KVM: nVMX: introduce nested_vmx_load_cr3 and call it on vmentry
[linux/fpc-iii.git] / mm / slub.c
blob2b3e740609e92e29a7b52ddb6df6b8f0b0897136
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
38 #include <trace/events/kmem.h>
40 #include "internal.h"
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
48 * slab_mutex
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
95 * Overloading of page flags that are otherwise used for LRU management.
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
118 static inline int kmem_cache_debug(struct kmem_cache *s)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
127 void *fixup_red_left(struct kmem_cache *s, void *p)
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
132 return p;
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139 #else
140 return false;
141 #endif
145 * Issues still to be resolved:
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 * - Variable sizing of the per node arrays
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 #define MIN_PARTIAL 5
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
169 #define MAX_PARTIAL 10
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 #define OO_SHIFT 16
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON 0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
198 * Tracking user of a slab.
200 #define TRACK_ADDRS_COUNT 16
201 struct track {
202 unsigned long addr; /* Called from address */
203 #ifdef CONFIG_STACKTRACE
204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
205 #endif
206 int cpu; /* Was running on cpu */
207 int pid; /* Pid context */
208 unsigned long when; /* When did the operation occur */
211 enum track_item { TRACK_ALLOC, TRACK_FREE };
213 #ifdef CONFIG_SYSFS
214 static int sysfs_slab_add(struct kmem_cache *);
215 static int sysfs_slab_alias(struct kmem_cache *, const char *);
216 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
217 #else
218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
226 #ifdef CONFIG_SLUB_STATS
228 * The rmw is racy on a preemptible kernel but this is acceptable, so
229 * avoid this_cpu_add()'s irq-disable overhead.
231 raw_cpu_inc(s->cpu_slab->stat[si]);
232 #endif
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
239 static inline void *get_freepointer(struct kmem_cache *s, void *object)
241 return *(void **)(object + s->offset);
244 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
246 prefetch(object + s->offset);
249 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
251 void *p;
253 if (!debug_pagealloc_enabled())
254 return get_freepointer(s, object);
256 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
257 return p;
260 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
262 *(void **)(object + s->offset) = fp;
265 /* Loop over all objects in a slab */
266 #define for_each_object(__p, __s, __addr, __objects) \
267 for (__p = fixup_red_left(__s, __addr); \
268 __p < (__addr) + (__objects) * (__s)->size; \
269 __p += (__s)->size)
271 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
272 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
273 __idx <= __objects; \
274 __p += (__s)->size, __idx++)
276 /* Determine object index from a given position */
277 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
279 return (p - addr) / s->size;
282 static inline int order_objects(int order, unsigned long size, int reserved)
284 return ((PAGE_SIZE << order) - reserved) / size;
287 static inline struct kmem_cache_order_objects oo_make(int order,
288 unsigned long size, int reserved)
290 struct kmem_cache_order_objects x = {
291 (order << OO_SHIFT) + order_objects(order, size, reserved)
294 return x;
297 static inline int oo_order(struct kmem_cache_order_objects x)
299 return x.x >> OO_SHIFT;
302 static inline int oo_objects(struct kmem_cache_order_objects x)
304 return x.x & OO_MASK;
308 * Per slab locking using the pagelock
310 static __always_inline void slab_lock(struct page *page)
312 VM_BUG_ON_PAGE(PageTail(page), page);
313 bit_spin_lock(PG_locked, &page->flags);
316 static __always_inline void slab_unlock(struct page *page)
318 VM_BUG_ON_PAGE(PageTail(page), page);
319 __bit_spin_unlock(PG_locked, &page->flags);
322 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
324 struct page tmp;
325 tmp.counters = counters_new;
327 * page->counters can cover frozen/inuse/objects as well
328 * as page->_refcount. If we assign to ->counters directly
329 * we run the risk of losing updates to page->_refcount, so
330 * be careful and only assign to the fields we need.
332 page->frozen = tmp.frozen;
333 page->inuse = tmp.inuse;
334 page->objects = tmp.objects;
337 /* Interrupts must be disabled (for the fallback code to work right) */
338 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
339 void *freelist_old, unsigned long counters_old,
340 void *freelist_new, unsigned long counters_new,
341 const char *n)
343 VM_BUG_ON(!irqs_disabled());
344 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
345 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
346 if (s->flags & __CMPXCHG_DOUBLE) {
347 if (cmpxchg_double(&page->freelist, &page->counters,
348 freelist_old, counters_old,
349 freelist_new, counters_new))
350 return true;
351 } else
352 #endif
354 slab_lock(page);
355 if (page->freelist == freelist_old &&
356 page->counters == counters_old) {
357 page->freelist = freelist_new;
358 set_page_slub_counters(page, counters_new);
359 slab_unlock(page);
360 return true;
362 slab_unlock(page);
365 cpu_relax();
366 stat(s, CMPXCHG_DOUBLE_FAIL);
368 #ifdef SLUB_DEBUG_CMPXCHG
369 pr_info("%s %s: cmpxchg double redo ", n, s->name);
370 #endif
372 return false;
375 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s->flags & __CMPXCHG_DOUBLE) {
383 if (cmpxchg_double(&page->freelist, &page->counters,
384 freelist_old, counters_old,
385 freelist_new, counters_new))
386 return true;
387 } else
388 #endif
390 unsigned long flags;
392 local_irq_save(flags);
393 slab_lock(page);
394 if (page->freelist == freelist_old &&
395 page->counters == counters_old) {
396 page->freelist = freelist_new;
397 set_page_slub_counters(page, counters_new);
398 slab_unlock(page);
399 local_irq_restore(flags);
400 return true;
402 slab_unlock(page);
403 local_irq_restore(flags);
406 cpu_relax();
407 stat(s, CMPXCHG_DOUBLE_FAIL);
409 #ifdef SLUB_DEBUG_CMPXCHG
410 pr_info("%s %s: cmpxchg double redo ", n, s->name);
411 #endif
413 return false;
416 #ifdef CONFIG_SLUB_DEBUG
418 * Determine a map of object in use on a page.
420 * Node listlock must be held to guarantee that the page does
421 * not vanish from under us.
423 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
425 void *p;
426 void *addr = page_address(page);
428 for (p = page->freelist; p; p = get_freepointer(s, p))
429 set_bit(slab_index(p, s, addr), map);
432 static inline int size_from_object(struct kmem_cache *s)
434 if (s->flags & SLAB_RED_ZONE)
435 return s->size - s->red_left_pad;
437 return s->size;
440 static inline void *restore_red_left(struct kmem_cache *s, void *p)
442 if (s->flags & SLAB_RED_ZONE)
443 p -= s->red_left_pad;
445 return p;
449 * Debug settings:
451 #if defined(CONFIG_SLUB_DEBUG_ON)
452 static int slub_debug = DEBUG_DEFAULT_FLAGS;
453 #else
454 static int slub_debug;
455 #endif
457 static char *slub_debug_slabs;
458 static int disable_higher_order_debug;
461 * slub is about to manipulate internal object metadata. This memory lies
462 * outside the range of the allocated object, so accessing it would normally
463 * be reported by kasan as a bounds error. metadata_access_enable() is used
464 * to tell kasan that these accesses are OK.
466 static inline void metadata_access_enable(void)
468 kasan_disable_current();
471 static inline void metadata_access_disable(void)
473 kasan_enable_current();
477 * Object debugging
480 /* Verify that a pointer has an address that is valid within a slab page */
481 static inline int check_valid_pointer(struct kmem_cache *s,
482 struct page *page, void *object)
484 void *base;
486 if (!object)
487 return 1;
489 base = page_address(page);
490 object = restore_red_left(s, object);
491 if (object < base || object >= base + page->objects * s->size ||
492 (object - base) % s->size) {
493 return 0;
496 return 1;
499 static void print_section(char *text, u8 *addr, unsigned int length)
501 metadata_access_enable();
502 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
503 length, 1);
504 metadata_access_disable();
507 static struct track *get_track(struct kmem_cache *s, void *object,
508 enum track_item alloc)
510 struct track *p;
512 if (s->offset)
513 p = object + s->offset + sizeof(void *);
514 else
515 p = object + s->inuse;
517 return p + alloc;
520 static void set_track(struct kmem_cache *s, void *object,
521 enum track_item alloc, unsigned long addr)
523 struct track *p = get_track(s, object, alloc);
525 if (addr) {
526 #ifdef CONFIG_STACKTRACE
527 struct stack_trace trace;
528 int i;
530 trace.nr_entries = 0;
531 trace.max_entries = TRACK_ADDRS_COUNT;
532 trace.entries = p->addrs;
533 trace.skip = 3;
534 metadata_access_enable();
535 save_stack_trace(&trace);
536 metadata_access_disable();
538 /* See rant in lockdep.c */
539 if (trace.nr_entries != 0 &&
540 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
541 trace.nr_entries--;
543 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
544 p->addrs[i] = 0;
545 #endif
546 p->addr = addr;
547 p->cpu = smp_processor_id();
548 p->pid = current->pid;
549 p->when = jiffies;
550 } else
551 memset(p, 0, sizeof(struct track));
554 static void init_tracking(struct kmem_cache *s, void *object)
556 if (!(s->flags & SLAB_STORE_USER))
557 return;
559 set_track(s, object, TRACK_FREE, 0UL);
560 set_track(s, object, TRACK_ALLOC, 0UL);
563 static void print_track(const char *s, struct track *t)
565 if (!t->addr)
566 return;
568 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
569 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
570 #ifdef CONFIG_STACKTRACE
572 int i;
573 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
574 if (t->addrs[i])
575 pr_err("\t%pS\n", (void *)t->addrs[i]);
576 else
577 break;
579 #endif
582 static void print_tracking(struct kmem_cache *s, void *object)
584 if (!(s->flags & SLAB_STORE_USER))
585 return;
587 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
588 print_track("Freed", get_track(s, object, TRACK_FREE));
591 static void print_page_info(struct page *page)
593 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
594 page, page->objects, page->inuse, page->freelist, page->flags);
598 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
600 struct va_format vaf;
601 va_list args;
603 va_start(args, fmt);
604 vaf.fmt = fmt;
605 vaf.va = &args;
606 pr_err("=============================================================================\n");
607 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
608 pr_err("-----------------------------------------------------------------------------\n\n");
610 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
611 va_end(args);
614 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
616 struct va_format vaf;
617 va_list args;
619 va_start(args, fmt);
620 vaf.fmt = fmt;
621 vaf.va = &args;
622 pr_err("FIX %s: %pV\n", s->name, &vaf);
623 va_end(args);
626 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
628 unsigned int off; /* Offset of last byte */
629 u8 *addr = page_address(page);
631 print_tracking(s, p);
633 print_page_info(page);
635 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
636 p, p - addr, get_freepointer(s, p));
638 if (s->flags & SLAB_RED_ZONE)
639 print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
640 else if (p > addr + 16)
641 print_section("Bytes b4 ", p - 16, 16);
643 print_section("Object ", p, min_t(unsigned long, s->object_size,
644 PAGE_SIZE));
645 if (s->flags & SLAB_RED_ZONE)
646 print_section("Redzone ", p + s->object_size,
647 s->inuse - s->object_size);
649 if (s->offset)
650 off = s->offset + sizeof(void *);
651 else
652 off = s->inuse;
654 if (s->flags & SLAB_STORE_USER)
655 off += 2 * sizeof(struct track);
657 off += kasan_metadata_size(s);
659 if (off != size_from_object(s))
660 /* Beginning of the filler is the free pointer */
661 print_section("Padding ", p + off, size_from_object(s) - off);
663 dump_stack();
666 void object_err(struct kmem_cache *s, struct page *page,
667 u8 *object, char *reason)
669 slab_bug(s, "%s", reason);
670 print_trailer(s, page, object);
673 static void slab_err(struct kmem_cache *s, struct page *page,
674 const char *fmt, ...)
676 va_list args;
677 char buf[100];
679 va_start(args, fmt);
680 vsnprintf(buf, sizeof(buf), fmt, args);
681 va_end(args);
682 slab_bug(s, "%s", buf);
683 print_page_info(page);
684 dump_stack();
687 static void init_object(struct kmem_cache *s, void *object, u8 val)
689 u8 *p = object;
691 if (s->flags & SLAB_RED_ZONE)
692 memset(p - s->red_left_pad, val, s->red_left_pad);
694 if (s->flags & __OBJECT_POISON) {
695 memset(p, POISON_FREE, s->object_size - 1);
696 p[s->object_size - 1] = POISON_END;
699 if (s->flags & SLAB_RED_ZONE)
700 memset(p + s->object_size, val, s->inuse - s->object_size);
703 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
704 void *from, void *to)
706 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
707 memset(from, data, to - from);
710 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
711 u8 *object, char *what,
712 u8 *start, unsigned int value, unsigned int bytes)
714 u8 *fault;
715 u8 *end;
717 metadata_access_enable();
718 fault = memchr_inv(start, value, bytes);
719 metadata_access_disable();
720 if (!fault)
721 return 1;
723 end = start + bytes;
724 while (end > fault && end[-1] == value)
725 end--;
727 slab_bug(s, "%s overwritten", what);
728 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
729 fault, end - 1, fault[0], value);
730 print_trailer(s, page, object);
732 restore_bytes(s, what, value, fault, end);
733 return 0;
737 * Object layout:
739 * object address
740 * Bytes of the object to be managed.
741 * If the freepointer may overlay the object then the free
742 * pointer is the first word of the object.
744 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
745 * 0xa5 (POISON_END)
747 * object + s->object_size
748 * Padding to reach word boundary. This is also used for Redzoning.
749 * Padding is extended by another word if Redzoning is enabled and
750 * object_size == inuse.
752 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
753 * 0xcc (RED_ACTIVE) for objects in use.
755 * object + s->inuse
756 * Meta data starts here.
758 * A. Free pointer (if we cannot overwrite object on free)
759 * B. Tracking data for SLAB_STORE_USER
760 * C. Padding to reach required alignment boundary or at mininum
761 * one word if debugging is on to be able to detect writes
762 * before the word boundary.
764 * Padding is done using 0x5a (POISON_INUSE)
766 * object + s->size
767 * Nothing is used beyond s->size.
769 * If slabcaches are merged then the object_size and inuse boundaries are mostly
770 * ignored. And therefore no slab options that rely on these boundaries
771 * may be used with merged slabcaches.
774 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
776 unsigned long off = s->inuse; /* The end of info */
778 if (s->offset)
779 /* Freepointer is placed after the object. */
780 off += sizeof(void *);
782 if (s->flags & SLAB_STORE_USER)
783 /* We also have user information there */
784 off += 2 * sizeof(struct track);
786 off += kasan_metadata_size(s);
788 if (size_from_object(s) == off)
789 return 1;
791 return check_bytes_and_report(s, page, p, "Object padding",
792 p + off, POISON_INUSE, size_from_object(s) - off);
795 /* Check the pad bytes at the end of a slab page */
796 static int slab_pad_check(struct kmem_cache *s, struct page *page)
798 u8 *start;
799 u8 *fault;
800 u8 *end;
801 int length;
802 int remainder;
804 if (!(s->flags & SLAB_POISON))
805 return 1;
807 start = page_address(page);
808 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
809 end = start + length;
810 remainder = length % s->size;
811 if (!remainder)
812 return 1;
814 metadata_access_enable();
815 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
816 metadata_access_disable();
817 if (!fault)
818 return 1;
819 while (end > fault && end[-1] == POISON_INUSE)
820 end--;
822 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
823 print_section("Padding ", end - remainder, remainder);
825 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
826 return 0;
829 static int check_object(struct kmem_cache *s, struct page *page,
830 void *object, u8 val)
832 u8 *p = object;
833 u8 *endobject = object + s->object_size;
835 if (s->flags & SLAB_RED_ZONE) {
836 if (!check_bytes_and_report(s, page, object, "Redzone",
837 object - s->red_left_pad, val, s->red_left_pad))
838 return 0;
840 if (!check_bytes_and_report(s, page, object, "Redzone",
841 endobject, val, s->inuse - s->object_size))
842 return 0;
843 } else {
844 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
845 check_bytes_and_report(s, page, p, "Alignment padding",
846 endobject, POISON_INUSE,
847 s->inuse - s->object_size);
851 if (s->flags & SLAB_POISON) {
852 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
853 (!check_bytes_and_report(s, page, p, "Poison", p,
854 POISON_FREE, s->object_size - 1) ||
855 !check_bytes_and_report(s, page, p, "Poison",
856 p + s->object_size - 1, POISON_END, 1)))
857 return 0;
859 * check_pad_bytes cleans up on its own.
861 check_pad_bytes(s, page, p);
864 if (!s->offset && val == SLUB_RED_ACTIVE)
866 * Object and freepointer overlap. Cannot check
867 * freepointer while object is allocated.
869 return 1;
871 /* Check free pointer validity */
872 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
873 object_err(s, page, p, "Freepointer corrupt");
875 * No choice but to zap it and thus lose the remainder
876 * of the free objects in this slab. May cause
877 * another error because the object count is now wrong.
879 set_freepointer(s, p, NULL);
880 return 0;
882 return 1;
885 static int check_slab(struct kmem_cache *s, struct page *page)
887 int maxobj;
889 VM_BUG_ON(!irqs_disabled());
891 if (!PageSlab(page)) {
892 slab_err(s, page, "Not a valid slab page");
893 return 0;
896 maxobj = order_objects(compound_order(page), s->size, s->reserved);
897 if (page->objects > maxobj) {
898 slab_err(s, page, "objects %u > max %u",
899 page->objects, maxobj);
900 return 0;
902 if (page->inuse > page->objects) {
903 slab_err(s, page, "inuse %u > max %u",
904 page->inuse, page->objects);
905 return 0;
907 /* Slab_pad_check fixes things up after itself */
908 slab_pad_check(s, page);
909 return 1;
913 * Determine if a certain object on a page is on the freelist. Must hold the
914 * slab lock to guarantee that the chains are in a consistent state.
