2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/sched/mm.h>
106 #include <linux/timer.h>
107 #include <linux/string.h>
108 #include <linux/sockios.h>
109 #include <linux/net.h>
110 #include <linux/mm.h>
111 #include <linux/slab.h>
112 #include <linux/interrupt.h>
113 #include <linux/poll.h>
114 #include <linux/tcp.h>
115 #include <linux/init.h>
116 #include <linux/highmem.h>
117 #include <linux/user_namespace.h>
118 #include <linux/static_key.h>
119 #include <linux/memcontrol.h>
120 #include <linux/prefetch.h>
122 #include <linux/uaccess.h>
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <linux/net_tstamp.h>
131 #include <net/xfrm.h>
132 #include <linux/ipsec.h>
133 #include <net/cls_cgroup.h>
134 #include <net/netprio_cgroup.h>
135 #include <linux/sock_diag.h>
137 #include <linux/filter.h>
138 #include <net/sock_reuseport.h>
140 #include <trace/events/sock.h>
143 #include <net/busy_poll.h>
145 static DEFINE_MUTEX(proto_list_mutex
);
146 static LIST_HEAD(proto_list
);
148 static void sock_inuse_add(struct net
*net
, int val
);
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
160 bool sk_ns_capable(const struct sock
*sk
,
161 struct user_namespace
*user_ns
, int cap
)
163 return file_ns_capable(sk
->sk_socket
->file
, user_ns
, cap
) &&
164 ns_capable(user_ns
, cap
);
166 EXPORT_SYMBOL(sk_ns_capable
);
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
177 bool sk_capable(const struct sock
*sk
, int cap
)
179 return sk_ns_capable(sk
, &init_user_ns
, cap
);
181 EXPORT_SYMBOL(sk_capable
);
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
192 bool sk_net_capable(const struct sock
*sk
, int cap
)
194 return sk_ns_capable(sk
, sock_net(sk
)->user_ns
, cap
);
196 EXPORT_SYMBOL(sk_net_capable
);
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family and separate keys for internal and
203 static struct lock_class_key af_family_keys
[AF_MAX
];
204 static struct lock_class_key af_family_kern_keys
[AF_MAX
];
205 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
206 static struct lock_class_key af_family_kern_slock_keys
[AF_MAX
];
209 * Make lock validator output more readable. (we pre-construct these
210 * strings build-time, so that runtime initialization of socket
214 #define _sock_locks(x) \
215 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
216 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
217 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
218 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
219 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
220 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
221 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
222 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
223 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
224 x "27" , x "28" , x "AF_CAN" , \
225 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
226 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
227 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
228 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
229 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
232 static const char *const af_family_key_strings
[AF_MAX
+1] = {
233 _sock_locks("sk_lock-")
235 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
236 _sock_locks("slock-")
238 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
239 _sock_locks("clock-")
242 static const char *const af_family_kern_key_strings
[AF_MAX
+1] = {
243 _sock_locks("k-sk_lock-")
245 static const char *const af_family_kern_slock_key_strings
[AF_MAX
+1] = {
246 _sock_locks("k-slock-")
248 static const char *const af_family_kern_clock_key_strings
[AF_MAX
+1] = {
249 _sock_locks("k-clock-")
251 static const char *const af_family_rlock_key_strings
[AF_MAX
+1] = {
252 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" ,
253 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK",
254 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" ,
255 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" ,
256 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" ,
257 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" ,
258 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" ,
259 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" ,
260 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" ,
261 "rlock-27" , "rlock-28" , "rlock-AF_CAN" ,
262 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" ,
263 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" ,
264 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" ,
265 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" ,
266 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_XDP" ,
269 static const char *const af_family_wlock_key_strings
[AF_MAX
+1] = {
270 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" ,
271 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK",
272 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" ,
273 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" ,
274 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" ,
275 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" ,
276 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" ,
277 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" ,
278 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" ,
279 "wlock-27" , "wlock-28" , "wlock-AF_CAN" ,
280 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" ,
281 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" ,
282 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" ,
283 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" ,
284 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_XDP" ,
287 static const char *const af_family_elock_key_strings
[AF_MAX
+1] = {
288 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" ,
289 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK",
290 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" ,
291 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" ,
292 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" ,
293 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" ,
294 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" ,
295 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" ,
296 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" ,
297 "elock-27" , "elock-28" , "elock-AF_CAN" ,
298 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" ,
299 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" ,
300 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" ,
301 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" ,
302 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_XDP" ,
307 * sk_callback_lock and sk queues locking rules are per-address-family,
308 * so split the lock classes by using a per-AF key:
310 static struct lock_class_key af_callback_keys
[AF_MAX
];
311 static struct lock_class_key af_rlock_keys
[AF_MAX
];
312 static struct lock_class_key af_wlock_keys
[AF_MAX
];
313 static struct lock_class_key af_elock_keys
[AF_MAX
];
314 static struct lock_class_key af_kern_callback_keys
[AF_MAX
];
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
318 EXPORT_SYMBOL(sysctl_wmem_max
);
319 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
320 EXPORT_SYMBOL(sysctl_rmem_max
);
321 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
322 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
326 EXPORT_SYMBOL(sysctl_optmem_max
);
328 int sysctl_tstamp_allow_data __read_mostly
= 1;
330 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key
);
331 EXPORT_SYMBOL_GPL(memalloc_socks_key
);
334 * sk_set_memalloc - sets %SOCK_MEMALLOC
335 * @sk: socket to set it on
337 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
338 * It's the responsibility of the admin to adjust min_free_kbytes
339 * to meet the requirements
341 void sk_set_memalloc(struct sock
*sk
)
343 sock_set_flag(sk
, SOCK_MEMALLOC
);
344 sk
->sk_allocation
|= __GFP_MEMALLOC
;
345 static_branch_inc(&memalloc_socks_key
);
347 EXPORT_SYMBOL_GPL(sk_set_memalloc
);
349 void sk_clear_memalloc(struct sock
*sk
)
351 sock_reset_flag(sk
, SOCK_MEMALLOC
);
352 sk
->sk_allocation
&= ~__GFP_MEMALLOC
;
353 static_branch_dec(&memalloc_socks_key
);
356 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
357 * progress of swapping. SOCK_MEMALLOC may be cleared while
358 * it has rmem allocations due to the last swapfile being deactivated
359 * but there is a risk that the socket is unusable due to exceeding
360 * the rmem limits. Reclaim the reserves and obey rmem limits again.
