KVM: nVMX: introduce nested_vmx_load_cr3 and call it on vmentry
[linux/fpc-iii.git] / mm / compaction.c
blob0409a4ad6ea1363611d49269ecbb5ef88afe5c87
1 /*
2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include <linux/kthread.h>
21 #include <linux/freezer.h>
22 #include <linux/page_owner.h>
23 #include "internal.h"
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item)
28 count_vm_event(item);
31 static inline void count_compact_events(enum vm_event_item item, long delta)
33 count_vm_events(item, delta);
35 #else
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
38 #endif
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
45 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
50 static unsigned long release_freepages(struct list_head *freelist)
52 struct page *page, *next;
53 unsigned long high_pfn = 0;
55 list_for_each_entry_safe(page, next, freelist, lru) {
56 unsigned long pfn = page_to_pfn(page);
57 list_del(&page->lru);
58 __free_page(page);
59 if (pfn > high_pfn)
60 high_pfn = pfn;
63 return high_pfn;
66 static void map_pages(struct list_head *list)
68 unsigned int i, order, nr_pages;
69 struct page *page, *next;
70 LIST_HEAD(tmp_list);
72 list_for_each_entry_safe(page, next, list, lru) {
73 list_del(&page->lru);
75 order = page_private(page);
76 nr_pages = 1 << order;
78 post_alloc_hook(page, order, __GFP_MOVABLE);
79 if (order)
80 split_page(page, order);
82 for (i = 0; i < nr_pages; i++) {
83 list_add(&page->lru, &tmp_list);
84 page++;
88 list_splice(&tmp_list, list);
91 static inline bool migrate_async_suitable(int migratetype)
93 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
96 #ifdef CONFIG_COMPACTION
98 int PageMovable(struct page *page)
100 struct address_space *mapping;
102 VM_BUG_ON_PAGE(!PageLocked(page), page);
103 if (!__PageMovable(page))
104 return 0;
106 mapping = page_mapping(page);
107 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
108 return 1;
110 return 0;
112 EXPORT_SYMBOL(PageMovable);
114 void __SetPageMovable(struct page *page, struct address_space *mapping)
116 VM_BUG_ON_PAGE(!PageLocked(page), page);
117 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
118 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
120 EXPORT_SYMBOL(__SetPageMovable);
122 void __ClearPageMovable(struct page *page)
124 VM_BUG_ON_PAGE(!PageLocked(page), page);
125 VM_BUG_ON_PAGE(!PageMovable(page), page);
127 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
128 * flag so that VM can catch up released page by driver after isolation.
129 * With it, VM migration doesn't try to put it back.
131 page->mapping = (void *)((unsigned long)page->mapping &
132 PAGE_MAPPING_MOVABLE);
134 EXPORT_SYMBOL(__ClearPageMovable);
136 /* Do not skip compaction more than 64 times */
137 #define COMPACT_MAX_DEFER_SHIFT 6
140 * Compaction is deferred when compaction fails to result in a page
141 * allocation success. 1 << compact_defer_limit compactions are skipped up
142 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
144 void defer_compaction(struct zone *zone, int order)
146 zone->compact_considered = 0;
147 zone->compact_defer_shift++;
149 if (order < zone->compact_order_failed)
150 zone->compact_order_failed = order;
152 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
153 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
155 trace_mm_compaction_defer_compaction(zone, order);
158 /* Returns true if compaction should be skipped this time */
159 bool compaction_deferred(struct zone *zone, int order)
161 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
163 if (order < zone->compact_order_failed)
164 return false;
166 /* Avoid possible overflow */
167 if (++zone->compact_considered > defer_limit)
168 zone->compact_considered = defer_limit;
170 if (zone->compact_considered >= defer_limit)
171 return false;
173 trace_mm_compaction_deferred(zone, order);
175 return true;
179 * Update defer tracking counters after successful compaction of given order,
180 * which means an allocation either succeeded (alloc_success == true) or is
181 * expected to succeed.
183 void compaction_defer_reset(struct zone *zone, int order,
184 bool alloc_success)
186 if (alloc_success) {
187 zone->compact_considered = 0;
188 zone->compact_defer_shift = 0;
190 if (order >= zone->compact_order_failed)
191 zone->compact_order_failed = order + 1;
193 trace_mm_compaction_defer_reset(zone, order);
196 /* Returns true if restarting compaction after many failures */
197 bool compaction_restarting(struct zone *zone, int order)
199 if (order < zone->compact_order_failed)
200 return false;
202 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
203 zone->compact_considered >= 1UL << zone->compact_defer_shift;
206 /* Returns true if the pageblock should be scanned for pages to isolate. */
207 static inline bool isolation_suitable(struct compact_control *cc,
208 struct page *page)
210 if (cc->ignore_skip_hint)
211 return true;
213 return !get_pageblock_skip(page);
216 static void reset_cached_positions(struct zone *zone)
218 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
219 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
220 zone->compact_cached_free_pfn =
221 pageblock_start_pfn(zone_end_pfn(zone) - 1);
225 * This function is called to clear all cached information on pageblocks that
226 * should be skipped for page isolation when the migrate and free page scanner
227 * meet.
229 static void __reset_isolation_suitable(struct zone *zone)
231 unsigned long start_pfn = zone->zone_start_pfn;
232 unsigned long end_pfn = zone_end_pfn(zone);
233 unsigned long pfn;
235 zone->compact_blockskip_flush = false;
237 /* Walk the zone and mark every pageblock as suitable for isolation */
238 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
239 struct page *page;
241 cond_resched();
243 if (!pfn_valid(pfn))
244 continue;
246 page = pfn_to_page(pfn);
247 if (zone != page_zone(page))
248 continue;
250 clear_pageblock_skip(page);
253 reset_cached_positions(zone);
256 void reset_isolation_suitable(pg_data_t *pgdat)
258 int zoneid;
260 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
261 struct zone *zone = &pgdat->node_zones[zoneid];
262 if (!populated_zone(zone))
263 continue;
265 /* Only flush if a full compaction finished recently */
266 if (zone->compact_blockskip_flush)
267 __reset_isolation_suitable(zone);
272 * If no pages were isolated then mark this pageblock to be skipped in the
273 * future. The information is later cleared by __reset_isolation_suitable().
275 static void update_pageblock_skip(struct compact_control *cc,
276 struct page *page, unsigned long nr_isolated,
277 bool migrate_scanner)
279 struct zone *zone = cc->zone;
280 unsigned long pfn;
282 if (cc->ignore_skip_hint)
283 return;
285 if (!page)
286 return;
288 if (nr_isolated)
289 return;
291 set_pageblock_skip(page);
293 pfn = page_to_pfn(page);
295 /* Update where async and sync compaction should restart */
296 if (migrate_scanner) {
297 if (pfn > zone->compact_cached_migrate_pfn[0])
298 zone->compact_cached_migrate_pfn[0] = pfn;
299 if (cc->mode != MIGRATE_ASYNC &&
300 pfn > zone->compact_cached_migrate_pfn[1])
301 zone->compact_cached_migrate_pfn[1] = pfn;
302 } else {
303 if (pfn < zone->compact_cached_free_pfn)
304 zone->compact_cached_free_pfn = pfn;
307 #else
308 static inline bool isolation_suitable(struct compact_control *cc,
309 struct page *page)
311 return true;
314 static void update_pageblock_skip(struct compact_control *cc,
315 struct page *page, unsigned long nr_isolated,
316 bool migrate_scanner)
319 #endif /* CONFIG_COMPACTION */
322 * Compaction requires the taking of some coarse locks that are potentially
323 * very heavily contended. For async compaction, back out if the lock cannot
324 * be taken immediately. For sync compaction, spin on the lock if needed.
