stm class: Add SPDX GPL-2.0 header to replace GPLv2 boilerplate
[linux/fpc-iii.git] / fs / f2fs / checkpoint.c
blob512dca8abc7d62f5d1a11ca6785170f7921d85eb
1 /*
2 * fs/f2fs/checkpoint.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
31 set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 if (!end_io)
33 f2fs_flush_merged_writes(sbi);
37 * We guarantee no failure on the returned page.
39 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 struct address_space *mapping = META_MAPPING(sbi);
42 struct page *page = NULL;
43 repeat:
44 page = f2fs_grab_cache_page(mapping, index, false);
45 if (!page) {
46 cond_resched();
47 goto repeat;
49 f2fs_wait_on_page_writeback(page, META, true);
50 if (!PageUptodate(page))
51 SetPageUptodate(page);
52 return page;
56 * We guarantee no failure on the returned page.
58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59 bool is_meta)
61 struct address_space *mapping = META_MAPPING(sbi);
62 struct page *page;
63 struct f2fs_io_info fio = {
64 .sbi = sbi,
65 .type = META,
66 .op = REQ_OP_READ,
67 .op_flags = REQ_META | REQ_PRIO,
68 .old_blkaddr = index,
69 .new_blkaddr = index,
70 .encrypted_page = NULL,
73 if (unlikely(!is_meta))
74 fio.op_flags &= ~REQ_META;
75 repeat:
76 page = f2fs_grab_cache_page(mapping, index, false);
77 if (!page) {
78 cond_resched();
79 goto repeat;
81 if (PageUptodate(page))
82 goto out;
84 fio.page = page;
86 if (f2fs_submit_page_bio(&fio)) {
87 f2fs_put_page(page, 1);
88 goto repeat;
91 lock_page(page);
92 if (unlikely(page->mapping != mapping)) {
93 f2fs_put_page(page, 1);
94 goto repeat;
98 * if there is any IO error when accessing device, make our filesystem
99 * readonly and make sure do not write checkpoint with non-uptodate
100 * meta page.
102 if (unlikely(!PageUptodate(page)))
103 f2fs_stop_checkpoint(sbi, false);
104 out:
105 return page;
108 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 return __get_meta_page(sbi, index, true);
113 /* for POR only */
114 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 return __get_meta_page(sbi, index, false);
119 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 switch (type) {
122 case META_NAT:
123 break;
124 case META_SIT:
125 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
126 return false;
127 break;
128 case META_SSA:
129 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
130 blkaddr < SM_I(sbi)->ssa_blkaddr))
131 return false;
132 break;
133 case META_CP:
134 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
135 blkaddr < __start_cp_addr(sbi)))
136 return false;
137 break;
138 case META_POR:
139 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
140 blkaddr < MAIN_BLKADDR(sbi)))
141 return false;
142 break;
143 default:
144 BUG();
147 return true;
151 * Readahead CP/NAT/SIT/SSA pages
153 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
154 int type, bool sync)
156 struct page *page;
157 block_t blkno = start;
158 struct f2fs_io_info fio = {
159 .sbi = sbi,
160 .type = META,
161 .op = REQ_OP_READ,
162 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
163 .encrypted_page = NULL,
164 .in_list = false,
166 struct blk_plug plug;
168 if (unlikely(type == META_POR))
169 fio.op_flags &= ~REQ_META;
171 blk_start_plug(&plug);
172 for (; nrpages-- > 0; blkno++) {
174 if (!is_valid_blkaddr(sbi, blkno, type))
175 goto out;
177 switch (type) {
178 case META_NAT:
179 if (unlikely(blkno >=
180 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181 blkno = 0;
182 /* get nat block addr */
183 fio.new_blkaddr = current_nat_addr(sbi,
184 blkno * NAT_ENTRY_PER_BLOCK);
185 break;
186 case META_SIT:
187 /* get sit block addr */
188 fio.new_blkaddr = current_sit_addr(sbi,
189 blkno * SIT_ENTRY_PER_BLOCK);
190 break;
191 case META_SSA:
192 case META_CP:
193 case META_POR:
194 fio.new_blkaddr = blkno;
195 break;
196 default:
197 BUG();
200 page = f2fs_grab_cache_page(META_MAPPING(sbi),
201 fio.new_blkaddr, false);
202 if (!page)
203 continue;
204 if (PageUptodate(page)) {
205 f2fs_put_page(page, 1);
206 continue;
209 fio.page = page;
210 f2fs_submit_page_bio(&fio);
211 f2fs_put_page(page, 0);
213 out:
214 blk_finish_plug(&plug);
215 return blkno - start;
218 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
220 struct page *page;
221 bool readahead = false;
223 page = find_get_page(META_MAPPING(sbi), index);
224 if (!page || !PageUptodate(page))