916 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
918 int nr = 0;
919 void *fp;
920 void *object = NULL;
921 int max_objects;
923 fp = page->freelist;
924 while (fp && nr <= page->objects) {
925 if (fp == search)
926 return 1;
927 if (!check_valid_pointer(s, page, fp)) {
928 if (object) {
929 object_err(s, page, object,
930 "Freechain corrupt");
931 set_freepointer(s, object, NULL);
932 } else {
933 slab_err(s, page, "Freepointer corrupt");
934 page->freelist = NULL;
935 page->inuse = page->objects;
936 slab_fix(s, "Freelist cleared");
937 return 0;
939 break;
941 object = fp;
942 fp = get_freepointer(s, object);
943 nr++;
946 max_objects = order_objects(compound_order(page), s->size, s->reserved);
947 if (max_objects > MAX_OBJS_PER_PAGE)
948 max_objects = MAX_OBJS_PER_PAGE;
950 if (page->objects != max_objects) {
951 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
952 page->objects, max_objects);
953 page->objects = max_objects;
954 slab_fix(s, "Number of objects adjusted.");
956 if (page->inuse != page->objects - nr) {
957 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
958 page->inuse, page->objects - nr);
959 page->inuse = page->objects - nr;
960 slab_fix(s, "Object count adjusted.");
962 return search == NULL;
965 static void trace(struct kmem_cache *s, struct page *page, void *object,
966 int alloc)
968 if (s->flags & SLAB_TRACE) {
969 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
970 s->name,
971 alloc ? "alloc" : "free",
972 object, page->inuse,
973 page->freelist);
975 if (!alloc)
976 print_section("Object ", (void *)object,
977 s->object_size);
979 dump_stack();
984 * Tracking of fully allocated slabs for debugging purposes.
986 static void add_full(struct kmem_cache *s,
987 struct kmem_cache_node *n, struct page *page)
989 if (!(s->flags & SLAB_STORE_USER))
990 return;
992 lockdep_assert_held(&n->list_lock);
993 list_add(&page->lru, &n->full);
996 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
998 if (!(s->flags & SLAB_STORE_USER))
999 return;
1001 lockdep_assert_held(&n->list_lock);
1002 list_del(&page->lru);
1005 /* Tracking of the number of slabs for debugging purposes */
1006 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1008 struct kmem_cache_node *n = get_node(s, node);
1010 return atomic_long_read(&n->nr_slabs);
1013 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1015 return atomic_long_read(&n->nr_slabs);
1018 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1020 struct kmem_cache_node *n = get_node(s, node);
1023 * May be called early in order to allocate a slab for the
1024 * kmem_cache_node structure. Solve the chicken-egg
1025 * dilemma by deferring the increment of the count during
1026 * bootstrap (see early_kmem_cache_node_alloc).
1028 if (likely(n)) {
1029 atomic_long_inc(&n->nr_slabs);
1030 atomic_long_add(objects, &n->total_objects);
1033 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1035 struct kmem_cache_node *n = get_node(s, node);
1037 atomic_long_dec(&n->nr_slabs);
1038 atomic_long_sub(objects, &n->total_objects);
1041 /* Object debug checks for alloc/free paths */
1042 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1043 void *object)
1045 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1046 return;
1048 init_object(s, object, SLUB_RED_INACTIVE);
1049 init_tracking(s, object);
1052 static inline int alloc_consistency_checks(struct kmem_cache *s,
1053 struct page *page,
1054 void *object, unsigned long addr)
1056 if (!check_slab(s, page))
1057 return 0;
1059 if (!check_valid_pointer(s, page, object)) {
1060 object_err(s, page, object, "Freelist Pointer check fails");
1061 return 0;
1064 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1065 return 0;
1067 return 1;
1070 static noinline int alloc_debug_processing(struct kmem_cache *s,
1071 struct page *page,
1072 void *object, unsigned long addr)
1074 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1075 if (!alloc_consistency_checks(s, page, object, addr))
1076 goto bad;
1079 /* Success perform special debug activities for allocs */
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_ALLOC, addr);
1082 trace(s, page, object, 1);
1083 init_object(s, object, SLUB_RED_ACTIVE);
1084 return 1;
1086 bad:
1087 if (PageSlab(page)) {
1089 * If this is a slab page then lets do the best we can
1090 * to avoid issues in the future. Marking all objects
1091 * as used avoids touching the remaining objects.
1093 slab_fix(s, "Marking all objects used");
1094 page->inuse = page->objects;
1095 page->freelist = NULL;
1097 return 0;
1100 static inline int free_consistency_checks(struct kmem_cache *s,
1101 struct page *page, void *object, unsigned long addr)
1103 if (!check_valid_pointer(s, page, object)) {
1104 slab_err(s, page, "Invalid object pointer 0x%p", object);
1105 return 0;
1108 if (on_freelist(s, page, object)) {
1109 object_err(s, page, object, "Object already free");
1110 return 0;
1113 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1114 return 0;
1116 if (unlikely(s != page->slab_cache)) {
1117 if (!PageSlab(page)) {
1118 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1119 object);
1120 } else if (!page->slab_cache) {
1121 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1122 object);
1123 dump_stack();
1124 } else
1125 object_err(s, page, object,
1126 "page slab pointer corrupt.");
1127 return 0;
1129 return 1;
1132 /* Supports checking bulk free of a constructed freelist */
1133 static noinline int free_debug_processing(
1134 struct kmem_cache *s, struct page *page,
1135 void *head, void *tail, int bulk_cnt,
1136 unsigned long addr)
1138 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1139 void *object = head;
1140 int cnt = 0;
1141 unsigned long uninitialized_var(flags);
1142 int ret = 0;
1144 spin_lock_irqsave(&n->list_lock, flags);
1145 slab_lock(page);
1147 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1148 if (!check_slab(s, page))
1149 goto out;
1152 next_object:
1153 cnt++;
1155 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1156 if (!free_consistency_checks(s, page, object, addr))
1157 goto out;
1160 if (s->flags & SLAB_STORE_USER)
1161 set_track(s, object, TRACK_FREE, addr);
1162 trace(s, page, object, 0);
1163 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1164 init_object(s, object, SLUB_RED_INACTIVE);
1166 /* Reached end of constructed freelist yet? */
1167 if (object != tail) {
1168 object = get_freepointer(s, object);
1169 goto next_object;
1171 ret = 1;
1173 out:
1174 if (cnt != bulk_cnt)
1175 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1176 bulk_cnt, cnt);
1178 slab_unlock(page);
1179 spin_unlock_irqrestore(&n->list_lock, flags);
1180 if (!ret)
1181 slab_fix(s, "Object at 0x%p not freed", object);
1182 return ret;
1185 static int __init setup_slub_debug(char *str)
1187 slub_debug = DEBUG_DEFAULT_FLAGS;
1188 if (*str++ != '=' || !*str)
1190 * No options specified. Switch on full debugging.
1192 goto out;
1194 if (*str == ',')
1196 * No options but restriction on slabs. This means full
1197 * debugging for slabs matching a pattern.
1199 goto check_slabs;
1201 slub_debug = 0;
1202 if (*str == '-')
1204 * Switch off all debugging measures.
1206 goto out;
1209 * Determine which debug features should be switched on
1211 for (; *str && *str != ','; str++) {
1212 switch (tolower(*str)) {
1213 case 'f':
1214 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1215 break;
1216 case 'z':
1217 slub_debug |= SLAB_RED_ZONE;
1218 break;
1219 case 'p':
1220 slub_debug |= SLAB_POISON;
1221 break;
1222 case 'u':
1223 slub_debug |= SLAB_STORE_USER;
1224 break;
1225 case 't':
1226 slub_debug |= SLAB_TRACE;
1227 break;
1228 case 'a':
1229 slub_debug |= SLAB_FAILSLAB;
1230 break;
1231 case 'o':
1233 * Avoid enabling debugging on caches if its minimum
1234 * order would increase as a result.
1236 disable_higher_order_debug = 1;
1237 break;
1238 default:
1239 pr_err("slub_debug option '%c' unknown. skipped\n",
1240 *str);
1244 check_slabs:
1245 if (*str == ',')
1246 slub_debug_slabs = str + 1;
1247 out:
1248 return 1;
1251 __setup("slub_debug", setup_slub_debug);
1253 unsigned long kmem_cache_flags(unsigned long object_size,
1254 unsigned long flags, const char *name,
1255 void (*ctor)(void *))
1258 * Enable debugging if selected on the kernel commandline.
1260 if (slub_debug && (!slub_debug_slabs || (name &&
1261 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1262 flags |= slub_debug;
1264 return flags;
1266 #else /* !CONFIG_SLUB_DEBUG */
1267 static inline void setup_object_debug(struct kmem_cache *s,
1268 struct page *page, void *object) {}
1270 static inline int alloc_debug_processing(struct kmem_cache *s,
1271 struct page *page, void *object, unsigned long addr) { return 0; }
1273 static inline int free_debug_processing(
1274 struct kmem_cache *s, struct page *page,
1275 void *head, void *tail, int bulk_cnt,
1276 unsigned long addr) { return 0; }
1278 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1279 { return 1; }
1280 static inline int check_object(struct kmem_cache *s, struct page *page,
1281 void *object, u8 val) { return 1; }
1282 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1283 struct page *page) {}
1284 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1285 struct page *page) {}
1286 unsigned long kmem_cache_flags(unsigned long object_size,
1287 unsigned long flags, const char *name,
1288 void (*ctor)(void *))
1290 return flags;
1292 #define slub_debug 0
1294 #define disable_higher_order_debug 0
1296 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1297 { return 0; }
1298 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1299 { return 0; }
1300 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1301 int objects) {}
1302 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1303 int objects) {}
1305 #endif /* CONFIG_SLUB_DEBUG */
1308 * Hooks for other subsystems that check memory allocations. In a typical
1309 * production configuration these hooks all should produce no code at all.
1311 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1313 kmemleak_alloc(ptr, size, 1, flags);
1314 kasan_kmalloc_large(ptr, size, flags);
1317 static inline void kfree_hook(const void *x)
1319 kmemleak_free(x);
1320 kasan_kfree_large(x);
1323 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1325 void *freeptr;
1327 kmemleak_free_recursive(x, s->flags);
1330 * Trouble is that we may no longer disable interrupts in the fast path
1331 * So in order to make the debug calls that expect irqs to be
1332 * disabled we need to disable interrupts temporarily.
1334 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1336 unsigned long flags;
1338 local_irq_save(flags);
1339 kmemcheck_slab_free(s, x, s->object_size);
1340 debug_check_no_locks_freed(x, s->object_size);
1341 local_irq_restore(flags);
1343 #endif
1344 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1345 debug_check_no_obj_freed(x, s->object_size);
1347 freeptr = get_freepointer(s, x);
1349 * kasan_slab_free() may put x into memory quarantine, delaying its
1350 * reuse. In this case the object's freelist pointer is changed.
1352 kasan_slab_free(s, x);
1353 return freeptr;
1356 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1357 void *head, void *tail)
1360 * Compiler cannot detect this function can be removed if slab_free_hook()
1361 * evaluates to nothing. Thus, catch all relevant config debug options here.
1363 #if defined(CONFIG_KMEMCHECK) || \
1364 defined(CONFIG_LOCKDEP) || \
1365 defined(CONFIG_DEBUG_KMEMLEAK) || \
1366 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1367 defined(CONFIG_KASAN)
1369 void *object = head;
1370 void *tail_obj = tail ? : head;
1371 void *freeptr;
1373 do {
1374 freeptr = slab_free_hook(s, object);
1375 } while ((object != tail_obj) && (object = freeptr));
1376 #endif
1379 static void setup_object(struct kmem_cache *s, struct page *page,
1380 void *object)
1382 setup_object_debug(s, page, object);
1383 kasan_init_slab_obj(s, object);
1384 if (unlikely(s->ctor)) {
1385 kasan_unpoison_object_data(s, object);
1386 s->ctor(object);
1387 kasan_poison_object_data(s, object);
1392 * Slab allocation and freeing
1394 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1395 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1397 struct page *page;
1398 int order = oo_order(oo);
1400 flags |= __GFP_NOTRACK;
1402 if (node == NUMA_NO_NODE)
1403 page = alloc_pages(flags, order);
1404 else
1405 page = __alloc_pages_node(node, flags, order);
1407 if (page && memcg_charge_slab(page, flags, order, s)) {
1408 __free_pages(page, order);
1409 page = NULL;
1412 return page;
1415 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1416 /* Pre-initialize the random sequence cache */
1417 static int init_cache_random_seq(struct kmem_cache *s)
1419 int err;
1420 unsigned long i, count = oo_objects(s->oo);
1422 err = cache_random_seq_create(s, count, GFP_KERNEL);
1423 if (err) {
1424 pr_err("SLUB: Unable to initialize free list for %s\n",
1425 s->name);
1426 return err;
1429 /* Transform to an offset on the set of pages */
1430 if (s->random_seq) {
1431 for (i = 0; i < count; i++)
1432 s->random_seq[i] *= s->size;
1434 return 0;
1437 /* Initialize each random sequence freelist per cache */
1438 static void __init init_freelist_randomization(void)
1440 struct kmem_cache *s;
1442 mutex_lock(&slab_mutex);
1444 list_for_each_entry(s, &slab_caches, list)
1445 init_cache_random_seq(s);
1447 mutex_unlock(&slab_mutex);
1450 /* Get the next entry on the pre-computed freelist randomized */
1451 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1452 unsigned long *pos, void *start,
1453 unsigned long page_limit,
1454 unsigned long freelist_count)
1456 unsigned int idx;
1459 * If the target page allocation failed, the number of objects on the
1460 * page might be smaller than the usual size defined by the cache.
1462 do {
1463 idx = s->random_seq[*pos];
1464 *pos += 1;
1465 if (*pos >= freelist_count)
1466 *pos = 0;
1467 } while (unlikely(idx >= page_limit));
1469 return (char *)start + idx;
1472 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1473 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1475 void *start;
1476 void *cur;
1477 void *next;
1478 unsigned long idx, pos, page_limit, freelist_count;
1480 if (page->objects < 2 || !s->random_seq)
1481 return false;
1483 freelist_count = oo_objects(s->oo);
1484 pos = get_random_int() % freelist_count;
1486 page_limit = page->objects * s->size;
1487 start = fixup_red_left(s, page_address(page));
1489 /* First entry is used as the base of the freelist */
1490 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1491 freelist_count);
1492 page->freelist = cur;
1494 for (idx = 1; idx < page->objects; idx++) {
1495 setup_object(s, page, cur);
1496 next = next_freelist_entry(s, page, &pos, start, page_limit,
1497 freelist_count);
1498 set_freepointer(s, cur, next);
1499 cur = next;
1501 setup_object(s, page, cur);
1502 set_freepointer(s, cur, NULL);
1504 return true;
1506 #else
1507 static inline int init_cache_random_seq(struct kmem_cache *s)
1509 return 0;
1511 static inline void init_freelist_randomization(void) { }
1512 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1514 return false;
1516 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1518 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1520 struct page *page;
1521 struct kmem_cache_order_objects oo = s->oo;
1522 gfp_t alloc_gfp;
1523 void *start, *p;
1524 int idx, order;
1525 bool shuffle;
1527 flags &= gfp_allowed_mask;
1529 if (gfpflags_allow_blocking(flags))
1530 local_irq_enable();
1532 flags |= s->allocflags;
1535 * Let the initial higher-order allocation fail under memory pressure
1536 * so we fall-back to the minimum order allocation.
1538 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1539 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1540 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1542 page = alloc_slab_page(s, alloc_gfp, node, oo);
1543 if (unlikely(!page)) {
1544 oo = s->min;
1545 alloc_gfp = flags;
1547 * Allocation may have failed due to fragmentation.
1548 * Try a lower order alloc if possible
1550 page = alloc_slab_page(s, alloc_gfp, node, oo);
1551 if (unlikely(!page))
1552 goto out;
1553 stat(s, ORDER_FALLBACK);
1556 if (kmemcheck_enabled &&
1557 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1558 int pages = 1 << oo_order(oo);
1560 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1563 * Objects from caches that have a constructor don't get
1564 * cleared when they're allocated, so we need to do it here.