326 * Returns true if the lock is held
327 * Returns false if the lock is not held and compaction should abort
329 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
330 struct compact_control *cc)
332 if (cc->mode == MIGRATE_ASYNC) {
333 if (!spin_trylock_irqsave(lock, *flags)) {
334 cc->contended = true;
335 return false;
337 } else {
338 spin_lock_irqsave(lock, *flags);
341 return true;
345 * Compaction requires the taking of some coarse locks that are potentially
346 * very heavily contended. The lock should be periodically unlocked to avoid
347 * having disabled IRQs for a long time, even when there is nobody waiting on
348 * the lock. It might also be that allowing the IRQs will result in
349 * need_resched() becoming true. If scheduling is needed, async compaction
350 * aborts. Sync compaction schedules.
351 * Either compaction type will also abort if a fatal signal is pending.
352 * In either case if the lock was locked, it is dropped and not regained.
354 * Returns true if compaction should abort due to fatal signal pending, or
355 * async compaction due to need_resched()
356 * Returns false when compaction can continue (sync compaction might have
357 * scheduled)
359 static bool compact_unlock_should_abort(spinlock_t *lock,
360 unsigned long flags, bool *locked, struct compact_control *cc)
362 if (*locked) {
363 spin_unlock_irqrestore(lock, flags);
364 *locked = false;
367 if (fatal_signal_pending(current)) {
368 cc->contended = true;
369 return true;
372 if (need_resched()) {
373 if (cc->mode == MIGRATE_ASYNC) {
374 cc->contended = true;
375 return true;
377 cond_resched();
380 return false;
384 * Aside from avoiding lock contention, compaction also periodically checks
385 * need_resched() and either schedules in sync compaction or aborts async
386 * compaction. This is similar to what compact_unlock_should_abort() does, but
387 * is used where no lock is concerned.
389 * Returns false when no scheduling was needed, or sync compaction scheduled.
390 * Returns true when async compaction should abort.
392 static inline bool compact_should_abort(struct compact_control *cc)
394 /* async compaction aborts if contended */
395 if (need_resched()) {
396 if (cc->mode == MIGRATE_ASYNC) {
397 cc->contended = true;
398 return true;
401 cond_resched();
404 return false;
408 * Isolate free pages onto a private freelist. If @strict is true, will abort
409 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
410 * (even though it may still end up isolating some pages).
412 static unsigned long isolate_freepages_block(struct compact_control *cc,
413 unsigned long *start_pfn,
414 unsigned long end_pfn,
415 struct list_head *freelist,
416 bool strict)
418 int nr_scanned = 0, total_isolated = 0;
419 struct page *cursor, *valid_page = NULL;
420 unsigned long flags = 0;
421 bool locked = false;
422 unsigned long blockpfn = *start_pfn;
423 unsigned int order;
425 cursor = pfn_to_page(blockpfn);
427 /* Isolate free pages. */
428 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
429 int isolated;
430 struct page *page = cursor;
433 * Periodically drop the lock (if held) regardless of its
434 * contention, to give chance to IRQs. Abort if fatal signal
435 * pending or async compaction detects need_resched()
437 if (!(blockpfn % SWAP_CLUSTER_MAX)
438 && compact_unlock_should_abort(&cc->zone->lock, flags,
439 &locked, cc))
440 break;
442 nr_scanned++;
443 if (!pfn_valid_within(blockpfn))
444 goto isolate_fail;
446 if (!valid_page)
447 valid_page = page;
450 * For compound pages such as THP and hugetlbfs, we can save
451 * potentially a lot of iterations if we skip them at once.
452 * The check is racy, but we can consider only valid values
453 * and the only danger is skipping too much.
455 if (PageCompound(page)) {
456 unsigned int comp_order = compound_order(page);
458 if (likely(comp_order < MAX_ORDER)) {
459 blockpfn += (1UL << comp_order) - 1;
460 cursor += (1UL << comp_order) - 1;
463 goto isolate_fail;
466 if (!PageBuddy(page))
467 goto isolate_fail;
470 * If we already hold the lock, we can skip some rechecking.
471 * Note that if we hold the lock now, checked_pageblock was
472 * already set in some previous iteration (or strict is true),
473 * so it is correct to skip the suitable migration target
474 * recheck as well.
476 if (!locked) {
478 * The zone lock must be held to isolate freepages.
479 * Unfortunately this is a very coarse lock and can be
480 * heavily contended if there are parallel allocations
481 * or parallel compactions. For async compaction do not
482 * spin on the lock and we acquire the lock as late as
483 * possible.
485 locked = compact_trylock_irqsave(&cc->zone->lock,
486 &flags, cc);
487 if (!locked)
488 break;
490 /* Recheck this is a buddy page under lock */
491 if (!PageBuddy(page))
492 goto isolate_fail;
495 /* Found a free page, will break it into order-0 pages */
496 order = page_order(page);
497 isolated = __isolate_free_page(page, order);
498 if (!isolated)
499 break;
500 set_page_private(page, order);
502 total_isolated += isolated;
503 cc->nr_freepages += isolated;
504 list_add_tail(&page->lru, freelist);
506 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
507 blockpfn += isolated;
508 break;
510 /* Advance to the end of split page */
511 blockpfn += isolated - 1;
512 cursor += isolated - 1;
513 continue;
515 isolate_fail:
516 if (strict)
517 break;
518 else
519 continue;
523 if (locked)
524 spin_unlock_irqrestore(&cc->zone->lock, flags);
527 * There is a tiny chance that we have read bogus compound_order(),
528 * so be careful to not go outside of the pageblock.
530 if (unlikely(blockpfn > end_pfn))
531 blockpfn = end_pfn;
533 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
534 nr_scanned, total_isolated);
536 /* Record how far we have got within the block */
537 *start_pfn = blockpfn;
540 * If strict isolation is requested by CMA then check that all the
541 * pages requested were isolated. If there were any failures, 0 is
542 * returned and CMA will fail.
544 if (strict && blockpfn < end_pfn)
545 total_isolated = 0;
547 /* Update the pageblock-skip if the whole pageblock was scanned */
548 if (blockpfn == end_pfn)
549 update_pageblock_skip(cc, valid_page, total_isolated, false);
551 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
552 if (total_isolated)
553 count_compact_events(COMPACTISOLATED, total_isolated);
554 return total_isolated;
558 * isolate_freepages_range() - isolate free pages.
559 * @start_pfn: The first PFN to start isolating.
