __start_cp_next_addr(sbi
);
1246 /* write nat bits */
1247 if (enabled_nat_bits(sbi
, cpc
)) {
1248 __u64 cp_ver
= cur_cp_version(ckpt
);
1251 cp_ver
|= ((__u64
)crc32
<< 32);
1252 *(__le64
*)nm_i
->nat_bits
= cpu_to_le64(cp_ver
);
1254 blk
= start_blk
+ sbi
->blocks_per_seg
- nm_i
->nat_bits_blocks
;
1255 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++)
1256 update_meta_page(sbi
, nm_i
->nat_bits
+
1257 (i
<< F2FS_BLKSIZE_BITS
), blk
+ i
);
1259 /* Flush all the NAT BITS pages */
1260 while (get_pages(sbi
, F2FS_DIRTY_META
)) {
1261 sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1262 if (unlikely(f2fs_cp_error(sbi
)))
1267 /* need to wait for end_io results */
1268 wait_on_all_pages_writeback(sbi
);
1269 if (unlikely(f2fs_cp_error(sbi
)))
1272 /* flush all device cache */
1273 err
= f2fs_flush_device_cache(sbi
);
1277 /* write out checkpoint buffer at block 0 */
1278 update_meta_page(sbi
, ckpt
, start_blk
++);
1280 for (i
= 1; i
< 1 + cp_payload_blks
; i
++)
1281 update_meta_page(sbi
, (char *)ckpt
+ i
* F2FS_BLKSIZE
,
1285 write_orphan_inodes(sbi
, start_blk
);
1286 start_blk
+= orphan_blocks
;
1289 write_data_summaries(sbi
, start_blk
);
1290 start_blk
+= data_sum_blocks
;
1292 /* Record write statistics in the hot node summary */
1293 kbytes_written
= sbi
->kbytes_written
;
1294 if (sb
->s_bdev
->bd_part
)
1295 kbytes_written
+= BD_PART_WRITTEN(sbi
);
1297 seg_i
->journal
->info
.kbytes_written
= cpu_to_le64(kbytes_written
);
1299 if (__remain_node_summaries(cpc
->reason
)) {
1300 write_node_summaries(sbi
, start_blk
);
1301 start_blk
+= NR_CURSEG_NODE_TYPE
;
1304 /* writeout checkpoint block */
1305 update_meta_page(sbi
, ckpt
, start_blk
);
1307 /* wait for previous submitted node/meta pages writeback */
1308 wait_on_all_pages_writeback(sbi
);
1310 if (unlikely(f2fs_cp_error(sbi
)))
1313 filemap_fdatawait_range(NODE_MAPPING(sbi
), 0, LLONG_MAX
);
1314 filemap_fdatawait_range(META_MAPPING(sbi
), 0, LLONG_MAX
);
1316 /* update user_block_counts */
1317 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1318 percpu_counter_set(&sbi
->alloc_valid_block_count
, 0);
1320 /* Here, we only have one bio having CP pack */
1321 sync_meta_pages(sbi
, META_FLUSH
, LONG_MAX
, FS_CP_META_IO
);
1323 /* wait for previous submitted meta pages writeback */
1324 wait_on_all_pages_writeback(sbi
);
1326 release_ino_entry(sbi
, false);
1328 if (unlikely(f2fs_cp_error(sbi
)))
1331 clear_sbi_flag(sbi
, SBI_IS_DIRTY
);
1332 clear_sbi_flag(sbi
, SBI_NEED_CP
);
1333 __set_cp_next_pack(sbi
);
1336 * redirty superblock if metadata like node page or inode cache is
1337 * updated during writing checkpoint.
1339 if (get_pages(sbi
, F2FS_DIRTY_NODES
) ||
1340 get_pages(sbi
, F2FS_DIRTY_IMETA
))
1341 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1343 f2fs_bug_on(sbi
, get_pages(sbi
, F2FS_DIRTY_DENTS
));
1349 * We guarantee that this checkpoint procedure will not fail.