225 readahead = true;
226 f2fs_put_page(page, 0);
228 if (readahead)
229 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
232 static int __f2fs_write_meta_page(struct page *page,
233 struct writeback_control *wbc,
234 enum iostat_type io_type)
236 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238 trace_f2fs_writepage(page, META);
240 if (unlikely(f2fs_cp_error(sbi))) {
241 dec_page_count(sbi, F2FS_DIRTY_META);
242 unlock_page(page);
243 return 0;
245 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
246 goto redirty_out;
247 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
248 goto redirty_out;
250 write_meta_page(sbi, page, io_type);
251 dec_page_count(sbi, F2FS_DIRTY_META);
253 if (wbc->for_reclaim)
254 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
255 0, page->index, META);
257 unlock_page(page);
259 if (unlikely(f2fs_cp_error(sbi)))
260 f2fs_submit_merged_write(sbi, META);
262 return 0;
264 redirty_out:
265 redirty_page_for_writepage(wbc, page);
266 return AOP_WRITEPAGE_ACTIVATE;
269 static int f2fs_write_meta_page(struct page *page,
270 struct writeback_control *wbc)
272 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
275 static int f2fs_write_meta_pages(struct address_space *mapping,
276 struct writeback_control *wbc)
278 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
279 long diff, written;
281 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
282 goto skip_write;
284 /* collect a number of dirty meta pages and write together */
285 if (wbc->for_kupdate ||
286 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
287 goto skip_write;
289 /* if locked failed, cp will flush dirty pages instead */
290 if (!mutex_trylock(&sbi->cp_mutex))
291 goto skip_write;
293 trace_f2fs_writepages(mapping->host, wbc, META);
294 diff = nr_pages_to_write(sbi, META, wbc);
295 written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
296 mutex_unlock(&sbi->cp_mutex);
297 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
298 return 0;
300 skip_write:
301 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
302 trace_f2fs_writepages(mapping->host, wbc, META);
303 return 0;
306 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
307 long nr_to_write, enum iostat_type io_type)
309 struct address_space *mapping = META_MAPPING(sbi);
310 pgoff_t index = 0, prev = ULONG_MAX;
311 struct pagevec pvec;
312 long nwritten = 0;
313 int nr_pages;
314 struct writeback_control wbc = {
315 .for_reclaim = 0,
317 struct blk_plug plug;
319 pagevec_init(&pvec);
321 blk_start_plug(&plug);
323 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
324 PAGECACHE_TAG_DIRTY))) {
325 int i;
327 for (i = 0; i < nr_pages; i++) {
328 struct page *page = pvec.pages[i];
330 if (prev == ULONG_MAX)
331 prev = page->index - 1;
332 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
333 pagevec_release(&pvec);
334 goto stop;
337 lock_page(page);
339 if (unlikely(page->mapping != mapping)) {
340 continue_unlock:
341 unlock_page(page);
342 continue;
344 if (!PageDirty(page)) {
345 /* someone wrote it for us */
346 goto continue_unlock;
349 f2fs_wait_on_page_writeback(page, META, true);
351 BUG_ON(PageWriteback(page));
352 if (!clear_page_dirty_for_io(page))
353 goto continue_unlock;
355 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
356 unlock_page(page);
357 break;
359 nwritten++;
360 prev = page->index;
361 if (unlikely(nwritten >= nr_to_write))
362 break;
364 pagevec_release(&pvec);
365 cond_resched();
367 stop:
368 if (nwritten)
369 f2fs_submit_merged_write(sbi, type);
371 blk_finish_plug(&plug);
373 return nwritten;
376 static int f2fs_set_meta_page_dirty(struct page *page)
378 trace_f2fs_set_page_dirty(page, META);
380 if (!PageUptodate(page))
381 SetPageUptodate(page);
382 if (!PageDirty(page)) {
383 f2fs_set_page_dirty_nobuffers(page);
384 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
385 SetPagePrivate(page);
386 f2fs_trace_pid(page);
387 return 1;
389 return 0;
392 const struct address_space_operations f2fs_meta_aops = {
393 .writepage = f2fs_write_meta_page,
394 .writepages = f2fs_write_meta_pages,
395 .set_page_dirty = f2fs_set_meta_page_dirty,
396 .invalidatepage = f2fs_invalidate_page,
397 .releasepage = f2fs_release_page,
398 #ifdef CONFIG_MIGRATION
399 .migratepage = f2fs_migrate_page,
400 #endif
403 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