364 EXPORT_SYMBOL_GPL(sk_clear_memalloc
);
366 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
369 unsigned int noreclaim_flag
;
371 /* these should have been dropped before queueing */
372 BUG_ON(!sock_flag(sk
, SOCK_MEMALLOC
));
374 noreclaim_flag
= memalloc_noreclaim_save();
375 ret
= sk
->sk_backlog_rcv(sk
, skb
);
376 memalloc_noreclaim_restore(noreclaim_flag
);
380 EXPORT_SYMBOL(__sk_backlog_rcv
);
382 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
386 if (optlen
< sizeof(tv
))
388 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
390 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
394 static int warned __read_mostly
;
397 if (warned
< 10 && net_ratelimit()) {
399 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
400 __func__
, current
->comm
, task_pid_nr(current
));
404 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
405 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
407 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
408 *timeo_p
= tv
.tv_sec
* HZ
+ DIV_ROUND_UP(tv
.tv_usec
, USEC_PER_SEC
/ HZ
);
412 static void sock_warn_obsolete_bsdism(const char *name
)
415 static char warncomm
[TASK_COMM_LEN
];
416 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
417 strcpy(warncomm
, current
->comm
);
418 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
424 static bool sock_needs_netstamp(const struct sock
*sk
)
426 switch (sk
->sk_family
) {
435 static void sock_disable_timestamp(struct sock
*sk
, unsigned long flags
)
437 if (sk
->sk_flags
& flags
) {
438 sk
->sk_flags
&= ~flags
;
439 if (sock_needs_netstamp(sk
) &&
440 !(sk
->sk_flags
& SK_FLAGS_TIMESTAMP
))
441 net_disable_timestamp();
446 int __sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
449 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
451 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
) {
452 atomic_inc(&sk
->sk_drops
);
453 trace_sock_rcvqueue_full(sk
, skb
);
457 if (!sk_rmem_schedule(sk
, skb
, skb
->truesize
)) {
458 atomic_inc(&sk
->sk_drops
);
463 skb_set_owner_r(skb
, sk
);
465 /* we escape from rcu protected region, make sure we dont leak
470 spin_lock_irqsave(&list
->lock
, flags
);
471 sock_skb_set_dropcount(sk
, skb
);
472 __skb_queue_tail(list
, skb
);
473 spin_unlock_irqrestore(&list
->lock
, flags
);
475 if (!sock_flag(sk
, SOCK_DEAD
))
476 sk
->sk_data_ready(sk
);
479 EXPORT_SYMBOL(__sock_queue_rcv_skb
);
481 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
485 err
= sk_filter(sk
, skb
);
489 return __sock_queue_rcv_skb(sk
, skb
);
491 EXPORT_SYMBOL(sock_queue_rcv_skb
);
493 int __sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
,
494 const int nested
, unsigned int trim_cap
, bool refcounted
)
496 int rc
= NET_RX_SUCCESS
;
498 if (sk_filter_trim_cap(sk
, skb
, trim_cap
))
499 goto discard_and_relse
;
503 if (sk_rcvqueues_full(sk
, sk
->sk_rcvbuf
)) {
504 atomic_inc(&sk
->sk_drops
);
505 goto discard_and_relse
;
508 bh_lock_sock_nested(sk
);
511 if (!sock_owned_by_user(sk
)) {
513 * trylock + unlock semantics:
515 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
517 rc
= sk_backlog_rcv(sk
, skb
);
519 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
520 } else if (sk_add_backlog(sk
, skb
, sk
->sk_rcvbuf
)) {
522 atomic_inc(&sk
->sk_drops
);
523 goto discard_and_relse
;
535 EXPORT_SYMBOL(__sk_receive_skb
);
537 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
539 struct dst_entry
*dst
= __sk_dst_get(sk
);
541 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
542 sk_tx_queue_clear(sk
);
543 sk
->sk_dst_pending_confirm
= 0;
544 RCU_INIT_POINTER(sk
->sk_dst_cache
, NULL
);
551 EXPORT_SYMBOL(__sk_dst_check
);
553 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
555 struct dst_entry
*dst
= sk_dst_get(sk
);
557 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
565 EXPORT_SYMBOL(sk_dst_check
);
567 static int sock_setbindtodevice(struct sock
*sk
, char __user
*optval
,
570 int ret
= -ENOPROTOOPT
;
571 #ifdef CONFIG_NETDEVICES
572 struct net
*net
= sock_net(sk
);
573 char devname
[IFNAMSIZ
];
578 if (!ns_capable(net
->user_ns
, CAP_NET_RAW
))
585 /* Bind this socket to a particular device like "eth0",
586 * as specified in the passed interface name. If the
587 * name is "" or the option length is zero the socket
590 if (optlen
> IFNAMSIZ
- 1)
591 optlen
= IFNAMSIZ
- 1;
592 memset(devname
, 0, sizeof(devname
));
595 if (copy_from_user(devname
, optval
, optlen
))
599 if (devname
[0] != '\0') {
600 struct net_device
*dev
;
603 dev
= dev_get_by_name_rcu(net
, devname
);
605 index
= dev
->ifindex
;
613 sk
->sk_bound_dev_if
= index
;
625 static int sock_getbindtodevice(struct sock
*sk
, char __user
*optval
,
626 int __user
*optlen
, int len
)
628 int ret
= -ENOPROTOOPT
;
629 #ifdef CONFIG_NETDEVICES
630 struct net
*net
= sock_net(sk
);
631 char devname
[IFNAMSIZ
];
633 if (sk
->sk_bound_dev_if
== 0) {
642 ret
= netdev_get_name(net
, devname
, sk
->sk_bound_dev_if
);
646 len
= strlen(devname
) + 1;
649 if (copy_to_user(optval
, devname
, len
))
654 if (put_user(len
, optlen
))
665 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
668 sock_set_flag(sk
, bit
);
670 sock_reset_flag(sk
, bit
);
673 bool sk_mc_loop(struct sock
*sk
)
675 if (dev_recursion_level())
679 switch (sk
->sk_family
) {
681 return inet_sk(sk
)->mc_loop
;
682 #if IS_ENABLED(CONFIG_IPV6)
684 return inet6_sk(sk
)->mc_loop
;
690 EXPORT_SYMBOL(sk_mc_loop
);
693 * This is meant for all protocols to use and covers goings on
694 * at the socket level. Everything here is generic.
697 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
698 char __user
*optval
, unsigned int optlen
)
700 struct sock
*sk
= sock
->sk
;
707 * Options without arguments
710 if (optname
== SO_BINDTODEVICE
)
711 return sock_setbindtodevice(sk
, optval
, optlen
);
713 if (optlen
< sizeof(int))
716 if (get_user(val
, (int __user
*)optval
))
719 valbool
= val
? 1 : 0;
725 if (val
&& !capable(CAP_NET_ADMIN
))
728 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
731 sk
->sk_reuse
= (valbool
? SK_CAN_REUSE
: SK_NO_REUSE
);
734 sk
->sk_reuseport
= valbool
;
743 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
746 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
749 /* Don't error on this BSD doesn't and if you think
750 * about it this is right. Otherwise apps have to
751 * play 'guess the biggest size' games. RCVBUF/SNDBUF
752 * are treated in BSD as hints
754 val
= min_t(u32
, val
, sysctl_wmem_max
);
756 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
757 sk
->sk_sndbuf
= max_t(int, val
* 2, SOCK_MIN_SNDBUF
);
758 /* Wake up sending tasks if we upped the value. */
759 sk
->sk_write_space(sk
);
763 if (!capable(CAP_NET_ADMIN
)) {
770 /* Don't error on this BSD doesn't and if you think
771 * about it this is right. Otherwise apps have to
772 * play 'guess the biggest size' games. RCVBUF/SNDBUF
773 * are treated in BSD as hints
775 val
= min_t(u32
, val
, sysctl_rmem_max
);
777 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
779 * We double it on the way in to account for
780 * "struct sk_buff" etc. overhead. Applications
781 * assume that the SO_RCVBUF setting they make will
782 * allow that much actual data to be received on that
785 * Applications are unaware that "struct sk_buff" and
786 * other overheads allocate from the receive buffer
787 * during socket buffer allocation.
789 * And after considering the possible alternatives,
790 * returning the value we actually used in getsockopt
791 * is the most desirable behavior.
793 sk
->sk_rcvbuf
= max_t(int, val
* 2, SOCK_MIN_RCVBUF
);
797 if (!capable(CAP_NET_ADMIN
)) {
804 if (sk
->sk_prot
->keepalive
)
805 sk
->sk_prot
->keepalive(sk
, valbool
);
806 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
810 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
814 sk
->sk_no_check_tx
= valbool
;
818 if ((val
>= 0 && val
<= 6) ||
819 ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
820 sk
->sk_priority
= val
;
826 if (optlen
< sizeof(ling
)) {
827 ret
= -EINVAL
; /* 1003.1g */
830 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
835 sock_reset_flag(sk
, SOCK_LINGER
);
837 #if (BITS_PER_LONG == 32)
838 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
839 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
842 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
843 sock_set_flag(sk
, SOCK_LINGER
);
848 sock_warn_obsolete_bsdism("setsockopt");
853 set_bit(SOCK_PASSCRED
, &sock
->flags
);
855 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