1566 if (s->ctor)
1567 kmemcheck_mark_uninitialized_pages(page, pages);
1568 else
1569 kmemcheck_mark_unallocated_pages(page, pages);
1572 page->objects = oo_objects(oo);
1574 order = compound_order(page);
1575 page->slab_cache = s;
1576 __SetPageSlab(page);
1577 if (page_is_pfmemalloc(page))
1578 SetPageSlabPfmemalloc(page);
1580 start = page_address(page);
1582 if (unlikely(s->flags & SLAB_POISON))
1583 memset(start, POISON_INUSE, PAGE_SIZE << order);
1585 kasan_poison_slab(page);
1587 shuffle = shuffle_freelist(s, page);
1589 if (!shuffle) {
1590 for_each_object_idx(p, idx, s, start, page->objects) {
1591 setup_object(s, page, p);
1592 if (likely(idx < page->objects))
1593 set_freepointer(s, p, p + s->size);
1594 else
1595 set_freepointer(s, p, NULL);
1597 page->freelist = fixup_red_left(s, start);
1600 page->inuse = page->objects;
1601 page->frozen = 1;
1603 out:
1604 if (gfpflags_allow_blocking(flags))
1605 local_irq_disable();
1606 if (!page)
1607 return NULL;
1609 mod_zone_page_state(page_zone(page),
1610 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1611 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1612 1 << oo_order(oo));
1614 inc_slabs_node(s, page_to_nid(page), page->objects);
1616 return page;
1619 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1621 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1622 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1623 flags &= ~GFP_SLAB_BUG_MASK;
1624 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1625 invalid_mask, &invalid_mask, flags, &flags);
1628 return allocate_slab(s,
1629 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1632 static void __free_slab(struct kmem_cache *s, struct page *page)
1634 int order = compound_order(page);
1635 int pages = 1 << order;
1637 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1638 void *p;
1640 slab_pad_check(s, page);
1641 for_each_object(p, s, page_address(page),
1642 page->objects)
1643 check_object(s, page, p, SLUB_RED_INACTIVE);
1646 kmemcheck_free_shadow(page, compound_order(page));
1648 mod_zone_page_state(page_zone(page),
1649 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1650 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1651 -pages);
1653 __ClearPageSlabPfmemalloc(page);
1654 __ClearPageSlab(page);
1656 page_mapcount_reset(page);
1657 if (current->reclaim_state)
1658 current->reclaim_state->reclaimed_slab += pages;
1659 memcg_uncharge_slab(page, order, s);
1660 __free_pages(page, order);
1663 #define need_reserve_slab_rcu \
1664 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1666 static void rcu_free_slab(struct rcu_head *h)
1668 struct page *page;
1670 if (need_reserve_slab_rcu)
1671 page = virt_to_head_page(h);
1672 else
1673 page = container_of((struct list_head *)h, struct page, lru);
1675 __free_slab(page->slab_cache, page);
1678 static void free_slab(struct kmem_cache *s, struct page *page)
1680 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1681 struct rcu_head *head;
1683 if (need_reserve_slab_rcu) {
1684 int order = compound_order(page);
1685 int offset = (PAGE_SIZE << order) - s->reserved;
1687 VM_BUG_ON(s->reserved != sizeof(*head));
1688 head = page_address(page) + offset;
1689 } else {
1690 head = &page->rcu_head;
1693 call_rcu(head, rcu_free_slab);
1694 } else
1695 __free_slab(s, page);
1698 static void discard_slab(struct kmem_cache *s, struct page *page)
1700 dec_slabs_node(s, page_to_nid(page), page->objects);
1701 free_slab(s, page);
1705 * Management of partially allocated slabs.
1707 static inline void
1708 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1710 n->nr_partial++;
1711 if (tail == DEACTIVATE_TO_TAIL)
1712 list_add_tail(&page->lru, &n->partial);
1713 else
1714 list_add(&page->lru, &n->partial);
1717 static inline void add_partial(struct kmem_cache_node *n,
1718 struct page *page, int tail)
1720 lockdep_assert_held(&n->list_lock);
1721 __add_partial(n, page, tail);
1724 static inline void remove_partial(struct kmem_cache_node *n,
1725 struct page *page)
1727 lockdep_assert_held(&n->list_lock);
1728 list_del(&page->lru);
1729 n->nr_partial--;
1733 * Remove slab from the partial list, freeze it and
1734 * return the pointer to the freelist.
1736 * Returns a list of objects or NULL if it fails.
1738 static inline void *acquire_slab(struct kmem_cache *s,
1739 struct kmem_cache_node *n, struct page *page,
1740 int mode, int *objects)
1742 void *freelist;
1743 unsigned long counters;
1744 struct page new;
1746 lockdep_assert_held(&n->list_lock);
1749 * Zap the freelist and set the frozen bit.
1750 * The old freelist is the list of objects for the
1751 * per cpu allocation list.
1753 freelist = page->freelist;
1754 counters = page->counters;
1755 new.counters = counters;
1756 *objects = new.objects - new.inuse;
1757 if (mode) {
1758 new.inuse = page->objects;
1759 new.freelist = NULL;
1760 } else {
1761 new.freelist = freelist;
1764 VM_BUG_ON(new.frozen);
1765 new.frozen = 1;
1767 if (!__cmpxchg_double_slab(s, page,
1768 freelist, counters,
1769 new.freelist, new.counters,
1770 "acquire_slab"))
1771 return NULL;
1773 remove_partial(n, page);
1774 WARN_ON(!freelist);
1775 return freelist;
1778 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1779 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1782 * Try to allocate a partial slab from a specific node.
1784 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1785 struct kmem_cache_cpu *c, gfp_t flags)
1787 struct page *page, *page2;
1788 void *object = NULL;
1789 int available = 0;
1790 int objects;
1793 * Racy check. If we mistakenly see no partial slabs then we
1794 * just allocate an empty slab. If we mistakenly try to get a
1795 * partial slab and there is none available then get_partials()
1796 * will return NULL.
1798 if (!n || !n->nr_partial)
1799 return NULL;
1801 spin_lock(&n->list_lock);
1802 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1803 void *t;
1805 if (!pfmemalloc_match(page, flags))
1806 continue;
1808 t = acquire_slab(s, n, page, object == NULL, &objects);
1809 if (!t)
1810 break;
1812 available += objects;
1813 if (!object) {
1814 c->page = page;
1815 stat(s, ALLOC_FROM_PARTIAL);
1816 object = t;
1817 } else {
1818 put_cpu_partial(s, page, 0);
1819 stat(s, CPU_PARTIAL_NODE);
1821 if (!kmem_cache_has_cpu_partial(s)
1822 || available > s->cpu_partial / 2)
1823 break;
1826 spin_unlock(&n->list_lock);
1827 return object;
1831 * Get a page from somewhere. Search in increasing NUMA distances.
1833 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1834 struct kmem_cache_cpu *c)
1836 #ifdef CONFIG_NUMA
1837 struct zonelist *zonelist;
1838 struct zoneref *z;
1839 struct zone *zone;
1840 enum zone_type high_zoneidx = gfp_zone(flags);
1841 void *object;
1842 unsigned int cpuset_mems_cookie;
1845 * The defrag ratio allows a configuration of the tradeoffs between
1846 * inter node defragmentation and node local allocations. A lower
1847 * defrag_ratio increases the tendency to do local allocations
1848 * instead of attempting to obtain partial slabs from other nodes.
1850 * If the defrag_ratio is set to 0 then kmalloc() always
1851 * returns node local objects. If the ratio is higher then kmalloc()
1852 * may return off node objects because partial slabs are obtained
1853 * from other nodes and filled up.
1855 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1856 * (which makes defrag_ratio = 1000) then every (well almost)
1857 * allocation will first attempt to defrag slab caches on other nodes.
1858 * This means scanning over all nodes to look for partial slabs which
1859 * may be expensive if we do it every time we are trying to find a slab
1860 * with available objects.
1862 if (!s->remote_node_defrag_ratio ||
1863 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1864 return NULL;
1866 do {
1867 cpuset_mems_cookie = read_mems_allowed_begin();
1868 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1869 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1870 struct kmem_cache_node *n;
1872 n = get_node(s, zone_to_nid(zone));
1874 if (n && cpuset_zone_allowed(zone, flags) &&
1875 n->nr_partial > s->min_partial) {
1876 object = get_partial_node(s, n, c, flags);
1877 if (object) {
1879 * Don't check read_mems_allowed_retry()
1880 * here - if mems_allowed was updated in
1881 * parallel, that was a harmless race
1882 * between allocation and the cpuset
1883 * update
1885 return object;
1889 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1890 #endif
1891 return NULL;
1895 * Get a partial page, lock it and return it.
1897 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1898 struct kmem_cache_cpu *c)
1900 void *object;
1901 int searchnode = node;
1903 if (node == NUMA_NO_NODE)
1904 searchnode = numa_mem_id();
1905 else if (!node_present_pages(node))
1906 searchnode = node_to_mem_node(node);
1908 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1909 if (object || node != NUMA_NO_NODE)
1910 return object;
1912 return get_any_partial(s, flags, c);
1915 #ifdef CONFIG_PREEMPT
1917 * Calculate the next globally unique transaction for disambiguiation
1918 * during cmpxchg. The transactions start with the cpu number and are then
1919 * incremented by CONFIG_NR_CPUS.
1921 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1922 #else
1924 * No preemption supported therefore also no need to check for
1925 * different cpus.
1927 #define TID_STEP 1
1928 #endif
1930 static inline unsigned long next_tid(unsigned long tid)
1932 return tid + TID_STEP;
1935 static inline unsigned int tid_to_cpu(unsigned long tid)
1937 return tid % TID_STEP;
1940 static inline unsigned long tid_to_event(unsigned long tid)
1942 return tid / TID_STEP;
1945 static inline unsigned int init_tid(int cpu)
1947 return cpu;
1950 static inline void note_cmpxchg_failure(const char *n,
1951 const struct kmem_cache *s, unsigned long tid)
1953 #ifdef SLUB_DEBUG_CMPXCHG
1954 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1956 pr_info("%s %s: cmpxchg redo ", n, s->name);
1958 #ifdef CONFIG_PREEMPT
1959 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1960 pr_warn("due to cpu change %d -> %d\n",
1961 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1962 else
1963 #endif
1964 if (tid_to_event(tid) != tid_to_event(actual_tid))
1965 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1966 tid_to_event(tid), tid_to_event(actual_tid));
1967 else
1968 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1969 actual_tid, tid, next_tid(tid));
1970 #endif
1971 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1974 static void init_kmem_cache_cpus(struct kmem_cache *s)
1976 int cpu;
1978 for_each_possible_cpu(cpu)
1979 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1983 * Remove the cpu slab
1985 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1986 void *freelist)
1988 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1989 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1990 int lock = 0;
1991 enum slab_modes l = M_NONE, m = M_NONE;
1992 void *nextfree;
1993 int tail = DEACTIVATE_TO_HEAD;
1994 struct page new;
1995 struct page old;
1997 if (page->freelist) {
1998 stat(s, DEACTIVATE_REMOTE_FREES);
1999 tail = DEACTIVATE_TO_TAIL;
2003 * Stage one: Free all available per cpu objects back
2004 * to the page freelist while it is still frozen. Leave the
2005 * last one.
2007 * There is no need to take the list->lock because the page
2008 * is still frozen.
2010 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2011 void *prior;
2012 unsigned long counters;
2014 do {
2015 prior = page->freelist;
2016 counters = page->counters;
2017 set_freepointer(s, freelist, prior);
2018 new.counters = counters;
2019 new.inuse--;
2020 VM_BUG_ON(!new.frozen);
2022 } while (!__cmpxchg_double_slab(s, page,
2023 prior, counters,
2024 freelist, new.counters,
2025 "drain percpu freelist"));
2027 freelist = nextfree;
2031 * Stage two: Ensure that the page is unfrozen while the
2032 * list presence reflects the actual number of objects
2033 * during unfreeze.
2035 * We setup the list membership and then perform a cmpxchg
2036 * with the count. If there is a mismatch then the page
2037 * is not unfrozen but the page is on the wrong list.
2039 * Then we restart the process which may have to remove
2040 * the page from the list that we just put it on again
2041 * because the number of objects in the slab may have
2042 * changed.
2044 redo:
2046 old.freelist = page->freelist;
2047 old.counters = page->counters;
2048 VM_BUG_ON(!old.frozen);
2050 /* Determine target state of the slab */
2051 new.counters = old.counters;
2052 if (freelist) {
2053 new.inuse--;
2054 set_freepointer(s, freelist, old.freelist);
2055 new.freelist = freelist;
2056 } else
2057 new.freelist = old.freelist;
2059 new.frozen = 0;
2061 if (!new.inuse && n->nr_partial >= s->min_partial)
2062 m = M_FREE;
2063 else if (new.freelist) {
2064 m = M_PARTIAL;
2065 if (!lock) {
2066 lock = 1;
2068 * Taking the spinlock removes the possiblity
2069 * that acquire_slab() will see a slab page that
2070 * is frozen
2072 spin_lock(&n->list_lock);
2074 } else {
2075 m = M_FULL;
2076 if (kmem_cache_debug(s) && !lock) {
2077 lock = 1;
2079 * This also ensures that the scanning of full
2080 * slabs from diagnostic functions will not see
2081 * any frozen slabs.
2083 spin_lock(&n->list_lock);
2087 if (l != m) {
2089 if (l == M_PARTIAL)
2091 remove_partial(n, page);
2093 else if (l == M_FULL)
2095 remove_full(s, n, page);
2097 if (m == M_PARTIAL) {
2099 add_partial(n, page, tail);
2100 stat(s, tail);
2102 } else if (m == M_FULL) {
2104 stat(s, DEACTIVATE_FULL);
2105 add_full(s, n, page);
2110 l = m;
2111 if (!__cmpxchg_double_slab(s, page,
2112 old.freelist, old.counters,
2113 new.freelist, new.counters,
2114 "unfreezing slab"))
2115 goto redo;
2117 if (lock)
2118 spin_unlock(&n->list_lock);
2120 if (m == M_FREE) {
2121 stat(s, DEACTIVATE_EMPTY);
2122 discard_slab(s, page);
2123 stat(s, FREE_SLAB);
2128 * Unfreeze all the cpu partial slabs.
2130 * This function must be called with interrupts disabled
2131 * for the cpu using c (or some other guarantee must be there
2132 * to guarantee no concurrent accesses).
2134 static void unfreeze_partials(struct kmem_cache *s,
2135 struct kmem_cache_cpu *c)
2137 #ifdef CONFIG_SLUB_CPU_PARTIAL
2138 struct kmem_cache_node *n = NULL, *n2 = NULL;
2139 struct page *page, *discard_page = NULL;
2141 while ((page = c->partial)) {
2142 struct page new;
2143 struct page old;
2145 c->partial = page->next;
2147 n2 = get_node(s, page_to_nid(page));
2148 if (n != n2) {
2149 if (n)
2150 spin_unlock(&n->list_lock);
2152 n = n2;
2153 spin_lock(&n->list_lock);
2156 do {
2158 old.freelist = page->freelist;
2159 old.counters = page->counters;
2160 VM_BUG_ON(!old.frozen);
2162 new.counters = old.counters;
2163 new.freelist = old.freelist;
2165 new.frozen = 0;
2167 } while (!__cmpxchg_double_slab(s, page,
2168 old.freelist, old.counters,
2169 new.freelist, new.counters,
2170 "unfreezing slab"));
2172 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2173 page->next = discard_page;
2174 discard_page = page;
2175 } else {
2176 add_partial(n, page, DEACTIVATE_TO_TAIL);
2177 stat(s, FREE_ADD_PARTIAL);
2181 if (n)
2182 spin_unlock(&n->list_lock);
2184 while (discard_page) {
2185 page = discard_page;
2186 discard_page = discard_page->next;
2188 stat(s, DEACTIVATE_EMPTY);
2189 discard_slab(s, page);
2190 stat(s, FREE_SLAB);
2192 #endif
2196 * Put a page that was just frozen (in __slab_free) into a partial page
2197 * slot if available. This is done without interrupts disabled and without
2198 * preemption disabled. The cmpxchg is racy and may put the partial page
2199 * onto a random cpus partial slot.
2201 * If we did not find a slot then simply move all the partials to the
2202 * per node partial list.
2204 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2206 #ifdef CONFIG_SLUB_CPU_PARTIAL
2207 struct page *oldpage;
2208 int pages;
2209 int pobjects;
2211 preempt_disable();
2212 do {
2213 pages = 0;
2214 pobjects = 0;
2215 oldpage = this_cpu_read(s->cpu_slab->partial);
2217 if (oldpage) {
2218 pobjects = oldpage->pobjects;
2219 pages = oldpage->pages;
2220 if (drain && pobjects > s->cpu_partial) {
2221 unsigned long flags;
2223 * partial array is full. Move the existing
2224 * set to the per node partial list.
2226 local_irq_save(flags);
2227 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2228 local_irq_restore(flags);
2229 oldpage = NULL;
2230 pobjects = 0;
2231 pages = 0;
2232 stat(s, CPU_PARTIAL_DRAIN);
2236 pages++;
2237 pobjects += page->objects - page->inuse;
2239 page->pages = pages;
2240 page->pobjects = pobjects;
2241 page->next = oldpage;
2243 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2244 != oldpage);
2245 if (unlikely(!s->cpu_partial)) {
2246 unsigned long flags;
2248 local_irq_save(flags);
2249 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2250 local_irq_restore(flags);
2252 preempt_enable();
2253 #endif
2256 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2258 stat(s, CPUSLAB_FLUSH);
2259 deactivate_slab(s, c->page, c->freelist);
2261 c->tid = next_tid(c->tid);
2262 c->page = NULL;
2263 c->freelist = NULL;
2267 * Flush cpu slab.
2269 * Called from IPI handler with interrupts disabled.
2271 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2273 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2275 if (likely(c)) {
2276 if (c->page)
2277 flush_slab(s, c);
2279 unfreeze_partials(s, c);
2283 static void flush_cpu_slab(void *d)
2285 struct kmem_cache *s = d;
2287 __flush_cpu_slab(s, smp_processor_id());
2290 static bool has_cpu_slab(int cpu, void *info)
2292 struct kmem_cache *s = info;
2293 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2295 return c->page || c->partial;
2298 static void flush_all(struct kmem_cache *s)
2300 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2304 * Use the cpu notifier to insure that the cpu slabs are flushed when
2305 * necessary.
2307 static int slub_cpu_dead(unsigned int cpu)
2309 struct kmem_cache *s;
2310 unsigned long flags;
2312 mutex_lock(&slab_mutex);
2313 list_for_each_entry(s, &slab_caches, list) {
2314 local_irq_save(flags);
2315 __flush_cpu_slab(s, cpu);
2316 local_irq_restore(flags);
2318 mutex_unlock(&slab_mutex);
2319 return 0;
2323 * Check if the objects in a per cpu structure fit numa
2324 * locality expectations.