404 unsigned int devidx, int type)
406 struct inode_management *im = &sbi->im[type];
407 struct ino_entry *e, *tmp;
409 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
411 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
413 spin_lock(&im->ino_lock);
414 e = radix_tree_lookup(&im->ino_root, ino);
415 if (!e) {
416 e = tmp;
417 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
418 f2fs_bug_on(sbi, 1);
420 memset(e, 0, sizeof(struct ino_entry));
421 e->ino = ino;
423 list_add_tail(&e->list, &im->ino_list);
424 if (type != ORPHAN_INO)
425 im->ino_num++;
428 if (type == FLUSH_INO)
429 f2fs_set_bit(devidx, (char *)&e->dirty_device);
431 spin_unlock(&im->ino_lock);
432 radix_tree_preload_end();
434 if (e != tmp)
435 kmem_cache_free(ino_entry_slab, tmp);
438 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
440 struct inode_management *im = &sbi->im[type];
441 struct ino_entry *e;
443 spin_lock(&im->ino_lock);
444 e = radix_tree_lookup(&im->ino_root, ino);
445 if (e) {
446 list_del(&e->list);
447 radix_tree_delete(&im->ino_root, ino);
448 im->ino_num--;
449 spin_unlock(&im->ino_lock);
450 kmem_cache_free(ino_entry_slab, e);
451 return;
453 spin_unlock(&im->ino_lock);
456 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
458 /* add new dirty ino entry into list */
459 __add_ino_entry(sbi, ino, 0, type);
462 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
464 /* remove dirty ino entry from list */
465 __remove_ino_entry(sbi, ino, type);
468 /* mode should be APPEND_INO or UPDATE_INO */
469 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
471 struct inode_management *im = &sbi->im[mode];
472 struct ino_entry *e;
474 spin_lock(&im->ino_lock);
475 e = radix_tree_lookup(&im->ino_root, ino);
476 spin_unlock(&im->ino_lock);
477 return e ? true : false;
480 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
482 struct ino_entry *e, *tmp;
483 int i;
485 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
486 struct inode_management *im = &sbi->im[i];
488 spin_lock(&im->ino_lock);
489 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
490 list_del(&e->list);
491 radix_tree_delete(&im->ino_root, e->ino);
492 kmem_cache_free(ino_entry_slab, e);
493 im->ino_num--;
495 spin_unlock(&im->ino_lock);
499 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
500 unsigned int devidx, int type)
502 __add_ino_entry(sbi, ino, devidx, type);
505 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
506 unsigned int devidx, int type)
508 struct inode_management *im = &sbi->im[type];
509 struct ino_entry *e;
510 bool is_dirty = false;
512 spin_lock(&im->ino_lock);
513 e = radix_tree_lookup(&im->ino_root, ino);
514 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
515 is_dirty = true;
516 spin_unlock(&im->ino_lock);
517 return is_dirty;
520 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
522 struct inode_management *im = &sbi->im[ORPHAN_INO];
523 int err = 0;
525 spin_lock(&im->ino_lock);
527 #ifdef CONFIG_F2FS_FAULT_INJECTION
528 if (time_to_inject(sbi, FAULT_ORPHAN)) {
529 spin_unlock(&im->ino_lock);
530 f2fs_show_injection_info(FAULT_ORPHAN);
531 return -ENOSPC;
533 #endif
534 if (unlikely(im->ino_num >= sbi->max_orphans))
535 err = -ENOSPC;
536 else
537 im->ino_num++;
538 spin_unlock(&im->ino_lock);
540 return err;
543 void release_orphan_inode(struct f2fs_sb_info *sbi)
545 struct inode_management *im = &sbi->im[ORPHAN_INO];
547 spin_lock(&im->ino_lock);
548 f2fs_bug_on(sbi, im->ino_num == 0);
549 im->ino_num--;
550 spin_unlock(&im->ino_lock);
553 void add_orphan_inode(struct inode *inode)
555 /* add new orphan ino entry into list */
556 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
557 update_inode_page(inode);
560 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
562 /* remove orphan entry from orphan list */
563 __remove_ino_entry(sbi, ino, ORPHAN_INO);
566 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
568 struct inode *inode;
569 struct node_info ni;
570 int err = acquire_orphan_inode(sbi);
572 if (err) {
573 set_sbi_flag(sbi, SBI_NEED_FSCK);
574 f2fs_msg(sbi->sb, KERN_WARNING,
575 "%s: orphan failed (ino=%x), run fsck to fix.",
576 __func__, ino);
577 return err;
580 __add_ino_entry(sbi, ino, 0, ORPHAN_INO);
582 inode = f2fs_iget_retry(sbi->sb, ino);
583 if (IS_ERR(inode)) {
585 * there should be a bug that we can't find the entry
586 * to orphan inode.