560 * @end_pfn: The one-past-last PFN.
562 * Non-free pages, invalid PFNs, or zone boundaries within the
563 * [start_pfn, end_pfn) range are considered errors, cause function to
564 * undo its actions and return zero.
566 * Otherwise, function returns one-past-the-last PFN of isolated page
567 * (which may be greater then end_pfn if end fell in a middle of
568 * a free page).
570 unsigned long
571 isolate_freepages_range(struct compact_control *cc,
572 unsigned long start_pfn, unsigned long end_pfn)
574 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
575 LIST_HEAD(freelist);
577 pfn = start_pfn;
578 block_start_pfn = pageblock_start_pfn(pfn);
579 if (block_start_pfn < cc->zone->zone_start_pfn)
580 block_start_pfn = cc->zone->zone_start_pfn;
581 block_end_pfn = pageblock_end_pfn(pfn);
583 for (; pfn < end_pfn; pfn += isolated,
584 block_start_pfn = block_end_pfn,
585 block_end_pfn += pageblock_nr_pages) {
586 /* Protect pfn from changing by isolate_freepages_block */
587 unsigned long isolate_start_pfn = pfn;
589 block_end_pfn = min(block_end_pfn, end_pfn);
592 * pfn could pass the block_end_pfn if isolated freepage
593 * is more than pageblock order. In this case, we adjust
594 * scanning range to right one.
596 if (pfn >= block_end_pfn) {
597 block_start_pfn = pageblock_start_pfn(pfn);
598 block_end_pfn = pageblock_end_pfn(pfn);
599 block_end_pfn = min(block_end_pfn, end_pfn);
602 if (!pageblock_pfn_to_page(block_start_pfn,
603 block_end_pfn, cc->zone))
604 break;
606 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
607 block_end_pfn, &freelist, true);
610 * In strict mode, isolate_freepages_block() returns 0 if
611 * there are any holes in the block (ie. invalid PFNs or
612 * non-free pages).
614 if (!isolated)
615 break;
618 * If we managed to isolate pages, it is always (1 << n) *
619 * pageblock_nr_pages for some non-negative n. (Max order
620 * page may span two pageblocks).
624 /* __isolate_free_page() does not map the pages */
625 map_pages(&freelist);
627 if (pfn < end_pfn) {
628 /* Loop terminated early, cleanup. */
629 release_freepages(&freelist);
630 return 0;
633 /* We don't use freelists for anything. */
634 return pfn;
637 /* Update the number of anon and file isolated pages in the zone */
638 static void acct_isolated(struct zone *zone, struct compact_control *cc)
640 struct page *page;
641 unsigned int count[2] = { 0, };
643 if (list_empty(&cc->migratepages))
644 return;
646 list_for_each_entry(page, &cc->migratepages, lru)
647 count[!!page_is_file_cache(page)]++;
649 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, count[0]);
650 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, count[1]);
653 /* Similar to reclaim, but different enough that they don't share logic */
654 static bool too_many_isolated(struct zone *zone)
656 unsigned long active, inactive, isolated;
658 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
659 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
660 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
661 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
662 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
663 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
665 return isolated > (inactive + active) / 2;
669 * isolate_migratepages_block() - isolate all migrate-able pages within
670 * a single pageblock
671 * @cc: Compaction control structure.
672 * @low_pfn: The first PFN to isolate
673 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
674 * @isolate_mode: Isolation mode to be used.
676 * Isolate all pages that can be migrated from the range specified by
677 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
678 * Returns zero if there is a fatal signal pending, otherwise PFN of the
679 * first page that was not scanned (which may be both less, equal to or more
680 * than end_pfn).
682 * The pages are isolated on cc->migratepages list (not required to be empty),
683 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
684 * is neither read nor updated.
686 static unsigned long
687 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
688 unsigned long end_pfn, isolate_mode_t isolate_mode)
690 struct zone *zone = cc->zone;
691 unsigned long nr_scanned = 0, nr_isolated = 0;
692 struct lruvec *lruvec;
693 unsigned long flags = 0;
694 bool locked = false;
695 struct page *page = NULL, *valid_page = NULL;
696 unsigned long start_pfn = low_pfn;
697 bool skip_on_failure = false;
698 unsigned long next_skip_pfn = 0;
701 * Ensure that there are not too many pages isolated from the LRU
702 * list by either parallel reclaimers or compaction. If there are,
703 * delay for some time until fewer pages are isolated
705 while (unlikely(too_many_isolated(zone))) {
706 /* async migration should just abort */
707 if (cc->mode == MIGRATE_ASYNC)
708 return 0;
710 congestion_wait(BLK_RW_ASYNC, HZ/10);
712 if (fatal_signal_pending(current))
713 return 0;
716 if (compact_should_abort(cc))
717 return 0;
719 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
720 skip_on_failure = true;
721 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
724 /* Time to isolate some pages for migration */
725 for (; low_pfn < end_pfn; low_pfn++) {
727 if (skip_on_failure && low_pfn >= next_skip_pfn) {
729 * We have isolated all migration candidates in the
730 * previous order-aligned block, and did not skip it due
731 * to failure. We should migrate the pages now and
732 * hopefully succeed compaction.
734 if (nr_isolated)
735 break;
738 * We failed to isolate in the previous order-aligned
739 * block. Set the new boundary to the end of the
740 * current block. Note we can't simply increase
741 * next_skip_pfn by 1 << order, as low_pfn might have
742 * been incremented by a higher number due to skipping
743 * a compound or a high-order buddy page in the
744 * previous loop iteration.
746 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
750 * Periodically drop the lock (if held) regardless of its
751 * contention, to give chance to IRQs. Abort async compaction
752 * if contended.
754 if (!(low_pfn % SWAP_CLUSTER_MAX)
755 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
756 &locked, cc))
757 break;
759 if (!pfn_valid_within(low_pfn))
760 goto isolate_fail;
761 nr_scanned++;
763 page = pfn_to_page(low_pfn);
765 if (!valid_page)
766 valid_page = page;
769 * Skip if free. We read page order here without zone lock
770 * which is generally unsafe, but the race window is small and
771 * the worst thing that can happen is that we skip some
772 * potential isolation targets.
774 if (PageBuddy(page)) {
775 unsigned long freepage_order = page_order_unsafe(page);
778 * Without lock, we cannot be sure that what we got is
779 * a valid page order. Consider only values in the
780 * valid order range to prevent low_pfn overflow.
782 if (freepage_order > 0 && freepage_order < MAX_ORDER)
783 low_pfn += (1UL << freepage_order) - 1;
784 continue;
788 * Regardless of being on LRU, compound pages such as THP and
789 * hugetlbfs are not to be compacted. We can potentially save
790 * a lot of iterations if we skip them at once. The check is
791 * racy, but we can consider only valid values and the only
792 * danger is skipping too much.
794 if (PageCompound(page)) {
795 unsigned int comp_order = compound_order(page);
797 if (likely(comp_order < MAX_ORDER))
798 low_pfn += (1UL << comp_order) - 1;
800 goto isolate_fail;
804 * Check may be lockless but that's ok as we recheck later.
