2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
95 * Overloading of page flags that are otherwise used for LRU management.
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
118 static inline int kmem_cache_debug(struct kmem_cache
*s
)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
127 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
129 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
130 p
+= s
->red_left_pad
;
135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
137 #ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s
);
145 * Issues still to be resolved:
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 * - Variable sizing of the per node arrays
152 /* Enable to test recovery from slab corruption on boot */
153 #undef SLUB_RESILIENCY_TEST
155 /* Enable to log cmpxchg failures */
156 #undef SLUB_DEBUG_CMPXCHG
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 #define MIN_PARTIAL 5
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
167 * sort the partial list by the number of objects in use.
169 #define MAX_PARTIAL 10
171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_STORE_USER)
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
190 #define OO_MASK ((1 << OO_SHIFT) - 1)
191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193 /* Internal SLUB flags */
194 #define __OBJECT_POISON 0x80000000UL /* Poison object */
195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
198 * Tracking user of a slab.
200 #define TRACK_ADDRS_COUNT 16
202 unsigned long addr
; /* Called from address */
203 #ifdef CONFIG_STACKTRACE
204 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
206 int cpu
; /* Was running on cpu */
207 int pid
; /* Pid context */
208 unsigned long when
; /* When did the operation occur */
211 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
214 static int sysfs_slab_add(struct kmem_cache
*);
215 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
216 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
218 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
219 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
224 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
226 #ifdef CONFIG_SLUB_STATS
228 * The rmw is racy on a preemptible kernel but this is acceptable, so
229 * avoid this_cpu_add()'s irq-disable overhead.
231 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
235 /********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
239 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
241 return *(void **)(object
+ s
->offset
);
244 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
246 prefetch(object
+ s
->offset
);
249 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
253 if (!debug_pagealloc_enabled())
254 return get_freepointer(s
, object
);
256 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
260 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
262 *(void **)(object
+ s
->offset
) = fp
;
265 /* Loop over all objects in a slab */
266 #define for_each_object(__p, __s, __addr, __objects) \
267 for (__p = fixup_red_left(__s, __addr); \
268 __p < (__addr) + (__objects) * (__s)->size; \
271 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
272 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
273 __idx <= __objects; \
274 __p += (__s)->size, __idx++)
276 /* Determine object index from a given position */
277 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
279 return (p
- addr
) / s
->size
;
282 static inline int order_objects(int order
, unsigned long size
, int reserved
)
284 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
287 static inline struct kmem_cache_order_objects
oo_make(int order
,
288 unsigned long size
, int reserved
)
290 struct kmem_cache_order_objects x
= {
291 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
297 static inline int oo_order(struct kmem_cache_order_objects x
)
299 return x
.x
>> OO_SHIFT
;
302 static inline int oo_objects(struct kmem_cache_order_objects x
)
304 return x
.x
& OO_MASK
;
308 * Per slab locking using the pagelock
310 static __always_inline
void slab_lock(struct page
*page
)
312 VM_BUG_ON_PAGE(PageTail(page
), page
);
313 bit_spin_lock(PG_locked
, &page
->flags
);
316 static __always_inline
void slab_unlock(struct page
*page
)
318 VM_BUG_ON_PAGE(PageTail(page
), page
);
319 __bit_spin_unlock(PG_locked
, &page
->flags
);
322 static inline void set_page_slub_counters(struct page
*page
, unsigned long counters_new
)
325 tmp
.counters
= counters_new
;
327 * page->counters can cover frozen/inuse/objects as well
328 * as page->_refcount. If we assign to ->counters directly
329 * we run the risk of losing updates to page->_refcount, so
330 * be careful and only assign to the fields we need.
332 page
->frozen
= tmp
.frozen
;
333 page
->inuse
= tmp
.inuse
;
334 page
->objects
= tmp
.objects
;
337 /* Interrupts must be disabled (for the fallback code to work right) */
338 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
339 void *freelist_old
, unsigned long counters_old
,
340 void *freelist_new
, unsigned long counters_new
,
343 VM_BUG_ON(!irqs_disabled());
344 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
345 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
346 if (s
->flags
& __CMPXCHG_DOUBLE
) {
347 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
348 freelist_old
, counters_old
,
349 freelist_new
, counters_new
))
355 if (page
->freelist
== freelist_old
&&
356 page
->counters
== counters_old
) {
357 page
->freelist
= freelist_new
;
358 set_page_slub_counters(page
, counters_new
);
366 stat(s
, CMPXCHG_DOUBLE_FAIL
);
368 #ifdef SLUB_DEBUG_CMPXCHG
369 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
375 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
376 void *freelist_old
, unsigned long counters_old
,
377 void *freelist_new
, unsigned long counters_new
,
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s
->flags
& __CMPXCHG_DOUBLE
) {
383 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
384 freelist_old
, counters_old
,
385 freelist_new
, counters_new
))
392 local_irq_save(flags
);
394 if (page
->freelist
== freelist_old
&&
395 page
->counters
== counters_old
) {
396 page
->freelist
= freelist_new
;
397 set_page_slub_counters(page
, counters_new
);
399 local_irq_restore(flags
);
403 local_irq_restore(flags
);
407 stat(s
, CMPXCHG_DOUBLE_FAIL
);
409 #ifdef SLUB_DEBUG_CMPXCHG
410 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
416 #ifdef CONFIG_SLUB_DEBUG
418 * Determine a map of object in use on a page.
420 * Node listlock must be held to guarantee that the page does
421 * not vanish from under us.
423 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
426 void *addr
= page_address(page
);
428 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
429 set_bit(slab_index(p
, s
, addr
), map
);
432 static inline int size_from_object(struct kmem_cache
*s
)
434 if (s
->flags
& SLAB_RED_ZONE
)
435 return s
->size
- s
->red_left_pad
;
440 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
442 if (s
->flags
& SLAB_RED_ZONE
)
443 p
-= s
->red_left_pad
;
451 #if defined(CONFIG_SLUB_DEBUG_ON)
452 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
454 static int slub_debug
;
457 static char *slub_debug_slabs
;
458 static int disable_higher_order_debug
;
461 * slub is about to manipulate internal object metadata. This memory lies
462 * outside the range of the allocated object, so accessing it would normally
463 * be reported by kasan as a bounds error. metadata_access_enable() is used
464 * to tell kasan that these accesses are OK.
466 static inline void metadata_access_enable(void)
468 kasan_disable_current();
471 static inline void metadata_access_disable(void)
473 kasan_enable_current();
480 /* Verify that a pointer has an address that is valid within a slab page */
481 static inline int check_valid_pointer(struct kmem_cache
*s
,
482 struct page
*page
, void *object
)
489 base
= page_address(page
);
490 object
= restore_red_left(s
, object
);
491 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
492 (object
- base
) % s
->size
) {
499 static void print_section(char *text
, u8
*addr
, unsigned int length
)
501 metadata_access_enable();
502 print_hex_dump(KERN_ERR
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
504 metadata_access_disable();
507 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
508 enum track_item alloc
)
513 p
= object
+ s
->offset
+ sizeof(void *);
515 p
= object
+ s
->inuse
;
520 static void set_track(struct kmem_cache
*s
, void *object
,
521 enum track_item alloc
, unsigned long addr
)
523 struct track
*p
= get_track(s
, object
, alloc
);
526 #ifdef CONFIG_STACKTRACE
527 struct stack_trace trace
;
530 trace
.nr_entries
= 0;
531 trace
.max_entries
= TRACK_ADDRS_COUNT
;
532 trace
.entries
= p
->addrs
;
534 metadata_access_enable();
535 save_stack_trace(&trace
);
536 metadata_access_disable();
538 /* See rant in lockdep.c */
539 if (trace
.nr_entries
!= 0 &&
540 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
543 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
547 p
->cpu
= smp_processor_id();
548 p
->pid
= current
->pid
;
551 memset(p
, 0, sizeof(struct track
));
554 static void init_tracking(struct kmem_cache
*s
, void *object
)
556 if (!(s
->flags
& SLAB_STORE_USER
))
559 set_track(s
, object
, TRACK_FREE
, 0UL);
560 set_track(s
, object
, TRACK_ALLOC
, 0UL);
563 static void print_track(const char *s
, struct track
*t
)
568 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
569 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
570 #ifdef CONFIG_STACKTRACE
573 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
575 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
582 static void print_tracking(struct kmem_cache
*s
, void *object
)
584 if (!(s
->flags
& SLAB_STORE_USER
))
587 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
588 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
591 static void print_page_info(struct page
*page
)
593 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
594 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
598 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
600 struct va_format vaf
;
606 pr_err("=============================================================================\n");
607 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
608 pr_err("-----------------------------------------------------------------------------\n\n");
610 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
614 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
616 struct va_format vaf
;
622 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
626 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
628 unsigned int off
; /* Offset of last byte */
629 u8
*addr
= page_address(page
);
631 print_tracking(s
, p
);
633 print_page_info(page
);
635 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
636 p
, p
- addr
, get_freepointer(s
, p
));
638 if (s
->flags
& SLAB_RED_ZONE
)
639 print_section("Redzone ", p
- s
->red_left_pad
, s
->red_left_pad
);
640 else if (p
> addr
+ 16)
641 print_section("Bytes b4 ", p
- 16, 16);
643 print_section("Object ", p
, min_t(unsigned long, s
->object_size
,
645 if (s
->flags
& SLAB_RED_ZONE
)
646 print_section("Redzone ", p
+ s
->object_size
,
647 s
->inuse
- s
->object_size
);
650 off
= s
->offset
+ sizeof(void *);
654 if (s
->flags
& SLAB_STORE_USER
)
655 off
+= 2 * sizeof(struct track
);
657 off
+= kasan_metadata_size(s
);
659 if (off
!= size_from_object(s
))
660 /* Beginning of the filler is the free pointer */
661 print_section("Padding ", p
+ off
, size_from_object(s
) - off
);
666 void object_err(struct kmem_cache
*s
, struct page
*page
,
667 u8
*object
, char *reason
)
669 slab_bug(s
, "%s", reason
);
670 print_trailer(s
, page
, object
);
673 static void slab_err(struct kmem_cache
*s
, struct page
*page
,
674 const char *fmt
, ...)
680 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
682 slab_bug(s
, "%s", buf
);
683 print_page_info(page
);
687 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
691 if (s
->flags
& SLAB_RED_ZONE
)
692 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
694 if (s
->flags
& __OBJECT_POISON
) {
695 memset(p
, POISON_FREE
, s
->object_size
- 1);
696 p
[s
->object_size
- 1] = POISON_END
;
699 if (s
->flags
& SLAB_RED_ZONE
)
700 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
703 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
704 void *from
, void *to
)
706 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
707 memset(from
, data
, to
- from
);
710 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
711 u8
*object
, char *what
,
712 u8
*start
, unsigned int value
, unsigned int bytes
)
717 metadata_access_enable();
718 fault
= memchr_inv(start
, value
, bytes
);
719 metadata_access_disable();
724 while (end
> fault
&& end
[-1] == value
)
727 slab_bug(s
, "%s overwritten", what
);
728 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
729 fault
, end
- 1, fault
[0], value
);
730 print_trailer(s
, page
, object
);
732 restore_bytes(s
, what
, value
, fault
, end
);
740 * Bytes of the object to be managed.
741 * If the freepointer may overlay the object then the free
742 * pointer is the first word of the object.
744 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
747 * object + s->object_size
748 * Padding to reach word boundary. This is also used for Redzoning.
749 * Padding is extended by another word if Redzoning is enabled and
750 * object_size == inuse.
752 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
753 * 0xcc (RED_ACTIVE) for objects in use.
756 * Meta data starts here.
758 * A. Free pointer (if we cannot overwrite object on free)
759 * B. Tracking data for SLAB_STORE_USER
760 * C. Padding to reach required alignment boundary or at mininum
761 * one word if debugging is on to be able to detect writes
762 * before the word boundary.
764 * Padding is done using 0x5a (POISON_INUSE)
767 * Nothing is used beyond s->size.
769 * If slabcaches are merged then the object_size and inuse boundaries are mostly
770 * ignored. And therefore no slab options that rely on these boundaries
771 * may be used with merged slabcaches.
774 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
776 unsigned long off
= s
->inuse
; /* The end of info */
779 /* Freepointer is placed after the object. */
780 off
+= sizeof(void *);
782 if (s
->flags
& SLAB_STORE_USER
)
783 /* We also have user information there */
784 off
+= 2 * sizeof(struct track
);
786 off
+= kasan_metadata_size(s
);
788 if (size_from_object(s
) == off
)
791 return check_bytes_and_report(s
, page
, p
, "Object padding",
792 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
795 /* Check the pad bytes at the end of a slab page */
796 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
804 if (!(s
->flags
& SLAB_POISON
))
807 start
= page_address(page
);
808 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
809 end
= start
+ length
;
810 remainder
= length
% s
->size
;
814 metadata_access_enable();
815 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
816 metadata_access_disable();
819 while (end
> fault
&& end
[-1] == POISON_INUSE
)
822 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
823 print_section("Padding ", end
- remainder
, remainder
);
825 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
829 static int check_object(struct kmem_cache
*s
, struct page
*page
,
830 void *object
, u8 val
)
833 u8
*endobject
= object
+ s
->object_size
;
835 if (s
->flags
& SLAB_RED_ZONE
) {
836 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
837 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
840 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
841 endobject
, val
, s
->inuse
- s
->object_size
))
844 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
845 check_bytes_and_report(s
, page
, p
, "Alignment padding",
846 endobject
, POISON_INUSE
,
847 s
->inuse
- s
->object_size
);
851 if (s
->flags
& SLAB_POISON
) {
852 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
853 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
854 POISON_FREE
, s
->object_size
- 1) ||
855 !check_bytes_and_report(s
, page
, p
, "Poison",
856 p
+ s
->object_size
- 1, POISON_END
, 1)))
859 * check_pad_bytes cleans up on its own.
861 check_pad_bytes(s
, page
, p
);
864 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
866 * Object and freepointer overlap. Cannot check
867 * freepointer while object is allocated.
871 /* Check free pointer validity */
872 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
873 object_err(s
, page
, p
, "Freepointer corrupt");
875 * No choice but to zap it and thus lose the remainder
876 * of the free objects in this slab. May cause
877 * another error because the object count is now wrong.
