4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
27 #include <trace/events/f2fs.h>
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
31 static struct kmem_cache
*discard_entry_slab
;
32 static struct kmem_cache
*discard_cmd_slab
;
33 static struct kmem_cache
*sit_entry_set_slab
;
34 static struct kmem_cache
*inmem_entry_slab
;
36 static unsigned long __reverse_ulong(unsigned char *str
)
38 unsigned long tmp
= 0;
39 int shift
= 24, idx
= 0;
41 #if BITS_PER_LONG == 64
45 tmp
|= (unsigned long)str
[idx
++] << shift
;
46 shift
-= BITS_PER_BYTE
;
52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53 * MSB and LSB are reversed in a byte by f2fs_set_bit.
55 static inline unsigned long __reverse_ffs(unsigned long word
)
59 #if BITS_PER_LONG == 64
60 if ((word
& 0xffffffff00000000UL
) == 0)
65 if ((word
& 0xffff0000) == 0)
70 if ((word
& 0xff00) == 0)
75 if ((word
& 0xf0) == 0)
80 if ((word
& 0xc) == 0)
85 if ((word
& 0x2) == 0)
91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92 * f2fs_set_bit makes MSB and LSB reversed in a byte.
93 * @size must be integral times of unsigned long.
96 * f2fs_set_bit(0, bitmap) => 1000 0000
97 * f2fs_set_bit(7, bitmap) => 0000 0001
99 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
100 unsigned long size
, unsigned long offset
)
102 const unsigned long *p
= addr
+ BIT_WORD(offset
);
103 unsigned long result
= size
;
109 size
-= (offset
& ~(BITS_PER_LONG
- 1));
110 offset
%= BITS_PER_LONG
;
116 tmp
= __reverse_ulong((unsigned char *)p
);
118 tmp
&= ~0UL >> offset
;
119 if (size
< BITS_PER_LONG
)
120 tmp
&= (~0UL << (BITS_PER_LONG
- size
));
124 if (size
<= BITS_PER_LONG
)
126 size
-= BITS_PER_LONG
;
132 return result
- size
+ __reverse_ffs(tmp
);
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
136 unsigned long size
, unsigned long offset
)
138 const unsigned long *p
= addr
+ BIT_WORD(offset
);
139 unsigned long result
= size
;
145 size
-= (offset
& ~(BITS_PER_LONG
- 1));
146 offset
%= BITS_PER_LONG
;
152 tmp
= __reverse_ulong((unsigned char *)p
);
155 tmp
|= ~0UL << (BITS_PER_LONG
- offset
);
156 if (size
< BITS_PER_LONG
)
161 if (size
<= BITS_PER_LONG
)
163 size
-= BITS_PER_LONG
;
169 return result
- size
+ __reverse_ffz(tmp
);
172 bool need_SSR(struct f2fs_sb_info
*sbi
)
174 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
175 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
176 int imeta_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_IMETA
);
178 if (test_opt(sbi
, LFS
))
180 if (sbi
->gc_thread
&& sbi
->gc_thread
->gc_urgent
)
183 return free_sections(sbi
) <= (node_secs
+ 2 * dent_secs
+ imeta_secs
+
184 SM_I(sbi
)->min_ssr_sections
+ reserved_sections(sbi
));
187 void register_inmem_page(struct inode
*inode
, struct page
*page
)
189 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
190 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
191 struct inmem_pages
*new;
193 f2fs_trace_pid(page
);
195 set_page_private(page
, (unsigned long)ATOMIC_WRITTEN_PAGE
);
196 SetPagePrivate(page
);
198 new = f2fs_kmem_cache_alloc(inmem_entry_slab
, GFP_NOFS
);
200 /* add atomic page indices to the list */
202 INIT_LIST_HEAD(&new->list
);
204 /* increase reference count with clean state */
205 mutex_lock(&fi
->inmem_lock
);
207 list_add_tail(&new->list
, &fi
->inmem_pages
);
208 spin_lock(&sbi
->inode_lock
[ATOMIC_FILE
]);
209 if (list_empty(&fi
->inmem_ilist
))
210 list_add_tail(&fi
->inmem_ilist
, &sbi
->inode_list
[ATOMIC_FILE
]);
211 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
212 inc_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
213 mutex_unlock(&fi
->inmem_lock
);
215 trace_f2fs_register_inmem_page(page
, INMEM
);
218 static int __revoke_inmem_pages(struct inode
*inode
,
219 struct list_head
*head
, bool drop
, bool recover
)
221 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
222 struct inmem_pages
*cur
, *tmp
;
225 list_for_each_entry_safe(cur
, tmp
, head
, list
) {
226 struct page
*page
= cur
->page
;
229 trace_f2fs_commit_inmem_page(page
, INMEM_DROP
);
234 struct dnode_of_data dn
;
237 trace_f2fs_commit_inmem_page(page
, INMEM_REVOKE
);
239 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
240 err
= get_dnode_of_data(&dn
, page
->index
, LOOKUP_NODE
);
242 if (err
== -ENOMEM
) {
243 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
250 get_node_info(sbi
, dn
.nid
, &ni
);
251 if (cur
->old_addr
== NEW_ADDR
) {
252 invalidate_blocks(sbi
, dn
.data_blkaddr
);
253 f2fs_update_data_blkaddr(&dn
, NEW_ADDR
);
255 f2fs_replace_block(sbi
, &dn
, dn
.data_blkaddr
,
256 cur
->old_addr
, ni
.version
, true, true);
260 /* we don't need to invalidate this in the sccessful status */
262 ClearPageUptodate(page
);
263 set_page_private(page
, 0);
264 ClearPagePrivate(page
);
265 f2fs_put_page(page
, 1);
267 list_del(&cur
->list
);
268 kmem_cache_free(inmem_entry_slab
, cur
);
269 dec_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
274 void drop_inmem_pages_all(struct f2fs_sb_info
*sbi
)
276 struct list_head
*head
= &sbi
->inode_list
[ATOMIC_FILE
];
278 struct f2fs_inode_info
*fi
;
280 spin_lock(&sbi
->inode_lock
[ATOMIC_FILE
]);
281 if (list_empty(head
)) {
282 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
285 fi
= list_first_entry(head
, struct f2fs_inode_info
, inmem_ilist
);
286 inode
= igrab(&fi
->vfs_inode
);
287 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
290 drop_inmem_pages(inode
);
293 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
298 void drop_inmem_pages(struct inode
*inode
)
300 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
301 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
303 mutex_lock(&fi
->inmem_lock
);
304 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
305 spin_lock(&sbi
->inode_lock
[ATOMIC_FILE
]);
306 if (!list_empty(&fi
->inmem_ilist
))
307 list_del_init(&fi
->inmem_ilist
);
308 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
309 mutex_unlock(&fi
->inmem_lock
);
311 clear_inode_flag(inode
, FI_ATOMIC_FILE
);
312 clear_inode_flag(inode
, FI_HOT_DATA
);
313 stat_dec_atomic_write(inode
);
316 void drop_inmem_page(struct inode
*inode
, struct page
*page
)
318 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
319 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
320 struct list_head
*head
= &fi
->inmem_pages
;
321 struct inmem_pages
*cur
= NULL
;
323 f2fs_bug_on(sbi
, !IS_ATOMIC_WRITTEN_PAGE(page
));
325 mutex_lock(&fi
->inmem_lock
);
326 list_for_each_entry(cur
, head
, list
) {
327 if (cur
->page
== page
)
331 f2fs_bug_on(sbi
, !cur
|| cur
->page
!= page
);
332 list_del(&cur
->list
);
333 mutex_unlock(&fi
->inmem_lock
);
335 dec_page_count(sbi
, F2FS_INMEM_PAGES
);
336 kmem_cache_free(inmem_entry_slab
, cur
);
338 ClearPageUptodate(page
);
339 set_page_private(page
, 0);
340 ClearPagePrivate(page
);
341 f2fs_put_page(page
, 0);
343 trace_f2fs_commit_inmem_page(page
, INMEM_INVALIDATE
);
346 static int __commit_inmem_pages(struct inode
*inode
,
347 struct list_head
*revoke_list
)
349 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
350 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
351 struct inmem_pages
*cur
, *tmp
;
352 struct f2fs_io_info fio
= {
357 .op_flags
= REQ_SYNC
| REQ_PRIO
,
358 .io_type
= FS_DATA_IO
,
360 pgoff_t last_idx
= ULONG_MAX
;
363 list_for_each_entry_safe(cur
, tmp
, &fi
->inmem_pages
, list
) {
364 struct page
*page
= cur
->page
;
367 if (page
->mapping
== inode
->i_mapping
) {
368 trace_f2fs_commit_inmem_page(page
, INMEM
);
370 set_page_dirty(page
);
371 f2fs_wait_on_page_writeback(page
, DATA
, true);
372 if (clear_page_dirty_for_io(page
)) {
373 inode_dec_dirty_pages(inode
);
374 remove_dirty_inode(inode
);
378 fio
.old_blkaddr
= NULL_ADDR
;
379 fio
.encrypted_page
= NULL
;
380 fio
.need_lock
= LOCK_DONE
;
381 err
= do_write_data_page(&fio
);
383 if (err
== -ENOMEM
) {
384 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
391 /* record old blkaddr for revoking */
392 cur
->old_addr
= fio
.old_blkaddr
;
393 last_idx
= page
->index
;
396 list_move_tail(&cur
->list
, revoke_list
);
399 if (last_idx
!= ULONG_MAX
)
400 f2fs_submit_merged_write_cond(sbi
, inode
, 0, last_idx
, DATA
);
403 __revoke_inmem_pages(inode
, revoke_list
, false, false);
408 int commit_inmem_pages(struct inode
*inode
)
410 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
411 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
412 struct list_head revoke_list
;
415 INIT_LIST_HEAD(&revoke_list
);
416 f2fs_balance_fs(sbi
, true);
419 set_inode_flag(inode
, FI_ATOMIC_COMMIT
);
421 mutex_lock(&fi
->inmem_lock
);
422 err
= __commit_inmem_pages(inode
, &revoke_list
);
426 * try to revoke all committed pages, but still we could fail
427 * due to no memory or other reason, if that happened, EAGAIN
428 * will be returned, which means in such case, transaction is
429 * already not integrity, caller should use journal to do the
430 * recovery or rewrite & commit last transaction. For other
431 * error number, revoking was done by filesystem itself.
433 ret
= __revoke_inmem_pages(inode
, &revoke_list
, false, true);
437 /* drop all uncommitted pages */
438 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
440 spin_lock(&sbi
->inode_lock
[ATOMIC_FILE
]);
441 if (!list_empty(&fi
->inmem_ilist
))
442 list_del_init(&fi
->inmem_ilist
);
443 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
444 mutex_unlock(&fi
->inmem_lock
);
446 clear_inode_flag(inode
, FI_ATOMIC_COMMIT
);
453 * This function balances dirty node and dentry pages.
454 * In addition, it controls garbage collection.
456 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
, bool need
)
458 #ifdef CONFIG_F2FS_FAULT_INJECTION
459 if (time_to_inject(sbi
, FAULT_CHECKPOINT
)) {
460 f2fs_show_injection_info(FAULT_CHECKPOINT
);
461 f2fs_stop_checkpoint(sbi
, false);
465 /* balance_fs_bg is able to be pending */
466 if (need
&& excess_cached_nats(sbi
))
467 f2fs_balance_fs_bg(sbi
);
470 * We should do GC or end up with checkpoint, if there are so many dirty
471 * dir/node pages without enough free segments.