805 * It's possible to migrate LRU and non-lru movable pages.
806 * Skip any other type of page
808 if (!PageLRU(page)) {
810 * __PageMovable can return false positive so we need
811 * to verify it under page_lock.
813 if (unlikely(__PageMovable(page)) &&
814 !PageIsolated(page)) {
815 if (locked) {
816 spin_unlock_irqrestore(zone_lru_lock(zone),
817 flags);
818 locked = false;
821 if (isolate_movable_page(page, isolate_mode))
822 goto isolate_success;
825 goto isolate_fail;
829 * Migration will fail if an anonymous page is pinned in memory,
830 * so avoid taking lru_lock and isolating it unnecessarily in an
831 * admittedly racy check.
833 if (!page_mapping(page) &&
834 page_count(page) > page_mapcount(page))
835 goto isolate_fail;
837 /* If we already hold the lock, we can skip some rechecking */
838 if (!locked) {
839 locked = compact_trylock_irqsave(zone_lru_lock(zone),
840 &flags, cc);
841 if (!locked)
842 break;
844 /* Recheck PageLRU and PageCompound under lock */
845 if (!PageLRU(page))
846 goto isolate_fail;
849 * Page become compound since the non-locked check,
850 * and it's on LRU. It can only be a THP so the order
851 * is safe to read and it's 0 for tail pages.
853 if (unlikely(PageCompound(page))) {
854 low_pfn += (1UL << compound_order(page)) - 1;
855 goto isolate_fail;
859 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
861 /* Try isolate the page */
862 if (__isolate_lru_page(page, isolate_mode) != 0)
863 goto isolate_fail;
865 VM_BUG_ON_PAGE(PageCompound(page), page);
867 /* Successfully isolated */
868 del_page_from_lru_list(page, lruvec, page_lru(page));
870 isolate_success:
871 list_add(&page->lru, &cc->migratepages);
872 cc->nr_migratepages++;
873 nr_isolated++;
876 * Record where we could have freed pages by migration and not
877 * yet flushed them to buddy allocator.
878 * - this is the lowest page that was isolated and likely be
879 * then freed by migration.
881 if (!cc->last_migrated_pfn)
882 cc->last_migrated_pfn = low_pfn;
884 /* Avoid isolating too much */
885 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
886 ++low_pfn;
887 break;
890 continue;
891 isolate_fail:
892 if (!skip_on_failure)
893 continue;
896 * We have isolated some pages, but then failed. Release them
897 * instead of migrating, as we cannot form the cc->order buddy
898 * page anyway.
900 if (nr_isolated) {
901 if (locked) {
902 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
903 locked = false;
905 acct_isolated(zone, cc);
906 putback_movable_pages(&cc->migratepages);
907 cc->nr_migratepages = 0;
908 cc->last_migrated_pfn = 0;
909 nr_isolated = 0;
912 if (low_pfn < next_skip_pfn) {
913 low_pfn = next_skip_pfn - 1;
915 * The check near the loop beginning would have updated
916 * next_skip_pfn too, but this is a bit simpler.
918 next_skip_pfn += 1UL << cc->order;
923 * The PageBuddy() check could have potentially brought us outside
924 * the range to be scanned.
926 if (unlikely(low_pfn > end_pfn))
927 low_pfn = end_pfn;
929 if (locked)
930 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
933 * Update the pageblock-skip information and cached scanner pfn,
934 * if the whole pageblock was scanned without isolating any page.
936 if (low_pfn == end_pfn)
937 update_pageblock_skip(cc, valid_page, nr_isolated, true);
939 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
940 nr_scanned, nr_isolated);
942 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
943 if (nr_isolated)
944 count_compact_events(COMPACTISOLATED, nr_isolated);
946 return low_pfn;
950 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
951 * @cc: Compaction control structure.
952 * @start_pfn: The first PFN to start isolating.
953 * @end_pfn: The one-past-last PFN.
955 * Returns zero if isolation fails fatally due to e.g. pending signal.
956 * Otherwise, function returns one-past-the-last PFN of isolated page
957 * (which may be greater than end_pfn if end fell in a middle of a THP page).
959 unsigned long
960 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
961 unsigned long end_pfn)
963 unsigned long pfn, block_start_pfn, block_end_pfn;
965 /* Scan block by block. First and last block may be incomplete */
966 pfn = start_pfn;
967 block_start_pfn = pageblock_start_pfn(pfn);
968 if (block_start_pfn < cc->zone->zone_start_pfn)
969 block_start_pfn = cc->zone->zone_start_pfn;
970 block_end_pfn = pageblock_end_pfn(pfn);
972 for (; pfn < end_pfn; pfn = block_end_pfn,
973 block_start_pfn = block_end_pfn,
974 block_end_pfn += pageblock_nr_pages) {
976 block_end_pfn = min(block_end_pfn, end_pfn);
978 if (!pageblock_pfn_to_page(block_start_pfn,
979 block_end_pfn, cc->zone))
980 continue;
982 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
983 ISOLATE_UNEVICTABLE);
985 if (!pfn)
986 break;
988 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
989 break;
991 acct_isolated(cc->zone, cc);
993 return pfn;
996 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
997 #ifdef CONFIG_COMPACTION
999 /* Returns true if the page is within a block suitable for migration to */
1000 static bool suitable_migration_target(struct compact_control *cc,
1001 struct page *page)
1003 if (cc->ignore_block_suitable)
1004 return true;
1006 /* If the page is a large free page, then disallow migration */
1007 if (PageBuddy(page)) {
1009 * We are checking page_order without zone->lock taken. But
1010 * the only small danger is that we skip a potentially suitable
1011 * pageblock, so it's not worth to check order for valid range.
1013 if (page_order_unsafe(page) >= pageblock_order)
1014 return false;
1017 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1018 if (migrate_async_suitable(get_pageblock_migratetype(page)))
1019 return true;
1021 /* Otherwise skip the block */
1022 return false;
1026 * Test whether the free scanner has reached the same or lower pageblock than
1027 * the migration scanner, and compaction should thus terminate.
1029 static inline bool compact_scanners_met(struct compact_control *cc)
1031 return (cc->free_pfn >> pageblock_order)
1032 <= (cc->migrate_pfn >> pageblock_order);
1036 * Based on information in the current compact_control, find blocks
1037 * suitable for isolating free pages from and then isolate them.
1039 static void isolate_freepages(struct compact_control *cc)
1041 struct zone *zone = cc->zone;
1042 struct page *page;
1043 unsigned long block_start_pfn; /* start of current pageblock */
1044 unsigned long isolate_start_pfn; /* exact pfn we start at */
1045 unsigned long block_end_pfn; /* end of current pageblock */
1046 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1047 struct list_head *freelist = &cc->freepages;
1050 * Initialise the free scanner. The starting point is where we last
1051 * successfully isolated from, zone-cached value, or the end of the
1052 * zone when isolating for the first time. For looping we also need
1053 * this pfn aligned down to the pageblock boundary, because we do
1054 * block_start_pfn -= pageblock_nr_pages in the for loop.