879 set_freepointer(s
, p
, NULL
);
885 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
889 VM_BUG_ON(!irqs_disabled());
891 if (!PageSlab(page
)) {
892 slab_err(s
, page
, "Not a valid slab page");
896 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
897 if (page
->objects
> maxobj
) {
898 slab_err(s
, page
, "objects %u > max %u",
899 page
->objects
, maxobj
);
902 if (page
->inuse
> page
->objects
) {
903 slab_err(s
, page
, "inuse %u > max %u",
904 page
->inuse
, page
->objects
);
907 /* Slab_pad_check fixes things up after itself */
908 slab_pad_check(s
, page
);
913 * Determine if a certain object on a page is on the freelist. Must hold the
914 * slab lock to guarantee that the chains are in a consistent state.
916 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
924 while (fp
&& nr
<= page
->objects
) {
927 if (!check_valid_pointer(s
, page
, fp
)) {
929 object_err(s
, page
, object
,
930 "Freechain corrupt");
931 set_freepointer(s
, object
, NULL
);
933 slab_err(s
, page
, "Freepointer corrupt");
934 page
->freelist
= NULL
;
935 page
->inuse
= page
->objects
;
936 slab_fix(s
, "Freelist cleared");
942 fp
= get_freepointer(s
, object
);
946 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
947 if (max_objects
> MAX_OBJS_PER_PAGE
)
948 max_objects
= MAX_OBJS_PER_PAGE
;
950 if (page
->objects
!= max_objects
) {
951 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
952 page
->objects
, max_objects
);
953 page
->objects
= max_objects
;
954 slab_fix(s
, "Number of objects adjusted.");
956 if (page
->inuse
!= page
->objects
- nr
) {
957 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
958 page
->inuse
, page
->objects
- nr
);
959 page
->inuse
= page
->objects
- nr
;
960 slab_fix(s
, "Object count adjusted.");
962 return search
== NULL
;
965 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
968 if (s
->flags
& SLAB_TRACE
) {
969 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
971 alloc
? "alloc" : "free",
976 print_section("Object ", (void *)object
,
984 * Tracking of fully allocated slabs for debugging purposes.
986 static void add_full(struct kmem_cache
*s
,
987 struct kmem_cache_node
*n
, struct page
*page
)
989 if (!(s
->flags
& SLAB_STORE_USER
))
992 lockdep_assert_held(&n
->list_lock
);
993 list_add(&page
->lru
, &n
->full
);
996 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
998 if (!(s
->flags
& SLAB_STORE_USER
))
1001 lockdep_assert_held(&n
->list_lock
);
1002 list_del(&page
->lru
);
1005 /* Tracking of the number of slabs for debugging purposes */
1006 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1008 struct kmem_cache_node
*n
= get_node(s
, node
);
1010 return atomic_long_read(&n
->nr_slabs
);
1013 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1015 return atomic_long_read(&n
->nr_slabs
);
1018 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1020 struct kmem_cache_node
*n
= get_node(s
, node
);
1023 * May be called early in order to allocate a slab for the
1024 * kmem_cache_node structure. Solve the chicken-egg
1025 * dilemma by deferring the increment of the count during
1026 * bootstrap (see early_kmem_cache_node_alloc).
1029 atomic_long_inc(&n
->nr_slabs
);
1030 atomic_long_add(objects
, &n
->total_objects
);
1033 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1035 struct kmem_cache_node
*n
= get_node(s
, node
);
1037 atomic_long_dec(&n
->nr_slabs
);
1038 atomic_long_sub(objects
, &n
->total_objects
);
1041 /* Object debug checks for alloc/free paths */
1042 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1045 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1048 init_object(s
, object
, SLUB_RED_INACTIVE
);
1049 init_tracking(s
, object
);
1052 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1054 void *object
, unsigned long addr
)
1056 if (!check_slab(s
, page
))
1059 if (!check_valid_pointer(s
, page
, object
)) {
1060 object_err(s
, page
, object
, "Freelist Pointer check fails");
1064 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1070 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1072 void *object
, unsigned long addr
)
1074 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1075 if (!alloc_consistency_checks(s
, page
, object
, addr
))
1079 /* Success perform special debug activities for allocs */
1080 if (s
->flags
& SLAB_STORE_USER
)
1081 set_track(s
, object
, TRACK_ALLOC
, addr
);
1082 trace(s
, page
, object
, 1);
1083 init_object(s
, object
, SLUB_RED_ACTIVE
);
1087 if (PageSlab(page
)) {
1089 * If this is a slab page then lets do the best we can
1090 * to avoid issues in the future. Marking all objects
1091 * as used avoids touching the remaining objects.
1093 slab_fix(s
, "Marking all objects used");
1094 page
->inuse
= page
->objects
;
1095 page
->freelist
= NULL
;
1100 static inline int free_consistency_checks(struct kmem_cache
*s
,
1101 struct page
*page
, void *object
, unsigned long addr
)
1103 if (!check_valid_pointer(s
, page
, object
)) {
1104 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1108 if (on_freelist(s
, page
, object
)) {
1109 object_err(s
, page
, object
, "Object already free");
1113 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1116 if (unlikely(s
!= page
->slab_cache
)) {
1117 if (!PageSlab(page
)) {
1118 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1120 } else if (!page
->slab_cache
) {
1121 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1125 object_err(s
, page
, object
,
1126 "page slab pointer corrupt.");
1132 /* Supports checking bulk free of a constructed freelist */
1133 static noinline
int free_debug_processing(
1134 struct kmem_cache
*s
, struct page
*page
,
1135 void *head
, void *tail
, int bulk_cnt
,
1138 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1139 void *object
= head
;
1141 unsigned long uninitialized_var(flags
);
1144 spin_lock_irqsave(&n
->list_lock
, flags
);
1147 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1148 if (!check_slab(s
, page
))
1155 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1156 if (!free_consistency_checks(s
, page
, object
, addr
))
1160 if (s
->flags
& SLAB_STORE_USER
)
1161 set_track(s
, object
, TRACK_FREE
, addr
);
1162 trace(s
, page
, object
, 0);
1163 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1164 init_object(s
, object
, SLUB_RED_INACTIVE
);
1166 /* Reached end of constructed freelist yet? */
1167 if (object
!= tail
) {
1168 object
= get_freepointer(s
, object
);
1174 if (cnt
!= bulk_cnt
)
1175 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1179 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1181 slab_fix(s
, "Object at 0x%p not freed", object
);
1185 static int __init
setup_slub_debug(char *str
)
1187 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1188 if (*str
++ != '=' || !*str
)
1190 * No options specified. Switch on full debugging.
1196 * No options but restriction on slabs. This means full
1197 * debugging for slabs matching a pattern.
1204 * Switch off all debugging measures.
1209 * Determine which debug features should be switched on
1211 for (; *str
&& *str
!= ','; str
++) {
1212 switch (tolower(*str
)) {
1214 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1217 slub_debug
|= SLAB_RED_ZONE
;
1220 slub_debug
|= SLAB_POISON
;
1223 slub_debug
|= SLAB_STORE_USER
;
1226 slub_debug
|= SLAB_TRACE
;
1229 slub_debug
|= SLAB_FAILSLAB
;
1233 * Avoid enabling debugging on caches if its minimum
1234 * order would increase as a result.
1236 disable_higher_order_debug
= 1;
1239 pr_err("slub_debug option '%c' unknown. skipped\n",
1246 slub_debug_slabs
= str
+ 1;
1251 __setup("slub_debug", setup_slub_debug
);
1253 unsigned long kmem_cache_flags(unsigned long object_size
,
1254 unsigned long flags
, const char *name
,
1255 void (*ctor
)(void *))
1258 * Enable debugging if selected on the kernel commandline.
1260 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1261 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1262 flags
|= slub_debug
;
1266 #else /* !CONFIG_SLUB_DEBUG */
1267 static inline void setup_object_debug(struct kmem_cache
*s
,
1268 struct page
*page
, void *object
) {}
1270 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1271 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1273 static inline int free_debug_processing(
1274 struct kmem_cache
*s
, struct page
*page
,
1275 void *head
, void *tail
, int bulk_cnt
,
1276 unsigned long addr
) { return 0; }
1278 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1280 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1281 void *object
, u8 val
) { return 1; }
1282 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1283 struct page
*page
) {}
1284 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1285 struct page
*page
) {}
1286 unsigned long kmem_cache_flags(unsigned long object_size
,
1287 unsigned long flags
, const char *name
,
1288 void (*ctor
)(void *))
1292 #define slub_debug 0
1294 #define disable_higher_order_debug 0
1296 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1298 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1300 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1302 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1305 #endif /* CONFIG_SLUB_DEBUG */
1308 * Hooks for other subsystems that check memory allocations. In a typical
1309 * production configuration these hooks all should produce no code at all.
1311 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1313 kmemleak_alloc(ptr
, size
, 1, flags
);
1314 kasan_kmalloc_large(ptr
, size
, flags
);
1317 static inline void kfree_hook(const void *x
)
1320 kasan_kfree_large(x
);
1323 static inline void *slab_free_hook(struct kmem_cache
*s
, void *x
)
1327 kmemleak_free_recursive(x
, s
->flags
);
1330 * Trouble is that we may no longer disable interrupts in the fast path
1331 * So in order to make the debug calls that expect irqs to be
1332 * disabled we need to disable interrupts temporarily.
1334 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1336 unsigned long flags
;
1338 local_irq_save(flags
);
1339 kmemcheck_slab_free(s
, x
, s
->object_size
);
1340 debug_check_no_locks_freed(x
, s
->object_size
);
1341 local_irq_restore(flags
);
1344 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1345 debug_check_no_obj_freed(x
, s
->object_size
);
1347 freeptr
= get_freepointer(s
, x
);
1349 * kasan_slab_free() may put x into memory quarantine, delaying its
1350 * reuse. In this case the object's freelist pointer is changed.
1352 kasan_slab_free(s
, x
);
1356 static inline void slab_free_freelist_hook(struct kmem_cache
*s
,
1357 void *head
, void *tail
)
1360 * Compiler cannot detect this function can be removed if slab_free_hook()
1361 * evaluates to nothing. Thus, catch all relevant config debug options here.
1363 #if defined(CONFIG_KMEMCHECK) || \
1364 defined(CONFIG_LOCKDEP) || \
1365 defined(CONFIG_DEBUG_KMEMLEAK) || \
1366 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1367 defined(CONFIG_KASAN)
1369 void *object
= head
;
1370 void *tail_obj
= tail
? : head
;
1374 freeptr
= slab_free_hook(s
, object
);
1375 } while ((object
!= tail_obj
) && (object
= freeptr
));
1379 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1382 setup_object_debug(s
, page
, object
);
1383 kasan_init_slab_obj(s
, object
);
1384 if (unlikely(s
->ctor
)) {
1385 kasan_unpoison_object_data(s
, object
);
1387 kasan_poison_object_data(s
, object
);
1392 * Slab allocation and freeing
1394 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1395 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1398 int order
= oo_order(oo
);
1400 flags
|= __GFP_NOTRACK
;
1402 if (node
== NUMA_NO_NODE
)
1403 page
= alloc_pages(flags
, order
);
1405 page
= __alloc_pages_node(node
, flags
, order
);
1407 if (page
&& memcg_charge_slab(page
, flags
, order
, s
)) {
1408 __free_pages(page
, order
);
1415 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1416 /* Pre-initialize the random sequence cache */
1417 static int init_cache_random_seq(struct kmem_cache
*s
)
1420 unsigned long i
, count
= oo_objects(s
->oo
);
1422 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1424 pr_err("SLUB: Unable to initialize free list for %s\n",
1429 /* Transform to an offset on the set of pages */
1430 if (s
->random_seq
) {
1431 for (i
= 0; i
< count
; i
++)
1432 s
->random_seq
[i
] *= s
->size
;
1437 /* Initialize each random sequence freelist per cache */
1438 static void __init
init_freelist_randomization(void)
1440 struct kmem_cache
*s
;
1442 mutex_lock(&slab_mutex
);
1444 list_for_each_entry(s
, &slab_caches
, list
)
1445 init_cache_random_seq(s
);
1447 mutex_unlock(&slab_mutex
);
1450 /* Get the next entry on the pre-computed freelist randomized */
1451 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1452 unsigned long *pos
, void *start
,
1453 unsigned long page_limit
,
1454 unsigned long freelist_count
)
1459 * If the target page allocation failed, the number of objects on the
1460 * page might be smaller than the usual size defined by the cache.
1463 idx
= s
->random_seq
[*pos
];
1465 if (*pos
>= freelist_count
)
1467 } while (unlikely(idx
>= page_limit
));
1469 return (char *)start
+ idx
;
1472 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1473 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1478 unsigned long idx
, pos
, page_limit
, freelist_count
;
1480 if (page
->objects
< 2 || !s
->random_seq
)
1483 freelist_count
= oo_objects(s
->oo
);
1484 pos
= get_random_int() % freelist_count
;
1486 page_limit
= page
->objects
* s
->size
;
1487 start
= fixup_red_left(s
, page_address(page
));
1489 /* First entry is used as the base of the freelist */
1490 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1492 page
->freelist
= cur
;
1494 for (idx
= 1; idx
< page
->objects
; idx
++) {
1495 setup_object(s
, page
, cur
);
1496 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1498 set_freepointer(s
, cur
, next
);
1501 setup_object(s
, page
, cur
);
1502 set_freepointer(s
, cur
, NULL
);
1507 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1511 static inline void init_freelist_randomization(void) { }
1512 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1516 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1518 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1521 struct kmem_cache_order_objects oo
= s
->oo
;
1527 flags
&= gfp_allowed_mask
;
1529 if (gfpflags_allow_blocking(flags
))
1532 flags
|= s
->allocflags
;
1535 * Let the initial higher-order allocation fail under memory pressure
1536 * so we fall-back to the minimum order allocation.
1538 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1539 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1540 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1542 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1543 if (unlikely(!page
)) {
1547 * Allocation may have failed due to fragmentation.
1548 * Try a lower order alloc if possible
1550 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1551 if (unlikely(!page
))
1553 stat(s
, ORDER_FALLBACK
);
1556 if (kmemcheck_enabled
&&
1557 !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1558 int pages
= 1 << oo_order(oo
);
1560 kmemcheck_alloc_shadow(page
, oo_order(oo
), alloc_gfp
, node
);
1563 * Objects from caches that have a constructor don't get
1564 * cleared when they're allocated, so we need to do it here.