473 if (has_not_enough_free_secs(sbi
, 0, 0)) {
474 mutex_lock(&sbi
->gc_mutex
);
475 f2fs_gc(sbi
, false, false, NULL_SEGNO
);
479 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
)
481 /* try to shrink extent cache when there is no enough memory */
482 if (!available_free_memory(sbi
, EXTENT_CACHE
))
483 f2fs_shrink_extent_tree(sbi
, EXTENT_CACHE_SHRINK_NUMBER
);
485 /* check the # of cached NAT entries */
486 if (!available_free_memory(sbi
, NAT_ENTRIES
))
487 try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
);
489 if (!available_free_memory(sbi
, FREE_NIDS
))
490 try_to_free_nids(sbi
, MAX_FREE_NIDS
);
492 build_free_nids(sbi
, false, false);
494 if (!is_idle(sbi
) && !excess_dirty_nats(sbi
))
497 /* checkpoint is the only way to shrink partial cached entries */
498 if (!available_free_memory(sbi
, NAT_ENTRIES
) ||
499 !available_free_memory(sbi
, INO_ENTRIES
) ||
500 excess_prefree_segs(sbi
) ||
501 excess_dirty_nats(sbi
) ||
502 f2fs_time_over(sbi
, CP_TIME
)) {
503 if (test_opt(sbi
, DATA_FLUSH
)) {
504 struct blk_plug plug
;
506 blk_start_plug(&plug
);
507 sync_dirty_inodes(sbi
, FILE_INODE
);
508 blk_finish_plug(&plug
);
510 f2fs_sync_fs(sbi
->sb
, true);
511 stat_inc_bg_cp_count(sbi
->stat_info
);
515 static int __submit_flush_wait(struct f2fs_sb_info
*sbi
,
516 struct block_device
*bdev
)
518 struct bio
*bio
= f2fs_bio_alloc(sbi
, 0, true);
521 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
;
522 bio_set_dev(bio
, bdev
);
523 ret
= submit_bio_wait(bio
);
526 trace_f2fs_issue_flush(bdev
, test_opt(sbi
, NOBARRIER
),
527 test_opt(sbi
, FLUSH_MERGE
), ret
);
531 static int submit_flush_wait(struct f2fs_sb_info
*sbi
, nid_t ino
)
537 return __submit_flush_wait(sbi
, sbi
->sb
->s_bdev
);
539 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
540 if (!is_dirty_device(sbi
, ino
, i
, FLUSH_INO
))
542 ret
= __submit_flush_wait(sbi
, FDEV(i
).bdev
);
549 static int issue_flush_thread(void *data
)
551 struct f2fs_sb_info
*sbi
= data
;
552 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
553 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
555 if (kthread_should_stop())
558 sb_start_intwrite(sbi
->sb
);
560 if (!llist_empty(&fcc
->issue_list
)) {
561 struct flush_cmd
*cmd
, *next
;
564 fcc
->dispatch_list
= llist_del_all(&fcc
->issue_list
);
565 fcc
->dispatch_list
= llist_reverse_order(fcc
->dispatch_list
);
567 cmd
= llist_entry(fcc
->dispatch_list
, struct flush_cmd
, llnode
);
569 ret
= submit_flush_wait(sbi
, cmd
->ino
);
570 atomic_inc(&fcc
->issued_flush
);
572 llist_for_each_entry_safe(cmd
, next
,
573 fcc
->dispatch_list
, llnode
) {
575 complete(&cmd
->wait
);
577 fcc
->dispatch_list
= NULL
;
580 sb_end_intwrite(sbi
->sb
);
582 wait_event_interruptible(*q
,
583 kthread_should_stop() || !llist_empty(&fcc
->issue_list
));
587 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
, nid_t ino
)
589 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
590 struct flush_cmd cmd
;
593 if (test_opt(sbi
, NOBARRIER
))
596 if (!test_opt(sbi
, FLUSH_MERGE
)) {
597 ret
= submit_flush_wait(sbi
, ino
);
598 atomic_inc(&fcc
->issued_flush
);
602 if (atomic_inc_return(&fcc
->issing_flush
) == 1 || sbi
->s_ndevs
> 1) {
603 ret
= submit_flush_wait(sbi
, ino
);
604 atomic_dec(&fcc
->issing_flush
);
606 atomic_inc(&fcc
->issued_flush
);
611 init_completion(&cmd
.wait
);
613 llist_add(&cmd
.llnode
, &fcc
->issue_list
);
615 /* update issue_list before we wake up issue_flush thread */
618 if (waitqueue_active(&fcc
->flush_wait_queue
))
619 wake_up(&fcc
->flush_wait_queue
);
621 if (fcc
->f2fs_issue_flush
) {
622 wait_for_completion(&cmd
.wait
);
623 atomic_dec(&fcc
->issing_flush
);
625 struct llist_node
*list
;
627 list
= llist_del_all(&fcc
->issue_list
);
629 wait_for_completion(&cmd
.wait
);
630 atomic_dec(&fcc
->issing_flush
);
632 struct flush_cmd
*tmp
, *next
;
634 ret
= submit_flush_wait(sbi
, ino
);
636 llist_for_each_entry_safe(tmp
, next
, list
, llnode
) {
639 atomic_dec(&fcc
->issing_flush
);
643 complete(&tmp
->wait
);
651 int create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
653 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
654 struct flush_cmd_control
*fcc
;
657 if (SM_I(sbi
)->fcc_info
) {
658 fcc
= SM_I(sbi
)->fcc_info
;
659 if (fcc
->f2fs_issue_flush
)
664 fcc
= f2fs_kzalloc(sbi
, sizeof(struct flush_cmd_control
), GFP_KERNEL
);
667 atomic_set(&fcc
->issued_flush
, 0);
668 atomic_set(&fcc
->issing_flush
, 0);
669 init_waitqueue_head(&fcc
->flush_wait_queue
);
670 init_llist_head(&fcc
->issue_list
);
671 SM_I(sbi
)->fcc_info
= fcc
;
672 if (!test_opt(sbi
, FLUSH_MERGE
))
676 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
677 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
678 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
679 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
681 SM_I(sbi
)->fcc_info
= NULL
;
688 void destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
, bool free
)
690 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
692 if (fcc
&& fcc
->f2fs_issue_flush
) {
693 struct task_struct
*flush_thread
= fcc
->f2fs_issue_flush
;
695 fcc
->f2fs_issue_flush
= NULL
;
696 kthread_stop(flush_thread
);
700 SM_I(sbi
)->fcc_info
= NULL
;
704 int f2fs_flush_device_cache(struct f2fs_sb_info
*sbi
)
711 for (i
= 1; i
< sbi
->s_ndevs
; i
++) {
712 if (!f2fs_test_bit(i
, (char *)&sbi
->dirty_device
))
714 ret
= __submit_flush_wait(sbi
, FDEV(i
).bdev
);
718 spin_lock(&sbi
->dev_lock
);
719 f2fs_clear_bit(i
, (char *)&sbi
->dirty_device
);
720 spin_unlock(&sbi
->dev_lock
);
726 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
727 enum dirty_type dirty_type
)
729 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
731 /* need not be added */
732 if (IS_CURSEG(sbi
, segno
))
735 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
736 dirty_i
->nr_dirty
[dirty_type
]++;
738 if (dirty_type
== DIRTY
) {
739 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
740 enum dirty_type t
= sentry
->type
;
742 if (unlikely(t
>= DIRTY
)) {
746 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
747 dirty_i
->nr_dirty
[t
]++;
751 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
752 enum dirty_type dirty_type
)
754 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
756 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
757 dirty_i
->nr_dirty
[dirty_type
]--;
759 if (dirty_type
== DIRTY
) {
760 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
761 enum dirty_type t
= sentry
->type
;
763 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
764 dirty_i
->nr_dirty
[t
]--;
766 if (get_valid_blocks(sbi
, segno
, true) == 0)
767 clear_bit(GET_SEC_FROM_SEG(sbi
, segno
),
768 dirty_i
->victim_secmap
);
773 * Should not occur error such as -ENOMEM.
774 * Adding dirty entry into seglist is not critical operation.
775 * If a given segment is one of current working segments, it won't be added.
777 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
779 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
780 unsigned short valid_blocks
;
782 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
785 mutex_lock(&dirty_i
->seglist_lock
);
787 valid_blocks
= get_valid_blocks(sbi
, segno
, false);
789 if (valid_blocks
== 0) {
790 __locate_dirty_segment(sbi
, segno
, PRE
);
791 __remove_dirty_segment(sbi
, segno
, DIRTY
);
792 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
793 __locate_dirty_segment(sbi
, segno
, DIRTY
);
795 /* Recovery routine with SSR needs this */
796 __remove_dirty_segment(sbi
, segno
, DIRTY
);
799 mutex_unlock(&dirty_i
->seglist_lock
);
802 static struct discard_cmd
*__create_discard_cmd(struct f2fs_sb_info
*sbi
,
803 struct block_device
*bdev
, block_t lstart
,
804 block_t start
, block_t len
)
806 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
807 struct list_head
*pend_list
;
808 struct discard_cmd
*dc
;
810 f2fs_bug_on(sbi
, !len
);
812 pend_list
= &dcc
->pend_list
[plist_idx(len
)];
814 dc
= f2fs_kmem_cache_alloc(discard_cmd_slab
, GFP_NOFS
);
815 INIT_LIST_HEAD(&dc
->list
);
823 init_completion(&dc
->wait
);
824 list_add_tail(&dc
->list
, pend_list
);
825 atomic_inc(&dcc
->discard_cmd_cnt
);
826 dcc
->undiscard_blks
+= len
;
831 static struct discard_cmd
*__attach_discard_cmd(struct f2fs_sb_info
*sbi
,
832 struct block_device
*bdev
, block_t lstart
,
833 block_t start
, block_t len
,
834 struct rb_node
*parent
, struct rb_node
**p
)
836 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
837 struct discard_cmd
*dc
;
839 dc
= __create_discard_cmd(sbi
, bdev
, lstart
, start
, len
);
841 rb_link_node(&dc
->rb_node
, parent
, p
);
842 rb_insert_color(&dc
->rb_node
, &dcc
->root
);
847 static void __detach_discard_cmd(struct discard_cmd_control
*dcc
,
848 struct discard_cmd
*dc
)
850 if (dc
->state
== D_DONE
)
851 atomic_dec(&dcc
->issing_discard
);
854 rb_erase(&dc
->rb_node
, &dcc
->root
);
855 dcc
->undiscard_blks
-= dc
->len
;
857 kmem_cache_free(discard_cmd_slab
, dc
);
859 atomic_dec(&dcc
->discard_cmd_cnt
);
862 static void __remove_discard_cmd(struct f2fs_sb_info
*sbi
,
863 struct discard_cmd
*dc
)
865 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
867 trace_f2fs_remove_discard(dc
->bdev
, dc
->start
, dc
->len
);
869 f2fs_bug_on(sbi
, dc
->ref
);
871 if (dc
->error
== -EOPNOTSUPP
)
875 f2fs_msg(sbi
->sb
, KERN_INFO
,
876 "Issue discard(%u, %u, %u) failed, ret: %d",
877 dc
->lstart
, dc
->start
, dc
->len
, dc
->error
);
878 __detach_discard_cmd(dcc
, dc
);
881 static void f2fs_submit_discard_endio(struct bio
*bio
)
883 struct discard_cmd
*dc
= (struct discard_cmd
*)bio
->bi_private
;
885 dc
->error
= blk_status_to_errno(bio
->bi_status
);
887 complete_all(&dc
->wait
);
891 static void __check_sit_bitmap(struct f2fs_sb_info
*sbi
,
892 block_t start
, block_t end
)
894 #ifdef CONFIG_F2FS_CHECK_FS
895 struct seg_entry
*sentry
;
898 unsigned long offset
, size
, max_blocks
= sbi
->blocks_per_seg
;
902 segno
= GET_SEGNO(sbi
, blk
);
903 sentry
= get_seg_entry(sbi
, segno
);
904 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blk
);
906 if (end
< START_BLOCK(sbi
, segno
+ 1))
907 size
= GET_BLKOFF_FROM_SEG0(sbi
, end
);
910 map
= (unsigned long *)(sentry
->cur_valid_map
);
911 offset
= __find_rev_next_bit(map
, size
, offset
);
912 f2fs_bug_on(sbi
, offset
!= size
);
913 blk
= START_BLOCK(sbi
, segno
+ 1);
918 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
919 static void __submit_discard_cmd(struct f2fs_sb_info
*sbi
,
920 struct discard_policy
*dpolicy
,
921 struct discard_cmd
*dc
)
923 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
924 struct list_head
*wait_list
= (dpolicy
->type
== DPOLICY_FSTRIM
) ?
925 &(dcc
->fstrim_list
) : &(dcc
->wait_list
);
926 struct bio
*bio
= NULL
;
927 int flag
= dpolicy
->sync
? REQ_SYNC
: 0;
929 if (dc
->state
!= D_PREP
)
932 trace_f2fs_issue_discard(dc
->bdev
, dc
->start
, dc
->len
);
934 dc
->error
= __blkdev_issue_discard(dc
->bdev
,
935 SECTOR_FROM_BLOCK(dc
->start
),
936 SECTOR_FROM_BLOCK(dc
->len
),
939 /* should keep before submission to avoid D_DONE right away */
940 dc
->state
= D_SUBMIT
;
941 atomic_inc(&dcc
->issued_discard
);
942 atomic_inc(&dcc
->issing_discard
);
944 bio
->bi_private
= dc
;
945 bio
->bi_end_io
= f2fs_submit_discard_endio
;
948 list_move_tail(&dc
->list
, wait_list
);
949 __check_sit_bitmap(sbi
, dc
->start
, dc
->start
+ dc
->len
);
951 f2fs_update_iostat(sbi
, FS_DISCARD
, 1);
954 __remove_discard_cmd(sbi
, dc
);
958 static struct discard_cmd
*__insert_discard_tree(struct f2fs_sb_info
*sbi
,
959 struct block_device
*bdev
, block_t lstart
,
960 block_t start
, block_t len
,
961 struct rb_node
**insert_p
,
962 struct rb_node
*insert_parent
)
964 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
966 struct rb_node
*parent
= NULL
;
967 struct discard_cmd
*dc
= NULL
;
969 if (insert_p
&& insert_parent
) {
970 parent
= insert_parent
;
975 p
= __lookup_rb_tree_for_insert(sbi
, &dcc
->root
, &parent
, lstart
);
977 dc
= __attach_discard_cmd(sbi
, bdev
, lstart
, start
, len
, parent
, p
);
984 static void __relocate_discard_cmd(struct discard_cmd_control
*dcc
,
985 struct discard_cmd
*dc
)
987 list_move_tail(&dc
->list
, &dcc
->pend_list
[plist_idx(dc
->len
)]);
990 static void __punch_discard_cmd(struct f2fs_sb_info
*sbi
,
991 struct discard_cmd
*dc
, block_t blkaddr
)
993 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
994 struct discard_info di
= dc
->di
;
995 bool modified
= false;
997 if (dc
->state
== D_DONE
|| dc
->len
== 1) {
998 __remove_discard_cmd(sbi
, dc
);
1002 dcc
->undiscard_blks
-= di
.len
;
1004 if (blkaddr
> di
.lstart
) {
1005 dc
->len
= blkaddr
- dc
->lstart
;
1006 dcc
->undiscard_blks
+= dc
->len
;
1007 __relocate_discard_cmd(dcc
, dc
);
1011 if (blkaddr
< di
.lstart
+ di
.len
- 1) {
1013 __insert_discard_tree(sbi
, dc
->bdev
, blkaddr
+ 1,
1014 di
.start
+ blkaddr
+ 1 - di
.lstart
,
1015 di
.lstart
+ di
.len
- 1 - blkaddr
,
1021 dcc
->undiscard_blks
+= dc
->len
;
1022 __relocate_discard_cmd(dcc
, dc
);
1027 static void __update_discard_tree_range(struct f2fs_sb_info
*sbi
,
1028 struct block_device
*bdev
, block_t lstart
,
1029 block_t start
, block_t len
)
1031 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1032 struct discard_cmd
*prev_dc
= NULL
, *next_dc
= NULL
;
1033 struct discard_cmd
*dc
;
1034 struct discard_info di