588 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
589 return PTR_ERR(inode);
592 clear_nlink(inode);
594 /* truncate all the data during iput */
595 iput(inode);
597 get_node_info(sbi, ino, &ni);
599 /* ENOMEM was fully retried in f2fs_evict_inode. */
600 if (ni.blk_addr != NULL_ADDR) {
601 set_sbi_flag(sbi, SBI_NEED_FSCK);
602 f2fs_msg(sbi->sb, KERN_WARNING,
603 "%s: orphan failed (ino=%x) by kernel, retry mount.",
604 __func__, ino);
605 return -EIO;
607 __remove_ino_entry(sbi, ino, ORPHAN_INO);
608 return 0;
611 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
613 block_t start_blk, orphan_blocks, i, j;
614 unsigned int s_flags = sbi->sb->s_flags;
615 int err = 0;
616 #ifdef CONFIG_QUOTA
617 int quota_enabled;
618 #endif
620 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
621 return 0;
623 if (s_flags & SB_RDONLY) {
624 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
625 sbi->sb->s_flags &= ~SB_RDONLY;
628 #ifdef CONFIG_QUOTA
629 /* Needed for iput() to work correctly and not trash data */
630 sbi->sb->s_flags |= SB_ACTIVE;
632 /* Turn on quotas so that they are updated correctly */
633 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
634 #endif
636 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
637 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
639 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
641 for (i = 0; i < orphan_blocks; i++) {
642 struct page *page = get_meta_page(sbi, start_blk + i);
643 struct f2fs_orphan_block *orphan_blk;
645 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
646 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
647 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
648 err = recover_orphan_inode(sbi, ino);
649 if (err) {
650 f2fs_put_page(page, 1);
651 goto out;
654 f2fs_put_page(page, 1);
656 /* clear Orphan Flag */
657 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
658 out:
659 #ifdef CONFIG_QUOTA
660 /* Turn quotas off */
661 if (quota_enabled)
662 f2fs_quota_off_umount(sbi->sb);
663 #endif
664 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
666 return err;
669 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
671 struct list_head *head;
672 struct f2fs_orphan_block *orphan_blk = NULL;
673 unsigned int nentries = 0;
674 unsigned short index = 1;
675 unsigned short orphan_blocks;
676 struct page *page = NULL;
677 struct ino_entry *orphan = NULL;
678 struct inode_management *im = &sbi->im[ORPHAN_INO];
680 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
683 * we don't need to do spin_lock(&im->ino_lock) here, since all the
684 * orphan inode operations are covered under f2fs_lock_op().
685 * And, spin_lock should be avoided due to page operations below.
687 head = &im->ino_list;
689 /* loop for each orphan inode entry and write them in Jornal block */
690 list_for_each_entry(orphan, head, list) {
691 if (!page) {
692 page = grab_meta_page(sbi, start_blk++);
693 orphan_blk =
694 (struct f2fs_orphan_block *)page_address(page);
695 memset(orphan_blk, 0, sizeof(*orphan_blk));
698 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
700 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
702 * an orphan block is full of 1020 entries,
703 * then we need to flush current orphan blocks
704 * and bring another one in memory
706 orphan_blk->blk_addr = cpu_to_le16(index);
707 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
708 orphan_blk->entry_count = cpu_to_le32(nentries);
709 set_page_dirty(page);
710 f2fs_put_page(page, 1);
711 index++;
712 nentries = 0;
713 page = NULL;
717 if (page) {
718 orphan_blk->blk_addr = cpu_to_le16(index);
719 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
720 orphan_blk->entry_count = cpu_to_le32(nentries);
721 set_page_dirty(page);
722 f2fs_put_page(page, 1);
726 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
727 struct f2fs_checkpoint **cp_block, struct page **cp_page,
728 unsigned long long *version)
730 unsigned long blk_size = sbi->blocksize;
731 size_t crc_offset = 0;
732 __u32 crc = 0;
734 *cp_page = get_meta_page(sbi, cp_addr);
735 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
737 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
738 if (crc_offset > (blk_size - sizeof(__le32))) {
739 f2fs_msg(sbi->sb, KERN_WARNING,
740 "invalid crc_offset: %zu", crc_offset);
741 return -EINVAL;
744 crc = cur_cp_crc(*cp_block);
745 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
746 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
747 return -EINVAL;
750 *version = cur_cp_version(*cp_block);
751 return 0;
754 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
755 block_t cp_addr, unsigned long long *version)
757 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
758 struct f2fs_checkpoint *cp_block = NULL;
759 unsigned long long cur_version = 0, pre_version = 0;