1567 kmemcheck_mark_uninitialized_pages(page
, pages
);
1569 kmemcheck_mark_unallocated_pages(page
, pages
);
1572 page
->objects
= oo_objects(oo
);
1574 order
= compound_order(page
);
1575 page
->slab_cache
= s
;
1576 __SetPageSlab(page
);
1577 if (page_is_pfmemalloc(page
))
1578 SetPageSlabPfmemalloc(page
);
1580 start
= page_address(page
);
1582 if (unlikely(s
->flags
& SLAB_POISON
))
1583 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1585 kasan_poison_slab(page
);
1587 shuffle
= shuffle_freelist(s
, page
);
1590 for_each_object_idx(p
, idx
, s
, start
, page
->objects
) {
1591 setup_object(s
, page
, p
);
1592 if (likely(idx
< page
->objects
))
1593 set_freepointer(s
, p
, p
+ s
->size
);
1595 set_freepointer(s
, p
, NULL
);
1597 page
->freelist
= fixup_red_left(s
, start
);
1600 page
->inuse
= page
->objects
;
1604 if (gfpflags_allow_blocking(flags
))
1605 local_irq_disable();
1609 mod_zone_page_state(page_zone(page
),
1610 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1611 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1614 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1619 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1621 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1622 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
1623 flags
&= ~GFP_SLAB_BUG_MASK
;
1624 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1625 invalid_mask
, &invalid_mask
, flags
, &flags
);
1628 return allocate_slab(s
,
1629 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1632 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1634 int order
= compound_order(page
);
1635 int pages
= 1 << order
;
1637 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1640 slab_pad_check(s
, page
);
1641 for_each_object(p
, s
, page_address(page
),
1643 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1646 kmemcheck_free_shadow(page
, compound_order(page
));
1648 mod_zone_page_state(page_zone(page
),
1649 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1650 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1653 __ClearPageSlabPfmemalloc(page
);
1654 __ClearPageSlab(page
);
1656 page_mapcount_reset(page
);
1657 if (current
->reclaim_state
)
1658 current
->reclaim_state
->reclaimed_slab
+= pages
;
1659 memcg_uncharge_slab(page
, order
, s
);
1660 __free_pages(page
, order
);
1663 #define need_reserve_slab_rcu \
1664 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1666 static void rcu_free_slab(struct rcu_head
*h
)
1670 if (need_reserve_slab_rcu
)
1671 page
= virt_to_head_page(h
);
1673 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1675 __free_slab(page
->slab_cache
, page
);
1678 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1680 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1681 struct rcu_head
*head
;
1683 if (need_reserve_slab_rcu
) {
1684 int order
= compound_order(page
);
1685 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1687 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1688 head
= page_address(page
) + offset
;
1690 head
= &page
->rcu_head
;
1693 call_rcu(head
, rcu_free_slab
);
1695 __free_slab(s
, page
);
1698 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1700 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1705 * Management of partially allocated slabs.
1708 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1711 if (tail
== DEACTIVATE_TO_TAIL
)
1712 list_add_tail(&page
->lru
, &n
->partial
);
1714 list_add(&page
->lru
, &n
->partial
);
1717 static inline void add_partial(struct kmem_cache_node
*n
,
1718 struct page
*page
, int tail
)
1720 lockdep_assert_held(&n
->list_lock
);
1721 __add_partial(n
, page
, tail
);
1724 static inline void remove_partial(struct kmem_cache_node
*n
,
1727 lockdep_assert_held(&n
->list_lock
);
1728 list_del(&page
->lru
);
1733 * Remove slab from the partial list, freeze it and
1734 * return the pointer to the freelist.
1736 * Returns a list of objects or NULL if it fails.
1738 static inline void *acquire_slab(struct kmem_cache
*s
,
1739 struct kmem_cache_node
*n
, struct page
*page
,
1740 int mode
, int *objects
)
1743 unsigned long counters
;
1746 lockdep_assert_held(&n
->list_lock
);
1749 * Zap the freelist and set the frozen bit.
1750 * The old freelist is the list of objects for the
1751 * per cpu allocation list.
1753 freelist
= page
->freelist
;
1754 counters
= page
->counters
;
1755 new.counters
= counters
;
1756 *objects
= new.objects
- new.inuse
;
1758 new.inuse
= page
->objects
;
1759 new.freelist
= NULL
;
1761 new.freelist
= freelist
;
1764 VM_BUG_ON(new.frozen
);
1767 if (!__cmpxchg_double_slab(s
, page
,
1769 new.freelist
, new.counters
,
1773 remove_partial(n
, page
);
1778 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1779 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1782 * Try to allocate a partial slab from a specific node.
1784 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1785 struct kmem_cache_cpu
*c
, gfp_t flags
)
1787 struct page
*page
, *page2
;
1788 void *object
= NULL
;
1793 * Racy check. If we mistakenly see no partial slabs then we
1794 * just allocate an empty slab. If we mistakenly try to get a
1795 * partial slab and there is none available then get_partials()
1798 if (!n
|| !n
->nr_partial
)
1801 spin_lock(&n
->list_lock
);
1802 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1805 if (!pfmemalloc_match(page
, flags
))
1808 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1812 available
+= objects
;
1815 stat(s
, ALLOC_FROM_PARTIAL
);
1818 put_cpu_partial(s
, page
, 0);
1819 stat(s
, CPU_PARTIAL_NODE
);
1821 if (!kmem_cache_has_cpu_partial(s
)
1822 || available
> s
->cpu_partial
/ 2)
1826 spin_unlock(&n
->list_lock
);
1831 * Get a page from somewhere. Search in increasing NUMA distances.
1833 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1834 struct kmem_cache_cpu
*c
)
1837 struct zonelist
*zonelist
;
1840 enum zone_type high_zoneidx
= gfp_zone(flags
);
1842 unsigned int cpuset_mems_cookie
;
1845 * The defrag ratio allows a configuration of the tradeoffs between
1846 * inter node defragmentation and node local allocations. A lower
1847 * defrag_ratio increases the tendency to do local allocations
1848 * instead of attempting to obtain partial slabs from other nodes.
1850 * If the defrag_ratio is set to 0 then kmalloc() always
1851 * returns node local objects. If the ratio is higher then kmalloc()
1852 * may return off node objects because partial slabs are obtained
1853 * from other nodes and filled up.
1855 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1856 * (which makes defrag_ratio = 1000) then every (well almost)
1857 * allocation will first attempt to defrag slab caches on other nodes.
1858 * This means scanning over all nodes to look for partial slabs which
1859 * may be expensive if we do it every time we are trying to find a slab
1860 * with available objects.
1862 if (!s
->remote_node_defrag_ratio
||
1863 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1867 cpuset_mems_cookie
= read_mems_allowed_begin();
1868 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1869 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1870 struct kmem_cache_node
*n
;
1872 n
= get_node(s
, zone_to_nid(zone
));
1874 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1875 n
->nr_partial
> s
->min_partial
) {
1876 object
= get_partial_node(s
, n
, c
, flags
);
1879 * Don't check read_mems_allowed_retry()
1880 * here - if mems_allowed was updated in
1881 * parallel, that was a harmless race
1882 * between allocation and the cpuset
1889 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1895 * Get a partial page, lock it and return it.
1897 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1898 struct kmem_cache_cpu
*c
)
1901 int searchnode
= node
;
1903 if (node
== NUMA_NO_NODE
)
1904 searchnode
= numa_mem_id();
1905 else if (!node_present_pages(node
))
1906 searchnode
= node_to_mem_node(node
);
1908 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1909 if (object
|| node
!= NUMA_NO_NODE
)
1912 return get_any_partial(s
, flags
, c
);
1915 #ifdef CONFIG_PREEMPT
1917 * Calculate the next globally unique transaction for disambiguiation
1918 * during cmpxchg. The transactions start with the cpu number and are then
1919 * incremented by CONFIG_NR_CPUS.
1921 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1924 * No preemption supported therefore also no need to check for
1930 static inline unsigned long next_tid(unsigned long tid
)
1932 return tid
+ TID_STEP
;
1935 static inline unsigned int tid_to_cpu(unsigned long tid
)
1937 return tid
% TID_STEP
;
1940 static inline unsigned long tid_to_event(unsigned long tid
)
1942 return tid
/ TID_STEP
;
1945 static inline unsigned int init_tid(int cpu
)
1950 static inline void note_cmpxchg_failure(const char *n
,
1951 const struct kmem_cache
*s
, unsigned long tid
)
1953 #ifdef SLUB_DEBUG_CMPXCHG
1954 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1956 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
1958 #ifdef CONFIG_PREEMPT
1959 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1960 pr_warn("due to cpu change %d -> %d\n",
1961 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1964 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1965 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1966 tid_to_event(tid
), tid_to_event(actual_tid
));
1968 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1969 actual_tid
, tid
, next_tid(tid
));
1971 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1974 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1978 for_each_possible_cpu(cpu
)
1979 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1983 * Remove the cpu slab
1985 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
1988 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1989 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1991 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1993 int tail
= DEACTIVATE_TO_HEAD
;
1997 if (page
->freelist
) {
1998 stat(s
, DEACTIVATE_REMOTE_FREES
);
1999 tail
= DEACTIVATE_TO_TAIL
;
2003 * Stage one: Free all available per cpu objects back
2004 * to the page freelist while it is still frozen. Leave the
2007 * There is no need to take the list->lock because the page
2010 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2012 unsigned long counters
;
2015 prior
= page
->freelist
;
2016 counters
= page
->counters
;
2017 set_freepointer(s
, freelist
, prior
);
2018 new.counters
= counters
;
2020 VM_BUG_ON(!new.frozen
);
2022 } while (!__cmpxchg_double_slab(s
, page
,
2024 freelist
, new.counters
,
2025 "drain percpu freelist"));
2027 freelist
= nextfree
;
2031 * Stage two: Ensure that the page is unfrozen while the
2032 * list presence reflects the actual number of objects
2035 * We setup the list membership and then perform a cmpxchg
2036 * with the count. If there is a mismatch then the page
2037 * is not unfrozen but the page is on the wrong list.
2039 * Then we restart the process which may have to remove
2040 * the page from the list that we just put it on again
2041 * because the number of objects in the slab may have
2046 old
.freelist
= page
->freelist
;
2047 old
.counters
= page
->counters
;
2048 VM_BUG_ON(!old
.frozen
);
2050 /* Determine target state of the slab */
2051 new.counters
= old
.counters
;
2054 set_freepointer(s
, freelist
, old
.freelist
);
2055 new.freelist
= freelist
;
2057 new.freelist
= old
.freelist
;
2061 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2063 else if (new.freelist
) {
2068 * Taking the spinlock removes the possiblity
2069 * that acquire_slab() will see a slab page that
2072 spin_lock(&n
->list_lock
);
2076 if (kmem_cache_debug(s
) && !lock
) {
2079 * This also ensures that the scanning of full
2080 * slabs from diagnostic functions will not see
2083 spin_lock(&n
->list_lock
);
2091 remove_partial(n
, page
);
2093 else if (l
== M_FULL
)
2095 remove_full(s
, n
, page
);
2097 if (m
== M_PARTIAL
) {
2099 add_partial(n
, page
, tail
);
2102 } else if (m
== M_FULL
) {
2104 stat(s
, DEACTIVATE_FULL
);
2105 add_full(s
, n
, page
);
2111 if (!__cmpxchg_double_slab(s
, page
,
2112 old
.freelist
, old
.counters
,
2113 new.freelist
, new.counters
,
2118 spin_unlock(&n
->list_lock
);
2121 stat(s
, DEACTIVATE_EMPTY
);
2122 discard_slab(s
, page
);
2128 * Unfreeze all the cpu partial slabs.
2130 * This function must be called with interrupts disabled
2131 * for the cpu using c (or some other guarantee must be there
2132 * to guarantee no concurrent accesses).
2134 static void unfreeze_partials(struct kmem_cache
*s
,
2135 struct kmem_cache_cpu
*c
)
2137 #ifdef CONFIG_SLUB_CPU_PARTIAL
2138 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2139 struct page
*page
, *discard_page
= NULL
;
2141 while ((page
= c
->partial
)) {
2145 c
->partial
= page
->next
;
2147 n2
= get_node(s
, page_to_nid(page
));
2150 spin_unlock(&n
->list_lock
);
2153 spin_lock(&n
->list_lock
);
2158 old
.freelist
= page
->freelist
;
2159 old
.counters
= page
->counters
;
2160 VM_BUG_ON(!old
.frozen
);
2162 new.counters
= old
.counters
;
2163 new.freelist
= old
.freelist
;
2167 } while (!__cmpxchg_double_slab(s
, page
,
2168 old
.freelist
, old
.counters
,
2169 new.freelist
, new.counters
,
2170 "unfreezing slab"));
2172 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2173 page
->next
= discard_page
;
2174 discard_page
= page
;
2176 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2177 stat(s
, FREE_ADD_PARTIAL
);
2182 spin_unlock(&n
->list_lock
);
2184 while (discard_page
) {
2185 page
= discard_page
;
2186 discard_page
= discard_page
->next
;
2188 stat(s
, DEACTIVATE_EMPTY
);
2189 discard_slab(s
, page
);
2196 * Put a page that was just frozen (in __slab_free) into a partial page
2197 * slot if available. This is done without interrupts disabled and without
2198 * preemption disabled. The cmpxchg is racy and may put the partial page
2199 * onto a random cpus partial slot.
2201 * If we did not find a slot then simply move all the partials to the
2202 * per node partial list.
2204 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2206 #ifdef CONFIG_SLUB_CPU_PARTIAL
2207 struct page
*oldpage
;
2215 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2218 pobjects
= oldpage
->pobjects
;
2219 pages
= oldpage
->pages
;
2220 if (drain
&& pobjects
> s
->cpu_partial
) {
2221 unsigned long flags
;
2223 * partial array is full. Move the existing
2224 * set to the per node partial list.
2226 local_irq_save(flags
);
2227 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2228 local_irq_restore(flags
);
2232 stat(s
, CPU_PARTIAL_DRAIN
);
2237 pobjects
+= page
->objects
- page
->inuse
;
2239 page
->pages
= pages
;
2240 page
->pobjects
= pobjects
;
2241 page
->next
= oldpage
;
2243 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2245 if (unlikely(!s
->cpu_partial
)) {
2246 unsigned long flags
;
2248 local_irq_save(flags
);
2249 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2250 local_irq_restore(flags
);
2256 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2258 stat(s
, CPUSLAB_FLUSH
);
2259 deactivate_slab(s
, c
->page
, c
->freelist
);
2261 c
->tid
= next_tid(c
->tid
);
2269 * Called from IPI handler with interrupts disabled.