= {0};
1035 struct rb_node
**insert_p
= NULL
, *insert_parent
= NULL
;
1036 block_t end
= lstart
+ len
;
1038 mutex_lock(&dcc
->cmd_lock
);
1040 dc
= (struct discard_cmd
*)__lookup_rb_tree_ret(&dcc
->root
,
1042 (struct rb_entry
**)&prev_dc
,
1043 (struct rb_entry
**)&next_dc
,
1044 &insert_p
, &insert_parent
, true);
1050 di
.len
= next_dc
? next_dc
->lstart
- lstart
: len
;
1051 di
.len
= min(di
.len
, len
);
1056 struct rb_node
*node
;
1057 bool merged
= false;
1058 struct discard_cmd
*tdc
= NULL
;
1061 di
.lstart
= prev_dc
->lstart
+ prev_dc
->len
;
1062 if (di
.lstart
< lstart
)
1064 if (di
.lstart
>= end
)
1067 if (!next_dc
|| next_dc
->lstart
> end
)
1068 di
.len
= end
- di
.lstart
;
1070 di
.len
= next_dc
->lstart
- di
.lstart
;
1071 di
.start
= start
+ di
.lstart
- lstart
;
1077 if (prev_dc
&& prev_dc
->state
== D_PREP
&&
1078 prev_dc
->bdev
== bdev
&&
1079 __is_discard_back_mergeable(&di
, &prev_dc
->di
)) {
1080 prev_dc
->di
.len
+= di
.len
;
1081 dcc
->undiscard_blks
+= di
.len
;
1082 __relocate_discard_cmd(dcc
, prev_dc
);
1088 if (next_dc
&& next_dc
->state
== D_PREP
&&
1089 next_dc
->bdev
== bdev
&&
1090 __is_discard_front_mergeable(&di
, &next_dc
->di
)) {
1091 next_dc
->di
.lstart
= di
.lstart
;
1092 next_dc
->di
.len
+= di
.len
;
1093 next_dc
->di
.start
= di
.start
;
1094 dcc
->undiscard_blks
+= di
.len
;
1095 __relocate_discard_cmd(dcc
, next_dc
);
1097 __remove_discard_cmd(sbi
, tdc
);
1102 __insert_discard_tree(sbi
, bdev
, di
.lstart
, di
.start
,
1103 di
.len
, NULL
, NULL
);
1110 node
= rb_next(&prev_dc
->rb_node
);
1111 next_dc
= rb_entry_safe(node
, struct discard_cmd
, rb_node
);
1114 mutex_unlock(&dcc
->cmd_lock
);
1117 static int __queue_discard_cmd(struct f2fs_sb_info
*sbi
,
1118 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1120 block_t lblkstart
= blkstart
;
1122 trace_f2fs_queue_discard(bdev
, blkstart
, blklen
);
1125 int devi
= f2fs_target_device_index(sbi
, blkstart
);
1127 blkstart
-= FDEV(devi
).start_blk
;
1129 __update_discard_tree_range(sbi
, bdev
, lblkstart
, blkstart
, blklen
);
1133 static void __issue_discard_cmd_range(struct f2fs_sb_info
*sbi
,
1134 struct discard_policy
*dpolicy
,
1135 unsigned int start
, unsigned int end
)
1137 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1138 struct discard_cmd
*prev_dc
= NULL
, *next_dc
= NULL
;
1139 struct rb_node
**insert_p
= NULL
, *insert_parent
= NULL
;
1140 struct discard_cmd
*dc
;
1141 struct blk_plug plug
;
1147 mutex_lock(&dcc
->cmd_lock
);
1148 f2fs_bug_on(sbi
, !__check_rb_tree_consistence(sbi
, &dcc
->root
));
1150 dc
= (struct discard_cmd
*)__lookup_rb_tree_ret(&dcc
->root
,
1152 (struct rb_entry
**)&prev_dc
,
1153 (struct rb_entry
**)&next_dc
,
1154 &insert_p
, &insert_parent
, true);
1158 blk_start_plug(&plug
);
1160 while (dc
&& dc
->lstart
<= end
) {
1161 struct rb_node
*node
;
1163 if (dc
->len
< dpolicy
->granularity
)
1166 if (dc
->state
!= D_PREP
) {
1167 list_move_tail(&dc
->list
, &dcc
->fstrim_list
);
1171 __submit_discard_cmd(sbi
, dpolicy
, dc
);
1173 if (++issued
>= dpolicy
->max_requests
) {
1174 start
= dc
->lstart
+ dc
->len
;
1176 blk_finish_plug(&plug
);
1177 mutex_unlock(&dcc
->cmd_lock
);
1184 node
= rb_next(&dc
->rb_node
);
1185 dc
= rb_entry_safe(node
, struct discard_cmd
, rb_node
);
1187 if (fatal_signal_pending(current
))
1191 blk_finish_plug(&plug
);
1192 mutex_unlock(&dcc
->cmd_lock
);
1195 static int __issue_discard_cmd(struct f2fs_sb_info
*sbi
,
1196 struct discard_policy
*dpolicy
)
1198 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1199 struct list_head
*pend_list
;
1200 struct discard_cmd
*dc
, *tmp
;
1201 struct blk_plug plug
;
1202 int i
, iter
= 0, issued
= 0;
1203 bool io_interrupted
= false;
1205 for (i
= MAX_PLIST_NUM
- 1; i
>= 0; i
--) {
1206 if (i
+ 1 < dpolicy
->granularity
)
1208 pend_list
= &dcc
->pend_list
[i
];
1210 mutex_lock(&dcc
->cmd_lock
);
1211 if (list_empty(pend_list
))
1213 f2fs_bug_on(sbi
, !__check_rb_tree_consistence(sbi
, &dcc
->root
));
1214 blk_start_plug(&plug
);
1215 list_for_each_entry_safe(dc
, tmp
, pend_list
, list
) {
1216 f2fs_bug_on(sbi
, dc
->state
!= D_PREP
);
1218 if (dpolicy
->io_aware
&& i
< dpolicy
->io_aware_gran
&&
1220 io_interrupted
= true;
1224 __submit_discard_cmd(sbi
, dpolicy
, dc
);
1227 if (++iter
>= dpolicy
->max_requests
)
1230 blk_finish_plug(&plug
);
1232 mutex_unlock(&dcc
->cmd_lock
);
1234 if (iter
>= dpolicy
->max_requests
)
1238 if (!issued
&& io_interrupted
)
1244 static bool __drop_discard_cmd(struct f2fs_sb_info
*sbi
)
1246 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1247 struct list_head
*pend_list
;
1248 struct discard_cmd
*dc
, *tmp
;
1250 bool dropped
= false;
1252 mutex_lock(&dcc
->cmd_lock
);
1253 for (i
= MAX_PLIST_NUM
- 1; i
>= 0; i
--) {
1254 pend_list
= &dcc
->pend_list
[i
];
1255 list_for_each_entry_safe(dc
, tmp
, pend_list
, list
) {
1256 f2fs_bug_on(sbi
, dc
->state
!= D_PREP
);
1257 __remove_discard_cmd(sbi
, dc
);
1261 mutex_unlock(&dcc
->cmd_lock
);
1266 void drop_discard_cmd(struct f2fs_sb_info
*sbi
)
1268 __drop_discard_cmd(sbi
);
1271 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info
*sbi
,
1272 struct discard_cmd
*dc
)
1274 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1275 unsigned int len
= 0;
1277 wait_for_completion_io(&dc
->wait
);
1278 mutex_lock(&dcc
->cmd_lock
);
1279 f2fs_bug_on(sbi
, dc
->state
!= D_DONE
);
1284 __remove_discard_cmd(sbi
, dc
);
1286 mutex_unlock(&dcc
->cmd_lock
);
1291 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info
*sbi
,
1292 struct discard_policy
*dpolicy
,
1293 block_t start
, block_t end
)
1295 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1296 struct list_head
*wait_list
= (dpolicy
->type
== DPOLICY_FSTRIM
) ?
1297 &(dcc
->fstrim_list
) : &(dcc
->wait_list
);
1298 struct discard_cmd
*dc
, *tmp
;
1300 unsigned int trimmed
= 0;
1305 mutex_lock(&dcc
->cmd_lock
);
1306 list_for_each_entry_safe(dc
, tmp
, wait_list
, list
) {
1307 if (dc
->lstart
+ dc
->len
<= start
|| end
<= dc
->lstart
)
1309 if (dc
->len
< dpolicy
->granularity
)
1311 if (dc
->state
== D_DONE
&& !dc
->ref
) {
1312 wait_for_completion_io(&dc
->wait
);
1315 __remove_discard_cmd(sbi
, dc
);
1322 mutex_unlock(&dcc
->cmd_lock
);
1325 trimmed
+= __wait_one_discard_bio(sbi
, dc
);
1332 static void __wait_all_discard_cmd(struct f2fs_sb_info
*sbi
,
1333 struct discard_policy
*dpolicy
)
1335 __wait_discard_cmd_range(sbi
, dpolicy
, 0, UINT_MAX
);
1338 /* This should be covered by global mutex, &sit_i->sentry_lock */
1339 static void f2fs_wait_discard_bio(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1341 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1342 struct discard_cmd
*dc
;
1343 bool need_wait
= false;
1345 mutex_lock(&dcc
->cmd_lock
);
1346 dc
= (struct discard_cmd
*)__lookup_rb_tree(&dcc
->root
, NULL
, blkaddr
);
1348 if (dc
->state
== D_PREP
) {
1349 __punch_discard_cmd(sbi
, dc
, blkaddr
);
1355 mutex_unlock(&dcc
->cmd_lock
);
1358 __wait_one_discard_bio(sbi
, dc
);
1361 void stop_discard_thread(struct f2fs_sb_info
*sbi
)
1363 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1365 if (dcc
&& dcc
->f2fs_issue_discard
) {
1366 struct task_struct
*discard_thread
= dcc
->f2fs_issue_discard
;
1368 dcc
->f2fs_issue_discard
= NULL
;
1369 kthread_stop(discard_thread
);
1373 /* This comes from f2fs_put_super */
1374 bool f2fs_wait_discard_bios(struct f2fs_sb_info
*sbi
)
1376 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1377 struct discard_policy dpolicy
;
1380 init_discard_policy(&dpolicy
, DPOLICY_UMOUNT
, dcc
->discard_granularity
);
1381 __issue_discard_cmd(sbi
, &dpolicy
);
1382 dropped
= __drop_discard_cmd(sbi
);
1383 __wait_all_discard_cmd(sbi
, &dpolicy
);
1388 static int issue_discard_thread(void *data
)
1390 struct f2fs_sb_info
*sbi
= data
;
1391 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1392 wait_queue_head_t
*q
= &dcc
->discard_wait_queue
;
1393 struct discard_policy dpolicy
;
1394 unsigned int wait_ms
= DEF_MIN_DISCARD_ISSUE_TIME
;
1400 init_discard_policy(&dpolicy
, DPOLICY_BG
,
1401 dcc
->discard_granularity
);
1403 wait_event_interruptible_timeout(*q
,
1404 kthread_should_stop() || freezing(current
) ||
1406 msecs_to_jiffies(wait_ms
));
1407 if (try_to_freeze())
1409 if (f2fs_readonly(sbi
->sb
))
1411 if (kthread_should_stop())
1414 if (dcc
->discard_wake
) {
1415 dcc
->discard_wake
= 0;
1416 if (sbi
->gc_thread
&& sbi
->gc_thread
->gc_urgent
)
1417 init_discard_policy(&dpolicy
,
1421 sb_start_intwrite(sbi
->sb
);
1423 issued
= __issue_discard_cmd(sbi
, &dpolicy
);
1425 __wait_all_discard_cmd(sbi
, &dpolicy
);
1426 wait_ms
= dpolicy
.min_interval
;
1428 wait_ms
= dpolicy
.max_interval
;
1431 sb_end_intwrite(sbi
->sb
);
1433 } while (!kthread_should_stop());
1437 #ifdef CONFIG_BLK_DEV_ZONED
1438 static int __f2fs_issue_discard_zone(struct f2fs_sb_info
*sbi
,
1439 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1441 sector_t sector
, nr_sects
;
1442 block_t lblkstart
= blkstart
;
1446 devi
= f2fs_target_device_index(sbi
, blkstart
);
1447 blkstart
-= FDEV(devi
).start_blk
;
1451 * We need to know the type of the zone: for conventional zones,
1452 * use regular discard if the drive supports it. For sequential
1453 * zones, reset the zone write pointer.
1455 switch (get_blkz_type(sbi
, bdev
, blkstart
)) {
1457 case BLK_ZONE_TYPE_CONVENTIONAL
:
1458 if (!blk_queue_discard(bdev_get_queue(bdev
)))
1460 return __queue_discard_cmd(sbi
, bdev
, lblkstart
, blklen
);
1461 case BLK_ZONE_TYPE_SEQWRITE_REQ
:
1462 case BLK_ZONE_TYPE_SEQWRITE_PREF
:
1463 sector
= SECTOR_FROM_BLOCK(blkstart
);
1464 nr_sects
= SECTOR_FROM_BLOCK(blklen
);
1466 if (sector
& (bdev_zone_sectors(bdev
) - 1) ||
1467 nr_sects
!= bdev_zone_sectors(bdev
)) {
1468 f2fs_msg(sbi
->sb
, KERN_INFO
,
1469 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1470 devi
, sbi
->s_ndevs
? FDEV(devi
).path
: "",
1474 trace_f2fs_issue_reset_zone(bdev
, blkstart
);
1475 return blkdev_reset_zones(bdev
, sector
,
1476 nr_sects
, GFP_NOFS
);
1478 /* Unknown zone type: broken device ? */
1484 static int __issue_discard_async(struct f2fs_sb_info
*sbi
,
1485 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1487 #ifdef CONFIG_BLK_DEV_ZONED
1488 if (f2fs_sb_mounted_blkzoned(sbi
->sb
) &&
1489 bdev_zoned_model(bdev
) != BLK_ZONED_NONE
)
1490 return __f2fs_issue_discard_zone(sbi
, bdev
, blkstart
, blklen
);
1492 return __queue_discard_cmd(sbi
, bdev
, blkstart
, blklen
);
1495 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
1496 block_t blkstart
, block_t blklen
)
1498 sector_t start
= blkstart
, len
= 0;
1499 struct block_device
*bdev
;
1500 struct seg_entry
*se
;
1501 unsigned int offset
;
1505 bdev
= f2fs_target_device(sbi
, blkstart
, NULL
);
1507 for (i
= blkstart
; i
< blkstart
+ blklen
; i
++, len
++) {
1509 struct block_device
*bdev2
=
1510 f2fs_target_device(sbi
, i
, NULL
);
1512 if (bdev2
!= bdev
) {
1513 err
= __issue_discard_async(sbi
, bdev
,
1523 se
= get_seg_entry(sbi
, GET_SEGNO(sbi
, i
));
1524 offset
= GET_BLKOFF_FROM_SEG0(sbi
, i
);
1526 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
1527 sbi
->discard_blks
--;
1531 err
= __issue_discard_async(sbi
, bdev
, start
, len
);
1535 static bool add_discard_addrs(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
,
1538 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
1539 int max_blocks
= sbi
->blocks_per_seg
;
1540 struct seg_entry
*se
= get_seg_entry(sbi
, cpc
->trim_start
);
1541 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
1542 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
1543 unsigned long *discard_map
= (unsigned long *)se
->discard_map
;
1544 unsigned long *dmap
= SIT_I(sbi
)->tmp_map
;
1545 unsigned int start
= 0, end
= -1;
1546 bool force
= (cpc
->reason
& CP_DISCARD
);
1547 struct discard_entry
*de
= NULL
;
1548 struct list_head
*head
= &SM_I(sbi
)->dcc_info
->entry_list
;
1551 if (se
->valid_blocks
== max_blocks
|| !f2fs_discard_en(sbi
))
1555 if (!test_opt(sbi
, DISCARD
) || !se
->valid_blocks
||
1556 SM_I(sbi
)->dcc_info
->nr_discards
>=
1557 SM_I(sbi
)->dcc_info
->max_discards
)
1561 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1562 for (i
= 0; i
< entries
; i
++)
1563 dmap
[i
] = force
? ~ckpt_map
[i
] & ~discard_map
[i
] :
1564 (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
1566 while (force
|| SM_I(sbi
)->dcc_info
->nr_discards
<=
1567 SM_I(sbi
)->dcc_info
->max_discards
) {
1568 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
1569 if (start
>= max_blocks
)
1572 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
1573 if (force
&& start
&& end
!= max_blocks
1574 && (end
- start
) < cpc
->trim_minlen
)
1581 de
= f2fs_kmem_cache_alloc(discard_entry_slab
,
1583 de
->start_blkaddr
= START_BLOCK(sbi
, cpc
->trim_start
);
1584 list_add_tail(&de
->list
, head
);
1587 for (i
= start
; i
< end
; i
++)
1588 __set_bit_le(i
, (void *)de
->discard_map
);
1590 SM_I(sbi
)->dcc_info
->nr_discards
+= end
- start
;
1595 void release_discard_addrs(struct f2fs_sb_info
*sbi
)
1597 struct list_head
*head
= &(SM_I(sbi
)->dcc_info
->entry_list
);
1598 struct discard_entry
*entry
, *this;
1601 list_for_each_entry_safe(entry
, this, head
, list
) {
1602 list_del(&entry
->list
);
1603 kmem_cache_free(discard_entry_slab
, entry
);
1608 * Should call clear_prefree_segments after checkpoint is done.