1351 int write_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1353 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1354 unsigned long long ckpt_ver
;
1357 mutex_lock(&sbi
->cp_mutex
);
1359 if (!is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) &&
1360 ((cpc
->reason
& CP_FASTBOOT
) || (cpc
->reason
& CP_SYNC
) ||
1361 ((cpc
->reason
& CP_DISCARD
) && !sbi
->discard_blks
)))
1363 if (unlikely(f2fs_cp_error(sbi
))) {
1367 if (f2fs_readonly(sbi
->sb
)) {
1372 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "start block_ops");
1374 err
= block_operations(sbi
);
1378 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish block_ops");
1380 f2fs_flush_merged_writes(sbi
);
1382 /* this is the case of multiple fstrims without any changes */
1383 if (cpc
->reason
& CP_DISCARD
) {
1384 if (!exist_trim_candidates(sbi
, cpc
)) {
1385 unblock_operations(sbi
);
1389 if (NM_I(sbi
)->dirty_nat_cnt
== 0 &&
1390 SIT_I(sbi
)->dirty_sentries
== 0 &&
1391 prefree_segments(sbi
) == 0) {
1392 flush_sit_entries(sbi
, cpc
);
1393 clear_prefree_segments(sbi
, cpc
);
1394 unblock_operations(sbi
);
1400 * update checkpoint pack index
1401 * Increase the version number so that
1402 * SIT entries and seg summaries are written at correct place
1404 ckpt_ver
= cur_cp_version(ckpt
);
1405 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
1407 /* write cached NAT/SIT entries to NAT/SIT area */
1408 flush_nat_entries(sbi
, cpc
);
1409 flush_sit_entries(sbi
, cpc
);
1411 /* unlock all the fs_lock[] in do_checkpoint() */
1412 err
= do_checkpoint(sbi
, cpc
);
1414 release_discard_addrs(sbi
);
1416 clear_prefree_segments(sbi
, cpc
);
1418 unblock_operations(sbi
);
1419 stat_inc_cp_count(sbi
->stat_info
);
1421 if (cpc
->reason
& CP_RECOVERY
)
1422 f2fs_msg(sbi
->sb
, KERN_NOTICE
,
1423 "checkpoint: version = %llx", ckpt_ver
);
1425 /* do checkpoint periodically */
1426 f2fs_update_time(sbi
, CP_TIME
);
1427 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish checkpoint");
1429 mutex_unlock(&sbi
->cp_mutex
);
1433 void init_ino_entry_info(struct f2fs_sb_info
*sbi
)
1437 for (i
= 0; i
< MAX_INO_ENTRY
; i
++) {
1438 struct inode_management
*im
= &sbi
->im
[i
];
1440 INIT_RADIX_TREE(&im
->ino_root
, GFP_ATOMIC
);
1441 spin_lock_init(&im
->ino_lock
);
1442 INIT_LIST_HEAD(&im
->ino_list
);
1446 sbi
->max_orphans
= (sbi
->blocks_per_seg
- F2FS_CP_PACKS
-
1447 NR_CURSEG_TYPE
- __cp_payload(sbi
)) *
1448 F2FS_ORPHANS_PER_BLOCK
;
1451 int __init
create_checkpoint_caches(void)
1453 ino_entry_slab
= f2fs_kmem_cache_create("f2fs_ino_entry",
1454 sizeof(struct ino_entry
));
1455 if (!ino_entry_slab
)
1457 inode_entry_slab
= f2fs_kmem_cache_create("f2fs_inode_entry",
1458 sizeof(struct inode_entry
));
1459 if (!inode_entry_slab
) {
1460 kmem_cache_destroy(ino_entry_slab
);
1466 void destroy_checkpoint_caches(void)
1468 kmem_cache_destroy(ino_entry_slab
);
1469 kmem_cache_destroy(inode_entry_slab
);