2271 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2273 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2279 unfreeze_partials(s
, c
);
2283 static void flush_cpu_slab(void *d
)
2285 struct kmem_cache
*s
= d
;
2287 __flush_cpu_slab(s
, smp_processor_id());
2290 static bool has_cpu_slab(int cpu
, void *info
)
2292 struct kmem_cache
*s
= info
;
2293 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2295 return c
->page
|| c
->partial
;
2298 static void flush_all(struct kmem_cache
*s
)
2300 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2304 * Use the cpu notifier to insure that the cpu slabs are flushed when
2307 static int slub_cpu_dead(unsigned int cpu
)
2309 struct kmem_cache
*s
;
2310 unsigned long flags
;
2312 mutex_lock(&slab_mutex
);
2313 list_for_each_entry(s
, &slab_caches
, list
) {
2314 local_irq_save(flags
);
2315 __flush_cpu_slab(s
, cpu
);
2316 local_irq_restore(flags
);
2318 mutex_unlock(&slab_mutex
);
2323 * Check if the objects in a per cpu structure fit numa
2324 * locality expectations.
2326 static inline int node_match(struct page
*page
, int node
)
2329 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2335 #ifdef CONFIG_SLUB_DEBUG
2336 static int count_free(struct page
*page
)
2338 return page
->objects
- page
->inuse
;
2341 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2343 return atomic_long_read(&n
->total_objects
);
2345 #endif /* CONFIG_SLUB_DEBUG */
2347 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2348 static unsigned long count_partial(struct kmem_cache_node
*n
,
2349 int (*get_count
)(struct page
*))
2351 unsigned long flags
;
2352 unsigned long x
= 0;
2355 spin_lock_irqsave(&n
->list_lock
, flags
);
2356 list_for_each_entry(page
, &n
->partial
, lru
)
2357 x
+= get_count(page
);
2358 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2361 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2363 static noinline
void
2364 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2366 #ifdef CONFIG_SLUB_DEBUG
2367 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2368 DEFAULT_RATELIMIT_BURST
);
2370 struct kmem_cache_node
*n
;
2372 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2375 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2376 nid
, gfpflags
, &gfpflags
);
2377 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2378 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2381 if (oo_order(s
->min
) > get_order(s
->object_size
))
2382 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2385 for_each_kmem_cache_node(s
, node
, n
) {
2386 unsigned long nr_slabs
;
2387 unsigned long nr_objs
;
2388 unsigned long nr_free
;
2390 nr_free
= count_partial(n
, count_free
);
2391 nr_slabs
= node_nr_slabs(n
);
2392 nr_objs
= node_nr_objs(n
);
2394 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2395 node
, nr_slabs
, nr_objs
, nr_free
);
2400 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2401 int node
, struct kmem_cache_cpu
**pc
)
2404 struct kmem_cache_cpu
*c
= *pc
;
2407 freelist
= get_partial(s
, flags
, node
, c
);
2412 page
= new_slab(s
, flags
, node
);
2414 c
= raw_cpu_ptr(s
->cpu_slab
);
2419 * No other reference to the page yet so we can
2420 * muck around with it freely without cmpxchg
2422 freelist
= page
->freelist
;
2423 page
->freelist
= NULL
;
2425 stat(s
, ALLOC_SLAB
);
2434 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2436 if (unlikely(PageSlabPfmemalloc(page
)))
2437 return gfp_pfmemalloc_allowed(gfpflags
);
2443 * Check the page->freelist of a page and either transfer the freelist to the
2444 * per cpu freelist or deactivate the page.
2446 * The page is still frozen if the return value is not NULL.
2448 * If this function returns NULL then the page has been unfrozen.
2450 * This function must be called with interrupt disabled.
2452 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2455 unsigned long counters
;
2459 freelist
= page
->freelist
;
2460 counters
= page
->counters
;
2462 new.counters
= counters
;
2463 VM_BUG_ON(!new.frozen
);
2465 new.inuse
= page
->objects
;
2466 new.frozen
= freelist
!= NULL
;
2468 } while (!__cmpxchg_double_slab(s
, page
,
2477 * Slow path. The lockless freelist is empty or we need to perform
2480 * Processing is still very fast if new objects have been freed to the
2481 * regular freelist. In that case we simply take over the regular freelist
2482 * as the lockless freelist and zap the regular freelist.
2484 * If that is not working then we fall back to the partial lists. We take the
2485 * first element of the freelist as the object to allocate now and move the
2486 * rest of the freelist to the lockless freelist.
2488 * And if we were unable to get a new slab from the partial slab lists then
2489 * we need to allocate a new slab. This is the slowest path since it involves
2490 * a call to the page allocator and the setup of a new slab.
2492 * Version of __slab_alloc to use when we know that interrupts are
2493 * already disabled (which is the case for bulk allocation).
2495 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2496 unsigned long addr
, struct kmem_cache_cpu
*c
)
2506 if (unlikely(!node_match(page
, node
))) {
2507 int searchnode
= node
;
2509 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2510 searchnode
= node_to_mem_node(node
);
2512 if (unlikely(!node_match(page
, searchnode
))) {
2513 stat(s
, ALLOC_NODE_MISMATCH
);
2514 deactivate_slab(s
, page
, c
->freelist
);
2522 * By rights, we should be searching for a slab page that was
2523 * PFMEMALLOC but right now, we are losing the pfmemalloc
2524 * information when the page leaves the per-cpu allocator
2526 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2527 deactivate_slab(s
, page
, c
->freelist
);
2533 /* must check again c->freelist in case of cpu migration or IRQ */
2534 freelist
= c
->freelist
;
2538 freelist
= get_freelist(s
, page
);
2542 stat(s
, DEACTIVATE_BYPASS
);
2546 stat(s
, ALLOC_REFILL
);
2550 * freelist is pointing to the list of objects to be used.
2551 * page is pointing to the page from which the objects are obtained.
2552 * That page must be frozen for per cpu allocations to work.
2554 VM_BUG_ON(!c
->page
->frozen
);
2555 c
->freelist
= get_freepointer(s
, freelist
);
2556 c
->tid
= next_tid(c
->tid
);
2562 page
= c
->page
= c
->partial
;
2563 c
->partial
= page
->next
;
2564 stat(s
, CPU_PARTIAL_ALLOC
);
2569 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2571 if (unlikely(!freelist
)) {
2572 slab_out_of_memory(s
, gfpflags
, node
);
2577 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2580 /* Only entered in the debug case */
2581 if (kmem_cache_debug(s
) &&
2582 !alloc_debug_processing(s
, page
, freelist
, addr
))
2583 goto new_slab
; /* Slab failed checks. Next slab needed */
2585 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2592 * Another one that disabled interrupt and compensates for possible
2593 * cpu changes by refetching the per cpu area pointer.
2595 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2596 unsigned long addr
, struct kmem_cache_cpu
*c
)
2599 unsigned long flags
;
2601 local_irq_save(flags
);
2602 #ifdef CONFIG_PREEMPT
2604 * We may have been preempted and rescheduled on a different
2605 * cpu before disabling interrupts. Need to reload cpu area
2608 c
= this_cpu_ptr(s
->cpu_slab
);
2611 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2612 local_irq_restore(flags
);
2617 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2618 * have the fastpath folded into their functions. So no function call
2619 * overhead for requests that can be satisfied on the fastpath.
2621 * The fastpath works by first checking if the lockless freelist can be used.
2622 * If not then __slab_alloc is called for slow processing.
2624 * Otherwise we can simply pick the next object from the lockless free list.
2626 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2627 gfp_t gfpflags
, int node
, unsigned long addr
)
2630 struct kmem_cache_cpu
*c
;
2634 s
= slab_pre_alloc_hook(s
, gfpflags
);
2639 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2640 * enabled. We may switch back and forth between cpus while
2641 * reading from one cpu area. That does not matter as long
2642 * as we end up on the original cpu again when doing the cmpxchg.
2644 * We should guarantee that tid and kmem_cache are retrieved on
2645 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2646 * to check if it is matched or not.
2649 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2650 c
= raw_cpu_ptr(s
->cpu_slab
);
2651 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2652 unlikely(tid
!= READ_ONCE(c
->tid
)));
2655 * Irqless object alloc/free algorithm used here depends on sequence
2656 * of fetching cpu_slab's data. tid should be fetched before anything
2657 * on c to guarantee that object and page associated with previous tid
2658 * won't be used with current tid. If we fetch tid first, object and
2659 * page could be one associated with next tid and our alloc/free
2660 * request will be failed. In this case, we will retry. So, no problem.
2665 * The transaction ids are globally unique per cpu and per operation on
2666 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2667 * occurs on the right processor and that there was no operation on the
2668 * linked list in between.
2671 object
= c
->freelist
;
2673 if (unlikely(!object
|| !node_match(page
, node
))) {
2674 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2675 stat(s
, ALLOC_SLOWPATH
);
2677 void *next_object
= get_freepointer_safe(s
, object
);
2680 * The cmpxchg will only match if there was no additional
2681 * operation and if we are on the right processor.
2683 * The cmpxchg does the following atomically (without lock
2685 * 1. Relocate first pointer to the current per cpu area.
2686 * 2. Verify that tid and freelist have not been changed
2687 * 3. If they were not changed replace tid and freelist
2689 * Since this is without lock semantics the protection is only
2690 * against code executing on this cpu *not* from access by
2693 if (unlikely(!this_cpu_cmpxchg_double(
2694 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2696 next_object
, next_tid(tid
)))) {
2698 note_cmpxchg_failure("slab_alloc", s
, tid
);
2701 prefetch_freepointer(s
, next_object
);
2702 stat(s
, ALLOC_FASTPATH
);
2705 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2706 memset(object
, 0, s
->object_size
);
2708 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2713 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2714 gfp_t gfpflags
, unsigned long addr
)
2716 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2719 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2721 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2723 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2728 EXPORT_SYMBOL(kmem_cache_alloc
);
2730 #ifdef CONFIG_TRACING
2731 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2733 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2734 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2735 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2738 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2742 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2744 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2746 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2747 s
->object_size
, s
->size
, gfpflags
, node
);
2751 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2753 #ifdef CONFIG_TRACING
2754 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2756 int node
, size_t size
)
2758 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2760 trace_kmalloc_node(_RET_IP_
, ret
,
2761 size
, s
->size
, gfpflags
, node
);
2763 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2766 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2771 * Slow path handling. This may still be called frequently since objects
2772 * have a longer lifetime than the cpu slabs in most processing loads.
2774 * So we still attempt to reduce cache line usage. Just take the slab
2775 * lock and free the item. If there is no additional partial page
2776 * handling required then we can return immediately.
2778 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2779 void *head
, void *tail
, int cnt
,
2786 unsigned long counters
;
2787 struct kmem_cache_node
*n
= NULL
;
2788 unsigned long uninitialized_var(flags
);
2790 stat(s
, FREE_SLOWPATH
);
2792 if (kmem_cache_debug(s
) &&
2793 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2798 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2801 prior
= page
->freelist
;
2802 counters
= page
->counters
;
2803 set_freepointer(s
, tail
, prior
);
2804 new.counters
= counters
;
2805 was_frozen
= new.frozen
;
2807 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2809 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2812 * Slab was on no list before and will be
2814 * We can defer the list move and instead
2819 } else { /* Needs to be taken off a list */
2821 n
= get_node(s
, page_to_nid(page
));
2823 * Speculatively acquire the list_lock.
2824 * If the cmpxchg does not succeed then we may
2825 * drop the list_lock without any processing.
2827 * Otherwise the list_lock will synchronize with
2828 * other processors updating the list of slabs.
2830 spin_lock_irqsave(&n
->list_lock
, flags
);
2835 } while (!cmpxchg_double_slab(s
, page
,
2843 * If we just froze the page then put it onto the
2844 * per cpu partial list.
2846 if (new.frozen
&& !was_frozen
) {
2847 put_cpu_partial(s
, page
, 1);
2848 stat(s
, CPU_PARTIAL_FREE
);
2851 * The list lock was not taken therefore no list
2852 * activity can be necessary.
2855 stat(s
, FREE_FROZEN
);
2859 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2863 * Objects left in the slab. If it was not on the partial list before
2866 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2867 if (kmem_cache_debug(s
))
2868 remove_full(s
, n
, page
);
2869 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2870 stat(s
, FREE_ADD_PARTIAL
);
2872 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2878 * Slab on the partial list.
2880 remove_partial(n
, page
);
2881 stat(s
, FREE_REMOVE_PARTIAL
);
2883 /* Slab must be on the full list */
2884 remove_full(s
, n
, page
);
2887 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2889 discard_slab(s
, page
);
2893 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2894 * can perform fastpath freeing without additional function calls.
2896 * The fastpath is only possible if we are freeing to the current cpu slab
2897 * of this processor. This typically the case if we have just allocated
2900 * If fastpath is not possible then fall back to __slab_free where we deal
2901 * with all sorts of special processing.
2903 * Bulk free of a freelist with several objects (all pointing to the
2904 * same page) possible by specifying head and tail ptr, plus objects
2905 * count (cnt). Bulk free indicated by tail pointer being set.
2907 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
2908 struct page
*page
, void *head
, void *tail
,
2909 int cnt
, unsigned long addr
)
2911 void *tail_obj
= tail
? : head
;
2912 struct kmem_cache_cpu
*c
;
2916 * Determine the currently cpus per cpu slab.
2917 * The cpu may change afterward. However that does not matter since
2918 * data is retrieved via this pointer. If we are on the same cpu
2919 * during the cmpxchg then the free will succeed.
2922 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2923 c
= raw_cpu_ptr(s
->cpu_slab
);
2924 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2925 unlikely(tid
!= READ_ONCE(c
->tid
)));
2927 /* Same with comment on barrier() in slab_alloc_node() */
2930 if (likely(page
== c
->page
)) {
2931 set_freepointer(s
, tail_obj
, c
->freelist
);
2933 if (unlikely(!this_cpu_cmpxchg_double(
2934 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2936 head
, next_tid(tid
)))) {
2938 note_cmpxchg_failure("slab_free", s
, tid
);
2941 stat(s
, FREE_FASTPATH
);
2943 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
2947 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
2948 void *head
, void *tail
, int cnt
,
2951 slab_free_freelist_hook(s
, head
, tail
);
2953 * slab_free_freelist_hook() could have put the items into quarantine.