1610 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
1612 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1615 mutex_lock(&dirty_i
->seglist_lock
);
1616 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[PRE
], MAIN_SEGS(sbi
))
1617 __set_test_and_free(sbi
, segno
);
1618 mutex_unlock(&dirty_i
->seglist_lock
);
1621 void clear_prefree_segments(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1623 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1624 struct list_head
*head
= &dcc
->entry_list
;
1625 struct discard_entry
*entry
, *this;
1626 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1627 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
1628 unsigned int start
= 0, end
= -1;
1629 unsigned int secno
, start_segno
;
1630 bool force
= (cpc
->reason
& CP_DISCARD
);
1632 mutex_lock(&dirty_i
->seglist_lock
);
1636 start
= find_next_bit(prefree_map
, MAIN_SEGS(sbi
), end
+ 1);
1637 if (start
>= MAIN_SEGS(sbi
))
1639 end
= find_next_zero_bit(prefree_map
, MAIN_SEGS(sbi
),
1642 for (i
= start
; i
< end
; i
++)
1643 clear_bit(i
, prefree_map
);
1645 dirty_i
->nr_dirty
[PRE
] -= end
- start
;
1647 if (!test_opt(sbi
, DISCARD
))
1650 if (force
&& start
>= cpc
->trim_start
&&
1651 (end
- 1) <= cpc
->trim_end
)
1654 if (!test_opt(sbi
, LFS
) || sbi
->segs_per_sec
== 1) {
1655 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
1656 (end
- start
) << sbi
->log_blocks_per_seg
);
1660 secno
= GET_SEC_FROM_SEG(sbi
, start
);
1661 start_segno
= GET_SEG_FROM_SEC(sbi
, secno
);
1662 if (!IS_CURSEC(sbi
, secno
) &&
1663 !get_valid_blocks(sbi
, start
, true))
1664 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start_segno
),
1665 sbi
->segs_per_sec
<< sbi
->log_blocks_per_seg
);
1667 start
= start_segno
+ sbi
->segs_per_sec
;
1673 mutex_unlock(&dirty_i
->seglist_lock
);
1675 /* send small discards */
1676 list_for_each_entry_safe(entry
, this, head
, list
) {
1677 unsigned int cur_pos
= 0, next_pos
, len
, total_len
= 0;
1678 bool is_valid
= test_bit_le(0, entry
->discard_map
);
1682 next_pos
= find_next_zero_bit_le(entry
->discard_map
,
1683 sbi
->blocks_per_seg
, cur_pos
);
1684 len
= next_pos
- cur_pos
;
1686 if (f2fs_sb_mounted_blkzoned(sbi
->sb
) ||
1687 (force
&& len
< cpc
->trim_minlen
))
1690 f2fs_issue_discard(sbi
, entry
->start_blkaddr
+ cur_pos
,
1694 next_pos
= find_next_bit_le(entry
->discard_map
,
1695 sbi
->blocks_per_seg
, cur_pos
);
1699 is_valid
= !is_valid
;
1701 if (cur_pos
< sbi
->blocks_per_seg
)
1704 list_del(&entry
->list
);
1705 dcc
->nr_discards
-= total_len
;
1706 kmem_cache_free(discard_entry_slab
, entry
);
1709 wake_up_discard_thread(sbi
, false);
1712 void init_discard_policy(struct discard_policy
*dpolicy
,
1713 int discard_type
, unsigned int granularity
)
1716 dpolicy
->type
= discard_type
;
1717 dpolicy
->sync
= true;
1718 dpolicy
->granularity
= granularity
;
1720 dpolicy
->max_requests
= DEF_MAX_DISCARD_REQUEST
;
1721 dpolicy
->io_aware_gran
= MAX_PLIST_NUM
;
1723 if (discard_type
== DPOLICY_BG
) {
1724 dpolicy
->min_interval
= DEF_MIN_DISCARD_ISSUE_TIME
;
1725 dpolicy
->max_interval
= DEF_MAX_DISCARD_ISSUE_TIME
;
1726 dpolicy
->io_aware
= true;
1727 } else if (discard_type
== DPOLICY_FORCE
) {
1728 dpolicy
->min_interval
= DEF_MIN_DISCARD_ISSUE_TIME
;
1729 dpolicy
->max_interval
= DEF_MAX_DISCARD_ISSUE_TIME
;
1730 dpolicy
->io_aware
= true;
1731 } else if (discard_type
== DPOLICY_FSTRIM
) {
1732 dpolicy
->io_aware
= false;
1733 } else if (discard_type
== DPOLICY_UMOUNT
) {
1734 dpolicy
->io_aware
= false;
1738 static int create_discard_cmd_control(struct f2fs_sb_info
*sbi
)
1740 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
1741 struct discard_cmd_control
*dcc
;
1744 if (SM_I(sbi
)->dcc_info
) {
1745 dcc
= SM_I(sbi
)->dcc_info
;
1749 dcc
= f2fs_kzalloc(sbi
, sizeof(struct discard_cmd_control
), GFP_KERNEL
);
1753 dcc
->discard_granularity
= DEFAULT_DISCARD_GRANULARITY
;
1754 INIT_LIST_HEAD(&dcc
->entry_list
);
1755 for (i
= 0; i
< MAX_PLIST_NUM
; i
++)
1756 INIT_LIST_HEAD(&dcc
->pend_list
[i
]);
1757 INIT_LIST_HEAD(&dcc
->wait_list
);
1758 INIT_LIST_HEAD(&dcc
->fstrim_list
);
1759 mutex_init(&dcc
->cmd_lock
);
1760 atomic_set(&dcc
->issued_discard
, 0);
1761 atomic_set(&dcc
->issing_discard
, 0);
1762 atomic_set(&dcc
->discard_cmd_cnt
, 0);
1763 dcc
->nr_discards
= 0;
1764 dcc
->max_discards
= MAIN_SEGS(sbi
) << sbi
->log_blocks_per_seg
;
1765 dcc
->undiscard_blks
= 0;
1766 dcc
->root
= RB_ROOT
;
1768 init_waitqueue_head(&dcc
->discard_wait_queue
);
1769 SM_I(sbi
)->dcc_info
= dcc
;
1771 dcc
->f2fs_issue_discard
= kthread_run(issue_discard_thread
, sbi
,
1772 "f2fs_discard-%u:%u", MAJOR(dev
), MINOR(dev
));
1773 if (IS_ERR(dcc
->f2fs_issue_discard
)) {
1774 err
= PTR_ERR(dcc
->f2fs_issue_discard
);
1776 SM_I(sbi
)->dcc_info
= NULL
;
1783 static void destroy_discard_cmd_control(struct f2fs_sb_info
*sbi
)
1785 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1790 stop_discard_thread(sbi
);
1793 SM_I(sbi
)->dcc_info
= NULL
;
1796 static bool __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
1798 struct sit_info
*sit_i
= SIT_I(sbi
);
1800 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
)) {
1801 sit_i
->dirty_sentries
++;
1808 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
1809 unsigned int segno
, int modified
)
1811 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
1814 __mark_sit_entry_dirty(sbi
, segno
);
1817 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
1819 struct seg_entry
*se
;
1820 unsigned int segno
, offset
;
1821 long int new_vblocks
;
1823 #ifdef CONFIG_F2FS_CHECK_FS
1827 segno
= GET_SEGNO(sbi
, blkaddr
);
1829 se
= get_seg_entry(sbi
, segno
);
1830 new_vblocks
= se
->valid_blocks
+ del
;
1831 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
1833 f2fs_bug_on(sbi
, (new_vblocks
>> (sizeof(unsigned short) << 3) ||
1834 (new_vblocks
> sbi
->blocks_per_seg
)));
1836 se
->valid_blocks
= new_vblocks
;
1837 se
->mtime
= get_mtime(sbi
);
1838 SIT_I(sbi
)->max_mtime
= se
->mtime
;
1840 /* Update valid block bitmap */
1842 exist
= f2fs_test_and_set_bit(offset
, se
->cur_valid_map
);
1843 #ifdef CONFIG_F2FS_CHECK_FS
1844 mir_exist
= f2fs_test_and_set_bit(offset
,
1845 se
->cur_valid_map_mir
);
1846 if (unlikely(exist
!= mir_exist
)) {
1847 f2fs_msg(sbi
->sb
, KERN_ERR
, "Inconsistent error "
1848 "when setting bitmap, blk:%u, old bit:%d",
1850 f2fs_bug_on(sbi
, 1);
1853 if (unlikely(exist
)) {
1854 f2fs_msg(sbi
->sb
, KERN_ERR
,
1855 "Bitmap was wrongly set, blk:%u", blkaddr
);
1856 f2fs_bug_on(sbi
, 1);
1861 if (f2fs_discard_en(sbi
) &&
1862 !f2fs_test_and_set_bit(offset
, se
->discard_map
))
1863 sbi
->discard_blks
--;
1865 /* don't overwrite by SSR to keep node chain */
1866 if (se
->type
== CURSEG_WARM_NODE
) {
1867 if (!f2fs_test_and_set_bit(offset
, se
->ckpt_valid_map
))
1868 se
->ckpt_valid_blocks
++;
1871 exist
= f2fs_test_and_clear_bit(offset
, se
->cur_valid_map
);
1872 #ifdef CONFIG_F2FS_CHECK_FS
1873 mir_exist
= f2fs_test_and_clear_bit(offset
,
1874 se
->cur_valid_map_mir
);
1875 if (unlikely(exist
!= mir_exist
)) {
1876 f2fs_msg(sbi
->sb
, KERN_ERR
, "Inconsistent error "
1877 "when clearing bitmap, blk:%u, old bit:%d",
1879 f2fs_bug_on(sbi
, 1);
1882 if (unlikely(!exist
)) {
1883 f2fs_msg(sbi
->sb
, KERN_ERR
,
1884 "Bitmap was wrongly cleared, blk:%u", blkaddr
);
1885 f2fs_bug_on(sbi
, 1);
1890 if (f2fs_discard_en(sbi
) &&
1891 f2fs_test_and_clear_bit(offset
, se
->discard_map
))
1892 sbi
->discard_blks
++;
1894 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
1895 se
->ckpt_valid_blocks
+= del
;
1897 __mark_sit_entry_dirty(sbi
, segno
);
1899 /* update total number of valid blocks to be written in ckpt area */
1900 SIT_I(sbi
)->written_valid_blocks
+= del
;
1902 if (sbi
->segs_per_sec
> 1)
1903 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
1906 void invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
1908 unsigned int segno
= GET_SEGNO(sbi
, addr
);
1909 struct sit_info
*sit_i
= SIT_I(sbi
);
1911 f2fs_bug_on(sbi
, addr
== NULL_ADDR
);
1912 if (addr
== NEW_ADDR
)
1915 /* add it into sit main buffer */
1916 down_write(&sit_i
->sentry_lock
);
1918 update_sit_entry(sbi
, addr
, -1);
1920 /* add it into dirty seglist */
1921 locate_dirty_segment(sbi
, segno
);
1923 up_write(&sit_i
->sentry_lock
);
1926 bool is_checkpointed_data(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1928 struct sit_info
*sit_i
= SIT_I(sbi
);
1929 unsigned int segno
, offset
;
1930 struct seg_entry
*se
;
1933 if (blkaddr
== NEW_ADDR
|| blkaddr
== NULL_ADDR
)
1936 down_read(&sit_i
->sentry_lock
);
1938 segno
= GET_SEGNO(sbi
, blkaddr
);
1939 se
= get_seg_entry(sbi
, segno
);
1940 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
1942 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
))
1945 up_read(&sit_i
->sentry_lock
);
1951 * This function should be resided under the curseg_mutex lock
1953 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
1954 struct f2fs_summary
*sum
)
1956 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1957 void *addr
= curseg
->sum_blk
;
1958 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
1959 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
1963 * Calculate the number of current summary pages for writing
1965 int npages_for_summary_flush(struct f2fs_sb_info
*sbi
, bool for_ra
)
1967 int valid_sum_count
= 0;
1970 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1971 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
1972 valid_sum_count
+= sbi
->blocks_per_seg
;
1975 valid_sum_count
+= le16_to_cpu(
1976 F2FS_CKPT(sbi
)->cur_data_blkoff
[i
]);
1978 valid_sum_count
+= curseg_blkoff(sbi
, i
);
1982 sum_in_page
= (PAGE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
1983 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
1984 if (valid_sum_count
<= sum_in_page
)
1986 else if ((valid_sum_count
- sum_in_page
) <=
1987 (PAGE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
1993 * Caller should put this summary page
1995 struct page
*get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
1997 return get_meta_page(sbi
, GET_SUM_BLOCK(sbi
, segno
));
2000 void update_meta_page(struct f2fs_sb_info
*sbi
, void *src
, block_t blk_addr
)
2002 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
2004 memcpy(page_address(page
), src
, PAGE_SIZE
);
2005 set_page_dirty(page
);
2006 f2fs_put_page(page
, 1);
2009 static void write_sum_page(struct f2fs_sb_info
*sbi
,
2010 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
2012 update_meta_page(sbi
, (void *)sum_blk
, blk_addr
);
2015 static void write_current_sum_page(struct f2fs_sb_info
*sbi
,
2016 int type
, block_t blk_addr
)
2018 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2019 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
2020 struct f2fs_summary_block
*src
= curseg
->sum_blk
;
2021 struct f2fs_summary_block
*dst
;
2023 dst
= (struct f2fs_summary_block
*)page_address(page
);
2025 mutex_lock(&curseg
->curseg_mutex
);
2027 down_read(&curseg
->journal_rwsem
);
2028 memcpy(&dst
->journal
, curseg
->journal
, SUM_JOURNAL_SIZE
);
2029 up_read(&curseg
->journal_rwsem
);
2031 memcpy(dst
->entries
, src
->entries
, SUM_ENTRY_SIZE
);
2032 memcpy(&dst
->footer
, &src
->footer
, SUM_FOOTER_SIZE
);
2034 mutex_unlock(&curseg
->curseg_mutex
);
2036 set_page_dirty(page
);
2037 f2fs_put_page(page
, 1);
2040 static int is_next_segment_free(struct f2fs_sb_info
*sbi
, int type
)
2042 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2043 unsigned int segno
= curseg
->segno
+ 1;
2044 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2046 if (segno
< MAIN_SEGS(sbi
) && segno
% sbi
->segs_per_sec
)
2047 return !test_bit(segno
, free_i
->free_segmap
);
2052 * Find a new segment from the free segments bitmap to right order
2053 * This function should be returned with success, otherwise BUG
2055 static void get_new_segment(struct f2fs_sb_info
*sbi
,
2056 unsigned int *newseg
, bool new_sec
, int dir
)
2058 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2059 unsigned int segno
, secno
, zoneno
;
2060 unsigned int total_zones
= MAIN_SECS(sbi
) / sbi
->secs_per_zone
;
2061 unsigned int hint
= GET_SEC_FROM_SEG(sbi
, *newseg
);
2062 unsigned int old_zoneno
= GET_ZONE_FROM_SEG(sbi
, *newseg
);
2063 unsigned int left_start
= hint
;
2068 spin_lock(&free_i
->segmap_lock
);
2070 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
2071 segno
= find_next_zero_bit(free_i