760 int err;
762 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
763 &cp_page_1, version);
764 if (err)
765 goto invalid_cp1;
766 pre_version = *version;
768 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
769 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
770 &cp_page_2, version);
771 if (err)
772 goto invalid_cp2;
773 cur_version = *version;
775 if (cur_version == pre_version) {
776 *version = cur_version;
777 f2fs_put_page(cp_page_2, 1);
778 return cp_page_1;
780 invalid_cp2:
781 f2fs_put_page(cp_page_2, 1);
782 invalid_cp1:
783 f2fs_put_page(cp_page_1, 1);
784 return NULL;
787 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
789 struct f2fs_checkpoint *cp_block;
790 struct f2fs_super_block *fsb = sbi->raw_super;
791 struct page *cp1, *cp2, *cur_page;
792 unsigned long blk_size = sbi->blocksize;
793 unsigned long long cp1_version = 0, cp2_version = 0;
794 unsigned long long cp_start_blk_no;
795 unsigned int cp_blks = 1 + __cp_payload(sbi);
796 block_t cp_blk_no;
797 int i;
799 sbi->ckpt = f2fs_kzalloc(sbi, cp_blks * blk_size, GFP_KERNEL);
800 if (!sbi->ckpt)
801 return -ENOMEM;
803 * Finding out valid cp block involves read both
804 * sets( cp pack1 and cp pack 2)
806 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
807 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
809 /* The second checkpoint pack should start at the next segment */
810 cp_start_blk_no += ((unsigned long long)1) <<
811 le32_to_cpu(fsb->log_blocks_per_seg);
812 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
814 if (cp1 && cp2) {
815 if (ver_after(cp2_version, cp1_version))
816 cur_page = cp2;
817 else
818 cur_page = cp1;
819 } else if (cp1) {
820 cur_page = cp1;
821 } else if (cp2) {
822 cur_page = cp2;
823 } else {
824 goto fail_no_cp;
827 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
828 memcpy(sbi->ckpt, cp_block, blk_size);
830 /* Sanity checking of checkpoint */
831 if (sanity_check_ckpt(sbi))
832 goto free_fail_no_cp;
834 if (cur_page == cp1)
835 sbi->cur_cp_pack = 1;
836 else
837 sbi->cur_cp_pack = 2;
839 if (cp_blks <= 1)
840 goto done;
842 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
843 if (cur_page == cp2)
844 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
846 for (i = 1; i < cp_blks; i++) {
847 void *sit_bitmap_ptr;
848 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
850 cur_page = get_meta_page(sbi, cp_blk_no + i);
851 sit_bitmap_ptr = page_address(cur_page);
852 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
853 f2fs_put_page(cur_page, 1);
855 done:
856 f2fs_put_page(cp1, 1);
857 f2fs_put_page(cp2, 1);
858 return 0;
860 free_fail_no_cp:
861 f2fs_put_page(cp1, 1);
862 f2fs_put_page(cp2, 1);
863 fail_no_cp:
864 kfree(sbi->ckpt);
865 return -EINVAL;
868 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
870 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
871 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
873 if (is_inode_flag_set(inode, flag))
874 return;
876 set_inode_flag(inode, flag);
877 if (!f2fs_is_volatile_file(inode))
878 list_add_tail(&F2FS_I(inode)->dirty_list,
879 &sbi->inode_list[type]);
880 stat_inc_dirty_inode(sbi, type);
883 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
885 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
887 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
888 return;
890 list_del_init(&F2FS_I(inode)->dirty_list);
891 clear_inode_flag(inode, flag);
892 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
895 void update_dirty_page(struct inode *inode, struct page *page)
897 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
898 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
900 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
901 !S_ISLNK(inode->i_mode))
902 return;
904 spin_lock(&sbi->inode_lock[type]);
905 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
906 __add_dirty_inode(inode, type);
907 inode_inc_dirty_pages(inode);
908 spin_unlock(&sbi->inode_lock[type]);
910 SetPagePrivate(page);
911 f2fs_trace_pid(page);
914 void remove_dirty_inode(struct inode *inode)
916 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
917 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
919 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
920 !S_ISLNK(inode->i_mode))
921 return;
923 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
924 return;
926 spin_lock(&sbi->inode_lock[type]);
927 __remove_dirty_inode(inode, type);
928 spin_unlock(&sbi->inode_lock[type]);
931 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
933 struct list_head *head;
934 struct inode *inode;
935 struct f2fs_inode_info *fi;
936 bool is_dir = (type == DIR_INODE);
937 unsigned long ino = 0;
939 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
940 get_pages(sbi, is_dir ?