1055 * For ending point, take care when isolating in last pageblock of a
1056 * a zone which ends in the middle of a pageblock.
1057 * The low boundary is the end of the pageblock the migration scanner
1058 * is using.
1060 isolate_start_pfn = cc->free_pfn;
1061 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1062 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1063 zone_end_pfn(zone));
1064 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1067 * Isolate free pages until enough are available to migrate the
1068 * pages on cc->migratepages. We stop searching if the migrate
1069 * and free page scanners meet or enough free pages are isolated.
1071 for (; block_start_pfn >= low_pfn;
1072 block_end_pfn = block_start_pfn,
1073 block_start_pfn -= pageblock_nr_pages,
1074 isolate_start_pfn = block_start_pfn) {
1076 * This can iterate a massively long zone without finding any
1077 * suitable migration targets, so periodically check if we need
1078 * to schedule, or even abort async compaction.
1080 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1081 && compact_should_abort(cc))
1082 break;
1084 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1085 zone);
1086 if (!page)
1087 continue;
1089 /* Check the block is suitable for migration */
1090 if (!suitable_migration_target(cc, page))
1091 continue;
1093 /* If isolation recently failed, do not retry */
1094 if (!isolation_suitable(cc, page))
1095 continue;
1097 /* Found a block suitable for isolating free pages from. */
1098 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1099 freelist, false);
1102 * If we isolated enough freepages, or aborted due to lock
1103 * contention, terminate.
1105 if ((cc->nr_freepages >= cc->nr_migratepages)
1106 || cc->contended) {
1107 if (isolate_start_pfn >= block_end_pfn) {
1109 * Restart at previous pageblock if more
1110 * freepages can be isolated next time.
1112 isolate_start_pfn =
1113 block_start_pfn - pageblock_nr_pages;
1115 break;
1116 } else if (isolate_start_pfn < block_end_pfn) {
1118 * If isolation failed early, do not continue
1119 * needlessly.
1121 break;
1125 /* __isolate_free_page() does not map the pages */
1126 map_pages(freelist);
1129 * Record where the free scanner will restart next time. Either we
1130 * broke from the loop and set isolate_start_pfn based on the last
1131 * call to isolate_freepages_block(), or we met the migration scanner
1132 * and the loop terminated due to isolate_start_pfn < low_pfn
1134 cc->free_pfn = isolate_start_pfn;
1138 * This is a migrate-callback that "allocates" freepages by taking pages
1139 * from the isolated freelists in the block we are migrating to.
1141 static struct page *compaction_alloc(struct page *migratepage,
1142 unsigned long data,
1143 int **result)
1145 struct compact_control *cc = (struct compact_control *)data;
1146 struct page *freepage;
1149 * Isolate free pages if necessary, and if we are not aborting due to
1150 * contention.
1152 if (list_empty(&cc->freepages)) {
1153 if (!cc->contended)
1154 isolate_freepages(cc);
1156 if (list_empty(&cc->freepages))
1157 return NULL;
1160 freepage = list_entry(cc->freepages.next, struct page, lru);
1161 list_del(&freepage->lru);
1162 cc->nr_freepages--;
1164 return freepage;
1168 * This is a migrate-callback that "frees" freepages back to the isolated
1169 * freelist. All pages on the freelist are from the same zone, so there is no
1170 * special handling needed for NUMA.
1172 static void compaction_free(struct page *page, unsigned long data)
1174 struct compact_control *cc = (struct compact_control *)data;
1176 list_add(&page->lru, &cc->freepages);
1177 cc->nr_freepages++;
1180 /* possible outcome of isolate_migratepages */
1181 typedef enum {
1182 ISOLATE_ABORT, /* Abort compaction now */
1183 ISOLATE_NONE, /* No pages isolated, continue scanning */
1184 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1185 } isolate_migrate_t;
1188 * Allow userspace to control policy on scanning the unevictable LRU for
1189 * compactable pages.
1191 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1194 * Isolate all pages that can be migrated from the first suitable block,
1195 * starting at the block pointed to by the migrate scanner pfn within
1196 * compact_control.
1198 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1199 struct compact_control *cc)
1201 unsigned long block_start_pfn;
1202 unsigned long block_end_pfn;
1203 unsigned long low_pfn;
1204 struct page *page;
1205 const isolate_mode_t isolate_mode =
1206 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1207 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1210 * Start at where we last stopped, or beginning of the zone as
1211 * initialized by compact_zone()
1213 low_pfn = cc->migrate_pfn;
1214 block_start_pfn = pageblock_start_pfn(low_pfn);
1215 if (block_start_pfn < zone->zone_start_pfn)
1216 block_start_pfn = zone->zone_start_pfn;
1218 /* Only scan within a pageblock boundary */
1219 block_end_pfn = pageblock_end_pfn(low_pfn);
1222 * Iterate over whole pageblocks until we find the first suitable.
1223 * Do not cross the free scanner.
1225 for (; block_end_pfn <= cc->free_pfn;
1226 low_pfn = block_end_pfn,
1227 block_start_pfn = block_end_pfn,
1228 block_end_pfn += pageblock_nr_pages) {
1231 * This can potentially iterate a massively long zone with
1232 * many pageblocks unsuitable, so periodically check if we
1233 * need to schedule, or even abort async compaction.
1235 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1236 && compact_should_abort(cc))
1237 break;
1239 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1240 zone);
1241 if (!page)
1242 continue;
1244 /* If isolation recently failed, do not retry */
1245 if (!isolation_suitable(cc, page))
1246 continue;
1249 * For async compaction, also only scan in MOVABLE blocks.
1250 * Async compaction is optimistic to see if the minimum amount
1251 * of work satisfies the allocation.
1253 if (cc->mode == MIGRATE_ASYNC &&
1254 !migrate_async_suitable(get_pageblock_migratetype(page)))
1255 continue;
1257 /* Perform the isolation */
1258 low_pfn = isolate_migratepages_block(cc, low_pfn,
1259 block_end_pfn, isolate_mode);
1261 if (!low_pfn || cc->contended) {
1262 acct_isolated(zone, cc);
1263 return ISOLATE_ABORT;
1267 * Either we isolated something and proceed with migration. Or
1268 * we failed and compact_zone should decide if we should
1269 * continue or not.
1271 break;
1274 acct_isolated(zone, cc);
1275 /* Record where migration scanner will be restarted. */
1276 cc->migrate_pfn = low_pfn;
1278 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1282 * order == -1 is expected when compacting via
1283 * /proc/sys/vm/compact_memory
1285 static inline bool is_via_compact_memory(int order)
1287 return order == -1;
1290 static enum compact_result __compact_finished(struct zone *zone, struct compact_control *cc,
1291 const int migratetype)
1293 unsigned int order;
1294 unsigned long watermark;
1296 if (cc->contended || fatal_signal_pending(current))
1297 return COMPACT_CONTENDED;
1299 /* Compaction run completes if the migrate and free scanner meet */
1300 if (compact_scanners_met(cc)) {
1301 /* Let the next compaction start anew. */
1302 reset_cached_positions(zone);
1305 * Mark that the PG_migrate_skip information should be cleared
1306 * by kswapd when it goes to sleep. kcompactd does not set the
1307 * flag itself as the decision to be clear should be directly
1308 * based on an allocation request.