2326 static inline int node_match(struct page *page, int node)
2328 #ifdef CONFIG_NUMA
2329 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2330 return 0;
2331 #endif
2332 return 1;
2335 #ifdef CONFIG_SLUB_DEBUG
2336 static int count_free(struct page *page)
2338 return page->objects - page->inuse;
2341 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2343 return atomic_long_read(&n->total_objects);
2345 #endif /* CONFIG_SLUB_DEBUG */
2347 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2348 static unsigned long count_partial(struct kmem_cache_node *n,
2349 int (*get_count)(struct page *))
2351 unsigned long flags;
2352 unsigned long x = 0;
2353 struct page *page;
2355 spin_lock_irqsave(&n->list_lock, flags);
2356 list_for_each_entry(page, &n->partial, lru)
2357 x += get_count(page);
2358 spin_unlock_irqrestore(&n->list_lock, flags);
2359 return x;
2361 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2363 static noinline void
2364 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2366 #ifdef CONFIG_SLUB_DEBUG
2367 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2368 DEFAULT_RATELIMIT_BURST);
2369 int node;
2370 struct kmem_cache_node *n;
2372 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2373 return;
2375 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2376 nid, gfpflags, &gfpflags);
2377 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2378 s->name, s->object_size, s->size, oo_order(s->oo),
2379 oo_order(s->min));
2381 if (oo_order(s->min) > get_order(s->object_size))
2382 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2383 s->name);
2385 for_each_kmem_cache_node(s, node, n) {
2386 unsigned long nr_slabs;
2387 unsigned long nr_objs;
2388 unsigned long nr_free;
2390 nr_free = count_partial(n, count_free);
2391 nr_slabs = node_nr_slabs(n);
2392 nr_objs = node_nr_objs(n);
2394 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2395 node, nr_slabs, nr_objs, nr_free);
2397 #endif
2400 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2401 int node, struct kmem_cache_cpu **pc)
2403 void *freelist;
2404 struct kmem_cache_cpu *c = *pc;
2405 struct page *page;
2407 freelist = get_partial(s, flags, node, c);
2409 if (freelist)
2410 return freelist;
2412 page = new_slab(s, flags, node);
2413 if (page) {
2414 c = raw_cpu_ptr(s->cpu_slab);
2415 if (c->page)
2416 flush_slab(s, c);
2419 * No other reference to the page yet so we can
2420 * muck around with it freely without cmpxchg
2422 freelist = page->freelist;
2423 page->freelist = NULL;
2425 stat(s, ALLOC_SLAB);
2426 c->page = page;
2427 *pc = c;
2428 } else
2429 freelist = NULL;
2431 return freelist;
2434 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2436 if (unlikely(PageSlabPfmemalloc(page)))
2437 return gfp_pfmemalloc_allowed(gfpflags);
2439 return true;
2443 * Check the page->freelist of a page and either transfer the freelist to the
2444 * per cpu freelist or deactivate the page.
2446 * The page is still frozen if the return value is not NULL.
2448 * If this function returns NULL then the page has been unfrozen.
2450 * This function must be called with interrupt disabled.
2452 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2454 struct page new;
2455 unsigned long counters;
2456 void *freelist;
2458 do {
2459 freelist = page->freelist;
2460 counters = page->counters;
2462 new.counters = counters;
2463 VM_BUG_ON(!new.frozen);
2465 new.inuse = page->objects;
2466 new.frozen = freelist != NULL;
2468 } while (!__cmpxchg_double_slab(s, page,
2469 freelist, counters,
2470 NULL, new.counters,
2471 "get_freelist"));
2473 return freelist;
2477 * Slow path. The lockless freelist is empty or we need to perform
2478 * debugging duties.
2480 * Processing is still very fast if new objects have been freed to the
2481 * regular freelist. In that case we simply take over the regular freelist
2482 * as the lockless freelist and zap the regular freelist.
2484 * If that is not working then we fall back to the partial lists. We take the
2485 * first element of the freelist as the object to allocate now and move the
2486 * rest of the freelist to the lockless freelist.
2488 * And if we were unable to get a new slab from the partial slab lists then
2489 * we need to allocate a new slab. This is the slowest path since it involves
2490 * a call to the page allocator and the setup of a new slab.
2492 * Version of __slab_alloc to use when we know that interrupts are
2493 * already disabled (which is the case for bulk allocation).
2495 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2496 unsigned long addr, struct kmem_cache_cpu *c)
2498 void *freelist;
2499 struct page *page;
2501 page = c->page;
2502 if (!page)
2503 goto new_slab;
2504 redo:
2506 if (unlikely(!node_match(page, node))) {
2507 int searchnode = node;
2509 if (node != NUMA_NO_NODE && !node_present_pages(node))
2510 searchnode = node_to_mem_node(node);
2512 if (unlikely(!node_match(page, searchnode))) {
2513 stat(s, ALLOC_NODE_MISMATCH);
2514 deactivate_slab(s, page, c->freelist);
2515 c->page = NULL;
2516 c->freelist = NULL;
2517 goto new_slab;
2522 * By rights, we should be searching for a slab page that was
2523 * PFMEMALLOC but right now, we are losing the pfmemalloc
2524 * information when the page leaves the per-cpu allocator
2526 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2527 deactivate_slab(s, page, c->freelist);
2528 c->page = NULL;
2529 c->freelist = NULL;
2530 goto new_slab;
2533 /* must check again c->freelist in case of cpu migration or IRQ */
2534 freelist = c->freelist;
2535 if (freelist)
2536 goto load_freelist;
2538 freelist = get_freelist(s, page);
2540 if (!freelist) {
2541 c->page = NULL;
2542 stat(s, DEACTIVATE_BYPASS);
2543 goto new_slab;
2546 stat(s, ALLOC_REFILL);
2548 load_freelist:
2550 * freelist is pointing to the list of objects to be used.
2551 * page is pointing to the page from which the objects are obtained.
2552 * That page must be frozen for per cpu allocations to work.
2554 VM_BUG_ON(!c->page->frozen);
2555 c->freelist = get_freepointer(s, freelist);
2556 c->tid = next_tid(c->tid);
2557 return freelist;
2559 new_slab:
2561 if (c->partial) {
2562 page = c->page = c->partial;
2563 c->partial = page->next;
2564 stat(s, CPU_PARTIAL_ALLOC);
2565 c->freelist = NULL;
2566 goto redo;
2569 freelist = new_slab_objects(s, gfpflags, node, &c);
2571 if (unlikely(!freelist)) {
2572 slab_out_of_memory(s, gfpflags, node);
2573 return NULL;
2576 page = c->page;
2577 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2578 goto load_freelist;
2580 /* Only entered in the debug case */
2581 if (kmem_cache_debug(s) &&
2582 !alloc_debug_processing(s, page, freelist, addr))
2583 goto new_slab; /* Slab failed checks. Next slab needed */
2585 deactivate_slab(s, page, get_freepointer(s, freelist));
2586 c->page = NULL;
2587 c->freelist = NULL;
2588 return freelist;
2592 * Another one that disabled interrupt and compensates for possible
2593 * cpu changes by refetching the per cpu area pointer.
2595 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2596 unsigned long addr, struct kmem_cache_cpu *c)
2598 void *p;
2599 unsigned long flags;
2601 local_irq_save(flags);
2602 #ifdef CONFIG_PREEMPT
2604 * We may have been preempted and rescheduled on a different
2605 * cpu before disabling interrupts. Need to reload cpu area
2606 * pointer.
2608 c = this_cpu_ptr(s->cpu_slab);
2609 #endif
2611 p = ___slab_alloc(s, gfpflags, node, addr, c);
2612 local_irq_restore(flags);
2613 return p;
2617 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2618 * have the fastpath folded into their functions. So no function call
2619 * overhead for requests that can be satisfied on the fastpath.
2621 * The fastpath works by first checking if the lockless freelist can be used.
2622 * If not then __slab_alloc is called for slow processing.
2624 * Otherwise we can simply pick the next object from the lockless free list.
2626 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2627 gfp_t gfpflags, int node, unsigned long addr)
2629 void *object;
2630 struct kmem_cache_cpu *c;
2631 struct page *page;
2632 unsigned long tid;
2634 s = slab_pre_alloc_hook(s, gfpflags);
2635 if (!s)
2636 return NULL;
2637 redo:
2639 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2640 * enabled. We may switch back and forth between cpus while
2641 * reading from one cpu area. That does not matter as long
2642 * as we end up on the original cpu again when doing the cmpxchg.
2644 * We should guarantee that tid and kmem_cache are retrieved on
2645 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2646 * to check if it is matched or not.
2648 do {
2649 tid = this_cpu_read(s->cpu_slab->tid);
2650 c = raw_cpu_ptr(s->cpu_slab);
2651 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2652 unlikely(tid != READ_ONCE(c->tid)));
2655 * Irqless object alloc/free algorithm used here depends on sequence
2656 * of fetching cpu_slab's data. tid should be fetched before anything
2657 * on c to guarantee that object and page associated with previous tid
2658 * won't be used with current tid. If we fetch tid first, object and
2659 * page could be one associated with next tid and our alloc/free
2660 * request will be failed. In this case, we will retry. So, no problem.
2662 barrier();
2665 * The transaction ids are globally unique per cpu and per operation on
2666 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2667 * occurs on the right processor and that there was no operation on the
2668 * linked list in between.
2671 object = c->freelist;
2672 page = c->page;
2673 if (unlikely(!object || !node_match(page, node))) {
2674 object = __slab_alloc(s, gfpflags, node, addr, c);
2675 stat(s, ALLOC_SLOWPATH);
2676 } else {
2677 void *next_object = get_freepointer_safe(s, object);
2680 * The cmpxchg will only match if there was no additional
2681 * operation and if we are on the right processor.
2683 * The cmpxchg does the following atomically (without lock
2684 * semantics!)
2685 * 1. Relocate first pointer to the current per cpu area.
2686 * 2. Verify that tid and freelist have not been changed
2687 * 3. If they were not changed replace tid and freelist
2689 * Since this is without lock semantics the protection is only
2690 * against code executing on this cpu *not* from access by
2691 * other cpus.
2693 if (unlikely(!this_cpu_cmpxchg_double(
2694 s->cpu_slab->freelist, s->cpu_slab->tid,
2695 object, tid,
2696 next_object, next_tid(tid)))) {
2698 note_cmpxchg_failure("slab_alloc", s, tid);
2699 goto redo;
2701 prefetch_freepointer(s, next_object);
2702 stat(s, ALLOC_FASTPATH);
2705 if (unlikely(gfpflags & __GFP_ZERO) && object)
2706 memset(object, 0, s->object_size);
2708 slab_post_alloc_hook(s, gfpflags, 1, &object);
2710 return object;
2713 static __always_inline void *slab_alloc(struct kmem_cache *s,
2714 gfp_t gfpflags, unsigned long addr)
2716 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2719 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2721 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2723 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2724 s->size, gfpflags);
2726 return ret;
2728 EXPORT_SYMBOL(kmem_cache_alloc);
2730 #ifdef CONFIG_TRACING
2731 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2733 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2734 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2735 kasan_kmalloc(s, ret, size, gfpflags);
2736 return ret;
2738 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2739 #endif
2741 #ifdef CONFIG_NUMA
2742 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2744 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2746 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2747 s->object_size, s->size, gfpflags, node);
2749 return ret;
2751 EXPORT_SYMBOL(kmem_cache_alloc_node);
2753 #ifdef CONFIG_TRACING
2754 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2755 gfp_t gfpflags,
2756 int node, size_t size)
2758 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2760 trace_kmalloc_node(_RET_IP_, ret,
2761 size, s->size, gfpflags, node);
2763 kasan_kmalloc(s, ret, size, gfpflags);
2764 return ret;
2766 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2767 #endif
2768 #endif
2771 * Slow path handling. This may still be called frequently since objects
2772 * have a longer lifetime than the cpu slabs in most processing loads.
2774 * So we still attempt to reduce cache line usage. Just take the slab
2775 * lock and free the item. If there is no additional partial page
2776 * handling required then we can return immediately.
2778 static void __slab_free(struct kmem_cache *s, struct page *page,
2779 void *head, void *tail, int cnt,
2780 unsigned long addr)
2783 void *prior;
2784 int was_frozen;
2785 struct page new;
2786 unsigned long counters;
2787 struct kmem_cache_node *n = NULL;
2788 unsigned long uninitialized_var(flags);
2790 stat(s, FREE_SLOWPATH);
2792 if (kmem_cache_debug(s) &&
2793 !free_debug_processing(s, page, head, tail, cnt, addr))
2794 return;
2796 do {
2797 if (unlikely(n)) {
2798 spin_unlock_irqrestore(&n->list_lock, flags);
2799 n = NULL;
2801 prior = page->freelist;
2802 counters = page->counters;
2803 set_freepointer(s, tail, prior);
2804 new.counters = counters;
2805 was_frozen = new.frozen;
2806 new.inuse -= cnt;
2807 if ((!new.inuse || !prior) && !was_frozen) {
2809 if (kmem_cache_has_cpu_partial(s) && !prior) {
2812 * Slab was on no list before and will be
2813 * partially empty
2814 * We can defer the list move and instead
2815 * freeze it.
2817 new.frozen = 1;
2819 } else { /* Needs to be taken off a list */
2821 n = get_node(s, page_to_nid(page));
2823 * Speculatively acquire the list_lock.
2824 * If the cmpxchg does not succeed then we may
2825 * drop the list_lock without any processing.
2827 * Otherwise the list_lock will synchronize with
2828 * other processors updating the list of slabs.
2830 spin_lock_irqsave(&n->list_lock, flags);
2835 } while (!cmpxchg_double_slab(s, page,
2836 prior, counters,
2837 head, new.counters,
2838 "__slab_free"));
2840 if (likely(!n)) {
2843 * If we just froze the page then put it onto the
2844 * per cpu partial list.
2846 if (new.frozen && !was_frozen) {
2847 put_cpu_partial(s, page, 1);
2848 stat(s, CPU_PARTIAL_FREE);
2851 * The list lock was not taken therefore no list
2852 * activity can be necessary.
2854 if (was_frozen)
2855 stat(s, FREE_FROZEN);
2856 return;
2859 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2860 goto slab_empty;
2863 * Objects left in the slab. If it was not on the partial list before
2864 * then add it.
2866 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2867 if (kmem_cache_debug(s))
2868 remove_full(s, n, page);
2869 add_partial(n, page, DEACTIVATE_TO_TAIL);
2870 stat(s, FREE_ADD_PARTIAL);
2872 spin_unlock_irqrestore(&n->list_lock, flags);
2873 return;
2875 slab_empty:
2876 if (prior) {
2878 * Slab on the partial list.
2880 remove_partial(n, page);
2881 stat(s, FREE_REMOVE_PARTIAL);
2882 } else {
2883 /* Slab must be on the full list */
2884 remove_full(s, n, page);
2887 spin_unlock_irqrestore(&n->list_lock, flags);
2888 stat(s, FREE_SLAB);
2889 discard_slab(s, page);
2893 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2894 * can perform fastpath freeing without additional function calls.
2896 * The fastpath is only possible if we are freeing to the current cpu slab
2897 * of this processor. This typically the case if we have just allocated
2898 * the item before.
2900 * If fastpath is not possible then fall back to __slab_free where we deal
2901 * with all sorts of special processing.
2903 * Bulk free of a freelist with several objects (all pointing to the
2904 * same page) possible by specifying head and tail ptr, plus objects
2905 * count (cnt). Bulk free indicated by tail pointer being set.
2907 static __always_inline void do_slab_free(struct kmem_cache *s,
2908 struct page *page, void *head, void *tail,
2909 int cnt, unsigned long addr)
2911 void *tail_obj = tail ? : head;
2912 struct kmem_cache_cpu *c;
2913 unsigned long tid;
2914 redo:
2916 * Determine the currently cpus per cpu slab.
2917 * The cpu may change afterward. However that does not matter since
2918 * data is retrieved via this pointer. If we are on the same cpu
2919 * during the cmpxchg then the free will succeed.
2921 do {
2922 tid = this_cpu_read(s->cpu_slab->tid);
2923 c = raw_cpu_ptr(s->cpu_slab);
2924 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2925 unlikely(tid != READ_ONCE(c->tid)));
2927 /* Same with comment on barrier() in slab_alloc_node() */
2928 barrier();
2930 if (likely(page == c->page)) {
2931 set_freepointer(s, tail_obj, c->freelist);
2933 if (unlikely(!this_cpu_cmpxchg_double(
2934 s->cpu_slab->freelist, s->cpu_slab->tid,
2935 c->freelist, tid,
2936 head, next_tid(tid)))) {
2938 note_cmpxchg_failure("slab_free", s, tid);
2939 goto redo;
2941 stat(s, FREE_FASTPATH);
2942 } else
2943 __slab_free(s, page, head, tail_obj, cnt, addr);
2947 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2948 void *head, void *tail, int cnt,
2949 unsigned long addr)
2951 slab_free_freelist_hook(s, head, tail);
2953 * slab_free_freelist_hook() could have put the items into quarantine.
2954 * If so, no need to free them.
2956 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
2957 return;
2958 do_slab_free(s, page, head, tail, cnt, addr);
2961 #ifdef CONFIG_KASAN
2962 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2964 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2966 #endif
2968 void kmem_cache_free(struct kmem_cache *s, void *x)
2970 s = cache_from_obj(s, x);
2971 if (!s)
2972 return;
2973 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2974 trace_kmem_cache_free(_RET_IP_, x);
2976 EXPORT_SYMBOL(kmem_cache_free);
2978 struct detached_freelist {
2979 struct page *page;
2980 void *tail;
2981 void *freelist;
2982 int cnt;
2983 struct kmem_cache *s;
2987 * This function progressively scans the array with free objects (with
2988 * a limited look ahead) and extract objects belonging to the same
2989 * page. It builds a detached freelist directly within the given
2990 * page/objects. This can happen without any need for
2991 * synchronization, because the objects are owned by running process.