861 if (optname
== SO_TIMESTAMP
)
862 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
864 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
865 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
866 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
868 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
869 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
873 case SO_TIMESTAMPING
:
874 if (val
& ~SOF_TIMESTAMPING_MASK
) {
879 if (val
& SOF_TIMESTAMPING_OPT_ID
&&
880 !(sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)) {
881 if (sk
->sk_protocol
== IPPROTO_TCP
&&
882 sk
->sk_type
== SOCK_STREAM
) {
883 if ((1 << sk
->sk_state
) &
884 (TCPF_CLOSE
| TCPF_LISTEN
)) {
888 sk
->sk_tskey
= tcp_sk(sk
)->snd_una
;
894 if (val
& SOF_TIMESTAMPING_OPT_STATS
&&
895 !(val
& SOF_TIMESTAMPING_OPT_TSONLY
)) {
900 sk
->sk_tsflags
= val
;
901 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
902 sock_enable_timestamp(sk
,
903 SOCK_TIMESTAMPING_RX_SOFTWARE
);
905 sock_disable_timestamp(sk
,
906 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
));
912 if (sock
->ops
->set_rcvlowat
)
913 ret
= sock
->ops
->set_rcvlowat(sk
, val
);
915 sk
->sk_rcvlowat
= val
? : 1;
919 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
923 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
926 case SO_ATTACH_FILTER
:
928 if (optlen
== sizeof(struct sock_fprog
)) {
929 struct sock_fprog fprog
;
932 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
935 ret
= sk_attach_filter(&fprog
, sk
);
941 if (optlen
== sizeof(u32
)) {
945 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
948 ret
= sk_attach_bpf(ufd
, sk
);
952 case SO_ATTACH_REUSEPORT_CBPF
:
954 if (optlen
== sizeof(struct sock_fprog
)) {
955 struct sock_fprog fprog
;
958 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
961 ret
= sk_reuseport_attach_filter(&fprog
, sk
);
965 case SO_ATTACH_REUSEPORT_EBPF
:
967 if (optlen
== sizeof(u32
)) {
971 if (copy_from_user(&ufd
, optval
, sizeof(ufd
)))
974 ret
= sk_reuseport_attach_bpf(ufd
, sk
);
978 case SO_DETACH_FILTER
:
979 ret
= sk_detach_filter(sk
);
983 if (sock_flag(sk
, SOCK_FILTER_LOCKED
) && !valbool
)
986 sock_valbool_flag(sk
, SOCK_FILTER_LOCKED
, valbool
);
991 set_bit(SOCK_PASSSEC
, &sock
->flags
);
993 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
996 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
1003 sock_valbool_flag(sk
, SOCK_RXQ_OVFL
, valbool
);
1006 case SO_WIFI_STATUS
:
1007 sock_valbool_flag(sk
, SOCK_WIFI_STATUS
, valbool
);
1011 if (sock
->ops
->set_peek_off
)
1012 ret
= sock
->ops
->set_peek_off(sk
, val
);
1018 sock_valbool_flag(sk
, SOCK_NOFCS
, valbool
);
1021 case SO_SELECT_ERR_QUEUE
:
1022 sock_valbool_flag(sk
, SOCK_SELECT_ERR_QUEUE
, valbool
);
1025 #ifdef CONFIG_NET_RX_BUSY_POLL
1027 /* allow unprivileged users to decrease the value */
1028 if ((val
> sk
->sk_ll_usec
) && !capable(CAP_NET_ADMIN
))
1034 sk
->sk_ll_usec
= val
;
1039 case SO_MAX_PACING_RATE
:
1041 cmpxchg(&sk
->sk_pacing_status
,
1044 sk
->sk_max_pacing_rate
= val
;
1045 sk
->sk_pacing_rate
= min(sk
->sk_pacing_rate
,
1046 sk
->sk_max_pacing_rate
);
1049 case SO_INCOMING_CPU
:
1050 sk
->sk_incoming_cpu
= val
;
1055 dst_negative_advice(sk
);
1059 if (sk
->sk_family
== PF_INET
|| sk
->sk_family
== PF_INET6
) {
1060 if (sk
->sk_protocol
!= IPPROTO_TCP
)
1062 } else if (sk
->sk_family
!= PF_RDS
) {
1066 if (val
< 0 || val
> 1)
1069 sock_valbool_flag(sk
, SOCK_ZEROCOPY
, valbool
);
1080 EXPORT_SYMBOL(sock_setsockopt
);
1083 static void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
1084 struct ucred
*ucred
)
1086 ucred
->pid
= pid_vnr(pid
);
1087 ucred
->uid
= ucred
->gid
= -1;
1089 struct user_namespace
*current_ns
= current_user_ns();
1091 ucred
->uid
= from_kuid_munged(current_ns
, cred
->euid
);
1092 ucred
->gid
= from_kgid_munged(current_ns
, cred
->egid
);
1096 static int groups_to_user(gid_t __user
*dst
, const struct group_info
*src
)
1098 struct user_namespace
*user_ns
= current_user_ns();
1101 for (i
= 0; i
< src
->ngroups
; i
++)
1102 if (put_user(from_kgid_munged(user_ns
, src
->gid
[i
]), dst
+ i
))
1108 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
1109 char __user
*optval
, int __user
*optlen
)
1111 struct sock
*sk
= sock
->sk
;
1120 int lv
= sizeof(int);
1123 if (get_user(len
, optlen
))
1128 memset(&v
, 0, sizeof(v
));
1132 v
.val
= sock_flag(sk
, SOCK_DBG
);
1136 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
1140 v
.val
= sock_flag(sk
, SOCK_BROADCAST
);
1144 v
.val
= sk
->sk_sndbuf
;
1148 v
.val
= sk
->sk_rcvbuf
;
1152 v
.val
= sk
->sk_reuse
;
1156 v
.val
= sk
->sk_reuseport
;
1160 v
.val
= sock_flag(sk
, SOCK_KEEPOPEN
);
1164 v
.val
= sk
->sk_type
;
1168 v
.val
= sk
->sk_protocol
;
1172 v
.val
= sk
->sk_family
;
1176 v
.val
= -sock_error(sk
);
1178 v
.val
= xchg(&sk
->sk_err_soft
, 0);
1182 v
.val
= sock_flag(sk
, SOCK_URGINLINE
);
1186 v
.val
= sk
->sk_no_check_tx
;
1190 v
.val
= sk
->sk_priority
;
1194 lv
= sizeof(v
.ling
);
1195 v
.ling
.l_onoff
= sock_flag(sk
, SOCK_LINGER
);
1196 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
1200 sock_warn_obsolete_bsdism("getsockopt");
1204 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
1205 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1208 case SO_TIMESTAMPNS
:
1209 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1212 case SO_TIMESTAMPING
:
1213 v
.val
= sk
->sk_tsflags
;
1217 lv
= sizeof(struct timeval
);
1218 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1222 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
1223 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * USEC_PER_SEC
) / HZ
;
1228 lv
= sizeof(struct timeval
);
1229 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1233 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
1234 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * USEC_PER_SEC
) / HZ
;
1239 v
.val
= sk
->sk_rcvlowat
;
1247 v
.val
= !!test_bit(SOCK_PASSCRED
, &sock
->flags
);
1252 struct ucred peercred
;
1253 if (len
> sizeof(peercred
))
1254 len
= sizeof(peercred
);
1255 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
1256 if (copy_to_user(optval
, &peercred
, len
))
1265 if (!sk
->sk_peer_cred
)
1268 n
= sk
->sk_peer_cred
->group_info
->ngroups
;
1269 if (len
< n
* sizeof(gid_t
)) {
1270 len
= n
* sizeof(gid_t
);
1271 return put_user(len
, optlen
) ? -EFAULT
: -ERANGE
;
1273 len
= n
* sizeof(gid_t
);
1275 ret
= groups_to_user((gid_t __user
*)optval
,
1276 sk
->sk_peer_cred
->group_info
);
1286 lv
= sock
->ops
->getname(sock
, (struct sockaddr
*)address
, 2);
1291 if (copy_to_user(optval
, address
, len
))
1296 /* Dubious BSD thing... Probably nobody even uses it, but
1297 * the UNIX standard wants it for whatever reason... -DaveM
1300 v
.val
= sk
->sk_state
== TCP_LISTEN
;
1304 v
.val
= !!test_bit(SOCK_PASSSEC
, &sock
->flags
);
1308 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
1311 v
.val
= sk
->sk_mark
;
1315 v
.val
= sock_flag(sk
, SOCK_RXQ_OVFL
);
1318 case SO_WIFI_STATUS
:
1319 v
.val
= sock_flag(sk
, SOCK_WIFI_STATUS
);
1323 if (!sock
->ops
->set_peek_off
)
1326 v
.val
= sk
->sk_peek_off
;
1329 v
.val
= sock_flag(sk
, SOCK_NOFCS
);
1332 case SO_BINDTODEVICE
:
1333 return sock_getbindtodevice(sk
, optval
, optlen
, len
);
1336 len
= sk_get_filter(sk
, (struct sock_filter __user
*)optval
, len
);
1342 case SO_LOCK_FILTER
:
1343 v
.val
= sock_flag(sk
, SOCK_FILTER_LOCKED
);
1346 case SO_BPF_EXTENSIONS
:
1347 v
.val
= bpf_tell_extensions();
1350 case SO_SELECT_ERR_QUEUE
:
1351 v
.val
= sock_flag(sk
, SOCK_SELECT_ERR_QUEUE
);
1354 #ifdef CONFIG_NET_RX_BUSY_POLL
1356 v
.val
= sk
->sk_ll_usec
;
1360 case SO_MAX_PACING_RATE
:
1361 v
.val
= sk
->sk_max_pacing_rate
;
1364 case SO_INCOMING_CPU
:
1365 v
.val
= sk
->sk_incoming_cpu
;
1370 u32 meminfo
[SK_MEMINFO_VARS
];
1372 if (get_user(len
, optlen
))
1375 sk_get_meminfo(sk
, meminfo
);
1377 len
= min_t(unsigned int, len
, sizeof(meminfo
));
1378 if (copy_to_user(optval
, &meminfo
, len
))
1384 #ifdef CONFIG_NET_RX_BUSY_POLL
1385 case SO_INCOMING_NAPI_ID
:
1386 v
.val
= READ_ONCE(sk
->sk_napi_id
);
1388 /* aggregate non-NAPI IDs down to 0 */
1389 if (v
.val
< MIN_NAPI_ID
)
1399 v
.val64
= sock_gen_cookie(sk
);
1403 v
.val
= sock_flag(sk
, SOCK_ZEROCOPY
);
1407 /* We implement the SO_SNDLOWAT etc to not be settable
1410 return -ENOPROTOOPT
;
1415 if (copy_to_user(optval
, &v
, len
))
1418 if (put_user(len
, optlen
))
1424 * Initialize an sk_lock.
1426 * (We also register the sk_lock with the lock validator.)