2954 * If so, no need to free them.
2956 if (s
->flags
& SLAB_KASAN
&& !(s
->flags
& SLAB_DESTROY_BY_RCU
))
2958 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
2962 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
2964 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
2968 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2970 s
= cache_from_obj(s
, x
);
2973 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
2974 trace_kmem_cache_free(_RET_IP_
, x
);
2976 EXPORT_SYMBOL(kmem_cache_free
);
2978 struct detached_freelist
{
2983 struct kmem_cache
*s
;
2987 * This function progressively scans the array with free objects (with
2988 * a limited look ahead) and extract objects belonging to the same
2989 * page. It builds a detached freelist directly within the given
2990 * page/objects. This can happen without any need for
2991 * synchronization, because the objects are owned by running process.
2992 * The freelist is build up as a single linked list in the objects.
2993 * The idea is, that this detached freelist can then be bulk
2994 * transferred to the real freelist(s), but only requiring a single
2995 * synchronization primitive. Look ahead in the array is limited due
2996 * to performance reasons.
2999 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
3000 void **p
, struct detached_freelist
*df
)
3002 size_t first_skipped_index
= 0;
3007 /* Always re-init detached_freelist */
3012 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3013 } while (!object
&& size
);
3018 page
= virt_to_head_page(object
);
3020 /* Handle kalloc'ed objects */
3021 if (unlikely(!PageSlab(page
))) {
3022 BUG_ON(!PageCompound(page
));
3024 __free_pages(page
, compound_order(page
));
3025 p
[size
] = NULL
; /* mark object processed */
3028 /* Derive kmem_cache from object */
3029 df
->s
= page
->slab_cache
;
3031 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3034 /* Start new detached freelist */
3036 set_freepointer(df
->s
, object
, NULL
);
3038 df
->freelist
= object
;
3039 p
[size
] = NULL
; /* mark object processed */
3045 continue; /* Skip processed objects */
3047 /* df->page is always set at this point */
3048 if (df
->page
== virt_to_head_page(object
)) {
3049 /* Opportunity build freelist */
3050 set_freepointer(df
->s
, object
, df
->freelist
);
3051 df
->freelist
= object
;
3053 p
[size
] = NULL
; /* mark object processed */
3058 /* Limit look ahead search */
3062 if (!first_skipped_index
)
3063 first_skipped_index
= size
+ 1;
3066 return first_skipped_index
;
3069 /* Note that interrupts must be enabled when calling this function. */
3070 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3076 struct detached_freelist df
;
3078 size
= build_detached_freelist(s
, size
, p
, &df
);
3079 if (unlikely(!df
.page
))
3082 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3083 } while (likely(size
));
3085 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3087 /* Note that interrupts must be enabled when calling this function. */
3088 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3091 struct kmem_cache_cpu
*c
;
3094 /* memcg and kmem_cache debug support */
3095 s
= slab_pre_alloc_hook(s
, flags
);
3099 * Drain objects in the per cpu slab, while disabling local
3100 * IRQs, which protects against PREEMPT and interrupts
3101 * handlers invoking normal fastpath.
3103 local_irq_disable();
3104 c
= this_cpu_ptr(s
->cpu_slab
);
3106 for (i
= 0; i
< size
; i
++) {
3107 void *object
= c
->freelist
;
3109 if (unlikely(!object
)) {
3111 * Invoking slow path likely have side-effect
3112 * of re-populating per CPU c->freelist
3114 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3116 if (unlikely(!p
[i
]))
3119 c
= this_cpu_ptr(s
->cpu_slab
);
3120 continue; /* goto for-loop */
3122 c
->freelist
= get_freepointer(s
, object
);
3125 c
->tid
= next_tid(c
->tid
);
3128 /* Clear memory outside IRQ disabled fastpath loop */
3129 if (unlikely(flags
& __GFP_ZERO
)) {
3132 for (j
= 0; j
< i
; j
++)
3133 memset(p
[j
], 0, s
->object_size
);
3136 /* memcg and kmem_cache debug support */
3137 slab_post_alloc_hook(s
, flags
, size
, p
);
3141 slab_post_alloc_hook(s
, flags
, i
, p
);
3142 __kmem_cache_free_bulk(s
, i
, p
);
3145 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3149 * Object placement in a slab is made very easy because we always start at
3150 * offset 0. If we tune the size of the object to the alignment then we can
3151 * get the required alignment by putting one properly sized object after
3154 * Notice that the allocation order determines the sizes of the per cpu
3155 * caches. Each processor has always one slab available for allocations.
3156 * Increasing the allocation order reduces the number of times that slabs
3157 * must be moved on and off the partial lists and is therefore a factor in
3162 * Mininum / Maximum order of slab pages. This influences locking overhead
3163 * and slab fragmentation. A higher order reduces the number of partial slabs
3164 * and increases the number of allocations possible without having to
3165 * take the list_lock.
3167 static int slub_min_order
;
3168 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3169 static int slub_min_objects
;
3172 * Calculate the order of allocation given an slab object size.
3174 * The order of allocation has significant impact on performance and other
3175 * system components. Generally order 0 allocations should be preferred since
3176 * order 0 does not cause fragmentation in the page allocator. Larger objects
3177 * be problematic to put into order 0 slabs because there may be too much
3178 * unused space left. We go to a higher order if more than 1/16th of the slab
3181 * In order to reach satisfactory performance we must ensure that a minimum
3182 * number of objects is in one slab. Otherwise we may generate too much
3183 * activity on the partial lists which requires taking the list_lock. This is
3184 * less a concern for large slabs though which are rarely used.
3186 * slub_max_order specifies the order where we begin to stop considering the
3187 * number of objects in a slab as critical. If we reach slub_max_order then
3188 * we try to keep the page order as low as possible. So we accept more waste
3189 * of space in favor of a small page order.
3191 * Higher order allocations also allow the placement of more objects in a
3192 * slab and thereby reduce object handling overhead. If the user has
3193 * requested a higher mininum order then we start with that one instead of
3194 * the smallest order which will fit the object.
3196 static inline int slab_order(int size
, int min_objects
,
3197 int max_order
, int fract_leftover
, int reserved
)
3201 int min_order
= slub_min_order
;
3203 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
3204 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3206 for (order
= max(min_order
, get_order(min_objects
* size
+ reserved
));
3207 order
<= max_order
; order
++) {
3209 unsigned long slab_size
= PAGE_SIZE
<< order
;
3211 rem
= (slab_size
- reserved
) % size
;
3213 if (rem
<= slab_size
/ fract_leftover
)
3220 static inline int calculate_order(int size
, int reserved
)
3228 * Attempt to find best configuration for a slab. This
3229 * works by first attempting to generate a layout with
3230 * the best configuration and backing off gradually.
3232 * First we increase the acceptable waste in a slab. Then
3233 * we reduce the minimum objects required in a slab.
3235 min_objects
= slub_min_objects
;
3237 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3238 max_objects
= order_objects(slub_max_order
, size
, reserved
);
3239 min_objects
= min(min_objects
, max_objects
);
3241 while (min_objects
> 1) {
3243 while (fraction
>= 4) {
3244 order
= slab_order(size
, min_objects
,
3245 slub_max_order
, fraction
, reserved
);
3246 if (order
<= slub_max_order
)
3254 * We were unable to place multiple objects in a slab. Now
3255 * lets see if we can place a single object there.
3257 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
3258 if (order
<= slub_max_order
)
3262 * Doh this slab cannot be placed using slub_max_order.
3264 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
3265 if (order
< MAX_ORDER
)
3271 init_kmem_cache_node(struct kmem_cache_node
*n
)
3274 spin_lock_init(&n
->list_lock
);
3275 INIT_LIST_HEAD(&n
->partial
);
3276 #ifdef CONFIG_SLUB_DEBUG
3277 atomic_long_set(&n
->nr_slabs
, 0);
3278 atomic_long_set(&n
->total_objects
, 0);
3279 INIT_LIST_HEAD(&n
->full
);
3283 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3285 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3286 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3289 * Must align to double word boundary for the double cmpxchg
3290 * instructions to work; see __pcpu_double_call_return_bool().
3292 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3293 2 * sizeof(void *));
3298 init_kmem_cache_cpus(s
);
3303 static struct kmem_cache
*kmem_cache_node
;
3306 * No kmalloc_node yet so do it by hand. We know that this is the first
3307 * slab on the node for this slabcache. There are no concurrent accesses
3310 * Note that this function only works on the kmem_cache_node
3311 * when allocating for the kmem_cache_node. This is used for bootstrapping
3312 * memory on a fresh node that has no slab structures yet.
3314 static void early_kmem_cache_node_alloc(int node
)
3317 struct kmem_cache_node
*n
;
3319 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3321 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3324 if (page_to_nid(page
) != node
) {
3325 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3326 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3331 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3334 kmem_cache_node
->node
[node
] = n
;
3335 #ifdef CONFIG_SLUB_DEBUG
3336 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3337 init_tracking(kmem_cache_node
, n
);
3339 kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3341 init_kmem_cache_node(n
);
3342 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3345 * No locks need to be taken here as it has just been
3346 * initialized and there is no concurrent access.
3348 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3351 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3354 struct kmem_cache_node
*n
;
3356 for_each_kmem_cache_node(s
, node
, n
) {
3357 kmem_cache_free(kmem_cache_node
, n
);
3358 s
->node
[node
] = NULL
;
3362 void __kmem_cache_release(struct kmem_cache
*s
)
3364 cache_random_seq_destroy(s
);
3365 free_percpu(s
->cpu_slab
);
3366 free_kmem_cache_nodes(s
);
3369 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3373 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3374 struct kmem_cache_node
*n
;
3376 if (slab_state
== DOWN
) {
3377 early_kmem_cache_node_alloc(node
);
3380 n
= kmem_cache_alloc_node(kmem_cache_node
,
3384 free_kmem_cache_nodes(s
);
3389 init_kmem_cache_node(n
);
3394 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3396 if (min
< MIN_PARTIAL
)
3398 else if (min
> MAX_PARTIAL
)
3400 s
->min_partial
= min
;
3404 * calculate_sizes() determines the order and the distribution of data within
3407 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3409 unsigned long flags
= s
->flags
;
3410 size_t size
= s
->object_size
;
3414 * Round up object size to the next word boundary. We can only
3415 * place the free pointer at word boundaries and this determines
3416 * the possible location of the free pointer.
3418 size
= ALIGN(size
, sizeof(void *));
3420 #ifdef CONFIG_SLUB_DEBUG
3422 * Determine if we can poison the object itself. If the user of
3423 * the slab may touch the object after free or before allocation
3424 * then we should never poison the object itself.
3426 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
3428 s
->flags
|= __OBJECT_POISON
;
3430 s
->flags
&= ~__OBJECT_POISON
;
3434 * If we are Redzoning then check if there is some space between the
3435 * end of the object and the free pointer. If not then add an
3436 * additional word to have some bytes to store Redzone information.
3438 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3439 size
+= sizeof(void *);
3443 * With that we have determined the number of bytes in actual use
3444 * by the object. This is the potential offset to the free pointer.
3448 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
3451 * Relocate free pointer after the object if it is not
3452 * permitted to overwrite the first word of the object on
3455 * This is the case if we do RCU, have a constructor or
3456 * destructor or are poisoning the objects.
3459 size
+= sizeof(void *);
3462 #ifdef CONFIG_SLUB_DEBUG
3463 if (flags
& SLAB_STORE_USER
)
3465 * Need to store information about allocs and frees after
3468 size
+= 2 * sizeof(struct track
);
3471 kasan_cache_create(s
, &size
, &s
->flags
);
3472 #ifdef CONFIG_SLUB_DEBUG
3473 if (flags
& SLAB_RED_ZONE
) {
3475 * Add some empty padding so that we can catch
3476 * overwrites from earlier objects rather than let
3477 * tracking information or the free pointer be
3478 * corrupted if a user writes before the start
3481 size
+= sizeof(void *);
3483 s
->red_left_pad
= sizeof(void *);
3484 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3485 size
+= s
->red_left_pad
;
3490 * SLUB stores one object immediately after another beginning from
3491 * offset 0. In order to align the objects we have to simply size
3492 * each object to conform to the alignment.
3494 size
= ALIGN(size
, s
->align
);
3496 if (forced_order
>= 0)
3497 order
= forced_order
;
3499 order
= calculate_order(size
, s
->reserved
);
3506 s
->allocflags
|= __GFP_COMP
;
3508 if (s
->flags
& SLAB_CACHE_DMA
)
3509 s
->allocflags
|= GFP_DMA
;
3511 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3512 s
->allocflags
|= __GFP_RECLAIMABLE
;
3515 * Determine the number of objects per slab
3517 s
->oo
= oo_make(order
, size
, s
->reserved
);
3518 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3519 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3522 return !!oo_objects(s
->oo
);
3525 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3527 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3530 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3531 s
->reserved
= sizeof(struct rcu_head
);
3533 if (!calculate_sizes(s
, -1))
3535 if (disable_higher_order_debug
) {
3537 * Disable debugging flags that store metadata if the min slab
3540 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3541 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3543 if (!calculate_sizes(s
, -1))
3548 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3549 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3550 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3551 /* Enable fast mode */
3552 s
->flags
|= __CMPXCHG_DOUBLE
;
3556 * The larger the object size is, the more pages we want on the partial
3557 * list to avoid pounding the page allocator excessively.
3559 set_min_partial(s
, ilog2(s
->size
) / 2);
3562 * cpu_partial determined the maximum number of objects kept in the
3563 * per cpu partial lists of a processor.
3565 * Per cpu partial lists mainly contain slabs that just have one
3566 * object freed. If they are used for allocation then they can be
3567 * filled up again with minimal effort. The slab will never hit the
3568 * per node partial lists and therefore no locking will be required.
3570 * This setting also determines
3572 * A) The number of objects from per cpu partial slabs dumped to the
3573 * per node list when we reach the limit.
3574 * B) The number of objects in cpu partial slabs to extract from the
3575 * per node list when we run out of per cpu objects. We only fetch
3576 * 50% to keep some capacity around for frees.