941 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
942 retry:
943 if (unlikely(f2fs_cp_error(sbi)))
944 return -EIO;
946 spin_lock(&sbi->inode_lock[type]);
948 head = &sbi->inode_list[type];
949 if (list_empty(head)) {
950 spin_unlock(&sbi->inode_lock[type]);
951 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
952 get_pages(sbi, is_dir ?
953 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
954 return 0;
956 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
957 inode = igrab(&fi->vfs_inode);
958 spin_unlock(&sbi->inode_lock[type]);
959 if (inode) {
960 unsigned long cur_ino = inode->i_ino;
962 if (is_dir)
963 F2FS_I(inode)->cp_task = current;
965 filemap_fdatawrite(inode->i_mapping);
967 if (is_dir)
968 F2FS_I(inode)->cp_task = NULL;
970 iput(inode);
971 /* We need to give cpu to another writers. */
972 if (ino == cur_ino) {
973 congestion_wait(BLK_RW_ASYNC, HZ/50);
974 cond_resched();
975 } else {
976 ino = cur_ino;
978 } else {
980 * We should submit bio, since it exists several
981 * wribacking dentry pages in the freeing inode.
983 f2fs_submit_merged_write(sbi, DATA);
984 cond_resched();
986 goto retry;
989 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
991 struct list_head *head = &sbi->inode_list[DIRTY_META];
992 struct inode *inode;
993 struct f2fs_inode_info *fi;
994 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
996 while (total--) {
997 if (unlikely(f2fs_cp_error(sbi)))
998 return -EIO;
1000 spin_lock(&sbi->inode_lock[DIRTY_META]);
1001 if (list_empty(head)) {
1002 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1003 return 0;
1005 fi = list_first_entry(head, struct f2fs_inode_info,
1006 gdirty_list);
1007 inode = igrab(&fi->vfs_inode);
1008 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1009 if (inode) {
1010 sync_inode_metadata(inode, 0);
1012 /* it's on eviction */
1013 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1014 update_inode_page(inode);
1015 iput(inode);
1018 return 0;
1021 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1023 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1024 struct f2fs_nm_info *nm_i = NM_I(sbi);
1025 nid_t last_nid = nm_i->next_scan_nid;
1027 next_free_nid(sbi, &last_nid);
1028 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1029 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1030 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1031 ckpt->next_free_nid = cpu_to_le32(last_nid);
1035 * Freeze all the FS-operations for checkpoint.
1037 static int block_operations(struct f2fs_sb_info *sbi)
1039 struct writeback_control wbc = {
1040 .sync_mode = WB_SYNC_ALL,
1041 .nr_to_write = LONG_MAX,
1042 .for_reclaim = 0,
1044 struct blk_plug plug;
1045 int err = 0;
1047 blk_start_plug(&plug);
1049 retry_flush_dents:
1050 f2fs_lock_all(sbi);
1051 /* write all the dirty dentry pages */
1052 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1053 f2fs_unlock_all(sbi);
1054 err = sync_dirty_inodes(sbi, DIR_INODE);
1055 if (err)
1056 goto out;
1057 cond_resched();
1058 goto retry_flush_dents;
1062 * POR: we should ensure that there are no dirty node pages
1063 * until finishing nat/sit flush. inode->i_blocks can be updated.
1065 down_write(&sbi->node_change);
1067 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1068 up_write(&sbi->node_change);
1069 f2fs_unlock_all(sbi);
1070 err = f2fs_sync_inode_meta(sbi);
1071 if (err)
1072 goto out;
1073 cond_resched();
1074 goto retry_flush_dents;
1077 retry_flush_nodes:
1078 down_write(&sbi->node_write);
1080 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1081 up_write(&sbi->node_write);
1082 err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1083 if (err) {
1084 up_write(&sbi->node_change);
1085 f2fs_unlock_all(sbi);
1086 goto out;
1088 cond_resched();
1089 goto retry_flush_nodes;
1093 * sbi->node_change is used only for AIO write_begin path which produces
1094 * dirty node blocks and some checkpoint values by block allocation.