->free_segmap
,
2072 GET_SEG_FROM_SEC(sbi
, hint
+ 1), *newseg
+ 1);
2073 if (segno
< GET_SEG_FROM_SEC(sbi
, hint
+ 1))
2077 secno
= find_next_zero_bit(free_i
->free_secmap
, MAIN_SECS(sbi
), hint
);
2078 if (secno
>= MAIN_SECS(sbi
)) {
2079 if (dir
== ALLOC_RIGHT
) {
2080 secno
= find_next_zero_bit(free_i
->free_secmap
,
2082 f2fs_bug_on(sbi
, secno
>= MAIN_SECS(sbi
));
2085 left_start
= hint
- 1;
2091 while (test_bit(left_start
, free_i
->free_secmap
)) {
2092 if (left_start
> 0) {
2096 left_start
= find_next_zero_bit(free_i
->free_secmap
,
2098 f2fs_bug_on(sbi
, left_start
>= MAIN_SECS(sbi
));
2103 segno
= GET_SEG_FROM_SEC(sbi
, secno
);
2104 zoneno
= GET_ZONE_FROM_SEC(sbi
, secno
);
2106 /* give up on finding another zone */
2109 if (sbi
->secs_per_zone
== 1)
2111 if (zoneno
== old_zoneno
)
2113 if (dir
== ALLOC_LEFT
) {
2114 if (!go_left
&& zoneno
+ 1 >= total_zones
)
2116 if (go_left
&& zoneno
== 0)
2119 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
2120 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
2123 if (i
< NR_CURSEG_TYPE
) {
2124 /* zone is in user, try another */
2126 hint
= zoneno
* sbi
->secs_per_zone
- 1;
2127 else if (zoneno
+ 1 >= total_zones
)
2130 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
2132 goto find_other_zone
;
2135 /* set it as dirty segment in free segmap */
2136 f2fs_bug_on(sbi
, test_bit(segno
, free_i
->free_segmap
));
2137 __set_inuse(sbi
, segno
);
2139 spin_unlock(&free_i
->segmap_lock
);
2142 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
2144 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2145 struct summary_footer
*sum_footer
;
2147 curseg
->segno
= curseg
->next_segno
;
2148 curseg
->zone
= GET_ZONE_FROM_SEG(sbi
, curseg
->segno
);
2149 curseg
->next_blkoff
= 0;
2150 curseg
->next_segno
= NULL_SEGNO
;
2152 sum_footer
= &(curseg
->sum_blk
->footer
);
2153 memset(sum_footer
, 0, sizeof(struct summary_footer
));
2154 if (IS_DATASEG(type
))
2155 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
2156 if (IS_NODESEG(type
))
2157 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
2158 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
2161 static unsigned int __get_next_segno(struct f2fs_sb_info
*sbi
, int type
)
2163 /* if segs_per_sec is large than 1, we need to keep original policy. */
2164 if (sbi
->segs_per_sec
!= 1)
2165 return CURSEG_I(sbi
, type
)->segno
;
2167 if (type
== CURSEG_HOT_DATA
|| IS_NODESEG(type
))
2170 if (SIT_I(sbi
)->last_victim
[ALLOC_NEXT
])
2171 return SIT_I(sbi
)->last_victim
[ALLOC_NEXT
];
2172 return CURSEG_I(sbi
, type
)->segno
;
2176 * Allocate a current working segment.
2177 * This function always allocates a free segment in LFS manner.
2179 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
2181 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2182 unsigned int segno
= curseg
->segno
;
2183 int dir
= ALLOC_LEFT
;
2185 write_sum_page(sbi
, curseg
->sum_blk
,
2186 GET_SUM_BLOCK(sbi
, segno
));
2187 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
2190 if (test_opt(sbi
, NOHEAP
))
2193 segno
= __get_next_segno(sbi
, type
);
2194 get_new_segment(sbi
, &segno
, new_sec
, dir
);
2195 curseg
->next_segno
= segno
;
2196 reset_curseg(sbi
, type
, 1);
2197 curseg
->alloc_type
= LFS
;
2200 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
2201 struct curseg_info
*seg
, block_t start
)
2203 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
2204 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
2205 unsigned long *target_map
= SIT_I(sbi
)->tmp_map
;
2206 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
2207 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
2210 for (i
= 0; i
< entries
; i
++)
2211 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
2213 pos
= __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
2215 seg
->next_blkoff
= pos
;
2219 * If a segment is written by LFS manner, next block offset is just obtained
2220 * by increasing the current block offset. However, if a segment is written by
2221 * SSR manner, next block offset obtained by calling __next_free_blkoff
2223 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
2224 struct curseg_info
*seg
)
2226 if (seg
->alloc_type
== SSR
)
2227 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
2233 * This function always allocates a used segment(from dirty seglist) by SSR
2234 * manner, so it should recover the existing segment information of valid blocks
2236 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
)
2238 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2239 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2240 unsigned int new_segno
= curseg
->next_segno
;
2241 struct f2fs_summary_block
*sum_node
;
2242 struct page
*sum_page
;
2244 write_sum_page(sbi
, curseg
->sum_blk
,
2245 GET_SUM_BLOCK(sbi
, curseg
->segno
));
2246 __set_test_and_inuse(sbi
, new_segno
);
2248 mutex_lock(&dirty_i
->seglist_lock
);
2249 __remove_dirty_segment(sbi
, new_segno
, PRE
);
2250 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
2251 mutex_unlock(&dirty_i
->seglist_lock
);
2253 reset_curseg(sbi
, type
, 1);
2254 curseg
->alloc_type
= SSR
;
2255 __next_free_blkoff(sbi
, curseg
, 0);
2257 sum_page
= get_sum_page(sbi
, new_segno
);
2258 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
2259 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
2260 f2fs_put_page(sum_page
, 1);
2263 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
)
2265 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2266 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
2267 unsigned segno
= NULL_SEGNO
;
2269 bool reversed
= false;
2271 /* need_SSR() already forces to do this */
2272 if (v_ops
->get_victim(sbi
, &segno
, BG_GC
, type
, SSR
)) {
2273 curseg
->next_segno
= segno
;
2277 /* For node segments, let's do SSR more intensively */
2278 if (IS_NODESEG(type
)) {
2279 if (type
>= CURSEG_WARM_NODE
) {
2281 i
= CURSEG_COLD_NODE
;
2283 i
= CURSEG_HOT_NODE
;
2285 cnt
= NR_CURSEG_NODE_TYPE
;
2287 if (type
>= CURSEG_WARM_DATA
) {
2289 i
= CURSEG_COLD_DATA
;
2291 i
= CURSEG_HOT_DATA
;
2293 cnt
= NR_CURSEG_DATA_TYPE
;
2296 for (; cnt
-- > 0; reversed
? i
-- : i
++) {
2299 if (v_ops
->get_victim(sbi
, &segno
, BG_GC
, i
, SSR
)) {
2300 curseg
->next_segno
= segno
;
2308 * flush out current segment and replace it with new segment
2309 * This function should be returned with success, otherwise BUG
2311 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
2312 int type
, bool force
)
2314 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2317 new_curseg(sbi
, type
, true);
2318 else if (!is_set_ckpt_flags(sbi
, CP_CRC_RECOVERY_FLAG
) &&
2319 type
== CURSEG_WARM_NODE
)
2320 new_curseg(sbi
, type
, false);
2321 else if (curseg
->alloc_type
== LFS
&& is_next_segment_free(sbi
, type
))
2322 new_curseg(sbi
, type
, false);
2323 else if (need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
2324 change_curseg(sbi
, type
);
2326 new_curseg(sbi
, type
, false);
2328 stat_inc_seg_type(sbi
, curseg
);
2331 void allocate_new_segments(struct f2fs_sb_info
*sbi
)
2333 struct curseg_info
*curseg
;
2334 unsigned int old_segno
;
2337 down_write(&SIT_I(sbi
)->sentry_lock
);
2339 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
2340 curseg
= CURSEG_I(sbi
, i
);
2341 old_segno
= curseg
->segno
;
2342 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, i
, true);
2343 locate_dirty_segment(sbi
, old_segno
);
2346 up_write(&SIT_I(sbi
)->sentry_lock
);
2349 static const struct segment_allocation default_salloc_ops
= {
2350 .allocate_segment
= allocate_segment_by_default
,
2353 bool exist_trim_candidates(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
2355 __u64 trim_start
= cpc
->trim_start
;
2356 bool has_candidate
= false;
2358 down_write(&SIT_I(sbi
)->sentry_lock
);
2359 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++) {
2360 if (add_discard_addrs(sbi
, cpc
, true)) {
2361 has_candidate
= true;
2365 up_write(&SIT_I(sbi
)->sentry_lock
);
2367 cpc
->trim_start
= trim_start
;
2368 return has_candidate
;
2371 int f2fs_trim_fs(struct f2fs_sb_info
*sbi
, struct fstrim_range
*range
)
2373 __u64 start
= F2FS_BYTES_TO_BLK(range
->start
);
2374 __u64 end
= start
+ F2FS_BYTES_TO_BLK(range
->len
) - 1;
2375 unsigned int start_segno
, end_segno
, cur_segno
;
2376 block_t start_block
, end_block
;
2377 struct cp_control cpc
;
2378 struct discard_policy dpolicy
;
2379 unsigned long long trimmed
= 0;
2382 if (start
>= MAX_BLKADDR(sbi
) || range
->len
< sbi
->blocksize
)
2385 if (end
<= MAIN_BLKADDR(sbi
))
2388 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
)) {
2389 f2fs_msg(sbi
->sb
, KERN_WARNING
,
2390 "Found FS corruption, run fsck to fix.");
2394 /* start/end segment number in main_area */
2395 start_segno
= (start
<= MAIN_BLKADDR(sbi
)) ? 0 : GET_SEGNO(sbi
, start
);
2396 end_segno
= (end
>= MAX_BLKADDR(sbi
)) ? MAIN_SEGS(sbi
) - 1 :
2397 GET_SEGNO(sbi
, end
);
2399 cpc
.reason
= CP_DISCARD
;
2400 cpc
.trim_minlen
= max_t(__u64
, 1, F2FS_BYTES_TO_BLK(range
->minlen
));
2402 /* do checkpoint to issue discard commands safely */
2403 for (cur_segno
= start_segno
; cur_segno
<= end_segno
;
2404 cur_segno
= cpc
.trim_end
+ 1) {
2405 cpc
.trim_start
= cur_segno
;
2407 if (sbi
->discard_blks
== 0)
2409 else if (sbi
->discard_blks
< BATCHED_TRIM_BLOCKS(sbi
))
2410 cpc
.trim_end
= end_segno
;
2412 cpc
.trim_end
= min_t(unsigned int,
2413 rounddown(cur_segno
+
2414 BATCHED_TRIM_SEGMENTS(sbi
),
2415 sbi
->segs_per_sec
) - 1, end_segno
);
2417 mutex_lock(&sbi
->gc_mutex
);
2418 err
= write_checkpoint(sbi
, &cpc
);
2419 mutex_unlock(&sbi
->gc_mutex
);
2426 start_block
= START_BLOCK(sbi
, start_segno
);
2427 end_block
= START_BLOCK(sbi
, min(cur_segno
, end_segno
) + 1);
2429 init_discard_policy(&dpolicy
, DPOLICY_FSTRIM
, cpc
.trim_minlen
);
2430 __issue_discard_cmd_range(sbi
, &dpolicy
, start_block
, end_block
);
2431 trimmed
= __wait_discard_cmd_range(sbi
, &dpolicy
,
2432 start_block
, end_block
);
2434 range
->len
= F2FS_BLK_TO_BYTES(trimmed
);
2438 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
2440 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2441 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
2446 int rw_hint_to_seg_type(enum rw_hint hint
)
2449 case WRITE_LIFE_SHORT
:
2450 return CURSEG_HOT_DATA
;
2451 case WRITE_LIFE_EXTREME
:
2452 return CURSEG_COLD_DATA
;
2454 return CURSEG_WARM_DATA
;
2458 static int __get_segment_type_2(struct f2fs_io_info
*fio
)
2460 if (fio
->type
== DATA
)
2461 return CURSEG_HOT_DATA
;
2463 return CURSEG_HOT_NODE
;
2466 static int __get_segment_type_4(struct f2fs_io_info
*fio
)
2468 if (fio
->type
== DATA
) {
2469 struct inode
*inode
= fio
->page
->mapping
->host
;
2471 if (S_ISDIR(inode
->i_mode
))
2472 return CURSEG_HOT_DATA
;
2474 return CURSEG_COLD_DATA
;
2476 if (IS_DNODE(fio
->page
) && is_cold_node(fio
->page
))
2477 return CURSEG_WARM_NODE
;
2479 return CURSEG_COLD_NODE
;
2483 static int __get_segment_type_6(struct f2fs_io_info
*fio
)
2485 if (fio
->type
== DATA
) {
2486 struct inode
*inode
= fio
->page
->mapping
->host
;
2488 if (is_cold_data(fio
->page
) || file_is_cold(inode
))
2489 return CURSEG_COLD_DATA
;
2490 if (is_inode_flag_set(inode
, FI_HOT_DATA
))
2491 return CURSEG_HOT_DATA
;
2492 return rw_hint_to_seg_type(inode
->i_write_hint
);
2494 if (IS_DNODE(fio
->page
))
2495 return is_cold_node(fio
->page
) ? CURSEG_WARM_NODE
:
2497 return CURSEG_COLD_NODE
;
2501 static int __get_segment_type(struct f2fs_io_info
*fio
)
2505 switch (fio
->sbi
->active_logs
) {
2507 type
= __get_segment_type_2(fio
);
2510 type
= __get_segment_type_4(fio
);
2513 type
= __get_segment_type_6(fio
);
2516 f2fs_bug_on(fio
->sbi
, true);
2521 else if (IS_WARM(type
))
2528 void allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
2529 block_t old_blkaddr
, block_t
*new_blkaddr
,
2530 struct f2fs_summary
*sum
, int type
,
2531 struct f2fs_io_info
*fio
, bool add_list
)
2533 struct sit_info
*sit_i
= SIT_I(sbi
);
2534 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2536 down_read(&SM_I(sbi
)->curseg_lock
);
2538 mutex_lock(&curseg
->curseg_mutex
);
2539 down_write(&sit_i
->sentry_lock
);
2541 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
2543 f2fs_wait_discard_bio(sbi
, *new_blkaddr
);
2546 * __add_sum_entry should be resided under the curseg_mutex
2547 * because, this function updates a summary entry in the
2548 * current summary block.