1428 static inline void sock_lock_init(struct sock
*sk
)
1430 if (sk
->sk_kern_sock
)
1431 sock_lock_init_class_and_name(
1433 af_family_kern_slock_key_strings
[sk
->sk_family
],
1434 af_family_kern_slock_keys
+ sk
->sk_family
,
1435 af_family_kern_key_strings
[sk
->sk_family
],
1436 af_family_kern_keys
+ sk
->sk_family
);
1438 sock_lock_init_class_and_name(
1440 af_family_slock_key_strings
[sk
->sk_family
],
1441 af_family_slock_keys
+ sk
->sk_family
,
1442 af_family_key_strings
[sk
->sk_family
],
1443 af_family_keys
+ sk
->sk_family
);
1447 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1448 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1449 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1451 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1453 #ifdef CONFIG_SECURITY_NETWORK
1454 void *sptr
= nsk
->sk_security
;
1456 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1458 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1459 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1461 #ifdef CONFIG_SECURITY_NETWORK
1462 nsk
->sk_security
= sptr
;
1463 security_sk_clone(osk
, nsk
);
1467 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1471 struct kmem_cache
*slab
;
1475 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1478 if (priority
& __GFP_ZERO
)
1479 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1481 sk
= kmalloc(prot
->obj_size
, priority
);
1484 if (security_sk_alloc(sk
, family
, priority
))
1487 if (!try_module_get(prot
->owner
))
1489 sk_tx_queue_clear(sk
);
1495 security_sk_free(sk
);
1498 kmem_cache_free(slab
, sk
);
1504 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1506 struct kmem_cache
*slab
;
1507 struct module
*owner
;
1509 owner
= prot
->owner
;
1512 cgroup_sk_free(&sk
->sk_cgrp_data
);
1513 mem_cgroup_sk_free(sk
);
1514 security_sk_free(sk
);
1516 kmem_cache_free(slab
, sk
);
1523 * sk_alloc - All socket objects are allocated here
1524 * @net: the applicable net namespace
1525 * @family: protocol family
1526 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1527 * @prot: struct proto associated with this new sock instance
1528 * @kern: is this to be a kernel socket?
1530 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1531 struct proto
*prot
, int kern
)
1535 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1537 sk
->sk_family
= family
;
1539 * See comment in struct sock definition to understand
1540 * why we need sk_prot_creator -acme
1542 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1543 sk
->sk_kern_sock
= kern
;
1545 sk
->sk_net_refcnt
= kern
? 0 : 1;
1546 if (likely(sk
->sk_net_refcnt
)) {
1548 sock_inuse_add(net
, 1);
1551 sock_net_set(sk
, net
);
1552 refcount_set(&sk
->sk_wmem_alloc
, 1);
1554 mem_cgroup_sk_alloc(sk
);
1555 cgroup_sk_alloc(&sk
->sk_cgrp_data
);
1556 sock_update_classid(&sk
->sk_cgrp_data
);
1557 sock_update_netprioidx(&sk
->sk_cgrp_data
);
1562 EXPORT_SYMBOL(sk_alloc
);
1564 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1565 * grace period. This is the case for UDP sockets and TCP listeners.
1567 static void __sk_destruct(struct rcu_head
*head
)
1569 struct sock
*sk
= container_of(head
, struct sock
, sk_rcu
);
1570 struct sk_filter
*filter
;
1572 if (sk
->sk_destruct
)
1573 sk
->sk_destruct(sk
);
1575 filter
= rcu_dereference_check(sk
->sk_filter
,
1576 refcount_read(&sk
->sk_wmem_alloc
) == 0);
1578 sk_filter_uncharge(sk
, filter
);
1579 RCU_INIT_POINTER(sk
->sk_filter
, NULL
);
1581 if (rcu_access_pointer(sk
->sk_reuseport_cb
))
1582 reuseport_detach_sock(sk
);
1584 sock_disable_timestamp(sk
, SK_FLAGS_TIMESTAMP
);
1586 if (atomic_read(&sk
->sk_omem_alloc
))
1587 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1588 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1590 if (sk
->sk_frag
.page
) {
1591 put_page(sk
->sk_frag
.page
);
1592 sk
->sk_frag
.page
= NULL
;
1595 if (sk
->sk_peer_cred
)
1596 put_cred(sk
->sk_peer_cred
);
1597 put_pid(sk
->sk_peer_pid
);
1598 if (likely(sk
->sk_net_refcnt
))
1599 put_net(sock_net(sk
));
1600 sk_prot_free(sk
->sk_prot_creator
, sk
);
1603 void sk_destruct(struct sock
*sk
)
1605 if (sock_flag(sk
, SOCK_RCU_FREE
))
1606 call_rcu(&sk
->sk_rcu
, __sk_destruct
);
1608 __sk_destruct(&sk
->sk_rcu
);
1611 static void __sk_free(struct sock
*sk
)
1613 if (likely(sk
->sk_net_refcnt
))
1614 sock_inuse_add(sock_net(sk
), -1);
1616 if (unlikely(sk
->sk_net_refcnt
&& sock_diag_has_destroy_listeners(sk
)))
1617 sock_diag_broadcast_destroy(sk
);
1622 void sk_free(struct sock
*sk
)
1625 * We subtract one from sk_wmem_alloc and can know if
1626 * some packets are still in some tx queue.
1627 * If not null, sock_wfree() will call __sk_free(sk) later
1629 if (refcount_dec_and_test(&sk
->sk_wmem_alloc
))
1632 EXPORT_SYMBOL(sk_free
);
1634 static void sk_init_common(struct sock
*sk
)
1636 skb_queue_head_init(&sk
->sk_receive_queue
);
1637 skb_queue_head_init(&sk
->sk_write_queue
);
1638 skb_queue_head_init(&sk
->sk_error_queue
);
1640 rwlock_init(&sk
->sk_callback_lock
);
1641 lockdep_set_class_and_name(&sk
->sk_receive_queue
.lock
,
1642 af_rlock_keys
+ sk
->sk_family
,
1643 af_family_rlock_key_strings
[sk
->sk_family
]);
1644 lockdep_set_class_and_name(&sk
->sk_write_queue
.lock
,
1645 af_wlock_keys
+ sk
->sk_family
,
1646 af_family_wlock_key_strings
[sk
->sk_family
]);
1647 lockdep_set_class_and_name(&sk
->sk_error_queue
.lock
,
1648 af_elock_keys
+ sk
->sk_family
,
1649 af_family_elock_key_strings
[sk
->sk_family
]);
1650 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
1651 af_callback_keys
+ sk
->sk_family
,
1652 af_family_clock_key_strings
[sk
->sk_family
]);
1656 * sk_clone_lock - clone a socket, and lock its clone
1657 * @sk: the socket to clone
1658 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1660 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1662 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
)
1665 bool is_charged
= true;
1667 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1668 if (newsk
!= NULL
) {
1669 struct sk_filter
*filter
;
1671 sock_copy(newsk
, sk
);
1673 newsk
->sk_prot_creator
= sk
->sk_prot
;
1676 if (likely(newsk
->sk_net_refcnt
))
1677 get_net(sock_net(newsk
));
1678 sk_node_init(&newsk
->sk_node
);
1679 sock_lock_init(newsk
);
1680 bh_lock_sock(newsk
);
1681 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1682 newsk
->sk_backlog
.len
= 0;
1684 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1686 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1688 refcount_set(&newsk
->sk_wmem_alloc
, 1);
1689 atomic_set(&newsk
->sk_omem_alloc
, 0);
1690 sk_init_common(newsk
);
1692 newsk
->sk_dst_cache
= NULL
;
1693 newsk
->sk_dst_pending_confirm
= 0;
1694 newsk
->sk_wmem_queued
= 0;
1695 newsk
->sk_forward_alloc
= 0;
1696 atomic_set(&newsk
->sk_drops
, 0);
1697 newsk
->sk_send_head
= NULL
;
1698 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1699 atomic_set(&newsk
->sk_zckey
, 0);
1701 sock_reset_flag(newsk
, SOCK_DONE
);
1702 mem_cgroup_sk_alloc(newsk
);
1703 cgroup_sk_alloc(&newsk
->sk_cgrp_data
);
1706 filter
= rcu_dereference(sk
->sk_filter
);
1708 /* though it's an empty new sock, the charging may fail
1709 * if sysctl_optmem_max was changed between creation of
1710 * original socket and cloning
1712 is_charged
= sk_filter_charge(newsk
, filter
);
1713 RCU_INIT_POINTER(newsk
->sk_filter
, filter
);
1716 if (unlikely(!is_charged
|| xfrm_sk_clone_policy(newsk
, sk
))) {
1717 /* We need to make sure that we don't uncharge the new
1718 * socket if we couldn't charge it in the first place
1719 * as otherwise we uncharge the parent's filter.