1310 if (cc->direct_compaction)
1311 zone->compact_blockskip_flush = true;
1313 if (cc->whole_zone)
1314 return COMPACT_COMPLETE;
1315 else
1316 return COMPACT_PARTIAL_SKIPPED;
1319 if (is_via_compact_memory(cc->order))
1320 return COMPACT_CONTINUE;
1322 /* Compaction run is not finished if the watermark is not met */
1323 watermark = zone->watermark[cc->alloc_flags & ALLOC_WMARK_MASK];
1325 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1326 cc->alloc_flags))
1327 return COMPACT_CONTINUE;
1329 /* Direct compactor: Is a suitable page free? */
1330 for (order = cc->order; order < MAX_ORDER; order++) {
1331 struct free_area *area = &zone->free_area[order];
1332 bool can_steal;
1334 /* Job done if page is free of the right migratetype */
1335 if (!list_empty(&area->free_list[migratetype]))
1336 return COMPACT_SUCCESS;
1338 #ifdef CONFIG_CMA
1339 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1340 if (migratetype == MIGRATE_MOVABLE &&
1341 !list_empty(&area->free_list[MIGRATE_CMA]))
1342 return COMPACT_SUCCESS;
1343 #endif
1345 * Job done if allocation would steal freepages from
1346 * other migratetype buddy lists.
1348 if (find_suitable_fallback(area, order, migratetype,
1349 true, &can_steal) != -1)
1350 return COMPACT_SUCCESS;
1353 return COMPACT_NO_SUITABLE_PAGE;
1356 static enum compact_result compact_finished(struct zone *zone,
1357 struct compact_control *cc,
1358 const int migratetype)
1360 int ret;
1362 ret = __compact_finished(zone, cc, migratetype);
1363 trace_mm_compaction_finished(zone, cc->order, ret);
1364 if (ret == COMPACT_NO_SUITABLE_PAGE)
1365 ret = COMPACT_CONTINUE;
1367 return ret;
1371 * compaction_suitable: Is this suitable to run compaction on this zone now?
1372 * Returns
1373 * COMPACT_SKIPPED - If there are too few free pages for compaction
1374 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1375 * COMPACT_CONTINUE - If compaction should run now
1377 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1378 unsigned int alloc_flags,
1379 int classzone_idx,
1380 unsigned long wmark_target)
1382 unsigned long watermark;
1384 if (is_via_compact_memory(order))
1385 return COMPACT_CONTINUE;
1387 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1389 * If watermarks for high-order allocation are already met, there
1390 * should be no need for compaction at all.
1392 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1393 alloc_flags))
1394 return COMPACT_SUCCESS;
1397 * Watermarks for order-0 must be met for compaction to be able to
1398 * isolate free pages for migration targets. This means that the
1399 * watermark and alloc_flags have to match, or be more pessimistic than
1400 * the check in __isolate_free_page(). We don't use the direct
1401 * compactor's alloc_flags, as they are not relevant for freepage
1402 * isolation. We however do use the direct compactor's classzone_idx to
1403 * skip over zones where lowmem reserves would prevent allocation even
1404 * if compaction succeeds.
1405 * For costly orders, we require low watermark instead of min for
1406 * compaction to proceed to increase its chances.
1407 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1408 * suitable migration targets
1410 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1411 low_wmark_pages(zone) : min_wmark_pages(zone);
1412 watermark += compact_gap(order);
1413 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1414 ALLOC_CMA, wmark_target))
1415 return COMPACT_SKIPPED;
1417 return COMPACT_CONTINUE;
1420 enum compact_result compaction_suitable(struct zone *zone, int order,
1421 unsigned int alloc_flags,
1422 int classzone_idx)
1424 enum compact_result ret;
1425 int fragindex;
1427 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1428 zone_page_state(zone, NR_FREE_PAGES));
1430 * fragmentation index determines if allocation failures are due to
1431 * low memory or external fragmentation
1433 * index of -1000 would imply allocations might succeed depending on
1434 * watermarks, but we already failed the high-order watermark check
1435 * index towards 0 implies failure is due to lack of memory
1436 * index towards 1000 implies failure is due to fragmentation
1438 * Only compact if a failure would be due to fragmentation. Also
1439 * ignore fragindex for non-costly orders where the alternative to
1440 * a successful reclaim/compaction is OOM. Fragindex and the
1441 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1442 * excessive compaction for costly orders, but it should not be at the
1443 * expense of system stability.
1445 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1446 fragindex = fragmentation_index(zone, order);
1447 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1448 ret = COMPACT_NOT_SUITABLE_ZONE;
1451 trace_mm_compaction_suitable(zone, order, ret);
1452 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1453 ret = COMPACT_SKIPPED;
1455 return ret;
1458 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1459 int alloc_flags)
1461 struct zone *zone;
1462 struct zoneref *z;
1465 * Make sure at least one zone would pass __compaction_suitable if we continue
1466 * retrying the reclaim.
1468 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1469 ac->nodemask) {
1470 unsigned long available;
1471 enum compact_result compact_result;
1474 * Do not consider all the reclaimable memory because we do not
1475 * want to trash just for a single high order allocation which
1476 * is even not guaranteed to appear even if __compaction_suitable
1477 * is happy about the watermark check.
1479 available = zone_reclaimable_pages(zone) / order;
1480 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1481 compact_result = __compaction_suitable(zone, order, alloc_flags,
1482 ac_classzone_idx(ac), available);
1483 if (compact_result != COMPACT_SKIPPED)
1484 return true;
1487 return false;
1490 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1492 enum compact_result ret;
1493 unsigned long start_pfn = zone->zone_start_pfn;
1494 unsigned long end_pfn = zone_end_pfn(zone);
1495 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1496 const bool sync = cc->mode != MIGRATE_ASYNC;
1498 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1499 cc->classzone_idx);
1500 /* Compaction is likely to fail */
1501 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1502 return ret;
1504 /* huh, compaction_suitable is returning something unexpected */
1505 VM_BUG_ON(ret != COMPACT_CONTINUE);
1508 * Clear pageblock skip if there were failures recently and compaction
1509 * is about to be retried after being deferred.
1511 if (compaction_restarting(zone, cc->order))
1512 __reset_isolation_suitable(zone);
1515 * Setup to move all movable pages to the end of the zone. Used cached
1516 * information on where the scanners should start (unless we explicitly
1517 * want to compact the whole zone), but check that it is initialised
1518 * by ensuring the values are within zone boundaries.