2992 * The freelist is build up as a single linked list in the objects.
2993 * The idea is, that this detached freelist can then be bulk
2994 * transferred to the real freelist(s), but only requiring a single
2995 * synchronization primitive. Look ahead in the array is limited due
2996 * to performance reasons.
2998 static inline
2999 int build_detached_freelist(struct kmem_cache *s, size_t size,
3000 void **p, struct detached_freelist *df)
3002 size_t first_skipped_index = 0;
3003 int lookahead = 3;
3004 void *object;
3005 struct page *page;
3007 /* Always re-init detached_freelist */
3008 df->page = NULL;
3010 do {
3011 object = p[--size];
3012 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3013 } while (!object && size);
3015 if (!object)
3016 return 0;
3018 page = virt_to_head_page(object);
3019 if (!s) {
3020 /* Handle kalloc'ed objects */
3021 if (unlikely(!PageSlab(page))) {
3022 BUG_ON(!PageCompound(page));
3023 kfree_hook(object);
3024 __free_pages(page, compound_order(page));
3025 p[size] = NULL; /* mark object processed */
3026 return size;
3028 /* Derive kmem_cache from object */
3029 df->s = page->slab_cache;
3030 } else {
3031 df->s = cache_from_obj(s, object); /* Support for memcg */
3034 /* Start new detached freelist */
3035 df->page = page;
3036 set_freepointer(df->s, object, NULL);
3037 df->tail = object;
3038 df->freelist = object;
3039 p[size] = NULL; /* mark object processed */
3040 df->cnt = 1;
3042 while (size) {
3043 object = p[--size];
3044 if (!object)
3045 continue; /* Skip processed objects */
3047 /* df->page is always set at this point */
3048 if (df->page == virt_to_head_page(object)) {
3049 /* Opportunity build freelist */
3050 set_freepointer(df->s, object, df->freelist);
3051 df->freelist = object;
3052 df->cnt++;
3053 p[size] = NULL; /* mark object processed */
3055 continue;
3058 /* Limit look ahead search */
3059 if (!--lookahead)
3060 break;
3062 if (!first_skipped_index)
3063 first_skipped_index = size + 1;
3066 return first_skipped_index;
3069 /* Note that interrupts must be enabled when calling this function. */
3070 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3072 if (WARN_ON(!size))
3073 return;
3075 do {
3076 struct detached_freelist df;
3078 size = build_detached_freelist(s, size, p, &df);
3079 if (unlikely(!df.page))
3080 continue;
3082 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3083 } while (likely(size));
3085 EXPORT_SYMBOL(kmem_cache_free_bulk);
3087 /* Note that interrupts must be enabled when calling this function. */
3088 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3089 void **p)
3091 struct kmem_cache_cpu *c;
3092 int i;
3094 /* memcg and kmem_cache debug support */
3095 s = slab_pre_alloc_hook(s, flags);
3096 if (unlikely(!s))
3097 return false;
3099 * Drain objects in the per cpu slab, while disabling local
3100 * IRQs, which protects against PREEMPT and interrupts
3101 * handlers invoking normal fastpath.
3103 local_irq_disable();
3104 c = this_cpu_ptr(s->cpu_slab);
3106 for (i = 0; i < size; i++) {
3107 void *object = c->freelist;
3109 if (unlikely(!object)) {
3111 * Invoking slow path likely have side-effect
3112 * of re-populating per CPU c->freelist
3114 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3115 _RET_IP_, c);
3116 if (unlikely(!p[i]))
3117 goto error;
3119 c = this_cpu_ptr(s->cpu_slab);
3120 continue; /* goto for-loop */
3122 c->freelist = get_freepointer(s, object);
3123 p[i] = object;
3125 c->tid = next_tid(c->tid);
3126 local_irq_enable();
3128 /* Clear memory outside IRQ disabled fastpath loop */
3129 if (unlikely(flags & __GFP_ZERO)) {
3130 int j;
3132 for (j = 0; j < i; j++)
3133 memset(p[j], 0, s->object_size);
3136 /* memcg and kmem_cache debug support */
3137 slab_post_alloc_hook(s, flags, size, p);
3138 return i;
3139 error:
3140 local_irq_enable();
3141 slab_post_alloc_hook(s, flags, i, p);
3142 __kmem_cache_free_bulk(s, i, p);
3143 return 0;
3145 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3149 * Object placement in a slab is made very easy because we always start at
3150 * offset 0. If we tune the size of the object to the alignment then we can
3151 * get the required alignment by putting one properly sized object after
3152 * another.
3154 * Notice that the allocation order determines the sizes of the per cpu
3155 * caches. Each processor has always one slab available for allocations.
3156 * Increasing the allocation order reduces the number of times that slabs
3157 * must be moved on and off the partial lists and is therefore a factor in
3158 * locking overhead.
3162 * Mininum / Maximum order of slab pages. This influences locking overhead
3163 * and slab fragmentation. A higher order reduces the number of partial slabs
3164 * and increases the number of allocations possible without having to
3165 * take the list_lock.
3167 static int slub_min_order;
3168 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3169 static int slub_min_objects;
3172 * Calculate the order of allocation given an slab object size.
3174 * The order of allocation has significant impact on performance and other
3175 * system components. Generally order 0 allocations should be preferred since
3176 * order 0 does not cause fragmentation in the page allocator. Larger objects
3177 * be problematic to put into order 0 slabs because there may be too much
3178 * unused space left. We go to a higher order if more than 1/16th of the slab
3179 * would be wasted.
3181 * In order to reach satisfactory performance we must ensure that a minimum
3182 * number of objects is in one slab. Otherwise we may generate too much
3183 * activity on the partial lists which requires taking the list_lock. This is
3184 * less a concern for large slabs though which are rarely used.
3186 * slub_max_order specifies the order where we begin to stop considering the
3187 * number of objects in a slab as critical. If we reach slub_max_order then
3188 * we try to keep the page order as low as possible. So we accept more waste
3189 * of space in favor of a small page order.
3191 * Higher order allocations also allow the placement of more objects in a
3192 * slab and thereby reduce object handling overhead. If the user has
3193 * requested a higher mininum order then we start with that one instead of
3194 * the smallest order which will fit the object.
3196 static inline int slab_order(int size, int min_objects,
3197 int max_order, int fract_leftover, int reserved)
3199 int order;
3200 int rem;
3201 int min_order = slub_min_order;
3203 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3204 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3206 for (order = max(min_order, get_order(min_objects * size + reserved));
3207 order <= max_order; order++) {
3209 unsigned long slab_size = PAGE_SIZE << order;
3211 rem = (slab_size - reserved) % size;
3213 if (rem <= slab_size / fract_leftover)
3214 break;
3217 return order;
3220 static inline int calculate_order(int size, int reserved)
3222 int order;
3223 int min_objects;
3224 int fraction;
3225 int max_objects;
3228 * Attempt to find best configuration for a slab. This
3229 * works by first attempting to generate a layout with
3230 * the best configuration and backing off gradually.
3232 * First we increase the acceptable waste in a slab. Then
3233 * we reduce the minimum objects required in a slab.
3235 min_objects = slub_min_objects;
3236 if (!min_objects)
3237 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3238 max_objects = order_objects(slub_max_order, size, reserved);
3239 min_objects = min(min_objects, max_objects);
3241 while (min_objects > 1) {
3242 fraction = 16;
3243 while (fraction >= 4) {
3244 order = slab_order(size, min_objects,
3245 slub_max_order, fraction, reserved);
3246 if (order <= slub_max_order)
3247 return order;
3248 fraction /= 2;
3250 min_objects--;
3254 * We were unable to place multiple objects in a slab. Now
3255 * lets see if we can place a single object there.
3257 order = slab_order(size, 1, slub_max_order, 1, reserved);
3258 if (order <= slub_max_order)
3259 return order;
3262 * Doh this slab cannot be placed using slub_max_order.
3264 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3265 if (order < MAX_ORDER)
3266 return order;
3267 return -ENOSYS;
3270 static void
3271 init_kmem_cache_node(struct kmem_cache_node *n)
3273 n->nr_partial = 0;
3274 spin_lock_init(&n->list_lock);
3275 INIT_LIST_HEAD(&n->partial);
3276 #ifdef CONFIG_SLUB_DEBUG
3277 atomic_long_set(&n->nr_slabs, 0);
3278 atomic_long_set(&n->total_objects, 0);
3279 INIT_LIST_HEAD(&n->full);
3280 #endif
3283 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3285 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3286 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3289 * Must align to double word boundary for the double cmpxchg
3290 * instructions to work; see __pcpu_double_call_return_bool().
3292 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3293 2 * sizeof(void *));
3295 if (!s->cpu_slab)
3296 return 0;
3298 init_kmem_cache_cpus(s);
3300 return 1;
3303 static struct kmem_cache *kmem_cache_node;
3306 * No kmalloc_node yet so do it by hand. We know that this is the first
3307 * slab on the node for this slabcache. There are no concurrent accesses
3308 * possible.
3310 * Note that this function only works on the kmem_cache_node
3311 * when allocating for the kmem_cache_node. This is used for bootstrapping
3312 * memory on a fresh node that has no slab structures yet.
3314 static void early_kmem_cache_node_alloc(int node)
3316 struct page *page;
3317 struct kmem_cache_node *n;
3319 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3321 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3323 BUG_ON(!page);
3324 if (page_to_nid(page) != node) {
3325 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3326 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3329 n = page->freelist;
3330 BUG_ON(!n);
3331 page->freelist = get_freepointer(kmem_cache_node, n);
3332 page->inuse = 1;
3333 page->frozen = 0;
3334 kmem_cache_node->node[node] = n;
3335 #ifdef CONFIG_SLUB_DEBUG
3336 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3337 init_tracking(kmem_cache_node, n);
3338 #endif
3339 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3340 GFP_KERNEL);
3341 init_kmem_cache_node(n);
3342 inc_slabs_node(kmem_cache_node, node, page->objects);
3345 * No locks need to be taken here as it has just been
3346 * initialized and there is no concurrent access.
3348 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3351 static void free_kmem_cache_nodes(struct kmem_cache *s)
3353 int node;
3354 struct kmem_cache_node *n;
3356 for_each_kmem_cache_node(s, node, n) {
3357 kmem_cache_free(kmem_cache_node, n);
3358 s->node[node] = NULL;
3362 void __kmem_cache_release(struct kmem_cache *s)
3364 cache_random_seq_destroy(s);
3365 free_percpu(s->cpu_slab);
3366 free_kmem_cache_nodes(s);
3369 static int init_kmem_cache_nodes(struct kmem_cache *s)
3371 int node;
3373 for_each_node_state(node, N_NORMAL_MEMORY) {
3374 struct kmem_cache_node *n;
3376 if (slab_state == DOWN) {
3377 early_kmem_cache_node_alloc(node);
3378 continue;
3380 n = kmem_cache_alloc_node(kmem_cache_node,
3381 GFP_KERNEL, node);
3383 if (!n) {
3384 free_kmem_cache_nodes(s);
3385 return 0;
3388 s->node[node] = n;
3389 init_kmem_cache_node(n);
3391 return 1;
3394 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3396 if (min < MIN_PARTIAL)
3397 min = MIN_PARTIAL;
3398 else if (min > MAX_PARTIAL)
3399 min = MAX_PARTIAL;
3400 s->min_partial = min;
3404 * calculate_sizes() determines the order and the distribution of data within
3405 * a slab object.
3407 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3409 unsigned long flags = s->flags;
3410 size_t size = s->object_size;
3411 int order;
3414 * Round up object size to the next word boundary. We can only
3415 * place the free pointer at word boundaries and this determines
3416 * the possible location of the free pointer.
3418 size = ALIGN(size, sizeof(void *));
3420 #ifdef CONFIG_SLUB_DEBUG
3422 * Determine if we can poison the object itself. If the user of
3423 * the slab may touch the object after free or before allocation
3424 * then we should never poison the object itself.
3426 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3427 !s->ctor)
3428 s->flags |= __OBJECT_POISON;
3429 else
3430 s->flags &= ~__OBJECT_POISON;
3434 * If we are Redzoning then check if there is some space between the
3435 * end of the object and the free pointer. If not then add an
3436 * additional word to have some bytes to store Redzone information.
3438 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3439 size += sizeof(void *);
3440 #endif
3443 * With that we have determined the number of bytes in actual use
3444 * by the object. This is the potential offset to the free pointer.
3446 s->inuse = size;
3448 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3449 s->ctor)) {
3451 * Relocate free pointer after the object if it is not
3452 * permitted to overwrite the first word of the object on
3453 * kmem_cache_free.
3455 * This is the case if we do RCU, have a constructor or
3456 * destructor or are poisoning the objects.
3458 s->offset = size;
3459 size += sizeof(void *);
3462 #ifdef CONFIG_SLUB_DEBUG
3463 if (flags & SLAB_STORE_USER)
3465 * Need to store information about allocs and frees after
3466 * the object.
3468 size += 2 * sizeof(struct track);
3469 #endif
3471 kasan_cache_create(s, &size, &s->flags);
3472 #ifdef CONFIG_SLUB_DEBUG
3473 if (flags & SLAB_RED_ZONE) {
3475 * Add some empty padding so that we can catch
3476 * overwrites from earlier objects rather than let
3477 * tracking information or the free pointer be
3478 * corrupted if a user writes before the start
3479 * of the object.
3481 size += sizeof(void *);
3483 s->red_left_pad = sizeof(void *);
3484 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3485 size += s->red_left_pad;
3487 #endif
3490 * SLUB stores one object immediately after another beginning from
3491 * offset 0. In order to align the objects we have to simply size
3492 * each object to conform to the alignment.
3494 size = ALIGN(size, s->align);
3495 s->size = size;
3496 if (forced_order >= 0)
3497 order = forced_order;
3498 else
3499 order = calculate_order(size, s->reserved);
3501 if (order < 0)
3502 return 0;
3504 s->allocflags = 0;
3505 if (order)
3506 s->allocflags |= __GFP_COMP;
3508 if (s->flags & SLAB_CACHE_DMA)
3509 s->allocflags |= GFP_DMA;
3511 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3512 s->allocflags |= __GFP_RECLAIMABLE;
3515 * Determine the number of objects per slab
3517 s->oo = oo_make(order, size, s->reserved);
3518 s->min = oo_make(get_order(size), size, s->reserved);
3519 if (oo_objects(s->oo) > oo_objects(s->max))
3520 s->max = s->oo;
3522 return !!oo_objects(s->oo);
3525 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3527 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3528 s->reserved = 0;
3530 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3531 s->reserved = sizeof(struct rcu_head);
3533 if (!calculate_sizes(s, -1))
3534 goto error;
3535 if (disable_higher_order_debug) {
3537 * Disable debugging flags that store metadata if the min slab
3538 * order increased.
3540 if (get_order(s->size) > get_order(s->object_size)) {
3541 s->flags &= ~DEBUG_METADATA_FLAGS;
3542 s->offset = 0;
3543 if (!calculate_sizes(s, -1))
3544 goto error;
3548 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3549 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3550 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3551 /* Enable fast mode */
3552 s->flags |= __CMPXCHG_DOUBLE;
3553 #endif
3556 * The larger the object size is, the more pages we want on the partial
3557 * list to avoid pounding the page allocator excessively.
3559 set_min_partial(s, ilog2(s->size) / 2);
3562 * cpu_partial determined the maximum number of objects kept in the
3563 * per cpu partial lists of a processor.
3565 * Per cpu partial lists mainly contain slabs that just have one
3566 * object freed. If they are used for allocation then they can be
3567 * filled up again with minimal effort. The slab will never hit the
3568 * per node partial lists and therefore no locking will be required.
3570 * This setting also determines
3572 * A) The number of objects from per cpu partial slabs dumped to the
3573 * per node list when we reach the limit.
3574 * B) The number of objects in cpu partial slabs to extract from the
3575 * per node list when we run out of per cpu objects. We only fetch
3576 * 50% to keep some capacity around for frees.
3578 if (!kmem_cache_has_cpu_partial(s))
3579 s->cpu_partial = 0;
3580 else if (s->size >= PAGE_SIZE)
3581 s->cpu_partial = 2;
3582 else if (s->size >= 1024)
3583 s->cpu_partial = 6;
3584 else if (s->size >= 256)
3585 s->cpu_partial = 13;
3586 else
3587 s->cpu_partial = 30;
3589 #ifdef CONFIG_NUMA
3590 s->remote_node_defrag_ratio = 1000;
3591 #endif
3593 /* Initialize the pre-computed randomized freelist if slab is up */
3594 if (slab_state >= UP) {
3595 if (init_cache_random_seq(s))
3596 goto error;
3599 if (!init_kmem_cache_nodes(s))
3600 goto error;
3602 if (alloc_kmem_cache_cpus(s))
3603 return 0;
3605 free_kmem_cache_nodes(s);
3606 error:
3607 if (flags & SLAB_PANIC)
3608 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3609 s->name, (unsigned long)s->size, s->size,
3610 oo_order(s->oo), s->offset, flags);
3611 return -EINVAL;
3614 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3615 const char *text)
3617 #ifdef CONFIG_SLUB_DEBUG
3618 void *addr = page_address(page);
3619 void *p;
3620 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3621 sizeof(long), GFP_ATOMIC);
3622 if (!map)
3623 return;
3624 slab_err(s, page, text, s->name);
3625 slab_lock(page);
3627 get_map(s, page, map);
3628 for_each_object(p, s, addr, page->objects) {
3630 if (!test_bit(slab_index(p, s, addr), map)) {
3631 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3632 print_tracking(s, p);
3635 slab_unlock(page);
3636 kfree(map);
3637 #endif
3641 * Attempt to free all partial slabs on a node.