2550 __add_sum_entry(sbi
, type
, sum
);
2552 __refresh_next_blkoff(sbi
, curseg
);
2554 stat_inc_block_count(sbi
, curseg
);
2557 * SIT information should be updated before segment allocation,
2558 * since SSR needs latest valid block information.
2560 update_sit_entry(sbi
, *new_blkaddr
, 1);
2561 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
2562 update_sit_entry(sbi
, old_blkaddr
, -1);
2564 if (!__has_curseg_space(sbi
, type
))
2565 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
2568 * segment dirty status should be updated after segment allocation,
2569 * so we just need to update status only one time after previous
2570 * segment being closed.
2572 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
2573 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, *new_blkaddr
));
2575 up_write(&sit_i
->sentry_lock
);
2577 if (page
&& IS_NODESEG(type
)) {
2578 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
2580 f2fs_inode_chksum_set(sbi
, page
);
2584 struct f2fs_bio_info
*io
;
2586 INIT_LIST_HEAD(&fio
->list
);
2587 fio
->in_list
= true;
2588 io
= sbi
->write_io
[fio
->type
] + fio
->temp
;
2589 spin_lock(&io
->io_lock
);
2590 list_add_tail(&fio
->list
, &io
->io_list
);
2591 spin_unlock(&io
->io_lock
);
2594 mutex_unlock(&curseg
->curseg_mutex
);
2596 up_read(&SM_I(sbi
)->curseg_lock
);
2599 static void update_device_state(struct f2fs_io_info
*fio
)
2601 struct f2fs_sb_info
*sbi
= fio
->sbi
;
2602 unsigned int devidx
;
2607 devidx
= f2fs_target_device_index(sbi
, fio
->new_blkaddr
);
2609 /* update device state for fsync */
2610 set_dirty_device(sbi
, fio
->ino
, devidx
, FLUSH_INO
);
2612 /* update device state for checkpoint */
2613 if (!f2fs_test_bit(devidx
, (char *)&sbi
->dirty_device
)) {
2614 spin_lock(&sbi
->dev_lock
);
2615 f2fs_set_bit(devidx
, (char *)&sbi
->dirty_device
);
2616 spin_unlock(&sbi
->dev_lock
);
2620 static void do_write_page(struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
2622 int type
= __get_segment_type(fio
);
2626 allocate_data_block(fio
->sbi
, fio
->page
, fio
->old_blkaddr
,
2627 &fio
->new_blkaddr
, sum
, type
, fio
, true);
2629 /* writeout dirty page into bdev */
2630 err
= f2fs_submit_page_write(fio
);
2631 if (err
== -EAGAIN
) {
2632 fio
->old_blkaddr
= fio
->new_blkaddr
;
2635 update_device_state(fio
);
2639 void write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
2640 enum iostat_type io_type
)
2642 struct f2fs_io_info fio
= {
2646 .op_flags
= REQ_SYNC
| REQ_META
| REQ_PRIO
,
2647 .old_blkaddr
= page
->index
,
2648 .new_blkaddr
= page
->index
,
2650 .encrypted_page
= NULL
,
2654 if (unlikely(page
->index
>= MAIN_BLKADDR(sbi
)))
2655 fio
.op_flags
&= ~REQ_META
;
2657 set_page_writeback(page
);
2658 f2fs_submit_page_write(&fio
);
2660 f2fs_update_iostat(sbi
, io_type
, F2FS_BLKSIZE
);
2663 void write_node_page(unsigned int nid
, struct f2fs_io_info
*fio
)
2665 struct f2fs_summary sum
;
2667 set_summary(&sum
, nid
, 0, 0);
2668 do_write_page(&sum
, fio
);
2670 f2fs_update_iostat(fio
->sbi
, fio
->io_type
, F2FS_BLKSIZE
);
2673 void write_data_page(struct dnode_of_data
*dn
, struct f2fs_io_info
*fio
)
2675 struct f2fs_sb_info
*sbi
= fio
->sbi
;
2676 struct f2fs_summary sum
;
2677 struct node_info ni
;
2679 f2fs_bug_on(sbi
, dn
->data_blkaddr
== NULL_ADDR
);
2680 get_node_info(sbi
, dn
->nid
, &ni
);
2681 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
2682 do_write_page(&sum
, fio
);
2683 f2fs_update_data_blkaddr(dn
, fio
->new_blkaddr
);
2685 f2fs_update_iostat(sbi
, fio
->io_type
, F2FS_BLKSIZE
);
2688 int rewrite_data_page(struct f2fs_io_info
*fio
)
2692 fio
->new_blkaddr
= fio
->old_blkaddr
;
2693 stat_inc_inplace_blocks(fio
->sbi
);
2695 err
= f2fs_submit_page_bio(fio
);
2697 update_device_state(fio
);
2699 f2fs_update_iostat(fio
->sbi
, fio
->io_type
, F2FS_BLKSIZE
);
2704 static inline int __f2fs_get_curseg(struct f2fs_sb_info
*sbi
,
2709 for (i
= CURSEG_HOT_DATA
; i
< NO_CHECK_TYPE
; i
++) {
2710 if (CURSEG_I(sbi
, i
)->segno
== segno
)
2716 void __f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
2717 block_t old_blkaddr
, block_t new_blkaddr
,
2718 bool recover_curseg
, bool recover_newaddr
)
2720 struct sit_info
*sit_i
= SIT_I(sbi
);
2721 struct curseg_info
*curseg
;
2722 unsigned int segno
, old_cursegno
;
2723 struct seg_entry
*se
;
2725 unsigned short old_blkoff
;
2727 segno
= GET_SEGNO(sbi
, new_blkaddr
);
2728 se
= get_seg_entry(sbi
, segno
);
2731 down_write(&SM_I(sbi
)->curseg_lock
);
2733 if (!recover_curseg
) {
2734 /* for recovery flow */
2735 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
2736 if (old_blkaddr
== NULL_ADDR
)
2737 type
= CURSEG_COLD_DATA
;
2739 type
= CURSEG_WARM_DATA
;
2742 if (IS_CURSEG(sbi
, segno
)) {
2743 /* se->type is volatile as SSR allocation */
2744 type
= __f2fs_get_curseg(sbi
, segno
);
2745 f2fs_bug_on(sbi
, type
== NO_CHECK_TYPE
);
2747 type
= CURSEG_WARM_DATA
;
2751 f2fs_bug_on(sbi
, !IS_DATASEG(type
));
2752 curseg
= CURSEG_I(sbi
, type
);
2754 mutex_lock(&curseg
->curseg_mutex
);
2755 down_write(&sit_i
->sentry_lock
);
2757 old_cursegno
= curseg
->segno
;
2758 old_blkoff
= curseg
->next_blkoff
;
2760 /* change the current segment */
2761 if (segno
!= curseg
->segno
) {
2762 curseg
->next_segno
= segno
;
2763 change_curseg(sbi
, type
);
2766 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
2767 __add_sum_entry(sbi
, type
, sum
);
2769 if (!recover_curseg
|| recover_newaddr
)
2770 update_sit_entry(sbi
, new_blkaddr
, 1);
2771 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
2772 update_sit_entry(sbi
, old_blkaddr
, -1);
2774 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
2775 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new_blkaddr
));
2777 locate_dirty_segment(sbi
, old_cursegno
);
2779 if (recover_curseg
) {
2780 if (old_cursegno
!= curseg
->segno
) {
2781 curseg
->next_segno
= old_cursegno
;
2782 change_curseg(sbi
, type
);
2784 curseg
->next_blkoff
= old_blkoff
;
2787 up_write(&sit_i
->sentry_lock
);
2788 mutex_unlock(&curseg
->curseg_mutex
);
2789 up_write(&SM_I(sbi
)->curseg_lock
);
2792 void f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct dnode_of_data
*dn
,
2793 block_t old_addr
, block_t new_addr
,
2794 unsigned char version
, bool recover_curseg
,
2795 bool recover_newaddr
)
2797 struct f2fs_summary sum
;
2799 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, version
);
2801 __f2fs_replace_block(sbi
, &sum
, old_addr
, new_addr
,
2802 recover_curseg
, recover_newaddr
);
2804 f2fs_update_data_blkaddr(dn
, new_addr
);
2807 void f2fs_wait_on_page_writeback(struct page
*page
,
2808 enum page_type type
, bool ordered
)
2810 if (PageWriteback(page
)) {
2811 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
2813 f2fs_submit_merged_write_cond(sbi
, page
->mapping
->host
,
2814 0, page
->index
, type
);
2816 wait_on_page_writeback(page
);
2818 wait_for_stable_page(page
);
2822 void f2fs_wait_on_block_writeback(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
2826 if (blkaddr
== NEW_ADDR
|| blkaddr
== NULL_ADDR
)
2829 cpage
= find_lock_page(META_MAPPING(sbi
), blkaddr
);
2831 f2fs_wait_on_page_writeback(cpage
, DATA
, true);
2832 f2fs_put_page(cpage
, 1);
2836 static void read_compacted_summaries(struct f2fs_sb_info
*sbi
)
2838 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2839 struct curseg_info
*seg_i
;
2840 unsigned char *kaddr
;
2845 start
= start_sum_block(sbi
);
2847 page
= get_meta_page(sbi
, start
++);
2848 kaddr
= (unsigned char *)page_address(page
);
2850 /* Step 1: restore nat cache */
2851 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2852 memcpy(seg_i
->journal
, kaddr
, SUM_JOURNAL_SIZE
);
2854 /* Step 2: restore sit cache */
2855 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2856 memcpy(seg_i
->journal
, kaddr
+ SUM_JOURNAL_SIZE
, SUM_JOURNAL_SIZE
);
2857 offset
= 2 * SUM_JOURNAL_SIZE
;
2859 /* Step 3: restore summary entries */
2860 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
2861 unsigned short blk_off
;
2864 seg_i
= CURSEG_I(sbi
, i
);
2865 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
2866 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
2867 seg_i
->next_segno
= segno
;
2868 reset_curseg(sbi
, i
, 0);
2869 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
2870 seg_i
->next_blkoff
= blk_off
;
2872 if (seg_i
->alloc_type
== SSR
)
2873 blk_off
= sbi
->blocks_per_seg
;
2875 for (j
= 0; j
< blk_off
; j
++) {
2876 struct f2fs_summary
*s
;
2877 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
2878 seg_i
->sum_blk
->entries
[j
] = *s
;
2879 offset
+= SUMMARY_SIZE
;
2880 if (offset
+ SUMMARY_SIZE
<= PAGE_SIZE
-
2884 f2fs_put_page(page
, 1);
2887 page
= get_meta_page(sbi
, start
++);
2888 kaddr
= (unsigned char *)page_address(page
);
2892 f2fs_put_page(page
, 1);
2895 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
2897 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2898 struct f2fs_summary_block
*sum
;
2899 struct curseg_info
*curseg
;
2901 unsigned short blk_off
;
2902 unsigned int segno
= 0;
2903 block_t blk_addr
= 0;
2905 /* get segment number and block addr */
2906 if (IS_DATASEG(type
)) {
2907 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
2908 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
2910 if (__exist_node_summaries(sbi
))
2911 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
2913 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
2915 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
2917 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
2919 if (__exist_node_summaries(sbi
))
2920 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
2921 type
- CURSEG_HOT_NODE
);
2923 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
2926 new = get_meta_page(sbi
, blk_addr
);
2927 sum
= (struct f2fs_summary_block
*)page_address(new);
2929 if (IS_NODESEG(type
)) {
2930 if (__exist_node_summaries(sbi
)) {
2931 struct f2fs_summary
*ns
= &sum
->entries
[0];
2933 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
2935 ns
->ofs_in_node
= 0;
2938 restore_node_summary(sbi
, segno
, sum
);
2942 /* set uncompleted segment to curseg */
2943 curseg
= CURSEG_I(sbi
, type
);
2944 mutex_lock(&curseg
->curseg_mutex
);
2946 /* update journal info */
2947 down_write(&curseg
->journal_rwsem
);
2948 memcpy(curseg
->journal
, &sum
->journal
, SUM_JOURNAL_SIZE
);
2949 up_write(&curseg
->journal_rwsem
);
2951 memcpy(curseg
->sum_blk
->entries
, sum
->entries
, SUM_ENTRY_SIZE
);
2952 memcpy(&curseg
->sum_blk
->footer
, &sum
->footer
, SUM_FOOTER_SIZE
);
2953 curseg
->next_segno
= segno
;
2954 reset_curseg(sbi
, type
, 0);
2955 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
2956 curseg
->next_blkoff
= blk_off
;
2957 mutex_unlock(&curseg
->curseg_mutex
);
2958 f2fs_put_page(new, 1);
2962 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
2964 struct f2fs_journal
*sit_j
= CURSEG_I(sbi
, CURSEG_COLD_DATA
)->journal
;
2965 struct f2fs_journal
*nat_j
= CURSEG_I(sbi
, CURSEG_HOT_DATA
)->journal
;
2966 int type
= CURSEG_HOT_DATA
;
2969 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
)) {
2970 int npages
= npages_for_summary_flush(sbi
, true);
2973 ra_meta_pages(sbi
, start_sum_block(sbi
), npages
,
2976 /* restore for compacted data summary */
2977 read_compacted_summaries(sbi
);
2978 type
= CURSEG_HOT_NODE
;
2981 if (__exist_node_summaries(sbi
))
2982 ra_meta_pages(sbi
, sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
),
2983 NR_CURSEG_TYPE
- type
, META_CP
, true);
2985 for (; type
<= CURSEG_COLD_NODE
; type
++) {
2986 err
= read_normal_summaries(sbi
, type
);
2991 /* sanity check for summary blocks */
2992 if (nats_in_cursum(nat_j
) > NAT_JOURNAL_ENTRIES
||
2993 sits_in_cursum(sit_j
) > SIT_JOURNAL_ENTRIES
)