1520 if (cc->whole_zone) {
1521 cc->migrate_pfn = start_pfn;
1522 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1523 } else {
1524 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1525 cc->free_pfn = zone->compact_cached_free_pfn;
1526 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1527 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1528 zone->compact_cached_free_pfn = cc->free_pfn;
1530 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1531 cc->migrate_pfn = start_pfn;
1532 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1533 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1536 if (cc->migrate_pfn == start_pfn)
1537 cc->whole_zone = true;
1540 cc->last_migrated_pfn = 0;
1542 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1543 cc->free_pfn, end_pfn, sync);
1545 migrate_prep_local();
1547 while ((ret = compact_finished(zone, cc, migratetype)) ==
1548 COMPACT_CONTINUE) {
1549 int err;
1551 switch (isolate_migratepages(zone, cc)) {
1552 case ISOLATE_ABORT:
1553 ret = COMPACT_CONTENDED;
1554 putback_movable_pages(&cc->migratepages);
1555 cc->nr_migratepages = 0;
1556 goto out;
1557 case ISOLATE_NONE:
1559 * We haven't isolated and migrated anything, but
1560 * there might still be unflushed migrations from
1561 * previous cc->order aligned block.
1563 goto check_drain;
1564 case ISOLATE_SUCCESS:
1568 err = migrate_pages(&cc->migratepages, compaction_alloc,
1569 compaction_free, (unsigned long)cc, cc->mode,
1570 MR_COMPACTION);
1572 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1573 &cc->migratepages);
1575 /* All pages were either migrated or will be released */
1576 cc->nr_migratepages = 0;
1577 if (err) {
1578 putback_movable_pages(&cc->migratepages);
1580 * migrate_pages() may return -ENOMEM when scanners meet
1581 * and we want compact_finished() to detect it
1583 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1584 ret = COMPACT_CONTENDED;
1585 goto out;
1588 * We failed to migrate at least one page in the current
1589 * order-aligned block, so skip the rest of it.
1591 if (cc->direct_compaction &&
1592 (cc->mode == MIGRATE_ASYNC)) {
1593 cc->migrate_pfn = block_end_pfn(
1594 cc->migrate_pfn - 1, cc->order);
1595 /* Draining pcplists is useless in this case */
1596 cc->last_migrated_pfn = 0;
1601 check_drain:
1603 * Has the migration scanner moved away from the previous
1604 * cc->order aligned block where we migrated from? If yes,
1605 * flush the pages that were freed, so that they can merge and
1606 * compact_finished() can detect immediately if allocation
1607 * would succeed.
1609 if (cc->order > 0 && cc->last_migrated_pfn) {
1610 int cpu;
1611 unsigned long current_block_start =
1612 block_start_pfn(cc->migrate_pfn, cc->order);
1614 if (cc->last_migrated_pfn < current_block_start) {
1615 cpu = get_cpu();
1616 lru_add_drain_cpu(cpu);
1617 drain_local_pages(zone);
1618 put_cpu();
1619 /* No more flushing until we migrate again */
1620 cc->last_migrated_pfn = 0;
1626 out:
1628 * Release free pages and update where the free scanner should restart,
1629 * so we don't leave any returned pages behind in the next attempt.
1631 if (cc->nr_freepages > 0) {
1632 unsigned long free_pfn = release_freepages(&cc->freepages);
1634 cc->nr_freepages = 0;
1635 VM_BUG_ON(free_pfn == 0);
1636 /* The cached pfn is always the first in a pageblock */
1637 free_pfn = pageblock_start_pfn(free_pfn);
1639 * Only go back, not forward. The cached pfn might have been
1640 * already reset to zone end in compact_finished()
1642 if (free_pfn > zone->compact_cached_free_pfn)
1643 zone->compact_cached_free_pfn = free_pfn;
1646 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1647 cc->free_pfn, end_pfn, sync, ret);
1649 return ret;
1652 static enum compact_result compact_zone_order(struct zone *zone, int order,
1653 gfp_t gfp_mask, enum compact_priority prio,
1654 unsigned int alloc_flags, int classzone_idx)
1656 enum compact_result ret;
1657 struct compact_control cc = {
1658 .nr_freepages = 0,
1659 .nr_migratepages = 0,
1660 .order = order,
1661 .gfp_mask = gfp_mask,
1662 .zone = zone,
1663 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1664 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1665 .alloc_flags = alloc_flags,
1666 .classzone_idx = classzone_idx,
1667 .direct_compaction = true,
1668 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1669 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1670 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1672 INIT_LIST_HEAD(&cc.freepages);
1673 INIT_LIST_HEAD(&cc.migratepages);
1675 ret = compact_zone(zone, &cc);
1677 VM_BUG_ON(!list_empty(&cc.freepages));
1678 VM_BUG_ON(!list_empty(&cc.migratepages));
1680 return ret;
1683 int sysctl_extfrag_threshold = 500;
1686 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1687 * @gfp_mask: The GFP mask of the current allocation
1688 * @order: The order of the current allocation
1689 * @alloc_flags: The allocation flags of the current allocation
1690 * @ac: The context of current allocation
1691 * @mode: The migration mode for async, sync light, or sync migration
1693 * This is the main entry point for direct page compaction.
1695 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1696 unsigned int alloc_flags, const struct alloc_context *ac,
1697 enum compact_priority prio)
1699 int may_enter_fs = gfp_mask & __GFP_FS;
1700 int may_perform_io = gfp_mask & __GFP_IO;
1701 struct zoneref *z;
1702 struct zone *zone;
1703 enum compact_result rc = COMPACT_SKIPPED;
1705 /* Check if the GFP flags allow compaction */
1706 if (!may_enter_fs || !may_perform_io)
1707 return COMPACT_SKIPPED;
1709 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1711 /* Compact each zone in the list */
1712 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1713 ac->nodemask) {
1714 enum compact_result status;
1716 if (prio > MIN_COMPACT_PRIORITY
1717 && compaction_deferred(zone, order)) {
1718 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1719 continue;
1722 status = compact_zone_order(zone, order, gfp_mask, prio,
1723 alloc_flags, ac_classzone_idx(ac));
1724 rc = max(status, rc);
1726 /* The allocation should succeed, stop compacting */
1727 if (status == COMPACT_SUCCESS) {
1729 * We think the allocation will succeed in this zone,
1730 * but it is not certain, hence the false. The caller
1731 * will repeat this with true if allocation indeed
1732 * succeeds in this zone.
1734 compaction_defer_reset(zone, order, false);
1736 break;
1739 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1740 status == COMPACT_PARTIAL_SKIPPED))
1742 * We think that allocation won't succeed in this zone
1743 * so we defer compaction there. If it ends up
1744 * succeeding after all, it will be reset.