3642 * This is called from __kmem_cache_shutdown(). We must take list_lock
3643 * because sysfs file might still access partial list after the shutdowning.
3645 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3647 LIST_HEAD(discard);
3648 struct page *page, *h;
3650 BUG_ON(irqs_disabled());
3651 spin_lock_irq(&n->list_lock);
3652 list_for_each_entry_safe(page, h, &n->partial, lru) {
3653 if (!page->inuse) {
3654 remove_partial(n, page);
3655 list_add(&page->lru, &discard);
3656 } else {
3657 list_slab_objects(s, page,
3658 "Objects remaining in %s on __kmem_cache_shutdown()");
3661 spin_unlock_irq(&n->list_lock);
3663 list_for_each_entry_safe(page, h, &discard, lru)
3664 discard_slab(s, page);
3668 * Release all resources used by a slab cache.
3670 int __kmem_cache_shutdown(struct kmem_cache *s)
3672 int node;
3673 struct kmem_cache_node *n;
3675 flush_all(s);
3676 /* Attempt to free all objects */
3677 for_each_kmem_cache_node(s, node, n) {
3678 free_partial(s, n);
3679 if (n->nr_partial || slabs_node(s, node))
3680 return 1;
3682 return 0;
3685 /********************************************************************
3686 * Kmalloc subsystem
3687 *******************************************************************/
3689 static int __init setup_slub_min_order(char *str)
3691 get_option(&str, &slub_min_order);
3693 return 1;
3696 __setup("slub_min_order=", setup_slub_min_order);
3698 static int __init setup_slub_max_order(char *str)
3700 get_option(&str, &slub_max_order);
3701 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3703 return 1;
3706 __setup("slub_max_order=", setup_slub_max_order);
3708 static int __init setup_slub_min_objects(char *str)
3710 get_option(&str, &slub_min_objects);
3712 return 1;
3715 __setup("slub_min_objects=", setup_slub_min_objects);
3717 void *__kmalloc(size_t size, gfp_t flags)
3719 struct kmem_cache *s;
3720 void *ret;
3722 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3723 return kmalloc_large(size, flags);
3725 s = kmalloc_slab(size, flags);
3727 if (unlikely(ZERO_OR_NULL_PTR(s)))
3728 return s;
3730 ret = slab_alloc(s, flags, _RET_IP_);
3732 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3734 kasan_kmalloc(s, ret, size, flags);
3736 return ret;
3738 EXPORT_SYMBOL(__kmalloc);
3740 #ifdef CONFIG_NUMA
3741 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3743 struct page *page;
3744 void *ptr = NULL;
3746 flags |= __GFP_COMP | __GFP_NOTRACK;
3747 page = alloc_pages_node(node, flags, get_order(size));
3748 if (page)
3749 ptr = page_address(page);
3751 kmalloc_large_node_hook(ptr, size, flags);
3752 return ptr;
3755 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3757 struct kmem_cache *s;
3758 void *ret;
3760 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3761 ret = kmalloc_large_node(size, flags, node);
3763 trace_kmalloc_node(_RET_IP_, ret,
3764 size, PAGE_SIZE << get_order(size),
3765 flags, node);
3767 return ret;
3770 s = kmalloc_slab(size, flags);
3772 if (unlikely(ZERO_OR_NULL_PTR(s)))
3773 return s;
3775 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3777 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3779 kasan_kmalloc(s, ret, size, flags);
3781 return ret;
3783 EXPORT_SYMBOL(__kmalloc_node);
3784 #endif
3786 #ifdef CONFIG_HARDENED_USERCOPY
3788 * Rejects objects that are incorrectly sized.
3790 * Returns NULL if check passes, otherwise const char * to name of cache
3791 * to indicate an error.
3793 const char *__check_heap_object(const void *ptr, unsigned long n,
3794 struct page *page)
3796 struct kmem_cache *s;
3797 unsigned long offset;
3798 size_t object_size;
3800 /* Find object and usable object size. */
3801 s = page->slab_cache;
3802 object_size = slab_ksize(s);
3804 /* Reject impossible pointers. */
3805 if (ptr < page_address(page))
3806 return s->name;
3808 /* Find offset within object. */
3809 offset = (ptr - page_address(page)) % s->size;
3811 /* Adjust for redzone and reject if within the redzone. */
3812 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3813 if (offset < s->red_left_pad)
3814 return s->name;
3815 offset -= s->red_left_pad;
3818 /* Allow address range falling entirely within object size. */
3819 if (offset <= object_size && n <= object_size - offset)
3820 return NULL;
3822 return s->name;
3824 #endif /* CONFIG_HARDENED_USERCOPY */
3826 static size_t __ksize(const void *object)
3828 struct page *page;
3830 if (unlikely(object == ZERO_SIZE_PTR))
3831 return 0;
3833 page = virt_to_head_page(object);
3835 if (unlikely(!PageSlab(page))) {
3836 WARN_ON(!PageCompound(page));
3837 return PAGE_SIZE << compound_order(page);
3840 return slab_ksize(page->slab_cache);
3843 size_t ksize(const void *object)
3845 size_t size = __ksize(object);
3846 /* We assume that ksize callers could use whole allocated area,
3847 * so we need to unpoison this area.
3849 kasan_unpoison_shadow(object, size);
3850 return size;
3852 EXPORT_SYMBOL(ksize);
3854 void kfree(const void *x)
3856 struct page *page;
3857 void *object = (void *)x;
3859 trace_kfree(_RET_IP_, x);
3861 if (unlikely(ZERO_OR_NULL_PTR(x)))
3862 return;
3864 page = virt_to_head_page(x);
3865 if (unlikely(!PageSlab(page))) {
3866 BUG_ON(!PageCompound(page));
3867 kfree_hook(x);
3868 __free_pages(page, compound_order(page));
3869 return;
3871 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3873 EXPORT_SYMBOL(kfree);
3875 #define SHRINK_PROMOTE_MAX 32
3878 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3879 * up most to the head of the partial lists. New allocations will then
3880 * fill those up and thus they can be removed from the partial lists.
3882 * The slabs with the least items are placed last. This results in them
3883 * being allocated from last increasing the chance that the last objects
3884 * are freed in them.
3886 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3888 int node;
3889 int i;
3890 struct kmem_cache_node *n;
3891 struct page *page;
3892 struct page *t;
3893 struct list_head discard;
3894 struct list_head promote[SHRINK_PROMOTE_MAX];
3895 unsigned long flags;
3896 int ret = 0;
3898 if (deactivate) {
3900 * Disable empty slabs caching. Used to avoid pinning offline
3901 * memory cgroups by kmem pages that can be freed.
3903 s->cpu_partial = 0;
3904 s->min_partial = 0;
3907 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3908 * so we have to make sure the change is visible.
3910 synchronize_sched();
3913 flush_all(s);
3914 for_each_kmem_cache_node(s, node, n) {
3915 INIT_LIST_HEAD(&discard);
3916 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3917 INIT_LIST_HEAD(promote + i);
3919 spin_lock_irqsave(&n->list_lock, flags);
3922 * Build lists of slabs to discard or promote.
3924 * Note that concurrent frees may occur while we hold the
3925 * list_lock. page->inuse here is the upper limit.
3927 list_for_each_entry_safe(page, t, &n->partial, lru) {
3928 int free = page->objects - page->inuse;
3930 /* Do not reread page->inuse */
3931 barrier();
3933 /* We do not keep full slabs on the list */
3934 BUG_ON(free <= 0);
3936 if (free == page->objects) {
3937 list_move(&page->lru, &discard);
3938 n->nr_partial--;
3939 } else if (free <= SHRINK_PROMOTE_MAX)
3940 list_move(&page->lru, promote + free - 1);
3944 * Promote the slabs filled up most to the head of the
3945 * partial list.
3947 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3948 list_splice(promote + i, &n->partial);
3950 spin_unlock_irqrestore(&n->list_lock, flags);
3952 /* Release empty slabs */
3953 list_for_each_entry_safe(page, t, &discard, lru)
3954 discard_slab(s, page);
3956 if (slabs_node(s, node))
3957 ret = 1;
3960 return ret;
3963 static int slab_mem_going_offline_callback(void *arg)
3965 struct kmem_cache *s;
3967 mutex_lock(&slab_mutex);
3968 list_for_each_entry(s, &slab_caches, list)
3969 __kmem_cache_shrink(s, false);
3970 mutex_unlock(&slab_mutex);
3972 return 0;
3975 static void slab_mem_offline_callback(void *arg)
3977 struct kmem_cache_node *n;
3978 struct kmem_cache *s;
3979 struct memory_notify *marg = arg;
3980 int offline_node;
3982 offline_node = marg->status_change_nid_normal;
3985 * If the node still has available memory. we need kmem_cache_node
3986 * for it yet.
3988 if (offline_node < 0)
3989 return;
3991 mutex_lock(&slab_mutex);
3992 list_for_each_entry(s, &slab_caches, list) {
3993 n = get_node(s, offline_node);
3994 if (n) {
3996 * if n->nr_slabs > 0, slabs still exist on the node
3997 * that is going down. We were unable to free them,
3998 * and offline_pages() function shouldn't call this
3999 * callback. So, we must fail.
4001 BUG_ON(slabs_node(s, offline_node));
4003 s->node[offline_node] = NULL;
4004 kmem_cache_free(kmem_cache_node, n);
4007 mutex_unlock(&slab_mutex);
4010 static int slab_mem_going_online_callback(void *arg)
4012 struct kmem_cache_node *n;
4013 struct kmem_cache *s;
4014 struct memory_notify *marg = arg;
4015 int nid = marg->status_change_nid_normal;
4016 int ret = 0;
4019 * If the node's memory is already available, then kmem_cache_node is
4020 * already created. Nothing to do.
4022 if (nid < 0)
4023 return 0;
4026 * We are bringing a node online. No memory is available yet. We must
4027 * allocate a kmem_cache_node structure in order to bring the node
4028 * online.
4030 mutex_lock(&slab_mutex);
4031 list_for_each_entry(s, &slab_caches, list) {
4033 * XXX: kmem_cache_alloc_node will fallback to other nodes
4034 * since memory is not yet available from the node that
4035 * is brought up.
4037 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4038 if (!n) {
4039 ret = -ENOMEM;
4040 goto out;
4042 init_kmem_cache_node(n);
4043 s->node[nid] = n;
4045 out:
4046 mutex_unlock(&slab_mutex);
4047 return ret;
4050 static int slab_memory_callback(struct notifier_block *self,
4051 unsigned long action, void *arg)
4053 int ret = 0;
4055 switch (action) {
4056 case MEM_GOING_ONLINE:
4057 ret = slab_mem_going_online_callback(arg);
4058 break;
4059 case MEM_GOING_OFFLINE:
4060 ret = slab_mem_going_offline_callback(arg);
4061 break;
4062 case MEM_OFFLINE:
4063 case MEM_CANCEL_ONLINE:
4064 slab_mem_offline_callback(arg);
4065 break;
4066 case MEM_ONLINE:
4067 case MEM_CANCEL_OFFLINE:
4068 break;
4070 if (ret)
4071 ret = notifier_from_errno(ret);
4072 else
4073 ret = NOTIFY_OK;
4074 return ret;
4077 static struct notifier_block slab_memory_callback_nb = {
4078 .notifier_call = slab_memory_callback,
4079 .priority = SLAB_CALLBACK_PRI,
4082 /********************************************************************
4083 * Basic setup of slabs
4084 *******************************************************************/
4087 * Used for early kmem_cache structures that were allocated using
4088 * the page allocator. Allocate them properly then fix up the pointers
4089 * that may be pointing to the wrong kmem_cache structure.
4092 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4094 int node;
4095 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4096 struct kmem_cache_node *n;
4098 memcpy(s, static_cache, kmem_cache->object_size);
4101 * This runs very early, and only the boot processor is supposed to be
4102 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4103 * IPIs around.
4105 __flush_cpu_slab(s, smp_processor_id());
4106 for_each_kmem_cache_node(s, node, n) {
4107 struct page *p;
4109 list_for_each_entry(p, &n->partial, lru)
4110 p->slab_cache = s;
4112 #ifdef CONFIG_SLUB_DEBUG
4113 list_for_each_entry(p, &n->full, lru)
4114 p->slab_cache = s;
4115 #endif
4117 slab_init_memcg_params(s);
4118 list_add(&s->list, &slab_caches);
4119 return s;
4122 void __init kmem_cache_init(void)
4124 static __initdata struct kmem_cache boot_kmem_cache,
4125 boot_kmem_cache_node;
4127 if (debug_guardpage_minorder())
4128 slub_max_order = 0;
4130 kmem_cache_node = &boot_kmem_cache_node;
4131 kmem_cache = &boot_kmem_cache;
4133 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4134 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4136 register_hotmemory_notifier(&slab_memory_callback_nb);
4138 /* Able to allocate the per node structures */
4139 slab_state = PARTIAL;
4141 create_boot_cache(kmem_cache, "kmem_cache",
4142 offsetof(struct kmem_cache, node) +
4143 nr_node_ids * sizeof(struct kmem_cache_node *),
4144 SLAB_HWCACHE_ALIGN);
4146 kmem_cache = bootstrap(&boot_kmem_cache);
4149 * Allocate kmem_cache_node properly from the kmem_cache slab.
4150 * kmem_cache_node is separately allocated so no need to
4151 * update any list pointers.
4153 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4155 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4156 setup_kmalloc_cache_index_table();
4157 create_kmalloc_caches(0);
4159 /* Setup random freelists for each cache */
4160 init_freelist_randomization();
4162 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4163 slub_cpu_dead);
4165 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4166 cache_line_size(),
4167 slub_min_order, slub_max_order, slub_min_objects,
4168 nr_cpu_ids, nr_node_ids);
4171 void __init kmem_cache_init_late(void)
4175 struct kmem_cache *
4176 __kmem_cache_alias(const char *name, size_t size, size_t align,
4177 unsigned long flags, void (*ctor)(void *))
4179 struct kmem_cache *s, *c;
4181 s = find_mergeable(size, align, flags, name, ctor);
4182 if (s) {
4183 s->refcount++;
4186 * Adjust the object sizes so that we clear
4187 * the complete object on kzalloc.
4189 s->object_size = max(s->object_size, (int)size);
4190 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4192 for_each_memcg_cache(c, s) {
4193 c->object_size = s->object_size;
4194 c->inuse = max_t(int, c->inuse,
4195 ALIGN(size, sizeof(void *)));
4198 if (sysfs_slab_alias(s, name)) {
4199 s->refcount--;
4200 s = NULL;
4204 return s;
4207 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4209 int err;
4211 err = kmem_cache_open(s, flags);
4212 if (err)
4213 return err;
4215 /* Mutex is not taken during early boot */
4216 if (slab_state <= UP)
4217 return 0;
4219 memcg_propagate_slab_attrs(s);
4220 err = sysfs_slab_add(s);
4221 if (err)
4222 __kmem_cache_release(s);
4224 return err;
4227 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4229 struct kmem_cache *s;
4230 void *ret;
4232 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4233 return kmalloc_large(size, gfpflags);
4235 s = kmalloc_slab(size, gfpflags);
4237 if (unlikely(ZERO_OR_NULL_PTR(s)))
4238 return s;
4240 ret = slab_alloc(s, gfpflags, caller);
4242 /* Honor the call site pointer we received. */
4243 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4245 return ret;
4248 #ifdef CONFIG_NUMA
4249 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4250 int node, unsigned long caller)
4252 struct kmem_cache *s;
4253 void *ret;
4255 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4256 ret = kmalloc_large_node(size, gfpflags, node);
4258 trace_kmalloc_node(caller, ret,
4259 size, PAGE_SIZE << get_order(size),
4260 gfpflags, node);
4262 return ret;
4265 s = kmalloc_slab(size, gfpflags);
4267 if (unlikely(ZERO_OR_NULL_PTR(s)))
4268 return s;
4270 ret = slab_alloc_node(s, gfpflags, node, caller);
4272 /* Honor the call site pointer we received. */
4273 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4275 return ret;
4277 #endif
4279 #ifdef CONFIG_SYSFS
4280 static int count_inuse(struct page *page)
4282 return page->inuse;
4285 static int count_total(struct page *page)
4287 return page->objects;
4289 #endif
4291 #ifdef CONFIG_SLUB_DEBUG
4292 static int validate_slab(struct kmem_cache *s, struct page *page,
4293 unsigned long *map)
4295 void *p;
4296 void *addr = page_address(page);
4298 if (!check_slab(s, page) ||
4299 !on_freelist(s, page, NULL))
4300 return 0;
4302 /* Now we know that a valid freelist exists */
4303 bitmap_zero(map, page->objects);
4305 get_map(s, page, map);
4306 for_each_object(p, s, addr, page->objects) {
4307 if (test_bit(slab_index(p, s, addr), map))
4308 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4309 return 0;
4312 for_each_object(p, s, addr, page->objects)
4313 if (!test_bit(slab_index(p, s, addr), map))
4314 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4315 return 0;
4316 return 1;
4319 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4320 unsigned long *map)
4322 slab_lock(page);
4323 validate_slab(s, page, map);
4324 slab_unlock(page);
4327 static int validate_slab_node(struct kmem_cache *s,
4328 struct kmem_cache_node *n, unsigned long *map)
4330 unsigned long count = 0;
4331 struct page *page;
4332 unsigned long flags;
4334 spin_lock_irqsave(&n->list_lock, flags);
4336 list_for_each_entry(page, &n->partial, lru) {
4337 validate_slab_slab(s, page, map);
4338 count++;
4340 if (count != n->nr_partial)
4341 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4342 s->name, count, n->nr_partial);
4344 if (!(s->flags & SLAB_STORE_USER))
4345 goto out;
4347 list_for_each_entry(page, &n->full, lru) {
4348 validate_slab_slab(s, page, map);
4349 count++;
4351 if (count != atomic_long_read(&n->nr_slabs))
4352 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4353 s->name, count, atomic_long_read(&n->nr_slabs));
4355 out:
4356 spin_unlock_irqrestore(&n->list_lock, flags);
4357 return count;
4360 static long validate_slab_cache(struct kmem_cache *s)
4362 int node;
4363 unsigned long count = 0;
4364 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4365 sizeof(unsigned long), GFP_KERNEL);
4366 struct kmem_cache_node *n;
4368 if (!map)
4369 return -ENOMEM;
4371 flush_all(s);
4372 for_each_kmem_cache_node(s, node, n)
4373 count += validate_slab_node(s, n, map);
4374 kfree(map);
4375 return count;
4378 * Generate lists of code addresses where slabcache objects are allocated
4379 * and freed.