1096 __prepare_cp_block(sbi);
1097 up_write(&sbi->node_change);
1098 out:
1099 blk_finish_plug(&plug);
1100 return err;
1103 static void unblock_operations(struct f2fs_sb_info *sbi)
1105 up_write(&sbi->node_write);
1106 f2fs_unlock_all(sbi);
1109 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1111 DEFINE_WAIT(wait);
1113 for (;;) {
1114 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1116 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1117 break;
1119 io_schedule_timeout(5*HZ);
1121 finish_wait(&sbi->cp_wait, &wait);
1124 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1126 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1127 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1128 unsigned long flags;
1130 spin_lock_irqsave(&sbi->cp_lock, flags);
1132 if ((cpc->reason & CP_UMOUNT) &&
1133 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1134 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1135 disable_nat_bits(sbi, false);
1137 if (cpc->reason & CP_TRIMMED)
1138 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1140 if (cpc->reason & CP_UMOUNT)
1141 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1142 else
1143 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1145 if (cpc->reason & CP_FASTBOOT)
1146 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1147 else
1148 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1150 if (orphan_num)
1151 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1152 else
1153 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1155 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1156 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1158 /* set this flag to activate crc|cp_ver for recovery */
1159 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1160 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1162 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1165 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1167 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1168 struct f2fs_nm_info *nm_i = NM_I(sbi);
1169 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1170 block_t start_blk;
1171 unsigned int data_sum_blocks, orphan_blocks;
1172 __u32 crc32 = 0;
1173 int i;
1174 int cp_payload_blks = __cp_payload(sbi);
1175 struct super_block *sb = sbi->sb;
1176 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1177 u64 kbytes_written;
1178 int err;
1180 /* Flush all the NAT/SIT pages */
1181 while (get_pages(sbi, F2FS_DIRTY_META)) {
1182 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1183 if (unlikely(f2fs_cp_error(sbi)))
1184 return -EIO;
1188 * modify checkpoint
1189 * version number is already updated
1191 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1192 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1193 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1194 ckpt->cur_node_segno[i] =
1195 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1196 ckpt->cur_node_blkoff[i] =
1197 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1198 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1199 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1201 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1202 ckpt->cur_data_segno[i] =
1203 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1204 ckpt->cur_data_blkoff[i] =
1205 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1206 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1207 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1210 /* 2 cp + n data seg summary + orphan inode blocks */
1211 data_sum_blocks = npages_for_summary_flush(sbi, false);
1212 spin_lock_irqsave(&sbi->cp_lock, flags);
1213 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1214 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1215 else
1216 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1217 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1219 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1220 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1221 orphan_blocks);
1223 if (__remain_node_summaries(cpc->reason))
1224 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1225 cp_payload_blks + data_sum_blocks +
1226 orphan_blocks + NR_CURSEG_NODE_TYPE);
1227 else
1228 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1229 cp_payload_blks + data_sum_blocks +
1230 orphan_blocks);
1232 /* update ckpt flag for checkpoint */
1233 update_ckpt_flags(sbi, cpc);
1235 /* update SIT/NAT bitmap */
1236 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1237 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1239 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1240 *((__le32 *)((unsigned char *)ckpt +
1241 le32_to_cpu(ckpt->checksum_offset)))
1242 = cpu_to_le32(crc32);
1244 start_blk = __start_cp_next_addr(sbi);
1246 /* write nat bits */
1247 if (enabled_nat_bits(sbi, cpc)) {
1248 __u64 cp_ver = cur_cp_version(ckpt);
1249 block_t blk;
1251 cp_ver |= ((__u64)crc32 << 32);
1252 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1254 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1255 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1256 update_meta_page(sbi, nm_i->nat_bits +
1257 (i << F2FS_BLKSIZE_BITS), blk + i);
1259 /* Flush all the NAT BITS pages */
1260 while (get_pages(sbi, F2FS_DIRTY_META)) {
1261 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1262 if (unlikely(f2fs_cp_error(sbi)))
1263 return -EIO;
1267 /* need to wait for end_io results */
1268 wait_on_all_pages_writeback(sbi);
1269 if (unlikely(f2fs_cp_error(sbi)))
1270 return -EIO;
1272 /* flush all device cache */
1273 err = f2fs_flush_device_cache(sbi);
1274 if (err)
1275 return err;
1277 /* write out checkpoint buffer at block 0 */
1278 update_meta_page(sbi, ckpt, start_blk++);
1280 for (i = 1; i < 1 + cp_payload_blks; i++)
1281 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1282 start_blk++);
1284 if (orphan_num) {
1285 write_orphan_inodes(sbi, start_blk);
1286 start_blk += orphan_blocks;
1289 write_data_summaries(sbi, start_blk);
1290 start_blk += data_sum_blocks;
1292 /* Record write statistics in the hot node summary */
1293 kbytes_written = sbi->kbytes_written;
1294 if (sb->s_bdev->bd_part)
1295 kbytes_written += BD_PART_WRITTEN(sbi);
1297 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1299 if (__remain_node_summaries(cpc->reason)) {
1300 write_node_summaries(sbi, start_blk);
1301 start_blk += NR_CURSEG_NODE_TYPE;
1304 /* writeout checkpoint block */
1305 update_meta_page(sbi, ckpt, start_blk);
1307 /* wait for previous submitted node/meta pages writeback */
1308 wait_on_all_pages_writeback(sbi);
1310 if (unlikely(f2fs_cp_error(sbi)))
1311 return -EIO;
1313 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1314 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1316 /* update user_block_counts */
1317 sbi->last_valid_block_count = sbi->total_valid_block_count;
1318 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1320 /* Here, we only have one bio having CP pack */
1321 sync_meta_pages(sbi, META_FLUSH, LONG_MAX, FS_CP_META_IO);
1323 /* wait for previous submitted meta pages writeback */
1324 wait_on_all_pages_writeback(sbi);
1326 release_ino_entry(sbi, false);
1328 if (unlikely(f2fs_cp_error(sbi)))
1329 return -EIO;
1331 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1332 clear_sbi_flag(sbi, SBI_NEED_CP);
1333 __set_cp_next_pack(sbi);
1336 * redirty superblock if metadata like node page or inode cache is
1337 * updated during writing checkpoint.