2999 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
3002 unsigned char *kaddr
;
3003 struct f2fs_summary
*summary
;
3004 struct curseg_info
*seg_i
;
3005 int written_size
= 0;
3008 page
= grab_meta_page(sbi
, blkaddr
++);
3009 kaddr
= (unsigned char *)page_address(page
);
3011 /* Step 1: write nat cache */
3012 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
3013 memcpy(kaddr
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
3014 written_size
+= SUM_JOURNAL_SIZE
;
3016 /* Step 2: write sit cache */
3017 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3018 memcpy(kaddr
+ written_size
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
3019 written_size
+= SUM_JOURNAL_SIZE
;
3021 /* Step 3: write summary entries */
3022 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
3023 unsigned short blkoff
;
3024 seg_i
= CURSEG_I(sbi
, i
);
3025 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
3026 blkoff
= sbi
->blocks_per_seg
;
3028 blkoff
= curseg_blkoff(sbi
, i
);
3030 for (j
= 0; j
< blkoff
; j
++) {
3032 page
= grab_meta_page(sbi
, blkaddr
++);
3033 kaddr
= (unsigned char *)page_address(page
);
3036 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
3037 *summary
= seg_i
->sum_blk
->entries
[j
];
3038 written_size
+= SUMMARY_SIZE
;
3040 if (written_size
+ SUMMARY_SIZE
<= PAGE_SIZE
-
3044 set_page_dirty(page
);
3045 f2fs_put_page(page
, 1);
3050 set_page_dirty(page
);
3051 f2fs_put_page(page
, 1);
3055 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
3056 block_t blkaddr
, int type
)
3059 if (IS_DATASEG(type
))
3060 end
= type
+ NR_CURSEG_DATA_TYPE
;
3062 end
= type
+ NR_CURSEG_NODE_TYPE
;
3064 for (i
= type
; i
< end
; i
++)
3065 write_current_sum_page(sbi
, i
, blkaddr
+ (i
- type
));
3068 void write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
3070 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
))
3071 write_compacted_summaries(sbi
, start_blk
);
3073 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
3076 void write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
3078 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
3081 int lookup_journal_in_cursum(struct f2fs_journal
*journal
, int type
,
3082 unsigned int val
, int alloc
)
3086 if (type
== NAT_JOURNAL
) {
3087 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
3088 if (le32_to_cpu(nid_in_journal(journal
, i
)) == val
)
3091 if (alloc
&& __has_cursum_space(journal
, 1, NAT_JOURNAL
))
3092 return update_nats_in_cursum(journal
, 1);
3093 } else if (type
== SIT_JOURNAL
) {
3094 for (i
= 0; i
< sits_in_cursum(journal
); i
++)
3095 if (le32_to_cpu(segno_in_journal(journal
, i
)) == val
)
3097 if (alloc
&& __has_cursum_space(journal
, 1, SIT_JOURNAL
))
3098 return update_sits_in_cursum(journal
, 1);
3103 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
3106 return get_meta_page(sbi
, current_sit_addr(sbi
, segno
));
3109 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
3112 struct sit_info
*sit_i
= SIT_I(sbi
);
3114 pgoff_t src_off
, dst_off
;
3116 src_off
= current_sit_addr(sbi
, start
);
3117 dst_off
= next_sit_addr(sbi
, src_off
);
3119 page
= grab_meta_page(sbi
, dst_off
);
3120 seg_info_to_sit_page(sbi
, page
, start
);
3122 set_page_dirty(page
);
3123 set_to_next_sit(sit_i
, start
);
3128 static struct sit_entry_set
*grab_sit_entry_set(void)
3130 struct sit_entry_set
*ses
=
3131 f2fs_kmem_cache_alloc(sit_entry_set_slab
, GFP_NOFS
);
3134 INIT_LIST_HEAD(&ses
->set_list
);
3138 static void release_sit_entry_set(struct sit_entry_set
*ses
)
3140 list_del(&ses
->set_list
);
3141 kmem_cache_free(sit_entry_set_slab
, ses
);
3144 static void adjust_sit_entry_set(struct sit_entry_set
*ses
,
3145 struct list_head
*head
)
3147 struct sit_entry_set
*next
= ses
;
3149 if (list_is_last(&ses
->set_list
, head
))
3152 list_for_each_entry_continue(next
, head
, set_list
)
3153 if (ses
->entry_cnt
<= next
->entry_cnt
)
3156 list_move_tail(&ses
->set_list
, &next
->set_list
);
3159 static void add_sit_entry(unsigned int segno
, struct list_head
*head
)
3161 struct sit_entry_set
*ses
;
3162 unsigned int start_segno
= START_SEGNO(segno
);
3164 list_for_each_entry(ses
, head
, set_list
) {
3165 if (ses
->start_segno
== start_segno
) {
3167 adjust_sit_entry_set(ses
, head
);
3172 ses
= grab_sit_entry_set();
3174 ses
->start_segno
= start_segno
;
3176 list_add(&ses
->set_list
, head
);
3179 static void add_sits_in_set(struct f2fs_sb_info
*sbi
)
3181 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
3182 struct list_head
*set_list
= &sm_info
->sit_entry_set
;
3183 unsigned long *bitmap
= SIT_I(sbi
)->dirty_sentries_bitmap
;
3186 for_each_set_bit(segno
, bitmap
, MAIN_SEGS(sbi
))
3187 add_sit_entry(segno
, set_list
);
3190 static void remove_sits_in_journal(struct f2fs_sb_info
*sbi
)
3192 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3193 struct f2fs_journal
*journal
= curseg
->journal
;
3196 down_write(&curseg
->journal_rwsem
);
3197 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
3201 segno
= le32_to_cpu(segno_in_journal(journal
, i
));
3202 dirtied
= __mark_sit_entry_dirty(sbi
, segno
);
3205 add_sit_entry(segno
, &SM_I(sbi
)->sit_entry_set
);
3207 update_sits_in_cursum(journal
, -i
);
3208 up_write(&curseg
->journal_rwsem
);
3212 * CP calls this function, which flushes SIT entries including sit_journal,
3213 * and moves prefree segs to free segs.
3215 void flush_sit_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
3217 struct sit_info
*sit_i
= SIT_I(sbi
);
3218 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
3219 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3220 struct f2fs_journal
*journal
= curseg
->journal
;
3221 struct sit_entry_set
*ses
, *tmp
;
3222 struct list_head
*head
= &SM_I(sbi
)->sit_entry_set
;
3223 bool to_journal
= true;
3224 struct seg_entry
*se
;
3226 down_write(&sit_i
->sentry_lock
);
3228 if (!sit_i
->dirty_sentries
)
3232 * add and account sit entries of dirty bitmap in sit entry
3235 add_sits_in_set(sbi
);
3238 * if there are no enough space in journal to store dirty sit
3239 * entries, remove all entries from journal and add and account
3240 * them in sit entry set.
3242 if (!__has_cursum_space(journal
, sit_i
->dirty_sentries
, SIT_JOURNAL
))
3243 remove_sits_in_journal(sbi
);
3246 * there are two steps to flush sit entries:
3247 * #1, flush sit entries to journal in current cold data summary block.
3248 * #2, flush sit entries to sit page.
3250 list_for_each_entry_safe(ses
, tmp
, head
, set_list
) {
3251 struct page
*page
= NULL
;
3252 struct f2fs_sit_block
*raw_sit
= NULL
;
3253 unsigned int start_segno
= ses
->start_segno
;
3254 unsigned int end
= min(start_segno
+ SIT_ENTRY_PER_BLOCK
,
3255 (unsigned long)MAIN_SEGS(sbi
));
3256 unsigned int segno
= start_segno
;
3259 !__has_cursum_space(journal
, ses
->entry_cnt
, SIT_JOURNAL
))
3263 down_write(&curseg
->journal_rwsem
);
3265 page
= get_next_sit_page(sbi
, start_segno
);
3266 raw_sit
= page_address(page
);
3269 /* flush dirty sit entries in region of current sit set */
3270 for_each_set_bit_from(segno
, bitmap
, end
) {
3271 int offset
, sit_offset
;
3273 se
= get_seg_entry(sbi
, segno
);
3275 /* add discard candidates */
3276 if (!(cpc
->reason
& CP_DISCARD
)) {
3277 cpc
->trim_start
= segno
;
3278 add_discard_addrs(sbi
, cpc
, false);
3282 offset
= lookup_journal_in_cursum(journal
,
3283 SIT_JOURNAL
, segno
, 1);
3284 f2fs_bug_on(sbi
, offset
< 0);
3285 segno_in_journal(journal
, offset
) =
3287 seg_info_to_raw_sit(se
,
3288 &sit_in_journal(journal
, offset
));
3290 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
3291 seg_info_to_raw_sit(se
,
3292 &raw_sit
->entries
[sit_offset
]);
3295 __clear_bit(segno
, bitmap
);
3296 sit_i
->dirty_sentries
--;
3301 up_write(&curseg
->journal_rwsem
);
3303 f2fs_put_page(page
, 1);
3305 f2fs_bug_on(sbi
, ses
->entry_cnt
);
3306 release_sit_entry_set(ses
);
3309 f2fs_bug_on(sbi
, !list_empty(head
));
3310 f2fs_bug_on(sbi
, sit_i
->dirty_sentries
);
3312 if (cpc
->reason
& CP_DISCARD
) {
3313 __u64 trim_start
= cpc
->trim_start
;
3315 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++)
3316 add_discard_addrs(sbi
, cpc
, false);
3318 cpc
->trim_start
= trim_start
;
3320 up_write(&sit_i
->sentry_lock
);
3322 set_prefree_as_free_segments(sbi
);
3325 static int build_sit_info(struct f2fs_sb_info
*sbi
)
3327 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
3328 struct sit_info
*sit_i
;
3329 unsigned int sit_segs
, start
;
3331 unsigned int bitmap_size
;
3333 /* allocate memory for SIT information */
3334 sit_i
= f2fs_kzalloc(sbi
, sizeof(struct sit_info
), GFP_KERNEL
);
3338 SM_I(sbi
)->sit_info
= sit_i
;
3340 sit_i
->sentries
= f2fs_kvzalloc(sbi
, MAIN_SEGS(sbi
) *
3341 sizeof(struct seg_entry
), GFP_KERNEL
);
3342 if (!sit_i
->sentries
)
3345 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
3346 sit_i
->dirty_sentries_bitmap
= f2fs_kvzalloc(sbi
, bitmap_size
,
3348 if (!sit_i
->dirty_sentries_bitmap
)
3351 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
3352 sit_i
->sentries
[start
].cur_valid_map
3353 = f2fs_kzalloc(sbi
, SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
3354 sit_i
->sentries
[start
].ckpt_valid_map
3355 = f2fs_kzalloc(sbi
, SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
3356 if (!sit_i
->sentries
[start
].cur_valid_map
||
3357 !sit_i
->sentries
[start
].ckpt_valid_map
)
3360 #ifdef CONFIG_F2FS_CHECK_FS
3361 sit_i
->sentries
[start
].cur_valid_map_mir
3362 = f2fs_kzalloc(sbi
, SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
3363 if (!sit_i
->sentries
[start
].cur_valid_map_mir
)
3367 if (f2fs_discard_en(sbi
)) {
3368 sit_i
->sentries
[start
].discard_map
3369 = f2fs_kzalloc(sbi
, SIT_VBLOCK_MAP_SIZE
,
3371 if (!sit_i
->sentries
[start
].discard_map
)
3376 sit_i
->tmp_map
= f2fs_kzalloc(sbi
, SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
3377 if (!sit_i
->tmp_map
)
3380 if (sbi
->segs_per_sec
> 1) {
3381 sit_i
->sec_entries
= f2fs_kvzalloc(sbi
, MAIN_SECS(sbi
) *
3382 sizeof(struct sec_entry
), GFP_KERNEL
);
3383 if (!sit_i
->sec_entries
)
3387 /* get information related with SIT */
3388 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
3390 /* setup SIT bitmap from ckeckpoint pack */
3391 bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
3392 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
3394 sit_i
->sit_bitmap
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
3395 if (!sit_i
->sit_bitmap
)
3398 #ifdef CONFIG_F2FS_CHECK_FS
3399 sit_i
->sit_bitmap_mir
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
3400 if (!sit_i
->sit_bitmap_mir
)
3404 /* init SIT information */
3405 sit_i
->s_ops
= &default_salloc_ops
;
3407 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
3408 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
3409 sit_i
->written_valid_blocks
= 0;
3410 sit_i
->bitmap_size
= bitmap_size
;
3411 sit_i
->dirty_sentries
= 0;
3412 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
3413 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
3414 sit_i
->mounted_time
= ktime_get_real_seconds();
3415 init_rwsem(&sit_i
->sentry_lock
);
3419 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
3421 struct free_segmap_info
*free_i
;
3422 unsigned int bitmap_size
, sec_bitmap_size
;
3424 /* allocate memory for free segmap information */
3425 free_i
= f2fs_kzalloc(sbi
, sizeof(struct free_segmap_info
), GFP_KERNEL
);
3429 SM_I(sbi
)->free_info
= free_i
;
3431 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
3432 free_i
->free_segmap
= f2fs_kvmalloc(sbi
, bitmap_size
, GFP_KERNEL
);
3433 if (!free_i
->free_segmap
)
3436 sec_bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
3437 free_i
->free_secmap
= f2fs_kvmalloc(sbi
, sec_bitmap_size
, GFP_KERNEL
);
3438 if (!free_i
->free_secmap