4382 struct location {
4383 unsigned long count;
4384 unsigned long addr;
4385 long long sum_time;
4386 long min_time;
4387 long max_time;
4388 long min_pid;
4389 long max_pid;
4390 DECLARE_BITMAP(cpus, NR_CPUS);
4391 nodemask_t nodes;
4394 struct loc_track {
4395 unsigned long max;
4396 unsigned long count;
4397 struct location *loc;
4400 static void free_loc_track(struct loc_track *t)
4402 if (t->max)
4403 free_pages((unsigned long)t->loc,
4404 get_order(sizeof(struct location) * t->max));
4407 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4409 struct location *l;
4410 int order;
4412 order = get_order(sizeof(struct location) * max);
4414 l = (void *)__get_free_pages(flags, order);
4415 if (!l)
4416 return 0;
4418 if (t->count) {
4419 memcpy(l, t->loc, sizeof(struct location) * t->count);
4420 free_loc_track(t);
4422 t->max = max;
4423 t->loc = l;
4424 return 1;
4427 static int add_location(struct loc_track *t, struct kmem_cache *s,
4428 const struct track *track)
4430 long start, end, pos;
4431 struct location *l;
4432 unsigned long caddr;
4433 unsigned long age = jiffies - track->when;
4435 start = -1;
4436 end = t->count;
4438 for ( ; ; ) {
4439 pos = start + (end - start + 1) / 2;
4442 * There is nothing at "end". If we end up there
4443 * we need to add something to before end.
4445 if (pos == end)
4446 break;
4448 caddr = t->loc[pos].addr;
4449 if (track->addr == caddr) {
4451 l = &t->loc[pos];
4452 l->count++;
4453 if (track->when) {
4454 l->sum_time += age;
4455 if (age < l->min_time)
4456 l->min_time = age;
4457 if (age > l->max_time)
4458 l->max_time = age;
4460 if (track->pid < l->min_pid)
4461 l->min_pid = track->pid;
4462 if (track->pid > l->max_pid)
4463 l->max_pid = track->pid;
4465 cpumask_set_cpu(track->cpu,
4466 to_cpumask(l->cpus));
4468 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4469 return 1;
4472 if (track->addr < caddr)
4473 end = pos;
4474 else
4475 start = pos;
4479 * Not found. Insert new tracking element.
4481 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4482 return 0;
4484 l = t->loc + pos;
4485 if (pos < t->count)
4486 memmove(l + 1, l,
4487 (t->count - pos) * sizeof(struct location));
4488 t->count++;
4489 l->count = 1;
4490 l->addr = track->addr;
4491 l->sum_time = age;
4492 l->min_time = age;
4493 l->max_time = age;
4494 l->min_pid = track->pid;
4495 l->max_pid = track->pid;
4496 cpumask_clear(to_cpumask(l->cpus));
4497 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4498 nodes_clear(l->nodes);
4499 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4500 return 1;
4503 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4504 struct page *page, enum track_item alloc,
4505 unsigned long *map)
4507 void *addr = page_address(page);
4508 void *p;
4510 bitmap_zero(map, page->objects);
4511 get_map(s, page, map);
4513 for_each_object(p, s, addr, page->objects)
4514 if (!test_bit(slab_index(p, s, addr), map))
4515 add_location(t, s, get_track(s, p, alloc));
4518 static int list_locations(struct kmem_cache *s, char *buf,
4519 enum track_item alloc)
4521 int len = 0;
4522 unsigned long i;
4523 struct loc_track t = { 0, 0, NULL };
4524 int node;
4525 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4526 sizeof(unsigned long), GFP_KERNEL);
4527 struct kmem_cache_node *n;
4529 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4530 GFP_TEMPORARY)) {
4531 kfree(map);
4532 return sprintf(buf, "Out of memory\n");
4534 /* Push back cpu slabs */
4535 flush_all(s);
4537 for_each_kmem_cache_node(s, node, n) {
4538 unsigned long flags;
4539 struct page *page;
4541 if (!atomic_long_read(&n->nr_slabs))
4542 continue;
4544 spin_lock_irqsave(&n->list_lock, flags);
4545 list_for_each_entry(page, &n->partial, lru)
4546 process_slab(&t, s, page, alloc, map);
4547 list_for_each_entry(page, &n->full, lru)
4548 process_slab(&t, s, page, alloc, map);
4549 spin_unlock_irqrestore(&n->list_lock, flags);
4552 for (i = 0; i < t.count; i++) {
4553 struct location *l = &t.loc[i];
4555 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4556 break;
4557 len += sprintf(buf + len, "%7ld ", l->count);
4559 if (l->addr)
4560 len += sprintf(buf + len, "%pS", (void *)l->addr);
4561 else
4562 len += sprintf(buf + len, "<not-available>");
4564 if (l->sum_time != l->min_time) {
4565 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4566 l->min_time,
4567 (long)div_u64(l->sum_time, l->count),
4568 l->max_time);
4569 } else
4570 len += sprintf(buf + len, " age=%ld",
4571 l->min_time);
4573 if (l->min_pid != l->max_pid)
4574 len += sprintf(buf + len, " pid=%ld-%ld",
4575 l->min_pid, l->max_pid);
4576 else
4577 len += sprintf(buf + len, " pid=%ld",
4578 l->min_pid);
4580 if (num_online_cpus() > 1 &&
4581 !cpumask_empty(to_cpumask(l->cpus)) &&
4582 len < PAGE_SIZE - 60)
4583 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4584 " cpus=%*pbl",
4585 cpumask_pr_args(to_cpumask(l->cpus)));
4587 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4588 len < PAGE_SIZE - 60)
4589 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4590 " nodes=%*pbl",
4591 nodemask_pr_args(&l->nodes));
4593 len += sprintf(buf + len, "\n");
4596 free_loc_track(&t);
4597 kfree(map);
4598 if (!t.count)
4599 len += sprintf(buf, "No data\n");
4600 return len;
4602 #endif
4604 #ifdef SLUB_RESILIENCY_TEST
4605 static void __init resiliency_test(void)
4607 u8 *p;
4609 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4611 pr_err("SLUB resiliency testing\n");
4612 pr_err("-----------------------\n");
4613 pr_err("A. Corruption after allocation\n");
4615 p = kzalloc(16, GFP_KERNEL);
4616 p[16] = 0x12;
4617 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4618 p + 16);
4620 validate_slab_cache(kmalloc_caches[4]);
4622 /* Hmmm... The next two are dangerous */
4623 p = kzalloc(32, GFP_KERNEL);
4624 p[32 + sizeof(void *)] = 0x34;
4625 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4627 pr_err("If allocated object is overwritten then not detectable\n\n");
4629 validate_slab_cache(kmalloc_caches[5]);
4630 p = kzalloc(64, GFP_KERNEL);
4631 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4632 *p = 0x56;
4633 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4635 pr_err("If allocated object is overwritten then not detectable\n\n");
4636 validate_slab_cache(kmalloc_caches[6]);
4638 pr_err("\nB. Corruption after free\n");
4639 p = kzalloc(128, GFP_KERNEL);
4640 kfree(p);
4641 *p = 0x78;
4642 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4643 validate_slab_cache(kmalloc_caches[7]);
4645 p = kzalloc(256, GFP_KERNEL);
4646 kfree(p);
4647 p[50] = 0x9a;
4648 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4649 validate_slab_cache(kmalloc_caches[8]);
4651 p = kzalloc(512, GFP_KERNEL);
4652 kfree(p);
4653 p[512] = 0xab;
4654 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4655 validate_slab_cache(kmalloc_caches[9]);
4657 #else
4658 #ifdef CONFIG_SYSFS
4659 static void resiliency_test(void) {};
4660 #endif
4661 #endif
4663 #ifdef CONFIG_SYSFS
4664 enum slab_stat_type {
4665 SL_ALL, /* All slabs */
4666 SL_PARTIAL, /* Only partially allocated slabs */
4667 SL_CPU, /* Only slabs used for cpu caches */
4668 SL_OBJECTS, /* Determine allocated objects not slabs */
4669 SL_TOTAL /* Determine object capacity not slabs */
4672 #define SO_ALL (1 << SL_ALL)
4673 #define SO_PARTIAL (1 << SL_PARTIAL)
4674 #define SO_CPU (1 << SL_CPU)
4675 #define SO_OBJECTS (1 << SL_OBJECTS)
4676 #define SO_TOTAL (1 << SL_TOTAL)
4678 static ssize_t show_slab_objects(struct kmem_cache *s,
4679 char *buf, unsigned long flags)
4681 unsigned long total = 0;
4682 int node;
4683 int x;
4684 unsigned long *nodes;
4686 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4687 if (!nodes)
4688 return -ENOMEM;
4690 if (flags & SO_CPU) {
4691 int cpu;
4693 for_each_possible_cpu(cpu) {
4694 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4695 cpu);
4696 int node;
4697 struct page *page;
4699 page = READ_ONCE(c->page);
4700 if (!page)
4701 continue;
4703 node = page_to_nid(page);
4704 if (flags & SO_TOTAL)
4705 x = page->objects;
4706 else if (flags & SO_OBJECTS)
4707 x = page->inuse;
4708 else
4709 x = 1;
4711 total += x;
4712 nodes[node] += x;
4714 page = READ_ONCE(c->partial);
4715 if (page) {
4716 node = page_to_nid(page);
4717 if (flags & SO_TOTAL)
4718 WARN_ON_ONCE(1);
4719 else if (flags & SO_OBJECTS)
4720 WARN_ON_ONCE(1);
4721 else
4722 x = page->pages;
4723 total += x;
4724 nodes[node] += x;
4729 get_online_mems();
4730 #ifdef CONFIG_SLUB_DEBUG
4731 if (flags & SO_ALL) {
4732 struct kmem_cache_node *n;
4734 for_each_kmem_cache_node(s, node, n) {
4736 if (flags & SO_TOTAL)
4737 x = atomic_long_read(&n->total_objects);
4738 else if (flags & SO_OBJECTS)
4739 x = atomic_long_read(&n->total_objects) -
4740 count_partial(n, count_free);
4741 else
4742 x = atomic_long_read(&n->nr_slabs);
4743 total += x;
4744 nodes[node] += x;
4747 } else
4748 #endif
4749 if (flags & SO_PARTIAL) {
4750 struct kmem_cache_node *n;
4752 for_each_kmem_cache_node(s, node, n) {
4753 if (flags & SO_TOTAL)
4754 x = count_partial(n, count_total);
4755 else if (flags & SO_OBJECTS)
4756 x = count_partial(n, count_inuse);
4757 else
4758 x = n->nr_partial;
4759 total += x;
4760 nodes[node] += x;
4763 x = sprintf(buf, "%lu", total);
4764 #ifdef CONFIG_NUMA
4765 for (node = 0; node < nr_node_ids; node++)
4766 if (nodes[node])
4767 x += sprintf(buf + x, " N%d=%lu",
4768 node, nodes[node]);
4769 #endif
4770 put_online_mems();
4771 kfree(nodes);
4772 return x + sprintf(buf + x, "\n");
4775 #ifdef CONFIG_SLUB_DEBUG
4776 static int any_slab_objects(struct kmem_cache *s)
4778 int node;
4779 struct kmem_cache_node *n;
4781 for_each_kmem_cache_node(s, node, n)
4782 if (atomic_long_read(&n->total_objects))
4783 return 1;
4785 return 0;
4787 #endif
4789 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4790 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4792 struct slab_attribute {
4793 struct attribute attr;
4794 ssize_t (*show)(struct kmem_cache *s, char *buf);
4795 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4798 #define SLAB_ATTR_RO(_name) \
4799 static struct slab_attribute _name##_attr = \
4800 __ATTR(_name, 0400, _name##_show, NULL)
4802 #define SLAB_ATTR(_name) \
4803 static struct slab_attribute _name##_attr = \
4804 __ATTR(_name, 0600, _name##_show, _name##_store)
4806 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4808 return sprintf(buf, "%d\n", s->size);
4810 SLAB_ATTR_RO(slab_size);
4812 static ssize_t align_show(struct kmem_cache *s, char *buf)
4814 return sprintf(buf, "%d\n", s->align);
4816 SLAB_ATTR_RO(align);
4818 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4820 return sprintf(buf, "%d\n", s->object_size);
4822 SLAB_ATTR_RO(object_size);
4824 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4826 return sprintf(buf, "%d\n", oo_objects(s->oo));
4828 SLAB_ATTR_RO(objs_per_slab);
4830 static ssize_t order_store(struct kmem_cache *s,
4831 const char *buf, size_t length)
4833 unsigned long order;
4834 int err;
4836 err = kstrtoul(buf, 10, &order);
4837 if (err)
4838 return err;
4840 if (order > slub_max_order || order < slub_min_order)
4841 return -EINVAL;
4843 calculate_sizes(s, order);
4844 return length;
4847 static ssize_t order_show(struct kmem_cache *s, char *buf)
4849 return sprintf(buf, "%d\n", oo_order(s->oo));
4851 SLAB_ATTR(order);
4853 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4855 return sprintf(buf, "%lu\n", s->min_partial);
4858 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4859 size_t length)
4861 unsigned long min;
4862 int err;
4864 err = kstrtoul(buf, 10, &min);
4865 if (err)
4866 return err;
4868 set_min_partial(s, min);
4869 return length;
4871 SLAB_ATTR(min_partial);
4873 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4875 return sprintf(buf, "%u\n", s->cpu_partial);
4878 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4879 size_t length)
4881 unsigned long objects;
4882 int err;
4884 err = kstrtoul(buf, 10, &objects);
4885 if (err)
4886 return err;
4887 if (objects && !kmem_cache_has_cpu_partial(s))
4888 return -EINVAL;
4890 s->cpu_partial = objects;
4891 flush_all(s);
4892 return length;
4894 SLAB_ATTR(cpu_partial);
4896 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4898 if (!s->ctor)
4899 return 0;
4900 return sprintf(buf, "%pS\n", s->ctor);
4902 SLAB_ATTR_RO(ctor);
4904 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4906 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4908 SLAB_ATTR_RO(aliases);
4910 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4912 return show_slab_objects(s, buf, SO_PARTIAL);
4914 SLAB_ATTR_RO(partial);
4916 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4918 return show_slab_objects(s, buf, SO_CPU);
4920 SLAB_ATTR_RO(cpu_slabs);
4922 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4924 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4926 SLAB_ATTR_RO(objects);
4928 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4930 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4932 SLAB_ATTR_RO(objects_partial);
4934 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4936 int objects = 0;
4937 int pages = 0;
4938 int cpu;
4939 int len;
4941 for_each_online_cpu(cpu) {
4942 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4944 if (page) {
4945 pages += page->pages;
4946 objects += page->pobjects;
4950 len = sprintf(buf, "%d(%d)", objects, pages);
4952 #ifdef CONFIG_SMP
4953 for_each_online_cpu(cpu) {
4954 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4956 if (page && len < PAGE_SIZE - 20)
4957 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4958 page->pobjects, page->pages);
4960 #endif
4961 return len + sprintf(buf + len, "\n");
4963 SLAB_ATTR_RO(slabs_cpu_partial);
4965 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4967 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4970 static ssize_t reclaim_account_store(struct kmem_cache *s,
4971 const char *buf, size_t length)
4973 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4974 if (buf[0] == '1')
4975 s->flags |= SLAB_RECLAIM_ACCOUNT;
4976 return length;
4978 SLAB_ATTR(reclaim_account);
4980 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4982 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4984 SLAB_ATTR_RO(hwcache_align);
4986 #ifdef CONFIG_ZONE_DMA
4987 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4989 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4991 SLAB_ATTR_RO(cache_dma);
4992 #endif
4994 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4996 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4998 SLAB_ATTR_RO(destroy_by_rcu);
5000 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5002 return sprintf(buf, "%d\n", s->reserved);
5004 SLAB_ATTR_RO(reserved);
5006 #ifdef CONFIG_SLUB_DEBUG
5007 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5009 return show_slab_objects(s, buf, SO_ALL);
5011 SLAB_ATTR_RO(slabs);
5013 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5015 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5017 SLAB_ATTR_RO(total_objects);
5019 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5021 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5024 static ssize_t sanity_checks_store(struct kmem_cache *s,
5025 const char *buf, size_t length)
5027 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5028 if (buf[0] == '1') {
5029 s->flags &= ~__CMPXCHG_DOUBLE;
5030 s->flags |= SLAB_CONSISTENCY_CHECKS;
5032 return length;
5034 SLAB_ATTR(sanity_checks);
5036 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5038 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5041 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5042 size_t length)
5045 * Tracing a merged cache is going to give confusing results
5046 * as well as cause other issues like converting a mergeable
5047 * cache into an umergeable one.