1722 RCU_INIT_POINTER(newsk
->sk_filter
, NULL
);
1723 sk_free_unlock_clone(newsk
);
1727 RCU_INIT_POINTER(newsk
->sk_reuseport_cb
, NULL
);
1730 newsk
->sk_err_soft
= 0;
1731 newsk
->sk_priority
= 0;
1732 newsk
->sk_incoming_cpu
= raw_smp_processor_id();
1733 atomic64_set(&newsk
->sk_cookie
, 0);
1734 if (likely(newsk
->sk_net_refcnt
))
1735 sock_inuse_add(sock_net(newsk
), 1);
1738 * Before updating sk_refcnt, we must commit prior changes to memory
1739 * (Documentation/RCU/rculist_nulls.txt for details)
1742 refcount_set(&newsk
->sk_refcnt
, 2);
1745 * Increment the counter in the same struct proto as the master
1746 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1747 * is the same as sk->sk_prot->socks, as this field was copied
1750 * This _changes_ the previous behaviour, where
1751 * tcp_create_openreq_child always was incrementing the
1752 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1753 * to be taken into account in all callers. -acme
1755 sk_refcnt_debug_inc(newsk
);
1756 sk_set_socket(newsk
, NULL
);
1757 newsk
->sk_wq
= NULL
;
1759 if (newsk
->sk_prot
->sockets_allocated
)
1760 sk_sockets_allocated_inc(newsk
);
1762 if (sock_needs_netstamp(sk
) &&
1763 newsk
->sk_flags
& SK_FLAGS_TIMESTAMP
)
1764 net_enable_timestamp();
1769 EXPORT_SYMBOL_GPL(sk_clone_lock
);
1771 void sk_free_unlock_clone(struct sock
*sk
)
1773 /* It is still raw copy of parent, so invalidate
1774 * destructor and make plain sk_free() */
1775 sk
->sk_destruct
= NULL
;
1779 EXPORT_SYMBOL_GPL(sk_free_unlock_clone
);
1781 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1785 sk_dst_set(sk
, dst
);
1786 sk
->sk_route_caps
= dst
->dev
->features
| sk
->sk_route_forced_caps
;
1787 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1788 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1789 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1790 if (sk_can_gso(sk
)) {
1791 if (dst
->header_len
&& !xfrm_dst_offload_ok(dst
)) {
1792 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1794 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1795 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1796 max_segs
= max_t(u32
, dst
->dev
->gso_max_segs
, 1);
1799 sk
->sk_gso_max_segs
= max_segs
;
1801 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1804 * Simple resource managers for sockets.
1809 * Write buffer destructor automatically called from kfree_skb.
1811 void sock_wfree(struct sk_buff
*skb
)
1813 struct sock
*sk
= skb
->sk
;
1814 unsigned int len
= skb
->truesize
;
1816 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1818 * Keep a reference on sk_wmem_alloc, this will be released
1819 * after sk_write_space() call
1821 WARN_ON(refcount_sub_and_test(len
- 1, &sk
->sk_wmem_alloc
));
1822 sk
->sk_write_space(sk
);
1826 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1827 * could not do because of in-flight packets
1829 if (refcount_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1832 EXPORT_SYMBOL(sock_wfree
);
1834 /* This variant of sock_wfree() is used by TCP,
1835 * since it sets SOCK_USE_WRITE_QUEUE.
1837 void __sock_wfree(struct sk_buff
*skb
)
1839 struct sock
*sk
= skb
->sk
;
1841 if (refcount_sub_and_test(skb
->truesize
, &sk
->sk_wmem_alloc
))
1845 void skb_set_owner_w(struct sk_buff
*skb
, struct sock
*sk
)
1850 if (unlikely(!sk_fullsock(sk
))) {
1851 skb
->destructor
= sock_edemux
;
1856 skb
->destructor
= sock_wfree
;
1857 skb_set_hash_from_sk(skb
, sk
);
1859 * We used to take a refcount on sk, but following operation
1860 * is enough to guarantee sk_free() wont free this sock until
1861 * all in-flight packets are completed
1863 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
1865 EXPORT_SYMBOL(skb_set_owner_w
);
1867 /* This helper is used by netem, as it can hold packets in its
1868 * delay queue. We want to allow the owner socket to send more
1869 * packets, as if they were already TX completed by a typical driver.
1870 * But we also want to keep skb->sk set because some packet schedulers
1871 * rely on it (sch_fq for example).
1873 void skb_orphan_partial(struct sk_buff
*skb
)
1875 if (skb_is_tcp_pure_ack(skb
))
1878 if (skb
->destructor
== sock_wfree
1880 || skb
->destructor
== tcp_wfree
1883 struct sock
*sk
= skb
->sk
;
1885 if (refcount_inc_not_zero(&sk
->sk_refcnt
)) {
1886 WARN_ON(refcount_sub_and_test(skb
->truesize
, &sk
->sk_wmem_alloc
));
1887 skb
->destructor
= sock_efree
;
1893 EXPORT_SYMBOL(skb_orphan_partial
);
1896 * Read buffer destructor automatically called from kfree_skb.
1898 void sock_rfree(struct sk_buff
*skb
)
1900 struct sock
*sk
= skb
->sk
;
1901 unsigned int len
= skb
->truesize
;
1903 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1904 sk_mem_uncharge(sk
, len
);
1906 EXPORT_SYMBOL(sock_rfree
);
1909 * Buffer destructor for skbs that are not used directly in read or write
1910 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1912 void sock_efree(struct sk_buff
*skb
)
1916 EXPORT_SYMBOL(sock_efree
);
1918 kuid_t
sock_i_uid(struct sock
*sk
)
1922 read_lock_bh(&sk
->sk_callback_lock
);
1923 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: GLOBAL_ROOT_UID
;
1924 read_unlock_bh(&sk
->sk_callback_lock
);
1927 EXPORT_SYMBOL(sock_i_uid
);
1929 unsigned long sock_i_ino(struct sock
*sk
)
1933 read_lock_bh(&sk
->sk_callback_lock
);
1934 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1935 read_unlock_bh(&sk
->sk_callback_lock
);
1938 EXPORT_SYMBOL(sock_i_ino
);
1941 * Allocate a skb from the socket's send buffer.
1943 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1946 if (force
|| refcount_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1947 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1949 skb_set_owner_w(skb
, sk
);
1955 EXPORT_SYMBOL(sock_wmalloc
);
1957 static void sock_ofree(struct sk_buff
*skb
)
1959 struct sock
*sk
= skb
->sk
;
1961 atomic_sub(skb
->truesize
, &sk
->sk_omem_alloc
);
1964 struct sk_buff
*sock_omalloc(struct sock
*sk
, unsigned long size
,
1967 struct sk_buff
*skb
;
1969 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
1970 if (atomic_read(&sk
->sk_omem_alloc
) + SKB_TRUESIZE(size
) >
1974 skb
= alloc_skb(size
, priority
);
1978 atomic_add(skb
->truesize
, &sk
->sk_omem_alloc
);
1980 skb
->destructor
= sock_ofree
;
1985 * Allocate a memory block from the socket's option memory buffer.
1987 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1989 if ((unsigned int)size
<= sysctl_optmem_max
&&
1990 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1992 /* First do the add, to avoid the race if kmalloc
1995 atomic_add(size
, &sk
->sk_omem_alloc
);
1996 mem
= kmalloc(size
, priority
);
1999 atomic_sub(size
, &sk
->sk_omem_alloc
);
2003 EXPORT_SYMBOL(sock_kmalloc
);
2005 /* Free an option memory block. Note, we actually want the inline
2006 * here as this allows gcc to detect the nullify and fold away the
2007 * condition entirely.
2009 static inline void __sock_kfree_s(struct sock
*sk
, void *mem
, int size
,
2012 if (WARN_ON_ONCE(!mem
))
2018 atomic_sub(size
, &sk
->sk_omem_alloc
);
2021 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
2023 __sock_kfree_s(sk
, mem
, size
, false);
2025 EXPORT_SYMBOL(sock_kfree_s
);
2027 void sock_kzfree_s(struct sock
*sk
, void *mem
, int size
)
2029 __sock_kfree_s(sk
, mem
, size
, true);
2031 EXPORT_SYMBOL(sock_kzfree_s
);
2033 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2034 I think, these locks should be removed for datagram sockets.