3578 if (!kmem_cache_has_cpu_partial(s
))
3580 else if (s
->size
>= PAGE_SIZE
)
3582 else if (s
->size
>= 1024)
3584 else if (s
->size
>= 256)
3585 s
->cpu_partial
= 13;
3587 s
->cpu_partial
= 30;
3590 s
->remote_node_defrag_ratio
= 1000;
3593 /* Initialize the pre-computed randomized freelist if slab is up */
3594 if (slab_state
>= UP
) {
3595 if (init_cache_random_seq(s
))
3599 if (!init_kmem_cache_nodes(s
))
3602 if (alloc_kmem_cache_cpus(s
))
3605 free_kmem_cache_nodes(s
);
3607 if (flags
& SLAB_PANIC
)
3608 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3609 s
->name
, (unsigned long)s
->size
, s
->size
,
3610 oo_order(s
->oo
), s
->offset
, flags
);
3614 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3617 #ifdef CONFIG_SLUB_DEBUG
3618 void *addr
= page_address(page
);
3620 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3621 sizeof(long), GFP_ATOMIC
);
3624 slab_err(s
, page
, text
, s
->name
);
3627 get_map(s
, page
, map
);
3628 for_each_object(p
, s
, addr
, page
->objects
) {
3630 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3631 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3632 print_tracking(s
, p
);
3641 * Attempt to free all partial slabs on a node.
3642 * This is called from __kmem_cache_shutdown(). We must take list_lock
3643 * because sysfs file might still access partial list after the shutdowning.
3645 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3648 struct page
*page
, *h
;
3650 BUG_ON(irqs_disabled());
3651 spin_lock_irq(&n
->list_lock
);
3652 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3654 remove_partial(n
, page
);
3655 list_add(&page
->lru
, &discard
);
3657 list_slab_objects(s
, page
,
3658 "Objects remaining in %s on __kmem_cache_shutdown()");
3661 spin_unlock_irq(&n
->list_lock
);
3663 list_for_each_entry_safe(page
, h
, &discard
, lru
)
3664 discard_slab(s
, page
);
3668 * Release all resources used by a slab cache.
3670 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3673 struct kmem_cache_node
*n
;
3676 /* Attempt to free all objects */
3677 for_each_kmem_cache_node(s
, node
, n
) {
3679 if (n
->nr_partial
|| slabs_node(s
, node
))
3685 /********************************************************************
3687 *******************************************************************/
3689 static int __init
setup_slub_min_order(char *str
)
3691 get_option(&str
, &slub_min_order
);
3696 __setup("slub_min_order=", setup_slub_min_order
);
3698 static int __init
setup_slub_max_order(char *str
)
3700 get_option(&str
, &slub_max_order
);
3701 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3706 __setup("slub_max_order=", setup_slub_max_order
);
3708 static int __init
setup_slub_min_objects(char *str
)
3710 get_option(&str
, &slub_min_objects
);
3715 __setup("slub_min_objects=", setup_slub_min_objects
);
3717 void *__kmalloc(size_t size
, gfp_t flags
)
3719 struct kmem_cache
*s
;
3722 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3723 return kmalloc_large(size
, flags
);
3725 s
= kmalloc_slab(size
, flags
);
3727 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3730 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3732 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3734 kasan_kmalloc(s
, ret
, size
, flags
);
3738 EXPORT_SYMBOL(__kmalloc
);
3741 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3746 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3747 page
= alloc_pages_node(node
, flags
, get_order(size
));
3749 ptr
= page_address(page
);
3751 kmalloc_large_node_hook(ptr
, size
, flags
);
3755 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3757 struct kmem_cache
*s
;
3760 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3761 ret
= kmalloc_large_node(size
, flags
, node
);
3763 trace_kmalloc_node(_RET_IP_
, ret
,
3764 size
, PAGE_SIZE
<< get_order(size
),
3770 s
= kmalloc_slab(size
, flags
);
3772 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3775 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3777 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3779 kasan_kmalloc(s
, ret
, size
, flags
);
3783 EXPORT_SYMBOL(__kmalloc_node
);
3786 #ifdef CONFIG_HARDENED_USERCOPY
3788 * Rejects objects that are incorrectly sized.
3790 * Returns NULL if check passes, otherwise const char * to name of cache
3791 * to indicate an error.
3793 const char *__check_heap_object(const void *ptr
, unsigned long n
,
3796 struct kmem_cache
*s
;
3797 unsigned long offset
;
3800 /* Find object and usable object size. */
3801 s
= page
->slab_cache
;
3802 object_size
= slab_ksize(s
);
3804 /* Reject impossible pointers. */
3805 if (ptr
< page_address(page
))
3808 /* Find offset within object. */
3809 offset
= (ptr
- page_address(page
)) % s
->size
;
3811 /* Adjust for redzone and reject if within the redzone. */
3812 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
) {
3813 if (offset
< s
->red_left_pad
)
3815 offset
-= s
->red_left_pad
;
3818 /* Allow address range falling entirely within object size. */
3819 if (offset
<= object_size
&& n
<= object_size
- offset
)
3824 #endif /* CONFIG_HARDENED_USERCOPY */
3826 static size_t __ksize(const void *object
)
3830 if (unlikely(object
== ZERO_SIZE_PTR
))
3833 page
= virt_to_head_page(object
);
3835 if (unlikely(!PageSlab(page
))) {
3836 WARN_ON(!PageCompound(page
));
3837 return PAGE_SIZE
<< compound_order(page
);
3840 return slab_ksize(page
->slab_cache
);
3843 size_t ksize(const void *object
)
3845 size_t size
= __ksize(object
);
3846 /* We assume that ksize callers could use whole allocated area,
3847 * so we need to unpoison this area.
3849 kasan_unpoison_shadow(object
, size
);
3852 EXPORT_SYMBOL(ksize
);
3854 void kfree(const void *x
)
3857 void *object
= (void *)x
;
3859 trace_kfree(_RET_IP_
, x
);
3861 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3864 page
= virt_to_head_page(x
);
3865 if (unlikely(!PageSlab(page
))) {
3866 BUG_ON(!PageCompound(page
));
3868 __free_pages(page
, compound_order(page
));
3871 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3873 EXPORT_SYMBOL(kfree
);
3875 #define SHRINK_PROMOTE_MAX 32
3878 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3879 * up most to the head of the partial lists. New allocations will then
3880 * fill those up and thus they can be removed from the partial lists.
3882 * The slabs with the least items are placed last. This results in them
3883 * being allocated from last increasing the chance that the last objects
3884 * are freed in them.
3886 int __kmem_cache_shrink(struct kmem_cache
*s
, bool deactivate
)
3890 struct kmem_cache_node
*n
;
3893 struct list_head discard
;
3894 struct list_head promote
[SHRINK_PROMOTE_MAX
];
3895 unsigned long flags
;
3900 * Disable empty slabs caching. Used to avoid pinning offline
3901 * memory cgroups by kmem pages that can be freed.
3907 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3908 * so we have to make sure the change is visible.
3910 synchronize_sched();
3914 for_each_kmem_cache_node(s
, node
, n
) {
3915 INIT_LIST_HEAD(&discard
);
3916 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
3917 INIT_LIST_HEAD(promote
+ i
);
3919 spin_lock_irqsave(&n
->list_lock
, flags
);
3922 * Build lists of slabs to discard or promote.
3924 * Note that concurrent frees may occur while we hold the
3925 * list_lock. page->inuse here is the upper limit.
3927 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3928 int free
= page
->objects
- page
->inuse
;
3930 /* Do not reread page->inuse */
3933 /* We do not keep full slabs on the list */
3936 if (free
== page
->objects
) {
3937 list_move(&page
->lru
, &discard
);
3939 } else if (free
<= SHRINK_PROMOTE_MAX
)
3940 list_move(&page
->lru
, promote
+ free
- 1);
3944 * Promote the slabs filled up most to the head of the
3947 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
3948 list_splice(promote
+ i
, &n
->partial
);
3950 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3952 /* Release empty slabs */
3953 list_for_each_entry_safe(page
, t
, &discard
, lru
)
3954 discard_slab(s
, page
);
3956 if (slabs_node(s
, node
))
3963 static int slab_mem_going_offline_callback(void *arg
)
3965 struct kmem_cache
*s
;
3967 mutex_lock(&slab_mutex
);
3968 list_for_each_entry(s
, &slab_caches
, list
)
3969 __kmem_cache_shrink(s
, false);
3970 mutex_unlock(&slab_mutex
);
3975 static void slab_mem_offline_callback(void *arg
)
3977 struct kmem_cache_node
*n
;
3978 struct kmem_cache
*s
;
3979 struct memory_notify
*marg
= arg
;
3982 offline_node
= marg
->status_change_nid_normal
;
3985 * If the node still has available memory. we need kmem_cache_node
3988 if (offline_node
< 0)
3991 mutex_lock(&slab_mutex
);
3992 list_for_each_entry(s
, &slab_caches
, list
) {
3993 n
= get_node(s
, offline_node
);
3996 * if n->nr_slabs > 0, slabs still exist on the node
3997 * that is going down. We were unable to free them,
3998 * and offline_pages() function shouldn't call this
3999 * callback. So, we must fail.
4001 BUG_ON(slabs_node(s
, offline_node
));
4003 s
->node
[offline_node
] = NULL
;
4004 kmem_cache_free(kmem_cache_node
, n
);
4007 mutex_unlock(&slab_mutex
);
4010 static int slab_mem_going_online_callback(void *arg
)
4012 struct kmem_cache_node
*n
;
4013 struct kmem_cache
*s
;
4014 struct memory_notify
*marg
= arg
;
4015 int nid
= marg
->status_change_nid_normal
;
4019 * If the node's memory is already available, then kmem_cache_node is
4020 * already created. Nothing to do.
4026 * We are bringing a node online. No memory is available yet. We must
4027 * allocate a kmem_cache_node structure in order to bring the node
4030 mutex_lock(&slab_mutex
);
4031 list_for_each_entry(s
, &slab_caches
, list
) {
4033 * XXX: kmem_cache_alloc_node will fallback to other nodes
4034 * since memory is not yet available from the node that
4037 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4042 init_kmem_cache_node(n
);
4046 mutex_unlock(&slab_mutex
);
4050 static int slab_memory_callback(struct notifier_block
*self
,
4051 unsigned long action
, void *arg
)
4056 case MEM_GOING_ONLINE
:
4057 ret
= slab_mem_going_online_callback(arg
);
4059 case MEM_GOING_OFFLINE
:
4060 ret
= slab_mem_going_offline_callback(arg
);
4063 case MEM_CANCEL_ONLINE
:
4064 slab_mem_offline_callback(arg
);
4067 case MEM_CANCEL_OFFLINE
:
4071 ret
= notifier_from_errno(ret
);
4077 static struct notifier_block slab_memory_callback_nb
= {
4078 .notifier_call
= slab_memory_callback
,
4079 .priority
= SLAB_CALLBACK_PRI
,
4082 /********************************************************************
4083 * Basic setup of slabs
4084 *******************************************************************/
4087 * Used for early kmem_cache structures that were allocated using
4088 * the page allocator. Allocate them properly then fix up the pointers
4089 * that may be pointing to the wrong kmem_cache structure.
4092 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4095 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4096 struct kmem_cache_node
*n
;
4098 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4101 * This runs very early, and only the boot processor is supposed to be
4102 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4105 __flush_cpu_slab(s
, smp_processor_id());
4106 for_each_kmem_cache_node(s
, node
, n
) {
4109 list_for_each_entry(p
, &n
->partial
, lru
)
4112 #ifdef CONFIG_SLUB_DEBUG
4113 list_for_each_entry(p
, &n
->full
, lru
)
4117 slab_init_memcg_params(s
);
4118 list_add(&s
->list
, &slab_caches
);
4122 void __init
kmem_cache_init(void)
4124 static __initdata
struct kmem_cache boot_kmem_cache
,
4125 boot_kmem_cache_node
;
4127 if (debug_guardpage_minorder())
4130 kmem_cache_node
= &boot_kmem_cache_node
;
4131 kmem_cache
= &boot_kmem_cache
;
4133 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4134 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
4136 register_hotmemory_notifier(&slab_memory_callback_nb
);
4138 /* Able to allocate the per node structures */
4139 slab_state
= PARTIAL
;
4141 create_boot_cache(kmem_cache
, "kmem_cache",
4142 offsetof(struct kmem_cache
, node
) +
4143 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4144 SLAB_HWCACHE_ALIGN
);
4146 kmem_cache
= bootstrap(&boot_kmem_cache
);
4149 * Allocate kmem_cache_node properly from the kmem_cache slab.
4150 * kmem_cache_node is separately allocated so no need to
4151 * update any list pointers.
4153 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4155 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4156 setup_kmalloc_cache_index_table();
4157 create_kmalloc_caches(0);
4159 /* Setup random freelists for each cache */
4160 init_freelist_randomization();
4162 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4165 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4167 slub_min_order
, slub_max_order
, slub_min_objects
,
4168 nr_cpu_ids
, nr_node_ids
);
4171 void __init
kmem_cache_init_late(void)
4176 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
4177 unsigned long flags
, void (*ctor
)(void *))
4179 struct kmem_cache
*s
, *c
;
4181 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4186 * Adjust the object sizes so that we clear
4187 * the complete object on kzalloc.