1339 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1340 get_pages(sbi, F2FS_DIRTY_IMETA))
1341 set_sbi_flag(sbi, SBI_IS_DIRTY);
1343 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1345 return 0;
1349 * We guarantee that this checkpoint procedure will not fail.
1351 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1353 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1354 unsigned long long ckpt_ver;
1355 int err = 0;
1357 mutex_lock(&sbi->cp_mutex);
1359 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1360 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1361 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1362 goto out;
1363 if (unlikely(f2fs_cp_error(sbi))) {
1364 err = -EIO;
1365 goto out;
1367 if (f2fs_readonly(sbi->sb)) {
1368 err = -EROFS;
1369 goto out;
1372 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1374 err = block_operations(sbi);
1375 if (err)
1376 goto out;
1378 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1380 f2fs_flush_merged_writes(sbi);
1382 /* this is the case of multiple fstrims without any changes */
1383 if (cpc->reason & CP_DISCARD) {
1384 if (!exist_trim_candidates(sbi, cpc)) {
1385 unblock_operations(sbi);
1386 goto out;
1389 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1390 SIT_I(sbi)->dirty_sentries == 0 &&
1391 prefree_segments(sbi) == 0) {
1392 flush_sit_entries(sbi, cpc);
1393 clear_prefree_segments(sbi, cpc);
1394 unblock_operations(sbi);
1395 goto out;
1400 * update checkpoint pack index
1401 * Increase the version number so that
1402 * SIT entries and seg summaries are written at correct place
1404 ckpt_ver = cur_cp_version(ckpt);
1405 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1407 /* write cached NAT/SIT entries to NAT/SIT area */
1408 flush_nat_entries(sbi, cpc);
1409 flush_sit_entries(sbi, cpc);
1411 /* unlock all the fs_lock[] in do_checkpoint() */
1412 err = do_checkpoint(sbi, cpc);
1413 if (err)
1414 release_discard_addrs(sbi);
1415 else
1416 clear_prefree_segments(sbi, cpc);
1418 unblock_operations(sbi);
1419 stat_inc_cp_count(sbi->stat_info);
1421 if (cpc->reason & CP_RECOVERY)
1422 f2fs_msg(sbi->sb, KERN_NOTICE,
1423 "checkpoint: version = %llx", ckpt_ver);
1425 /* do checkpoint periodically */
1426 f2fs_update_time(sbi, CP_TIME);
1427 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1428 out:
1429 mutex_unlock(&sbi->cp_mutex);
1430 return err;
1433 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1435 int i;
1437 for (i = 0; i < MAX_INO_ENTRY; i++) {
1438 struct inode_management *im = &sbi->im[i];
1440 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1441 spin_lock_init(&im->ino_lock);
1442 INIT_LIST_HEAD(&im->ino_list);
1443 im->ino_num = 0;
1446 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1447 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1448 F2FS_ORPHANS_PER_BLOCK;
1451 int __init create_checkpoint_caches(void)
1453 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1454 sizeof(struct ino_entry));
1455 if (!ino_entry_slab)
1456 return -ENOMEM;
1457 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1458 sizeof(struct inode_entry));
1459 if (!inode_entry_slab) {
1460 kmem_cache_destroy(ino_entry_slab);
1461 return -ENOMEM;
1463 return 0;
1466 void destroy_checkpoint_caches(void)
1468 kmem_cache_destroy(ino_entry_slab);
1469 kmem_cache_destroy(inode_entry_slab);