5049 if (s->refcount > 1)
5050 return -EINVAL;
5052 s->flags &= ~SLAB_TRACE;
5053 if (buf[0] == '1') {
5054 s->flags &= ~__CMPXCHG_DOUBLE;
5055 s->flags |= SLAB_TRACE;
5057 return length;
5059 SLAB_ATTR(trace);
5061 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5063 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5066 static ssize_t red_zone_store(struct kmem_cache *s,
5067 const char *buf, size_t length)
5069 if (any_slab_objects(s))
5070 return -EBUSY;
5072 s->flags &= ~SLAB_RED_ZONE;
5073 if (buf[0] == '1') {
5074 s->flags |= SLAB_RED_ZONE;
5076 calculate_sizes(s, -1);
5077 return length;
5079 SLAB_ATTR(red_zone);
5081 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5083 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5086 static ssize_t poison_store(struct kmem_cache *s,
5087 const char *buf, size_t length)
5089 if (any_slab_objects(s))
5090 return -EBUSY;
5092 s->flags &= ~SLAB_POISON;
5093 if (buf[0] == '1') {
5094 s->flags |= SLAB_POISON;
5096 calculate_sizes(s, -1);
5097 return length;
5099 SLAB_ATTR(poison);
5101 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5103 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5106 static ssize_t store_user_store(struct kmem_cache *s,
5107 const char *buf, size_t length)
5109 if (any_slab_objects(s))
5110 return -EBUSY;
5112 s->flags &= ~SLAB_STORE_USER;
5113 if (buf[0] == '1') {
5114 s->flags &= ~__CMPXCHG_DOUBLE;
5115 s->flags |= SLAB_STORE_USER;
5117 calculate_sizes(s, -1);
5118 return length;
5120 SLAB_ATTR(store_user);
5122 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5124 return 0;
5127 static ssize_t validate_store(struct kmem_cache *s,
5128 const char *buf, size_t length)
5130 int ret = -EINVAL;
5132 if (buf[0] == '1') {
5133 ret = validate_slab_cache(s);
5134 if (ret >= 0)
5135 ret = length;
5137 return ret;
5139 SLAB_ATTR(validate);
5141 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5143 if (!(s->flags & SLAB_STORE_USER))
5144 return -ENOSYS;
5145 return list_locations(s, buf, TRACK_ALLOC);
5147 SLAB_ATTR_RO(alloc_calls);
5149 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5151 if (!(s->flags & SLAB_STORE_USER))
5152 return -ENOSYS;
5153 return list_locations(s, buf, TRACK_FREE);
5155 SLAB_ATTR_RO(free_calls);
5156 #endif /* CONFIG_SLUB_DEBUG */
5158 #ifdef CONFIG_FAILSLAB
5159 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5161 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5164 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5165 size_t length)
5167 if (s->refcount > 1)
5168 return -EINVAL;
5170 s->flags &= ~SLAB_FAILSLAB;
5171 if (buf[0] == '1')
5172 s->flags |= SLAB_FAILSLAB;
5173 return length;
5175 SLAB_ATTR(failslab);
5176 #endif
5178 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5180 return 0;
5183 static ssize_t shrink_store(struct kmem_cache *s,
5184 const char *buf, size_t length)
5186 if (buf[0] == '1')
5187 kmem_cache_shrink(s);
5188 else
5189 return -EINVAL;
5190 return length;
5192 SLAB_ATTR(shrink);
5194 #ifdef CONFIG_NUMA
5195 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5197 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5200 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5201 const char *buf, size_t length)
5203 unsigned long ratio;
5204 int err;
5206 err = kstrtoul(buf, 10, &ratio);
5207 if (err)
5208 return err;
5210 if (ratio <= 100)
5211 s->remote_node_defrag_ratio = ratio * 10;
5213 return length;
5215 SLAB_ATTR(remote_node_defrag_ratio);
5216 #endif
5218 #ifdef CONFIG_SLUB_STATS
5219 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5221 unsigned long sum = 0;
5222 int cpu;
5223 int len;
5224 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5226 if (!data)
5227 return -ENOMEM;
5229 for_each_online_cpu(cpu) {
5230 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5232 data[cpu] = x;
5233 sum += x;
5236 len = sprintf(buf, "%lu", sum);
5238 #ifdef CONFIG_SMP
5239 for_each_online_cpu(cpu) {
5240 if (data[cpu] && len < PAGE_SIZE - 20)
5241 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5243 #endif
5244 kfree(data);
5245 return len + sprintf(buf + len, "\n");
5248 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5250 int cpu;
5252 for_each_online_cpu(cpu)
5253 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5256 #define STAT_ATTR(si, text) \
5257 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5259 return show_stat(s, buf, si); \
5261 static ssize_t text##_store(struct kmem_cache *s, \
5262 const char *buf, size_t length) \
5264 if (buf[0] != '0') \
5265 return -EINVAL; \
5266 clear_stat(s, si); \
5267 return length; \
5269 SLAB_ATTR(text); \
5271 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5272 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5273 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5274 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5275 STAT_ATTR(FREE_FROZEN, free_frozen);
5276 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5277 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5278 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5279 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5280 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5281 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5282 STAT_ATTR(FREE_SLAB, free_slab);
5283 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5284 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5285 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5286 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5287 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5288 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5289 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5290 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5291 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5292 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5293 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5294 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5295 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5296 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5297 #endif
5299 static struct attribute *slab_attrs[] = {
5300 &slab_size_attr.attr,
5301 &object_size_attr.attr,
5302 &objs_per_slab_attr.attr,
5303 &order_attr.attr,
5304 &min_partial_attr.attr,
5305 &cpu_partial_attr.attr,
5306 &objects_attr.attr,
5307 &objects_partial_attr.attr,
5308 &partial_attr.attr,
5309 &cpu_slabs_attr.attr,
5310 &ctor_attr.attr,
5311 &aliases_attr.attr,
5312 &align_attr.attr,
5313 &hwcache_align_attr.attr,
5314 &reclaim_account_attr.attr,
5315 &destroy_by_rcu_attr.attr,
5316 &shrink_attr.attr,
5317 &reserved_attr.attr,
5318 &slabs_cpu_partial_attr.attr,
5319 #ifdef CONFIG_SLUB_DEBUG
5320 &total_objects_attr.attr,
5321 &slabs_attr.attr,
5322 &sanity_checks_attr.attr,
5323 &trace_attr.attr,
5324 &red_zone_attr.attr,
5325 &poison_attr.attr,
5326 &store_user_attr.attr,
5327 &validate_attr.attr,
5328 &alloc_calls_attr.attr,
5329 &free_calls_attr.attr,
5330 #endif
5331 #ifdef CONFIG_ZONE_DMA
5332 &cache_dma_attr.attr,
5333 #endif
5334 #ifdef CONFIG_NUMA
5335 &remote_node_defrag_ratio_attr.attr,
5336 #endif
5337 #ifdef CONFIG_SLUB_STATS
5338 &alloc_fastpath_attr.attr,
5339 &alloc_slowpath_attr.attr,
5340 &free_fastpath_attr.attr,
5341 &free_slowpath_attr.attr,
5342 &free_frozen_attr.attr,
5343 &free_add_partial_attr.attr,
5344 &free_remove_partial_attr.attr,
5345 &alloc_from_partial_attr.attr,
5346 &alloc_slab_attr.attr,
5347 &alloc_refill_attr.attr,
5348 &alloc_node_mismatch_attr.attr,
5349 &free_slab_attr.attr,
5350 &cpuslab_flush_attr.attr,
5351 &deactivate_full_attr.attr,
5352 &deactivate_empty_attr.attr,
5353 &deactivate_to_head_attr.attr,
5354 &deactivate_to_tail_attr.attr,
5355 &deactivate_remote_frees_attr.attr,
5356 &deactivate_bypass_attr.attr,
5357 &order_fallback_attr.attr,
5358 &cmpxchg_double_fail_attr.attr,
5359 &cmpxchg_double_cpu_fail_attr.attr,
5360 &cpu_partial_alloc_attr.attr,
5361 &cpu_partial_free_attr.attr,
5362 &cpu_partial_node_attr.attr,
5363 &cpu_partial_drain_attr.attr,
5364 #endif
5365 #ifdef CONFIG_FAILSLAB
5366 &failslab_attr.attr,
5367 #endif
5369 NULL
5372 static struct attribute_group slab_attr_group = {
5373 .attrs = slab_attrs,
5376 static ssize_t slab_attr_show(struct kobject *kobj,
5377 struct attribute *attr,
5378 char *buf)
5380 struct slab_attribute *attribute;
5381 struct kmem_cache *s;
5382 int err;
5384 attribute = to_slab_attr(attr);
5385 s = to_slab(kobj);
5387 if (!attribute->show)
5388 return -EIO;
5390 err = attribute->show(s, buf);
5392 return err;
5395 static ssize_t slab_attr_store(struct kobject *kobj,
5396 struct attribute *attr,
5397 const char *buf, size_t len)
5399 struct slab_attribute *attribute;
5400 struct kmem_cache *s;
5401 int err;
5403 attribute = to_slab_attr(attr);
5404 s = to_slab(kobj);
5406 if (!attribute->store)
5407 return -EIO;
5409 err = attribute->store(s, buf, len);
5410 #ifdef CONFIG_MEMCG
5411 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5412 struct kmem_cache *c;
5414 mutex_lock(&slab_mutex);
5415 if (s->max_attr_size < len)
5416 s->max_attr_size = len;
5419 * This is a best effort propagation, so this function's return
5420 * value will be determined by the parent cache only. This is
5421 * basically because not all attributes will have a well
5422 * defined semantics for rollbacks - most of the actions will
5423 * have permanent effects.
5425 * Returning the error value of any of the children that fail
5426 * is not 100 % defined, in the sense that users seeing the
5427 * error code won't be able to know anything about the state of
5428 * the cache.
5430 * Only returning the error code for the parent cache at least
5431 * has well defined semantics. The cache being written to
5432 * directly either failed or succeeded, in which case we loop
5433 * through the descendants with best-effort propagation.
5435 for_each_memcg_cache(c, s)
5436 attribute->store(c, buf, len);
5437 mutex_unlock(&slab_mutex);
5439 #endif
5440 return err;
5443 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5445 #ifdef CONFIG_MEMCG
5446 int i;
5447 char *buffer = NULL;
5448 struct kmem_cache *root_cache;
5450 if (is_root_cache(s))
5451 return;
5453 root_cache = s->memcg_params.root_cache;
5456 * This mean this cache had no attribute written. Therefore, no point
5457 * in copying default values around
5459 if (!root_cache->max_attr_size)
5460 return;
5462 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5463 char mbuf[64];
5464 char *buf;
5465 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5467 if (!attr || !attr->store || !attr->show)
5468 continue;
5471 * It is really bad that we have to allocate here, so we will
5472 * do it only as a fallback. If we actually allocate, though,
5473 * we can just use the allocated buffer until the end.
5475 * Most of the slub attributes will tend to be very small in
5476 * size, but sysfs allows buffers up to a page, so they can
5477 * theoretically happen.
5479 if (buffer)
5480 buf = buffer;
5481 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5482 buf = mbuf;
5483 else {
5484 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5485 if (WARN_ON(!buffer))
5486 continue;
5487 buf = buffer;
5490 attr->show(root_cache, buf);
5491 attr->store(s, buf, strlen(buf));
5494 if (buffer)
5495 free_page((unsigned long)buffer);
5496 #endif
5499 static void kmem_cache_release(struct kobject *k)
5501 slab_kmem_cache_release(to_slab(k));
5504 static const struct sysfs_ops slab_sysfs_ops = {
5505 .show = slab_attr_show,
5506 .store = slab_attr_store,
5509 static struct kobj_type slab_ktype = {
5510 .sysfs_ops = &slab_sysfs_ops,
5511 .release = kmem_cache_release,
5514 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5516 struct kobj_type *ktype = get_ktype(kobj);
5518 if (ktype == &slab_ktype)
5519 return 1;
5520 return 0;
5523 static const struct kset_uevent_ops slab_uevent_ops = {
5524 .filter = uevent_filter,
5527 static struct kset *slab_kset;
5529 static inline struct kset *cache_kset(struct kmem_cache *s)
5531 #ifdef CONFIG_MEMCG
5532 if (!is_root_cache(s))
5533 return s->memcg_params.root_cache->memcg_kset;
5534 #endif
5535 return slab_kset;
5538 #define ID_STR_LENGTH 64
5540 /* Create a unique string id for a slab cache:
5542 * Format :[flags-]size
5544 static char *create_unique_id(struct kmem_cache *s)
5546 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5547 char *p = name;
5549 BUG_ON(!name);
5551 *p++ = ':';
5553 * First flags affecting slabcache operations. We will only
5554 * get here for aliasable slabs so we do not need to support
5555 * too many flags. The flags here must cover all flags that
5556 * are matched during merging to guarantee that the id is
5557 * unique.
5559 if (s->flags & SLAB_CACHE_DMA)
5560 *p++ = 'd';
5561 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5562 *p++ = 'a';
5563 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5564 *p++ = 'F';
5565 if (!(s->flags & SLAB_NOTRACK))
5566 *p++ = 't';
5567 if (s->flags & SLAB_ACCOUNT)
5568 *p++ = 'A';
5569 if (p != name + 1)
5570 *p++ = '-';
5571 p += sprintf(p, "%07d", s->size);
5573 BUG_ON(p > name + ID_STR_LENGTH - 1);
5574 return name;
5577 static int sysfs_slab_add(struct kmem_cache *s)
5579 int err;
5580 const char *name;
5581 int unmergeable = slab_unmergeable(s);
5583 if (unmergeable) {
5585 * Slabcache can never be merged so we can use the name proper.
5586 * This is typically the case for debug situations. In that
5587 * case we can catch duplicate names easily.
5589 sysfs_remove_link(&slab_kset->kobj, s->name);
5590 name = s->name;
5591 } else {
5593 * Create a unique name for the slab as a target
5594 * for the symlinks.
5596 name = create_unique_id(s);
5599 s->kobj.kset = cache_kset(s);
5600 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5601 if (err)
5602 goto out;
5604 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5605 if (err)
5606 goto out_del_kobj;
5608 #ifdef CONFIG_MEMCG
5609 if (is_root_cache(s)) {
5610 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5611 if (!s->memcg_kset) {
5612 err = -ENOMEM;
5613 goto out_del_kobj;
5616 #endif
5618 kobject_uevent(&s->kobj, KOBJ_ADD);
5619 if (!unmergeable) {
5620 /* Setup first alias */
5621 sysfs_slab_alias(s, s->name);
5623 out:
5624 if (!unmergeable)
5625 kfree(name);
5626 return err;
5627 out_del_kobj:
5628 kobject_del(&s->kobj);
5629 goto out;
5632 void sysfs_slab_remove(struct kmem_cache *s)
5634 if (slab_state < FULL)
5636 * Sysfs has not been setup yet so no need to remove the
5637 * cache from sysfs.
5639 return;
5641 #ifdef CONFIG_MEMCG
5642 kset_unregister(s->memcg_kset);
5643 #endif
5644 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5645 kobject_del(&s->kobj);
5646 kobject_put(&s->kobj);
5650 * Need to buffer aliases during bootup until sysfs becomes
5651 * available lest we lose that information.
5653 struct saved_alias {
5654 struct kmem_cache *s;
5655 const char *name;
5656 struct saved_alias *next;
5659 static struct saved_alias *alias_list;
5661 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5663 struct saved_alias *al;
5665 if (slab_state == FULL) {
5667 * If we have a leftover link then remove it.
5669 sysfs_remove_link(&slab_kset->kobj, name);
5670 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5673 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5674 if (!al)
5675 return -ENOMEM;
5677 al->s = s;
5678 al->name = name;
5679 al->next = alias_list;
5680 alias_list = al;
5681 return 0;
5684 static int __init slab_sysfs_init(void)
5686 struct kmem_cache *s;
5687 int err;
5689 mutex_lock(&slab_mutex);
5691 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5692 if (!slab_kset) {
5693 mutex_unlock(&slab_mutex);
5694 pr_err("Cannot register slab subsystem.\n");
5695 return -ENOSYS;
5698 slab_state = FULL;
5700 list_for_each_entry(s, &slab_caches, list) {
5701 err = sysfs_slab_add(s);
5702 if (err)
5703 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5704 s->name);
5707 while (alias_list) {
5708 struct saved_alias *al = alias_list;
5710 alias_list = alias_list->next;
5711 err = sysfs_slab_alias(al->s, al->name);
5712 if (err)
5713 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5714 al->name);
5715 kfree(al);
5718 mutex_unlock(&slab_mutex);
5719 resiliency_test();
5720 return 0;
5723 __initcall(slab_sysfs_init);
5724 #endif /* CONFIG_SYSFS */
5727 * The /proc/slabinfo ABI
5729 #ifdef CONFIG_SLABINFO
5730 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5732 unsigned long nr_slabs = 0;
5733 unsigned long nr_objs = 0;
5734 unsigned long nr_free = 0;
5735 int node;
5736 struct kmem_cache_node *n;
5738 for_each_kmem_cache_node(s, node, n) {
5739 nr_slabs += node_nr_slabs(n);
5740 nr_objs += node_nr_objs(n);
5741 nr_free += count_partial(n, count_free);
5744 sinfo->active_objs = nr_objs - nr_free;
5745 sinfo->num_objs = nr_objs;
5746 sinfo->active_slabs = nr_slabs;
5747 sinfo->num_slabs = nr_slabs;
5748 sinfo->objects_per_slab = oo_objects(s->oo);
5749 sinfo->cache_order = oo_order(s->oo);
5752 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5756 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5757 size_t count, loff_t *ppos)
5759 return -EIO;
5761 #endif /* CONFIG_SLABINFO */