4189 s
->object_size
= max(s
->object_size
, (int)size
);
4190 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
4192 for_each_memcg_cache(c
, s
) {
4193 c
->object_size
= s
->object_size
;
4194 c
->inuse
= max_t(int, c
->inuse
,
4195 ALIGN(size
, sizeof(void *)));
4198 if (sysfs_slab_alias(s
, name
)) {
4207 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
4211 err
= kmem_cache_open(s
, flags
);
4215 /* Mutex is not taken during early boot */
4216 if (slab_state
<= UP
)
4219 memcg_propagate_slab_attrs(s
);
4220 err
= sysfs_slab_add(s
);
4222 __kmem_cache_release(s
);
4227 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4229 struct kmem_cache
*s
;
4232 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4233 return kmalloc_large(size
, gfpflags
);
4235 s
= kmalloc_slab(size
, gfpflags
);
4237 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4240 ret
= slab_alloc(s
, gfpflags
, caller
);
4242 /* Honor the call site pointer we received. */
4243 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4249 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4250 int node
, unsigned long caller
)
4252 struct kmem_cache
*s
;
4255 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4256 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4258 trace_kmalloc_node(caller
, ret
,
4259 size
, PAGE_SIZE
<< get_order(size
),
4265 s
= kmalloc_slab(size
, gfpflags
);
4267 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4270 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4272 /* Honor the call site pointer we received. */
4273 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4280 static int count_inuse(struct page
*page
)
4285 static int count_total(struct page
*page
)
4287 return page
->objects
;
4291 #ifdef CONFIG_SLUB_DEBUG
4292 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4296 void *addr
= page_address(page
);
4298 if (!check_slab(s
, page
) ||
4299 !on_freelist(s
, page
, NULL
))
4302 /* Now we know that a valid freelist exists */
4303 bitmap_zero(map
, page
->objects
);
4305 get_map(s
, page
, map
);
4306 for_each_object(p
, s
, addr
, page
->objects
) {
4307 if (test_bit(slab_index(p
, s
, addr
), map
))
4308 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4312 for_each_object(p
, s
, addr
, page
->objects
)
4313 if (!test_bit(slab_index(p
, s
, addr
), map
))
4314 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4319 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4323 validate_slab(s
, page
, map
);
4327 static int validate_slab_node(struct kmem_cache
*s
,
4328 struct kmem_cache_node
*n
, unsigned long *map
)
4330 unsigned long count
= 0;
4332 unsigned long flags
;
4334 spin_lock_irqsave(&n
->list_lock
, flags
);
4336 list_for_each_entry(page
, &n
->partial
, lru
) {
4337 validate_slab_slab(s
, page
, map
);
4340 if (count
!= n
->nr_partial
)
4341 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4342 s
->name
, count
, n
->nr_partial
);
4344 if (!(s
->flags
& SLAB_STORE_USER
))
4347 list_for_each_entry(page
, &n
->full
, lru
) {
4348 validate_slab_slab(s
, page
, map
);
4351 if (count
!= atomic_long_read(&n
->nr_slabs
))
4352 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4353 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4356 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4360 static long validate_slab_cache(struct kmem_cache
*s
)
4363 unsigned long count
= 0;
4364 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4365 sizeof(unsigned long), GFP_KERNEL
);
4366 struct kmem_cache_node
*n
;
4372 for_each_kmem_cache_node(s
, node
, n
)
4373 count
+= validate_slab_node(s
, n
, map
);
4378 * Generate lists of code addresses where slabcache objects are allocated
4383 unsigned long count
;
4390 DECLARE_BITMAP(cpus
, NR_CPUS
);
4396 unsigned long count
;
4397 struct location
*loc
;
4400 static void free_loc_track(struct loc_track
*t
)
4403 free_pages((unsigned long)t
->loc
,
4404 get_order(sizeof(struct location
) * t
->max
));
4407 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4412 order
= get_order(sizeof(struct location
) * max
);
4414 l
= (void *)__get_free_pages(flags
, order
);
4419 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4427 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4428 const struct track
*track
)
4430 long start
, end
, pos
;
4432 unsigned long caddr
;
4433 unsigned long age
= jiffies
- track
->when
;
4439 pos
= start
+ (end
- start
+ 1) / 2;
4442 * There is nothing at "end". If we end up there
4443 * we need to add something to before end.
4448 caddr
= t
->loc
[pos
].addr
;
4449 if (track
->addr
== caddr
) {
4455 if (age
< l
->min_time
)
4457 if (age
> l
->max_time
)
4460 if (track
->pid
< l
->min_pid
)
4461 l
->min_pid
= track
->pid
;
4462 if (track
->pid
> l
->max_pid
)
4463 l
->max_pid
= track
->pid
;
4465 cpumask_set_cpu(track
->cpu
,
4466 to_cpumask(l
->cpus
));
4468 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4472 if (track
->addr
< caddr
)
4479 * Not found. Insert new tracking element.
4481 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4487 (t
->count
- pos
) * sizeof(struct location
));
4490 l
->addr
= track
->addr
;
4494 l
->min_pid
= track
->pid
;
4495 l
->max_pid
= track
->pid
;
4496 cpumask_clear(to_cpumask(l
->cpus
));
4497 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4498 nodes_clear(l
->nodes
);
4499 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4503 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4504 struct page
*page
, enum track_item alloc
,
4507 void *addr
= page_address(page
);
4510 bitmap_zero(map
, page
->objects
);
4511 get_map(s
, page
, map
);
4513 for_each_object(p
, s
, addr
, page
->objects
)
4514 if (!test_bit(slab_index(p
, s
, addr
), map
))
4515 add_location(t
, s
, get_track(s
, p
, alloc
));
4518 static int list_locations(struct kmem_cache
*s
, char *buf
,
4519 enum track_item alloc
)
4523 struct loc_track t
= { 0, 0, NULL
};
4525 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4526 sizeof(unsigned long), GFP_KERNEL
);
4527 struct kmem_cache_node
*n
;
4529 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4532 return sprintf(buf
, "Out of memory\n");
4534 /* Push back cpu slabs */
4537 for_each_kmem_cache_node(s
, node
, n
) {
4538 unsigned long flags
;
4541 if (!atomic_long_read(&n
->nr_slabs
))
4544 spin_lock_irqsave(&n
->list_lock
, flags
);
4545 list_for_each_entry(page
, &n
->partial
, lru
)
4546 process_slab(&t
, s
, page
, alloc
, map
);
4547 list_for_each_entry(page
, &n
->full
, lru
)
4548 process_slab(&t
, s
, page
, alloc
, map
);
4549 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4552 for (i
= 0; i
< t
.count
; i
++) {
4553 struct location
*l
= &t
.loc
[i
];
4555 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4557 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4560 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4562 len
+= sprintf(buf
+ len
, "<not-available>");
4564 if (l
->sum_time
!= l
->min_time
) {
4565 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4567 (long)div_u64(l
->sum_time
, l
->count
),
4570 len
+= sprintf(buf
+ len
, " age=%ld",
4573 if (l
->min_pid
!= l
->max_pid
)
4574 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4575 l
->min_pid
, l
->max_pid
);
4577 len
+= sprintf(buf
+ len
, " pid=%ld",
4580 if (num_online_cpus() > 1 &&
4581 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4582 len
< PAGE_SIZE
- 60)
4583 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4585 cpumask_pr_args(to_cpumask(l
->cpus
)));
4587 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4588 len
< PAGE_SIZE
- 60)
4589 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4591 nodemask_pr_args(&l
->nodes
));
4593 len
+= sprintf(buf
+ len
, "\n");
4599 len
+= sprintf(buf
, "No data\n");
4604 #ifdef SLUB_RESILIENCY_TEST
4605 static void __init
resiliency_test(void)
4609 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4611 pr_err("SLUB resiliency testing\n");
4612 pr_err("-----------------------\n");
4613 pr_err("A. Corruption after allocation\n");
4615 p
= kzalloc(16, GFP_KERNEL
);
4617 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4620 validate_slab_cache(kmalloc_caches
[4]);
4622 /* Hmmm... The next two are dangerous */
4623 p
= kzalloc(32, GFP_KERNEL
);
4624 p
[32 + sizeof(void *)] = 0x34;
4625 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4627 pr_err("If allocated object is overwritten then not detectable\n\n");
4629 validate_slab_cache(kmalloc_caches
[5]);
4630 p
= kzalloc(64, GFP_KERNEL
);
4631 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4633 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4635 pr_err("If allocated object is overwritten then not detectable\n\n");
4636 validate_slab_cache(kmalloc_caches
[6]);
4638 pr_err("\nB. Corruption after free\n");
4639 p
= kzalloc(128, GFP_KERNEL
);
4642 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4643 validate_slab_cache(kmalloc_caches
[7]);
4645 p
= kzalloc(256, GFP_KERNEL
);
4648 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4649 validate_slab_cache(kmalloc_caches
[8]);
4651 p
= kzalloc(512, GFP_KERNEL
);
4654 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4655 validate_slab_cache(kmalloc_caches
[9]);
4659 static void resiliency_test(void) {};
4664 enum slab_stat_type
{
4665 SL_ALL
, /* All slabs */
4666 SL_PARTIAL
, /* Only partially allocated slabs */
4667 SL_CPU
, /* Only slabs used for cpu caches */
4668 SL_OBJECTS
, /* Determine allocated objects not slabs */
4669 SL_TOTAL
/* Determine object capacity not slabs */
4672 #define SO_ALL (1 << SL_ALL)
4673 #define SO_PARTIAL (1 << SL_PARTIAL)
4674 #define SO_CPU (1 << SL_CPU)
4675 #define SO_OBJECTS (1 << SL_OBJECTS)
4676 #define SO_TOTAL (1 << SL_TOTAL)
4678 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4679 char *buf
, unsigned long flags
)
4681 unsigned long total
= 0;
4684 unsigned long *nodes
;
4686 nodes
= kzalloc(sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4690 if (flags
& SO_CPU
) {
4693 for_each_possible_cpu(cpu
) {
4694 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4699 page
= READ_ONCE(c
->page
);
4703 node
= page_to_nid(page
);
4704 if (flags
& SO_TOTAL
)
4706 else if (flags
& SO_OBJECTS
)
4714 page
= READ_ONCE(c
->partial
);
4716 node
= page_to_nid(page
);
4717 if (flags
& SO_TOTAL
)
4719 else if (flags
& SO_OBJECTS
)
4730 #ifdef CONFIG_SLUB_DEBUG
4731 if (flags
& SO_ALL
) {
4732 struct kmem_cache_node
*n
;
4734 for_each_kmem_cache_node(s
, node
, n
) {
4736 if (flags
& SO_TOTAL
)
4737 x
= atomic_long_read(&n
->total_objects
);
4738 else if (flags
& SO_OBJECTS
)
4739 x
= atomic_long_read(&n
->total_objects
) -
4740 count_partial(n
, count_free
);
4742 x
= atomic_long_read(&n
->nr_slabs
);
4749 if (flags
& SO_PARTIAL
) {
4750 struct kmem_cache_node
*n
;
4752 for_each_kmem_cache_node(s
, node
, n
) {
4753 if (flags
& SO_TOTAL
)
4754 x
= count_partial(n
, count_total
);
4755 else if (flags
& SO_OBJECTS
)
4756 x
= count_partial(n
, count_inuse
);
4763 x
= sprintf(buf
, "%lu", total
);
4765 for (node
= 0; node
< nr_node_ids
; node
++)
4767 x
+= sprintf(buf
+ x
, " N%d=%lu",
4772 return x
+ sprintf(buf
+ x
, "\n");
4775 #ifdef CONFIG_SLUB_DEBUG
4776 static int any_slab_objects(struct kmem_cache
*s
)
4779 struct kmem_cache_node
*n
;
4781 for_each_kmem_cache_node(s
, node
, n
)
4782 if (atomic_long_read(&n
->total_objects
))
4789 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4790 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4792 struct slab_attribute
{
4793 struct attribute attr
;
4794 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4795 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4798 #define SLAB_ATTR_RO(_name) \
4799 static struct slab_attribute _name##_attr = \
4800 __ATTR(_name, 0400, _name##_show, NULL)
4802 #define SLAB_ATTR(_name) \
4803 static struct slab_attribute _name##_attr = \
4804 __ATTR(_name, 0600, _name##_show, _name##_store)
4806 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4808 return sprintf(buf
, "%d\n", s
->size
);
4810 SLAB_ATTR_RO(slab_size
);
4812 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4814 return sprintf(buf
, "%d\n", s
->align
);
4816 SLAB_ATTR_RO(align
);
4818 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4820 return sprintf(buf
, "%d\n", s
->object_size
);
4822 SLAB_ATTR_RO(object_size
);
4824 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4826 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4828 SLAB_ATTR_RO(objs_per_slab
);
4830 static ssize_t
order_store(struct kmem_cache
*s
,
4831 const char *buf
, size_t length
)
4833 unsigned long order
;
4836 err
= kstrtoul(buf
, 10, &order
);
4840 if (order
> slub_max_order
|| order
< slub_min_order
)
4843 calculate_sizes(s
, order
);
4847 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4849 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4853 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4855 return sprintf(buf
, "%lu\n", s
->min_partial
);
4858 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4864 err
= kstrtoul(buf
, 10, &min
);
4868 set_min_partial(s
, min
);
4871 SLAB_ATTR(min_partial
);
4873 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4875 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4878 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4881 unsigned long objects
;
4884 err
= kstrtoul(buf
, 10, &objects
);
4887 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4890 s
->cpu_partial
= objects
;
4894 SLAB_ATTR(cpu_partial
);
4896 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4900 return sprintf(buf
, "%pS\n", s
->ctor
);
4904 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4906 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
4908 SLAB_ATTR_RO(aliases
);
4910 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4912 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4914 SLAB_ATTR_RO(partial
);
4916 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4918 return show_slab_objects(s
, buf
, SO_CPU
);
4920 SLAB_ATTR_RO(cpu_slabs
);
4922 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4924 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4926 SLAB_ATTR_RO(objects
);
4928 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4930 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4932 SLAB_ATTR_RO(objects_partial
);
4934 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4941 for_each_online_cpu(cpu
) {
4942 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4945 pages
+= page
->pages
;
4946 objects
+= page
->pobjects
;
4950 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4953 for_each_online_cpu(cpu
) {
4954 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4956 if (page
&& len
< PAGE_SIZE
- 20)
4957 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4958 page
->pobjects
, page
->pages
);
4961 return len
+ sprintf(buf
+ len
, "\n");
4963 SLAB_ATTR_RO(slabs_cpu_partial
);
4965 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4967 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4970 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4971 const char *buf
, size_t length
)
4973 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4975 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4978 SLAB_ATTR(reclaim_account
);
4980 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4982 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4984 SLAB_ATTR_RO(hwcache_align
);
4986 #ifdef CONFIG_ZONE_DMA
4987 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4989 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4991 SLAB_ATTR_RO(cache_dma
);
4994 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4996 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4998 SLAB_ATTR_RO(destroy_by_rcu
);
5000 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
5002 return sprintf(buf
, "%d\n", s
->reserved
);
5004 SLAB_ATTR_RO(reserved
);
5006 #ifdef CONFIG_SLUB_DEBUG
5007 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
5009 return show_slab_objects(s
, buf
, SO_ALL
);
5011 SLAB_ATTR_RO(slabs
);
5013 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5015 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5017 SLAB_ATTR_RO(total_objects
);
5019 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5021 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5024 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
5025 const char *buf
, size_t length
)
5027 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
5028 if (buf
[0] == '1') {
5029 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5030 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
5034 SLAB_ATTR(sanity_checks
);
5036 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5038 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5041 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
5045 * Tracing a merged cache is going to give confusing results
5046 * as well as cause other issues like converting a mergeable
5047 * cache into an umergeable one.