2036 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
2040 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
2044 if (signal_pending(current
))
2046 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
2047 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
2048 if (refcount_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
2050 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
2054 timeo
= schedule_timeout(timeo
);
2056 finish_wait(sk_sleep(sk
), &wait
);
2062 * Generic send/receive buffer handlers
2065 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
2066 unsigned long data_len
, int noblock
,
2067 int *errcode
, int max_page_order
)
2069 struct sk_buff
*skb
;
2073 timeo
= sock_sndtimeo(sk
, noblock
);
2075 err
= sock_error(sk
);
2080 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
2083 if (sk_wmem_alloc_get(sk
) < sk
->sk_sndbuf
)
2086 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
2087 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
2091 if (signal_pending(current
))
2093 timeo
= sock_wait_for_wmem(sk
, timeo
);
2095 skb
= alloc_skb_with_frags(header_len
, data_len
, max_page_order
,
2096 errcode
, sk
->sk_allocation
);
2098 skb_set_owner_w(skb
, sk
);
2102 err
= sock_intr_errno(timeo
);
2107 EXPORT_SYMBOL(sock_alloc_send_pskb
);
2109 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
2110 int noblock
, int *errcode
)
2112 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
, 0);
2114 EXPORT_SYMBOL(sock_alloc_send_skb
);
2116 int __sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
, struct cmsghdr
*cmsg
,
2117 struct sockcm_cookie
*sockc
)
2121 switch (cmsg
->cmsg_type
) {
2123 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
2125 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
2127 sockc
->mark
= *(u32
*)CMSG_DATA(cmsg
);
2129 case SO_TIMESTAMPING
:
2130 if (cmsg
->cmsg_len
!= CMSG_LEN(sizeof(u32
)))
2133 tsflags
= *(u32
*)CMSG_DATA(cmsg
);
2134 if (tsflags
& ~SOF_TIMESTAMPING_TX_RECORD_MASK
)
2137 sockc
->tsflags
&= ~SOF_TIMESTAMPING_TX_RECORD_MASK
;
2138 sockc
->tsflags
|= tsflags
;
2140 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2142 case SCM_CREDENTIALS
:
2149 EXPORT_SYMBOL(__sock_cmsg_send
);
2151 int sock_cmsg_send(struct sock
*sk
, struct msghdr
*msg
,
2152 struct sockcm_cookie
*sockc
)
2154 struct cmsghdr
*cmsg
;
2157 for_each_cmsghdr(cmsg
, msg
) {
2158 if (!CMSG_OK(msg
, cmsg
))
2160 if (cmsg
->cmsg_level
!= SOL_SOCKET
)
2162 ret
= __sock_cmsg_send(sk
, msg
, cmsg
, sockc
);
2168 EXPORT_SYMBOL(sock_cmsg_send
);
2170 static void sk_enter_memory_pressure(struct sock
*sk
)
2172 if (!sk
->sk_prot
->enter_memory_pressure
)
2175 sk
->sk_prot
->enter_memory_pressure(sk
);
2178 static void sk_leave_memory_pressure(struct sock
*sk
)
2180 if (sk
->sk_prot
->leave_memory_pressure
) {
2181 sk
->sk_prot
->leave_memory_pressure(sk
);
2183 unsigned long *memory_pressure
= sk
->sk_prot
->memory_pressure
;
2185 if (memory_pressure
&& *memory_pressure
)
2186 *memory_pressure
= 0;
2190 /* On 32bit arches, an skb frag is limited to 2^15 */
2191 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2194 * skb_page_frag_refill - check that a page_frag contains enough room
2195 * @sz: minimum size of the fragment we want to get
2196 * @pfrag: pointer to page_frag
2197 * @gfp: priority for memory allocation
2199 * Note: While this allocator tries to use high order pages, there is
2200 * no guarantee that allocations succeed. Therefore, @sz MUST be
2201 * less or equal than PAGE_SIZE.
2203 bool skb_page_frag_refill(unsigned int sz
, struct page_frag
*pfrag
, gfp_t gfp
)
2206 if (page_ref_count(pfrag
->page
) == 1) {
2210 if (pfrag
->offset
+ sz
<= pfrag
->size
)
2212 put_page(pfrag
->page
);
2216 if (SKB_FRAG_PAGE_ORDER
) {
2217 /* Avoid direct reclaim but allow kswapd to wake */
2218 pfrag
->page
= alloc_pages((gfp
& ~__GFP_DIRECT_RECLAIM
) |
2219 __GFP_COMP
| __GFP_NOWARN
|
2221 SKB_FRAG_PAGE_ORDER
);
2222 if (likely(pfrag
->page
)) {
2223 pfrag
->size
= PAGE_SIZE
<< SKB_FRAG_PAGE_ORDER
;
2227 pfrag
->page
= alloc_page(gfp
);
2228 if (likely(pfrag
->page
)) {
2229 pfrag
->size
= PAGE_SIZE
;
2234 EXPORT_SYMBOL(skb_page_frag_refill
);
2236 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
)
2238 if (likely(skb_page_frag_refill(32U, pfrag
, sk
->sk_allocation
)))
2241 sk_enter_memory_pressure(sk
);
2242 sk_stream_moderate_sndbuf(sk
);
2245 EXPORT_SYMBOL(sk_page_frag_refill
);
2247 int sk_alloc_sg(struct sock
*sk
, int len
, struct scatterlist
*sg
,
2248 int sg_start
, int *sg_curr_index
, unsigned int *sg_curr_size
,
2251 int sg_curr
= *sg_curr_index
, use
= 0, rc
= 0;
2252 unsigned int size
= *sg_curr_size
;
2253 struct page_frag
*pfrag
;
2254 struct scatterlist
*sge
;
2257 pfrag
= sk_page_frag(sk
);
2260 unsigned int orig_offset
;
2262 if (!sk_page_frag_refill(sk
, pfrag
)) {
2267 use
= min_t(int, len
, pfrag
->size
- pfrag
->offset
);
2269 if (!sk_wmem_schedule(sk
, use
)) {
2274 sk_mem_charge(sk
, use
);
2276 orig_offset
= pfrag
->offset
;
2277 pfrag
->offset
+= use
;
2279 sge
= sg
+ sg_curr
- 1;
2280 if (sg_curr
> first_coalesce
&& sg_page(sg
) == pfrag
->page
&&
2281 sg
->offset
+ sg
->length
== orig_offset
) {
2286 sg_set_page(sge
, pfrag
->page
, use
, orig_offset
);
2287 get_page(pfrag
->page
);
2290 if (sg_curr
== MAX_SKB_FRAGS
)
2293 if (sg_curr
== sg_start
) {
2302 *sg_curr_size
= size
;
2303 *sg_curr_index
= sg_curr
;
2306 EXPORT_SYMBOL(sk_alloc_sg
);
2308 static void __lock_sock(struct sock
*sk
)
2309 __releases(&sk
->sk_lock
.slock
)
2310 __acquires(&sk
->sk_lock
.slock
)
2315 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
2316 TASK_UNINTERRUPTIBLE
);
2317 spin_unlock_bh(&sk
->sk_lock
.slock
);
2319 spin_lock_bh(&sk
->sk_lock
.slock
);
2320 if (!sock_owned_by_user(sk
))
2323 finish_wait(&sk
->sk_lock
.wq
, &wait
);
2326 static void __release_sock(struct sock
*sk
)
2327 __releases(&sk
->sk_lock
.slock
)
2328 __acquires(&sk
->sk_lock
.slock
)
2330 struct sk_buff
*skb
, *next
;
2332 while ((skb
= sk
->sk_backlog
.head
) != NULL
) {
2333 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
2335 spin_unlock_bh(&sk
->sk_lock
.slock
);
2340 WARN_ON_ONCE(skb_dst_is_noref(skb
));
2342 sk_backlog_rcv(sk
, skb
);
2347 } while (skb
!= NULL
);
2349 spin_lock_bh(&sk
->sk_lock
.slock
);
2353 * Doing the zeroing here guarantee we can not loop forever
2354 * while a wild producer attempts to flood us.
2356 sk
->sk_backlog
.len
= 0;
2359 void __sk_flush_backlog(struct sock
*sk
)
2361 spin_lock_bh(&sk
->sk_lock
.slock
);
2363 spin_unlock_bh(&sk
->sk_lock
.slock
);
2367 * sk_wait_data - wait for data to arrive at sk_receive_queue
2368 * @sk: sock to wait on
2369 * @timeo: for how long
2370 * @skb: last skb seen on sk_receive_queue
2372 * Now socket state including sk->sk_err is changed only under lock,
2373 * hence we may omit checks after joining wait queue.
2374 * We check receive queue before schedule() only as optimization;
2375 * it is very likely that release_sock() added new data.
2377 int sk_wait_data(struct sock
*sk
, long *timeo
, const struct sk_buff
*skb
)
2379 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
2382 add_wait_queue(sk_sleep(sk
), &wait
);
2383 sk_set_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2384 rc
= sk_wait_event(sk
, timeo
, skb_peek_tail(&sk
->sk_receive_queue
) != skb
, &wait
);
2385 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
2386 remove_wait_queue(sk_sleep(sk
), &wait
);
2389 EXPORT_SYMBOL(sk_wait_data
);
2392 * __sk_mem_raise_allocated - increase memory_allocated
2394 * @size: memory size to allocate
2395 * @amt: pages to allocate
2396 * @kind: allocation type
2398 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2400 int __sk_mem_raise_allocated(struct sock
*sk
, int size
, int amt
, int kind
)
2402 struct proto
*prot
= sk
->sk_prot
;
2403 long allocated
= sk_memory_allocated_add(sk
, amt
);
2405 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
&&
2406 !mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
))
2407 goto suppress_allocation
;
2410 if (allocated
<= sk_prot_mem_limits(sk
, 0)) {
2411 sk_leave_memory_pressure(sk
);
2415 /* Under pressure. */
2416 if (allocated
> sk_prot_mem_limits(sk
, 1))
2417 sk_enter_memory_pressure(sk
);
2419 /* Over hard limit. */
2420 if (allocated
> sk_prot_mem_limits(sk
, 2))
2421 goto suppress_allocation
;
2423 /* guarantee minimum buffer size under pressure */
2424 if (kind
== SK_MEM_RECV
) {
2425 if (atomic_read(&sk
->sk_rmem_alloc
) < sk_get_rmem0(sk
, prot
))
2428 } else { /* SK_MEM_SEND */
2429 int wmem0
= sk_get_wmem0(sk
, prot
);
2431 if (sk
->sk_type
== SOCK_STREAM
) {
2432 if (sk
->sk_wmem_queued
< wmem0
)
2434 } else if (refcount_read(&sk
->sk_wmem_alloc
) < wmem0
) {
2439 if (sk_has_memory_pressure(sk
)) {
2442 if (!sk_under_memory_pressure(sk
))
2444 alloc
= sk_sockets_allocated_read_positive(sk
);
2445 if (sk_prot_mem_limits(sk
, 2) > alloc
*
2446 sk_mem_pages(sk
->sk_wmem_queued
+
2447 atomic_read(&sk
->sk_rmem_alloc
) +
2448 sk
->sk_forward_alloc
))
2452 suppress_allocation
:
2454 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
2455 sk_stream_moderate_sndbuf(sk
);
2457 /* Fail only if socket is _under_ its sndbuf.