)
3441 /* set all segments as dirty temporarily */
3442 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
3443 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
3445 /* init free segmap information */
3446 free_i
->start_segno
= GET_SEGNO_FROM_SEG0(sbi
, MAIN_BLKADDR(sbi
));
3447 free_i
->free_segments
= 0;
3448 free_i
->free_sections
= 0;
3449 spin_lock_init(&free_i
->segmap_lock
);
3453 static int build_curseg(struct f2fs_sb_info
*sbi
)
3455 struct curseg_info
*array
;
3458 array
= f2fs_kzalloc(sbi
, sizeof(*array
) * NR_CURSEG_TYPE
, GFP_KERNEL
);
3462 SM_I(sbi
)->curseg_array
= array
;
3464 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
3465 mutex_init(&array
[i
].curseg_mutex
);
3466 array
[i
].sum_blk
= f2fs_kzalloc(sbi
, PAGE_SIZE
, GFP_KERNEL
);
3467 if (!array
[i
].sum_blk
)
3469 init_rwsem(&array
[i
].journal_rwsem
);
3470 array
[i
].journal
= f2fs_kzalloc(sbi
,
3471 sizeof(struct f2fs_journal
), GFP_KERNEL
);
3472 if (!array
[i
].journal
)
3474 array
[i
].segno
= NULL_SEGNO
;
3475 array
[i
].next_blkoff
= 0;
3477 return restore_curseg_summaries(sbi
);
3480 static int build_sit_entries(struct f2fs_sb_info
*sbi
)
3482 struct sit_info
*sit_i
= SIT_I(sbi
);
3483 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3484 struct f2fs_journal
*journal
= curseg
->journal
;
3485 struct seg_entry
*se
;
3486 struct f2fs_sit_entry sit
;
3487 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
3488 unsigned int i
, start
, end
;
3489 unsigned int readed
, start_blk
= 0;
3493 readed
= ra_meta_pages(sbi
, start_blk
, BIO_MAX_PAGES
,
3496 start
= start_blk
* sit_i
->sents_per_block
;
3497 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
3499 for (; start
< end
&& start
< MAIN_SEGS(sbi
); start
++) {
3500 struct f2fs_sit_block
*sit_blk
;
3503 se
= &sit_i
->sentries
[start
];
3504 page
= get_current_sit_page(sbi
, start
);
3505 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
3506 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
3507 f2fs_put_page(page
, 1);
3509 err
= check_block_count(sbi
, start
, &sit
);
3512 seg_info_from_raw_sit(se
, &sit
);
3514 /* build discard map only one time */
3515 if (f2fs_discard_en(sbi
)) {
3516 if (is_set_ckpt_flags(sbi
, CP_TRIMMED_FLAG
)) {
3517 memset(se
->discard_map
, 0xff,
3518 SIT_VBLOCK_MAP_SIZE
);
3520 memcpy(se
->discard_map
,
3522 SIT_VBLOCK_MAP_SIZE
);
3523 sbi
->discard_blks
+=
3524 sbi
->blocks_per_seg
-
3529 if (sbi
->segs_per_sec
> 1)
3530 get_sec_entry(sbi
, start
)->valid_blocks
+=
3533 start_blk
+= readed
;
3534 } while (start_blk
< sit_blk_cnt
);
3536 down_read(&curseg
->journal_rwsem
);
3537 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
3538 unsigned int old_valid_blocks
;
3540 start
= le32_to_cpu(segno_in_journal(journal
, i
));
3541 se
= &sit_i
->sentries
[start
];
3542 sit
= sit_in_journal(journal
, i
);
3544 old_valid_blocks
= se
->valid_blocks
;
3546 err
= check_block_count(sbi
, start
, &sit
);
3549 seg_info_from_raw_sit(se
, &sit
);
3551 if (f2fs_discard_en(sbi
)) {
3552 if (is_set_ckpt_flags(sbi
, CP_TRIMMED_FLAG
)) {
3553 memset(se
->discard_map
, 0xff,
3554 SIT_VBLOCK_MAP_SIZE
);
3556 memcpy(se
->discard_map
, se
->cur_valid_map
,
3557 SIT_VBLOCK_MAP_SIZE
);
3558 sbi
->discard_blks
+= old_valid_blocks
-
3563 if (sbi
->segs_per_sec
> 1)
3564 get_sec_entry(sbi
, start
)->valid_blocks
+=
3565 se
->valid_blocks
- old_valid_blocks
;
3567 up_read(&curseg
->journal_rwsem
);
3571 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
3576 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
3577 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
3578 if (!sentry
->valid_blocks
)
3579 __set_free(sbi
, start
);
3581 SIT_I(sbi
)->written_valid_blocks
+=
3582 sentry
->valid_blocks
;
3585 /* set use the current segments */
3586 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
3587 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
3588 __set_test_and_inuse(sbi
, curseg_t
->segno
);
3592 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
3594 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
3595 struct free_segmap_info
*free_i
= FREE_I(sbi
);
3596 unsigned int segno
= 0, offset
= 0;
3597 unsigned short valid_blocks
;
3600 /* find dirty segment based on free segmap */
3601 segno
= find_next_inuse(free_i
, MAIN_SEGS(sbi
), offset
);
3602 if (segno
>= MAIN_SEGS(sbi
))
3605 valid_blocks
= get_valid_blocks(sbi
, segno
, false);
3606 if (valid_blocks
== sbi
->blocks_per_seg
|| !valid_blocks
)
3608 if (valid_blocks
> sbi
->blocks_per_seg
) {
3609 f2fs_bug_on(sbi
, 1);
3612 mutex_lock(&dirty_i
->seglist_lock
);
3613 __locate_dirty_segment(sbi
, segno
, DIRTY
);
3614 mutex_unlock(&dirty_i
->seglist_lock
);
3618 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
3620 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
3621 unsigned int bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
3623 dirty_i
->victim_secmap
= f2fs_kvzalloc(sbi
, bitmap_size
, GFP_KERNEL
);
3624 if (!dirty_i
->victim_secmap
)
3629 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
3631 struct dirty_seglist_info
*dirty_i
;
3632 unsigned int bitmap_size
, i
;
3634 /* allocate memory for dirty segments list information */
3635 dirty_i
= f2fs_kzalloc(sbi
, sizeof(struct dirty_seglist_info
),
3640 SM_I(sbi
)->dirty_info
= dirty_i
;
3641 mutex_init(&dirty_i
->seglist_lock
);
3643 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
3645 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
3646 dirty_i
->dirty_segmap
[i
] = f2fs_kvzalloc(sbi
, bitmap_size
,
3648 if (!dirty_i
->dirty_segmap
[i
])
3652 init_dirty_segmap(sbi
);
3653 return init_victim_secmap(sbi
);
3657 * Update min, max modified time for cost-benefit GC algorithm
3659 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
3661 struct sit_info
*sit_i
= SIT_I(sbi
);
3664 down_write(&sit_i
->sentry_lock
);
3666 sit_i
->min_mtime
= LLONG_MAX
;
3668 for (segno
= 0; segno
< MAIN_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
3670 unsigned long long mtime
= 0;
3672 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
3673 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
3675 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
3677 if (sit_i
->min_mtime
> mtime
)
3678 sit_i
->min_mtime
= mtime
;
3680 sit_i
->max_mtime
= get_mtime(sbi
);
3681 up_write(&sit_i
->sentry_lock
);
3684 int build_segment_manager(struct f2fs_sb_info
*sbi
)
3686 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
3687 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
3688 struct f2fs_sm_info
*sm_info
;
3691 sm_info
= f2fs_kzalloc(sbi
, sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
3696 sbi
->sm_info
= sm_info
;
3697 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
3698 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
3699 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
3700 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
3701 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
3702 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
3703 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
3704 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
3705 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
3706 if (sm_info
->rec_prefree_segments
> DEF_MAX_RECLAIM_PREFREE_SEGMENTS
)
3707 sm_info
->rec_prefree_segments
= DEF_MAX_RECLAIM_PREFREE_SEGMENTS
;
3709 if (!test_opt(sbi
, LFS
))
3710 sm_info
->ipu_policy
= 1 << F2FS_IPU_FSYNC
;
3711 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
3712 sm_info
->min_fsync_blocks
= DEF_MIN_FSYNC_BLOCKS
;
3713 sm_info
->min_hot_blocks
= DEF_MIN_HOT_BLOCKS
;
3714 sm_info
->min_ssr_sections
= reserved_sections(sbi
);
3716 sm_info
->trim_sections
= DEF_BATCHED_TRIM_SECTIONS
;
3718 INIT_LIST_HEAD(&sm_info
->sit_entry_set
);
3720 init_rwsem(&sm_info
->curseg_lock
);
3722 if (!f2fs_readonly(sbi
->sb
)) {
3723 err
= create_flush_cmd_control(sbi
);
3728 err
= create_discard_cmd_control(sbi
);
3732 err
= build_sit_info(sbi
);
3735 err
= build_free_segmap(sbi
);
3738 err
= build_curseg(sbi
);
3742 /* reinit free segmap based on SIT */
3743 err
= build_sit_entries(sbi
);
3747 init_free_segmap(sbi
);
3748 err
= build_dirty_segmap(sbi
);
3752 init_min_max_mtime(sbi
);
3756 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
3757 enum dirty_type dirty_type
)
3759 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
3761 mutex_lock(&dirty_i
->seglist_lock
);
3762 kvfree(dirty_i
->dirty_segmap
[dirty_type
]);
3763 dirty_i
->nr_dirty
[dirty_type
] = 0;
3764 mutex_unlock(&dirty_i
->seglist_lock
);
3767 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
3769 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
3770 kvfree(dirty_i
->victim_secmap
);
3773 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
3775 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
3781 /* discard pre-free/dirty segments list */
3782 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
3783 discard_dirty_segmap(sbi
, i
);
3785 destroy_victim_secmap(sbi
);
3786 SM_I(sbi
)->dirty_info
= NULL
;
3790 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
3792 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
3797 SM_I(sbi
)->curseg_array
= NULL
;
3798 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
3799 kfree(array
[i
].sum_blk
);
3800 kfree(array
[i
].journal
);
3805 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
3807 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
3810 SM_I(sbi
)->free_info
= NULL
;
3811 kvfree(free_i
->free_segmap
);
3812 kvfree(free_i
->free_secmap
);
3816 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
3818 struct sit_info
*sit_i
= SIT_I(sbi
);
3824 if (sit_i
->sentries
) {
3825 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
3826 kfree(sit_i
->sentries
[start
].cur_valid_map
);
3827 #ifdef CONFIG_F2FS_CHECK_FS
3828 kfree(sit_i
->sentries
[start
].cur_valid_map_mir
);
3830 kfree(sit_i
->sentries
[start
].ckpt_valid_map
);
3831 kfree(sit_i
->sentries
[start
].discard_map
);
3834 kfree(sit_i
->tmp_map
);
3836 kvfree(sit_i
->sentries
);
3837 kvfree(sit_i
->sec_entries
);
3838 kvfree(sit_i
->dirty_sentries_bitmap
);
3840 SM_I(sbi
)->sit_info
= NULL
;
3841 kfree(sit_i
->sit_bitmap
);
3842 #ifdef CONFIG_F2FS_CHECK_FS
3843 kfree(sit_i
->sit_bitmap_mir
);
3848 void destroy_segment_manager(struct f2fs_sb_info
*sbi
)
3850 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
3854 destroy_flush_cmd_control(sbi
, true);
3855 destroy_discard_cmd_control(sbi
);
3856 destroy_dirty_segmap(sbi
);
3857 destroy_curseg(sbi
);
3858 destroy_free_segmap(sbi
);
3859 destroy_sit_info(sbi
);
3860 sbi
->sm_info
= NULL
;
3864 int __init
create_segment_manager_caches(void)
3866 discard_entry_slab
= f2fs_kmem_cache_create("discard_entry",
3867 sizeof(struct discard_entry
));
3868 if (!discard_entry_slab
)
3871 discard_cmd_slab
= f2fs_kmem_cache_create("discard_cmd",
3872 sizeof(struct discard_cmd
));
3873 if (!discard_cmd_slab
)
3874 goto destroy_discard_entry
;
3876 sit_entry_set_slab
= f2fs_kmem_cache_create("sit_entry_set",
3877 sizeof(struct sit_entry_set
));
3878 if (!sit_entry_set_slab
)
3879 goto destroy_discard_cmd
;
3881 inmem_entry_slab
= f2fs_kmem_cache_create("inmem_page_entry",
3882 sizeof(struct inmem_pages
));
3883 if (!inmem_entry_slab
)
3884 goto destroy_sit_entry_set
;
3887 destroy_sit_entry_set
:
3888 kmem_cache_destroy(sit_entry_set_slab
);
3889 destroy_discard_cmd
:
3890 kmem_cache_destroy(discard_cmd_slab
);
3891 destroy_discard_entry
:
3892 kmem_cache_destroy(discard_entry_slab
);
3897 void destroy_segment_manager_caches(void)
3899 kmem_cache_destroy(sit_entry_set_slab
);
3900 kmem_cache_destroy(discard_cmd_slab
);
3901 kmem_cache_destroy(discard_entry_slab
);
3902 kmem_cache_destroy(inmem_entry_slab
);