5049 if (s
->refcount
> 1)
5052 s
->flags
&= ~SLAB_TRACE
;
5053 if (buf
[0] == '1') {
5054 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5055 s
->flags
|= SLAB_TRACE
;
5061 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5063 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5066 static ssize_t
red_zone_store(struct kmem_cache
*s
,
5067 const char *buf
, size_t length
)
5069 if (any_slab_objects(s
))
5072 s
->flags
&= ~SLAB_RED_ZONE
;
5073 if (buf
[0] == '1') {
5074 s
->flags
|= SLAB_RED_ZONE
;
5076 calculate_sizes(s
, -1);
5079 SLAB_ATTR(red_zone
);
5081 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5083 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5086 static ssize_t
poison_store(struct kmem_cache
*s
,
5087 const char *buf
, size_t length
)
5089 if (any_slab_objects(s
))
5092 s
->flags
&= ~SLAB_POISON
;
5093 if (buf
[0] == '1') {
5094 s
->flags
|= SLAB_POISON
;
5096 calculate_sizes(s
, -1);
5101 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5103 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5106 static ssize_t
store_user_store(struct kmem_cache
*s
,
5107 const char *buf
, size_t length
)
5109 if (any_slab_objects(s
))
5112 s
->flags
&= ~SLAB_STORE_USER
;
5113 if (buf
[0] == '1') {
5114 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5115 s
->flags
|= SLAB_STORE_USER
;
5117 calculate_sizes(s
, -1);
5120 SLAB_ATTR(store_user
);
5122 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5127 static ssize_t
validate_store(struct kmem_cache
*s
,
5128 const char *buf
, size_t length
)
5132 if (buf
[0] == '1') {
5133 ret
= validate_slab_cache(s
);
5139 SLAB_ATTR(validate
);
5141 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5143 if (!(s
->flags
& SLAB_STORE_USER
))
5145 return list_locations(s
, buf
, TRACK_ALLOC
);
5147 SLAB_ATTR_RO(alloc_calls
);
5149 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5151 if (!(s
->flags
& SLAB_STORE_USER
))
5153 return list_locations(s
, buf
, TRACK_FREE
);
5155 SLAB_ATTR_RO(free_calls
);
5156 #endif /* CONFIG_SLUB_DEBUG */
5158 #ifdef CONFIG_FAILSLAB
5159 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5161 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5164 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
5167 if (s
->refcount
> 1)
5170 s
->flags
&= ~SLAB_FAILSLAB
;
5172 s
->flags
|= SLAB_FAILSLAB
;
5175 SLAB_ATTR(failslab
);
5178 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5183 static ssize_t
shrink_store(struct kmem_cache
*s
,
5184 const char *buf
, size_t length
)
5187 kmem_cache_shrink(s
);
5195 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5197 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
5200 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5201 const char *buf
, size_t length
)
5203 unsigned long ratio
;
5206 err
= kstrtoul(buf
, 10, &ratio
);
5211 s
->remote_node_defrag_ratio
= ratio
* 10;
5215 SLAB_ATTR(remote_node_defrag_ratio
);
5218 #ifdef CONFIG_SLUB_STATS
5219 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5221 unsigned long sum
= 0;
5224 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
5229 for_each_online_cpu(cpu
) {
5230 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5236 len
= sprintf(buf
, "%lu", sum
);
5239 for_each_online_cpu(cpu
) {
5240 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5241 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5245 return len
+ sprintf(buf
+ len
, "\n");
5248 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5252 for_each_online_cpu(cpu
)
5253 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5256 #define STAT_ATTR(si, text) \
5257 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5259 return show_stat(s, buf, si); \
5261 static ssize_t text##_store(struct kmem_cache *s, \
5262 const char *buf, size_t length) \
5264 if (buf[0] != '0') \
5266 clear_stat(s, si); \
5271 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5272 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5273 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5274 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5275 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5276 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5277 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5278 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5279 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5280 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5281 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5282 STAT_ATTR(FREE_SLAB
, free_slab
);
5283 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5284 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5285 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5286 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5287 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5288 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5289 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5290 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5291 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5292 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5293 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5294 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5295 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5296 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5299 static struct attribute
*slab_attrs
[] = {
5300 &slab_size_attr
.attr
,
5301 &object_size_attr
.attr
,
5302 &objs_per_slab_attr
.attr
,
5304 &min_partial_attr
.attr
,
5305 &cpu_partial_attr
.attr
,
5307 &objects_partial_attr
.attr
,
5309 &cpu_slabs_attr
.attr
,
5313 &hwcache_align_attr
.attr
,
5314 &reclaim_account_attr
.attr
,
5315 &destroy_by_rcu_attr
.attr
,
5317 &reserved_attr
.attr
,
5318 &slabs_cpu_partial_attr
.attr
,
5319 #ifdef CONFIG_SLUB_DEBUG
5320 &total_objects_attr
.attr
,
5322 &sanity_checks_attr
.attr
,
5324 &red_zone_attr
.attr
,
5326 &store_user_attr
.attr
,
5327 &validate_attr
.attr
,
5328 &alloc_calls_attr
.attr
,
5329 &free_calls_attr
.attr
,
5331 #ifdef CONFIG_ZONE_DMA
5332 &cache_dma_attr
.attr
,
5335 &remote_node_defrag_ratio_attr
.attr
,
5337 #ifdef CONFIG_SLUB_STATS
5338 &alloc_fastpath_attr
.attr
,
5339 &alloc_slowpath_attr
.attr
,
5340 &free_fastpath_attr
.attr
,
5341 &free_slowpath_attr
.attr
,
5342 &free_frozen_attr
.attr
,
5343 &free_add_partial_attr
.attr
,
5344 &free_remove_partial_attr
.attr
,
5345 &alloc_from_partial_attr
.attr
,
5346 &alloc_slab_attr
.attr
,
5347 &alloc_refill_attr
.attr
,
5348 &alloc_node_mismatch_attr
.attr
,
5349 &free_slab_attr
.attr
,
5350 &cpuslab_flush_attr
.attr
,
5351 &deactivate_full_attr
.attr
,
5352 &deactivate_empty_attr
.attr
,
5353 &deactivate_to_head_attr
.attr
,
5354 &deactivate_to_tail_attr
.attr
,
5355 &deactivate_remote_frees_attr
.attr
,
5356 &deactivate_bypass_attr
.attr
,
5357 &order_fallback_attr
.attr
,
5358 &cmpxchg_double_fail_attr
.attr
,
5359 &cmpxchg_double_cpu_fail_attr
.attr
,
5360 &cpu_partial_alloc_attr
.attr
,
5361 &cpu_partial_free_attr
.attr
,
5362 &cpu_partial_node_attr
.attr
,
5363 &cpu_partial_drain_attr
.attr
,
5365 #ifdef CONFIG_FAILSLAB
5366 &failslab_attr
.attr
,
5372 static struct attribute_group slab_attr_group
= {
5373 .attrs
= slab_attrs
,
5376 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5377 struct attribute
*attr
,
5380 struct slab_attribute
*attribute
;
5381 struct kmem_cache
*s
;
5384 attribute
= to_slab_attr(attr
);
5387 if (!attribute
->show
)
5390 err
= attribute
->show(s
, buf
);
5395 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5396 struct attribute
*attr
,
5397 const char *buf
, size_t len
)
5399 struct slab_attribute
*attribute
;
5400 struct kmem_cache
*s
;
5403 attribute
= to_slab_attr(attr
);
5406 if (!attribute
->store
)
5409 err
= attribute
->store(s
, buf
, len
);
5411 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5412 struct kmem_cache
*c
;
5414 mutex_lock(&slab_mutex
);
5415 if (s
->max_attr_size
< len
)
5416 s
->max_attr_size
= len
;
5419 * This is a best effort propagation, so this function's return
5420 * value will be determined by the parent cache only. This is
5421 * basically because not all attributes will have a well
5422 * defined semantics for rollbacks - most of the actions will
5423 * have permanent effects.
5425 * Returning the error value of any of the children that fail
5426 * is not 100 % defined, in the sense that users seeing the
5427 * error code won't be able to know anything about the state of
5430 * Only returning the error code for the parent cache at least
5431 * has well defined semantics. The cache being written to
5432 * directly either failed or succeeded, in which case we loop
5433 * through the descendants with best-effort propagation.
5435 for_each_memcg_cache(c
, s
)
5436 attribute
->store(c
, buf
, len
);
5437 mutex_unlock(&slab_mutex
);
5443 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5447 char *buffer
= NULL
;
5448 struct kmem_cache
*root_cache
;
5450 if (is_root_cache(s
))
5453 root_cache
= s
->memcg_params
.root_cache
;
5456 * This mean this cache had no attribute written. Therefore, no point
5457 * in copying default values around
5459 if (!root_cache
->max_attr_size
)
5462 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5465 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5467 if (!attr
|| !attr
->store
|| !attr
->show
)
5471 * It is really bad that we have to allocate here, so we will
5472 * do it only as a fallback. If we actually allocate, though,
5473 * we can just use the allocated buffer until the end.
5475 * Most of the slub attributes will tend to be very small in
5476 * size, but sysfs allows buffers up to a page, so they can
5477 * theoretically happen.
5481 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5484 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5485 if (WARN_ON(!buffer
))
5490 attr
->show(root_cache
, buf
);
5491 attr
->store(s
, buf
, strlen(buf
));
5495 free_page((unsigned long)buffer
);
5499 static void kmem_cache_release(struct kobject
*k
)
5501 slab_kmem_cache_release(to_slab(k
));
5504 static const struct sysfs_ops slab_sysfs_ops
= {
5505 .show
= slab_attr_show
,
5506 .store
= slab_attr_store
,
5509 static struct kobj_type slab_ktype
= {
5510 .sysfs_ops
= &slab_sysfs_ops
,
5511 .release
= kmem_cache_release
,
5514 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5516 struct kobj_type
*ktype
= get_ktype(kobj
);
5518 if (ktype
== &slab_ktype
)
5523 static const struct kset_uevent_ops slab_uevent_ops
= {
5524 .filter
= uevent_filter
,
5527 static struct kset
*slab_kset
;
5529 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5532 if (!is_root_cache(s
))
5533 return s
->memcg_params
.root_cache
->memcg_kset
;
5538 #define ID_STR_LENGTH 64
5540 /* Create a unique string id for a slab cache:
5542 * Format :[flags-]size
5544 static char *create_unique_id(struct kmem_cache
*s
)
5546 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5553 * First flags affecting slabcache operations. We will only
5554 * get here for aliasable slabs so we do not need to support
5555 * too many flags. The flags here must cover all flags that
5556 * are matched during merging to guarantee that the id is
5559 if (s
->flags
& SLAB_CACHE_DMA
)
5561 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5563 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5565 if (!(s
->flags
& SLAB_NOTRACK
))
5567 if (s
->flags
& SLAB_ACCOUNT
)
5571 p
+= sprintf(p
, "%07d", s
->size
);
5573 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5577 static int sysfs_slab_add(struct kmem_cache
*s
)
5581 int unmergeable
= slab_unmergeable(s
);
5585 * Slabcache can never be merged so we can use the name proper.
5586 * This is typically the case for debug situations. In that
5587 * case we can catch duplicate names easily.
5589 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5593 * Create a unique name for the slab as a target
5596 name
= create_unique_id(s
);
5599 s
->kobj
.kset
= cache_kset(s
);
5600 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5604 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5609 if (is_root_cache(s
)) {
5610 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5611 if (!s
->memcg_kset
) {
5618 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5620 /* Setup first alias */
5621 sysfs_slab_alias(s
, s
->name
);
5628 kobject_del(&s
->kobj
);
5632 void sysfs_slab_remove(struct kmem_cache
*s
)
5634 if (slab_state
< FULL
)
5636 * Sysfs has not been setup yet so no need to remove the
5642 kset_unregister(s
->memcg_kset
);
5644 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5645 kobject_del(&s
->kobj
);
5646 kobject_put(&s
->kobj
);
5650 * Need to buffer aliases during bootup until sysfs becomes
5651 * available lest we lose that information.
5653 struct saved_alias
{
5654 struct kmem_cache
*s
;
5656 struct saved_alias
*next
;
5659 static struct saved_alias
*alias_list
;
5661 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5663 struct saved_alias
*al
;
5665 if (slab_state
== FULL
) {
5667 * If we have a leftover link then remove it.
5669 sysfs_remove_link(&slab_kset
->kobj
, name
);
5670 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5673 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5679 al
->next
= alias_list
;
5684 static int __init
slab_sysfs_init(void)
5686 struct kmem_cache
*s
;
5689 mutex_lock(&slab_mutex
);
5691 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5693 mutex_unlock(&slab_mutex
);
5694 pr_err("Cannot register slab subsystem.\n");
5700 list_for_each_entry(s
, &slab_caches
, list
) {
5701 err
= sysfs_slab_add(s
);
5703 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5707 while (alias_list
) {
5708 struct saved_alias
*al
= alias_list
;
5710 alias_list
= alias_list
->next
;
5711 err
= sysfs_slab_alias(al
->s
, al
->name
);
5713 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5718 mutex_unlock(&slab_mutex
);
5723 __initcall(slab_sysfs_init
);
5724 #endif /* CONFIG_SYSFS */
5727 * The /proc/slabinfo ABI
5729 #ifdef CONFIG_SLABINFO
5730 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5732 unsigned long nr_slabs
= 0;
5733 unsigned long nr_objs
= 0;
5734 unsigned long nr_free
= 0;
5736 struct kmem_cache_node
*n
;
5738 for_each_kmem_cache_node(s
, node
, n
) {
5739 nr_slabs
+= node_nr_slabs(n
);
5740 nr_objs
+= node_nr_objs(n
);
5741 nr_free
+= count_partial(n
, count_free
);
5744 sinfo
->active_objs
= nr_objs
- nr_free
;
5745 sinfo
->num_objs
= nr_objs
;
5746 sinfo
->active_slabs
= nr_slabs
;
5747 sinfo
->num_slabs
= nr_slabs
;
5748 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5749 sinfo
->cache_order
= oo_order(s
->oo
);
5752 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5756 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5757 size_t count
, loff_t
*ppos
)
5761 #endif /* CONFIG_SLABINFO */