2458 * In this case we cannot block, so that we have to fail.
2460 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
2464 trace_sock_exceed_buf_limit(sk
, prot
, allocated
);
2466 sk_memory_allocated_sub(sk
, amt
);
2468 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2469 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amt
);
2473 EXPORT_SYMBOL(__sk_mem_raise_allocated
);
2476 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2478 * @size: memory size to allocate
2479 * @kind: allocation type
2481 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2482 * rmem allocation. This function assumes that protocols which have
2483 * memory_pressure use sk_wmem_queued as write buffer accounting.
2485 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
2487 int ret
, amt
= sk_mem_pages(size
);
2489 sk
->sk_forward_alloc
+= amt
<< SK_MEM_QUANTUM_SHIFT
;
2490 ret
= __sk_mem_raise_allocated(sk
, size
, amt
, kind
);
2492 sk
->sk_forward_alloc
-= amt
<< SK_MEM_QUANTUM_SHIFT
;
2495 EXPORT_SYMBOL(__sk_mem_schedule
);
2498 * __sk_mem_reduce_allocated - reclaim memory_allocated
2500 * @amount: number of quanta
2502 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2504 void __sk_mem_reduce_allocated(struct sock
*sk
, int amount
)
2506 sk_memory_allocated_sub(sk
, amount
);
2508 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2509 mem_cgroup_uncharge_skmem(sk
->sk_memcg
, amount
);
2511 if (sk_under_memory_pressure(sk
) &&
2512 (sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)))
2513 sk_leave_memory_pressure(sk
);
2515 EXPORT_SYMBOL(__sk_mem_reduce_allocated
);
2518 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2520 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2522 void __sk_mem_reclaim(struct sock
*sk
, int amount
)
2524 amount
>>= SK_MEM_QUANTUM_SHIFT
;
2525 sk
->sk_forward_alloc
-= amount
<< SK_MEM_QUANTUM_SHIFT
;
2526 __sk_mem_reduce_allocated(sk
, amount
);
2528 EXPORT_SYMBOL(__sk_mem_reclaim
);
2530 int sk_set_peek_off(struct sock
*sk
, int val
)
2532 sk
->sk_peek_off
= val
;
2535 EXPORT_SYMBOL_GPL(sk_set_peek_off
);
2538 * Set of default routines for initialising struct proto_ops when
2539 * the protocol does not support a particular function. In certain
2540 * cases where it makes no sense for a protocol to have a "do nothing"
2541 * function, some default processing is provided.
2544 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
2548 EXPORT_SYMBOL(sock_no_bind
);
2550 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
2555 EXPORT_SYMBOL(sock_no_connect
);
2557 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
2561 EXPORT_SYMBOL(sock_no_socketpair
);
2563 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
,
2568 EXPORT_SYMBOL(sock_no_accept
);
2570 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
2575 EXPORT_SYMBOL(sock_no_getname
);
2577 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
2581 EXPORT_SYMBOL(sock_no_ioctl
);
2583 int sock_no_listen(struct socket
*sock
, int backlog
)
2587 EXPORT_SYMBOL(sock_no_listen
);
2589 int sock_no_shutdown(struct socket
*sock
, int how
)
2593 EXPORT_SYMBOL(sock_no_shutdown
);
2595 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
2596 char __user
*optval
, unsigned int optlen
)
2600 EXPORT_SYMBOL(sock_no_setsockopt
);
2602 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
2603 char __user
*optval
, int __user
*optlen
)
2607 EXPORT_SYMBOL(sock_no_getsockopt
);
2609 int sock_no_sendmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
)
2613 EXPORT_SYMBOL(sock_no_sendmsg
);
2615 int sock_no_sendmsg_locked(struct sock
*sk
, struct msghdr
*m
, size_t len
)
2619 EXPORT_SYMBOL(sock_no_sendmsg_locked
);
2621 int sock_no_recvmsg(struct socket
*sock
, struct msghdr
*m
, size_t len
,
2626 EXPORT_SYMBOL(sock_no_recvmsg
);
2628 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
2630 /* Mirror missing mmap method error code */
2633 EXPORT_SYMBOL(sock_no_mmap
);
2635 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
2638 struct msghdr msg
= {.msg_flags
= flags
};
2640 char *kaddr
= kmap(page
);
2641 iov
.iov_base
= kaddr
+ offset
;
2643 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
2647 EXPORT_SYMBOL(sock_no_sendpage
);
2649 ssize_t
sock_no_sendpage_locked(struct sock
*sk
, struct page
*page
,
2650 int offset
, size_t size
, int flags
)
2653 struct msghdr msg
= {.msg_flags
= flags
};
2655 char *kaddr
= kmap(page
);
2657 iov
.iov_base
= kaddr
+ offset
;
2659 res
= kernel_sendmsg_locked(sk
, &msg
, &iov
, 1, size
);
2663 EXPORT_SYMBOL(sock_no_sendpage_locked
);
2666 * Default Socket Callbacks
2669 static void sock_def_wakeup(struct sock
*sk
)
2671 struct socket_wq
*wq
;
2674 wq
= rcu_dereference(sk
->sk_wq
);
2675 if (skwq_has_sleeper(wq
))
2676 wake_up_interruptible_all(&wq
->wait
);
2680 static void sock_def_error_report(struct sock
*sk
)
2682 struct socket_wq
*wq
;
2685 wq
= rcu_dereference(sk
->sk_wq
);
2686 if (skwq_has_sleeper(wq
))
2687 wake_up_interruptible_poll(&wq
->wait
, EPOLLERR
);
2688 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
2692 static void sock_def_readable(struct sock
*sk
)
2694 struct socket_wq
*wq
;
2697 wq
= rcu_dereference(sk
->sk_wq
);
2698 if (skwq_has_sleeper(wq
))
2699 wake_up_interruptible_sync_poll(&wq
->wait
, EPOLLIN
| EPOLLPRI
|
2700 EPOLLRDNORM
| EPOLLRDBAND
);
2701 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
2705 static void sock_def_write_space(struct sock
*sk
)
2707 struct socket_wq
*wq
;
2711 /* Do not wake up a writer until he can make "significant"
2714 if ((refcount_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
2715 wq
= rcu_dereference(sk
->sk_wq
);
2716 if (skwq_has_sleeper(wq
))
2717 wake_up_interruptible_sync_poll(&wq
->wait
, EPOLLOUT
|
2718 EPOLLWRNORM
| EPOLLWRBAND
);
2720 /* Should agree with poll, otherwise some programs break */
2721 if (sock_writeable(sk
))
2722 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
2728 static void sock_def_destruct(struct sock
*sk
)
2732 void sk_send_sigurg(struct sock
*sk
)
2734 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
2735 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
2736 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
2738 EXPORT_SYMBOL(sk_send_sigurg
);
2740 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
2741 unsigned long expires
)
2743 if (!mod_timer(timer
, expires
))
2746 EXPORT_SYMBOL(sk_reset_timer
);
2748 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
2750 if (del_timer(timer
))
2753 EXPORT_SYMBOL(sk_stop_timer
);
2755 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
2758 sk
->sk_send_head
= NULL
;
2760 timer_setup(&sk
->sk_timer
, NULL
, 0);
2762 sk
->sk_allocation
= GFP_KERNEL
;
2763 sk
->sk_rcvbuf
= sysctl_rmem_default
;
2764 sk
->sk_sndbuf
= sysctl_wmem_default
;
2765 sk
->sk_state
= TCP_CLOSE
;
2766 sk_set_socket(sk
, sock
);
2768 sock_set_flag(sk
, SOCK_ZAPPED
);
2771 sk
->sk_type
= sock
->type
;
2772 sk
->sk_wq
= sock
->wq
;
2774 sk
->sk_uid
= SOCK_INODE(sock
)->i_uid
;
2777 sk
->sk_uid
= make_kuid(sock_net(sk
)->user_ns
, 0);
2780 rwlock_init(&sk
->sk_callback_lock
);
2781 if (sk
->sk_kern_sock
)
2782 lockdep_set_class_and_name(
2783 &sk
->sk_callback_lock
,
2784 af_kern_callback_keys
+ sk
->sk_family
,
2785 af_family_kern_clock_key_strings
[sk
->sk_family
]);
2787 lockdep_set_class_and_name(
2788 &sk
->sk_callback_lock
,
2789 af_callback_keys
+ sk
->sk_family
,
2790 af_family_clock_key_strings
[sk
->sk_family
]);
2792 sk
->sk_state_change
= sock_def_wakeup
;
2793 sk
->sk_data_ready
= sock_def_readable
;
2794 sk
->sk_write_space
= sock_def_write_space
;
2795 sk
->sk_error_report
= sock_def_error_report
;
2796 sk
->sk_destruct
= sock_def_destruct
;
2798 sk
->sk_frag
.page
= NULL
;
2799 sk
->sk_frag
.offset
= 0;
2800 sk
->sk_peek_off
= -1;
2802 sk
->sk_peer_pid
= NULL
;
2803 sk
->sk_peer_cred
= NULL
;
2804 sk
->sk_write_pending
= 0;
2805 sk
->sk_rcvlowat
= 1;
2806 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2807 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2809 sk
->sk_stamp
= SK_DEFAULT_STAMP
;
2810 atomic_set(&sk
->sk_zckey
, 0);
2812 #ifdef CONFIG_NET_RX_BUSY_POLL
2814 sk
->sk_ll_usec
= sysctl_net_busy_read
;
2817 sk
->sk_max_pacing_rate
= ~0U;
2818 sk
->sk_pacing_rate
= ~0U;
2819 sk
->sk_pacing_shift
= 10;
2820 sk
->sk_incoming_cpu
= -1;
2822 * Before updating sk_refcnt, we must commit prior changes to memory
2823 * (Documentation/RCU/rculist_nulls.txt for details)
2826 refcount_set(&sk
->sk_refcnt
, 1);
2827 atomic_set(&sk
->sk_drops
, 0);
2829 EXPORT_SYMBOL(sock_init_data
);
2831 void lock_sock_nested(struct sock
*sk
, int subclass
)
2834 spin_lock_bh(&sk
->sk_lock
.slock
);
2835 if (sk
->sk_lock
.owned
)
2837 sk
->sk_lock
.owned
= 1;
2838 spin_unlock(&sk
->sk_lock
.slock
);
2840 * The sk_lock has mutex_lock() semantics here:
2842 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2845 EXPORT_SYMBOL(lock_sock_nested
);
2847 void release_sock(struct sock
*sk
)
2849 spin_lock_bh(&sk
->sk_lock
.slock
);
2850 if (sk
->sk_backlog
.tail
)
2853 /* Warning : release_cb() might need to release sk ownership,
2854 * ie call sock_release_ownership(sk) before us.