1746 defer_compaction(zone, order);
1749 * We might have stopped compacting due to need_resched() in
1750 * async compaction, or due to a fatal signal detected. In that
1751 * case do not try further zones
1753 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1754 || fatal_signal_pending(current))
1755 break;
1758 return rc;
1762 /* Compact all zones within a node */
1763 static void compact_node(int nid)
1765 pg_data_t *pgdat = NODE_DATA(nid);
1766 int zoneid;
1767 struct zone *zone;
1768 struct compact_control cc = {
1769 .order = -1,
1770 .mode = MIGRATE_SYNC,
1771 .ignore_skip_hint = true,
1772 .whole_zone = true,
1776 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1778 zone = &pgdat->node_zones[zoneid];
1779 if (!populated_zone(zone))
1780 continue;
1782 cc.nr_freepages = 0;
1783 cc.nr_migratepages = 0;
1784 cc.zone = zone;
1785 INIT_LIST_HEAD(&cc.freepages);
1786 INIT_LIST_HEAD(&cc.migratepages);
1788 compact_zone(zone, &cc);
1790 VM_BUG_ON(!list_empty(&cc.freepages));
1791 VM_BUG_ON(!list_empty(&cc.migratepages));
1795 /* Compact all nodes in the system */
1796 static void compact_nodes(void)
1798 int nid;
1800 /* Flush pending updates to the LRU lists */
1801 lru_add_drain_all();
1803 for_each_online_node(nid)
1804 compact_node(nid);
1807 /* The written value is actually unused, all memory is compacted */
1808 int sysctl_compact_memory;
1811 * This is the entry point for compacting all nodes via
1812 * /proc/sys/vm/compact_memory
1814 int sysctl_compaction_handler(struct ctl_table *table, int write,
1815 void __user *buffer, size_t *length, loff_t *ppos)
1817 if (write)
1818 compact_nodes();
1820 return 0;
1823 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1824 void __user *buffer, size_t *length, loff_t *ppos)
1826 proc_dointvec_minmax(table, write, buffer, length, ppos);
1828 return 0;
1831 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1832 static ssize_t sysfs_compact_node(struct device *dev,
1833 struct device_attribute *attr,
1834 const char *buf, size_t count)
1836 int nid = dev->id;
1838 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1839 /* Flush pending updates to the LRU lists */
1840 lru_add_drain_all();
1842 compact_node(nid);
1845 return count;
1847 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1849 int compaction_register_node(struct node *node)
1851 return device_create_file(&node->dev, &dev_attr_compact);
1854 void compaction_unregister_node(struct node *node)
1856 return device_remove_file(&node->dev, &dev_attr_compact);
1858 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1860 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1862 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1865 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1867 int zoneid;
1868 struct zone *zone;
1869 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1871 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1872 zone = &pgdat->node_zones[zoneid];
1874 if (!populated_zone(zone))
1875 continue;
1877 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1878 classzone_idx) == COMPACT_CONTINUE)
1879 return true;
1882 return false;
1885 static void kcompactd_do_work(pg_data_t *pgdat)
1888 * With no special task, compact all zones so that a page of requested
1889 * order is allocatable.
1891 int zoneid;
1892 struct zone *zone;
1893 struct compact_control cc = {
1894 .order = pgdat->kcompactd_max_order,
1895 .classzone_idx = pgdat->kcompactd_classzone_idx,
1896 .mode = MIGRATE_SYNC_LIGHT,
1897 .ignore_skip_hint = true,
1900 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1901 cc.classzone_idx);
1902 count_vm_event(KCOMPACTD_WAKE);
1904 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1905 int status;
1907 zone = &pgdat->node_zones[zoneid];
1908 if (!populated_zone(zone))
1909 continue;
1911 if (compaction_deferred(zone, cc.order))
1912 continue;
1914 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1915 COMPACT_CONTINUE)
1916 continue;
1918 cc.nr_freepages = 0;
1919 cc.nr_migratepages = 0;
1920 cc.zone = zone;
1921 INIT_LIST_HEAD(&cc.freepages);
1922 INIT_LIST_HEAD(&cc.migratepages);
1924 if (kthread_should_stop())
1925 return;
1926 status = compact_zone(zone, &cc);
1928 if (status == COMPACT_SUCCESS) {
1929 compaction_defer_reset(zone, cc.order, false);
1930 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1932 * We use sync migration mode here, so we defer like
1933 * sync direct compaction does.
1935 defer_compaction(zone, cc.order);
1938 VM_BUG_ON(!list_empty(&cc.freepages));
1939 VM_BUG_ON(!list_empty(&cc.migratepages));
1943 * Regardless of success, we are done until woken up next. But remember
1944 * the requested order/classzone_idx in case it was higher/tighter than
1945 * our current ones
1947 if (pgdat->kcompactd_max_order <= cc.order)
1948 pgdat->kcompactd_max_order = 0;
1949 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
1950 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1953 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
1955 if (!order)
1956 return;
1958 if (pgdat->kcompactd_max_order < order)
1959 pgdat->kcompactd_max_order = order;
1961 if (pgdat->kcompactd_classzone_idx > classzone_idx)
1962 pgdat->kcompactd_classzone_idx = classzone_idx;
1964 if (!waitqueue_active(&pgdat->kcompactd_wait))
1965 return;
1967 if (!kcompactd_node_suitable(pgdat))
1968 return;
1970 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
1971 classzone_idx);
1972 wake_up_interruptible(&pgdat->kcompactd_wait);
1976 * The background compaction daemon, started as a kernel thread
1977 * from the init process.
1979 static int kcompactd(void *p)
1981 pg_data_t *pgdat = (pg_data_t*)p;
1982 struct task_struct *tsk = current;
1984 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1986 if (!cpumask_empty(cpumask))
1987 set_cpus_allowed_ptr(tsk, cpumask);
1989 set_freezable();
1991 pgdat->kcompactd_max_order = 0;
1992 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
1994 while (!kthread_should_stop()) {
1995 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
1996 wait_event_freezable(pgdat->kcompactd_wait,
1997 kcompactd_work_requested(pgdat));
1999 kcompactd_do_work(pgdat);
2002 return 0;
2006 * This kcompactd start function will be called by init and node-hot-add.
2007 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2009 int kcompactd_run(int nid)
2011 pg_data_t *pgdat = NODE_DATA(nid);
2012 int ret = 0;
2014 if (pgdat->kcompactd)
2015 return 0;
2017 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2018 if (IS_ERR(pgdat->kcompactd)) {
2019 pr_err("Failed to start kcompactd on node %d\n", nid);
2020 ret = PTR_ERR(pgdat->kcompactd);
2021 pgdat->kcompactd = NULL;
2023 return ret;
2027 * Called by memory hotplug when all memory in a node is offlined. Caller must
2028 * hold mem_hotplug_begin/end().
2030 void kcompactd_stop(int nid)
2032 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2034 if (kcompactd) {
2035 kthread_stop(kcompactd);
2036 NODE_DATA(nid)->kcompactd = NULL;
2041 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2042 * not required for correctness. So if the last cpu in a node goes
2043 * away, we get changed to run anywhere: as the first one comes back,
2044 * restore their cpu bindings.
2046 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
2047 void *hcpu)
2049 int nid;
2051 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2052 for_each_node_state(nid, N_MEMORY) {
2053 pg_data_t *pgdat = NODE_DATA(nid);
2054 const struct cpumask *mask;
2056 mask = cpumask_of_node(pgdat->node_id);
2058 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2059 /* One of our CPUs online: restore mask */
2060 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2063 return NOTIFY_OK;
2066 static int __init kcompactd_init(void)
2068 int nid;
2070 for_each_node_state(nid, N_MEMORY)
2071 kcompactd_run(nid);
2072 hotcpu_notifier(cpu_callback, 0);
2073 return 0;
2075 subsys_initcall(kcompactd_init)
2077 #endif /* CONFIG_COMPACTION */