2856 if (sk
->sk_prot
->release_cb
)
2857 sk
->sk_prot
->release_cb(sk
);
2859 sock_release_ownership(sk
);
2860 if (waitqueue_active(&sk
->sk_lock
.wq
))
2861 wake_up(&sk
->sk_lock
.wq
);
2862 spin_unlock_bh(&sk
->sk_lock
.slock
);
2864 EXPORT_SYMBOL(release_sock
);
2867 * lock_sock_fast - fast version of lock_sock
2870 * This version should be used for very small section, where process wont block
2871 * return false if fast path is taken:
2873 * sk_lock.slock locked, owned = 0, BH disabled
2875 * return true if slow path is taken:
2877 * sk_lock.slock unlocked, owned = 1, BH enabled
2879 bool lock_sock_fast(struct sock
*sk
)
2882 spin_lock_bh(&sk
->sk_lock
.slock
);
2884 if (!sk
->sk_lock
.owned
)
2886 * Note : We must disable BH
2891 sk
->sk_lock
.owned
= 1;
2892 spin_unlock(&sk
->sk_lock
.slock
);
2894 * The sk_lock has mutex_lock() semantics here:
2896 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2900 EXPORT_SYMBOL(lock_sock_fast
);
2902 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2905 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2906 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2907 tv
= ktime_to_timeval(sk
->sk_stamp
);
2908 if (tv
.tv_sec
== -1)
2910 if (tv
.tv_sec
== 0) {
2911 sk
->sk_stamp
= ktime_get_real();
2912 tv
= ktime_to_timeval(sk
->sk_stamp
);
2914 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2916 EXPORT_SYMBOL(sock_get_timestamp
);
2918 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2921 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2922 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2923 ts
= ktime_to_timespec(sk
->sk_stamp
);
2924 if (ts
.tv_sec
== -1)
2926 if (ts
.tv_sec
== 0) {
2927 sk
->sk_stamp
= ktime_get_real();
2928 ts
= ktime_to_timespec(sk
->sk_stamp
);
2930 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2932 EXPORT_SYMBOL(sock_get_timestampns
);
2934 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2936 if (!sock_flag(sk
, flag
)) {
2937 unsigned long previous_flags
= sk
->sk_flags
;
2939 sock_set_flag(sk
, flag
);
2941 * we just set one of the two flags which require net
2942 * time stamping, but time stamping might have been on
2943 * already because of the other one
2945 if (sock_needs_netstamp(sk
) &&
2946 !(previous_flags
& SK_FLAGS_TIMESTAMP
))
2947 net_enable_timestamp();
2951 int sock_recv_errqueue(struct sock
*sk
, struct msghdr
*msg
, int len
,
2952 int level
, int type
)
2954 struct sock_exterr_skb
*serr
;
2955 struct sk_buff
*skb
;
2959 skb
= sock_dequeue_err_skb(sk
);
2965 msg
->msg_flags
|= MSG_TRUNC
;
2968 err
= skb_copy_datagram_msg(skb
, 0, msg
, copied
);
2972 sock_recv_timestamp(msg
, sk
, skb
);
2974 serr
= SKB_EXT_ERR(skb
);
2975 put_cmsg(msg
, level
, type
, sizeof(serr
->ee
), &serr
->ee
);
2977 msg
->msg_flags
|= MSG_ERRQUEUE
;
2985 EXPORT_SYMBOL(sock_recv_errqueue
);
2988 * Get a socket option on an socket.
2990 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2991 * asynchronous errors should be reported by getsockopt. We assume
2992 * this means if you specify SO_ERROR (otherwise whats the point of it).
2994 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2995 char __user
*optval
, int __user
*optlen
)
2997 struct sock
*sk
= sock
->sk
;
2999 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
3001 EXPORT_SYMBOL(sock_common_getsockopt
);
3003 #ifdef CONFIG_COMPAT
3004 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
3005 char __user
*optval
, int __user
*optlen
)
3007 struct sock
*sk
= sock
->sk
;
3009 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
3010 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
3012 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
3014 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
3017 int sock_common_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
,
3020 struct sock
*sk
= sock
->sk
;
3024 err
= sk
->sk_prot
->recvmsg(sk
, msg
, size
, flags
& MSG_DONTWAIT
,
3025 flags
& ~MSG_DONTWAIT
, &addr_len
);
3027 msg
->msg_namelen
= addr_len
;
3030 EXPORT_SYMBOL(sock_common_recvmsg
);
3033 * Set socket options on an inet socket.
3035 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
3036 char __user
*optval
, unsigned int optlen
)
3038 struct sock
*sk
= sock
->sk
;
3040 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
3042 EXPORT_SYMBOL(sock_common_setsockopt
);
3044 #ifdef CONFIG_COMPAT
3045 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
3046 char __user
*optval
, unsigned int optlen
)
3048 struct sock
*sk
= sock
->sk
;
3050 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
3051 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
3053 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
3055 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
3058 void sk_common_release(struct sock
*sk
)
3060 if (sk
->sk_prot
->destroy
)
3061 sk
->sk_prot
->destroy(sk
);
3064 * Observation: when sock_common_release is called, processes have
3065 * no access to socket. But net still has.
3066 * Step one, detach it from networking:
3068 * A. Remove from hash tables.
3071 sk
->sk_prot
->unhash(sk
);
3074 * In this point socket cannot receive new packets, but it is possible
3075 * that some packets are in flight because some CPU runs receiver and
3076 * did hash table lookup before we unhashed socket. They will achieve
3077 * receive queue and will be purged by socket destructor.
3079 * Also we still have packets pending on receive queue and probably,
3080 * our own packets waiting in device queues. sock_destroy will drain
3081 * receive queue, but transmitted packets will delay socket destruction
3082 * until the last reference will be released.
3087 xfrm_sk_free_policy(sk
);
3089 sk_refcnt_debug_release(sk
);
3093 EXPORT_SYMBOL(sk_common_release
);
3095 void sk_get_meminfo(const struct sock
*sk
, u32
*mem
)
3097 memset(mem
, 0, sizeof(*mem
) * SK_MEMINFO_VARS
);
3099 mem
[SK_MEMINFO_RMEM_ALLOC
] = sk_rmem_alloc_get(sk
);
3100 mem
[SK_MEMINFO_RCVBUF
] = sk
->sk_rcvbuf
;
3101 mem
[SK_MEMINFO_WMEM_ALLOC
] = sk_wmem_alloc_get(sk
);
3102 mem
[SK_MEMINFO_SNDBUF
] = sk
->sk_sndbuf
;
3103 mem
[SK_MEMINFO_FWD_ALLOC
] = sk
->sk_forward_alloc
;
3104 mem
[SK_MEMINFO_WMEM_QUEUED
] = sk
->sk_wmem_queued
;
3105 mem
[SK_MEMINFO_OPTMEM
] = atomic_read(&sk
->sk_omem_alloc
);
3106 mem
[SK_MEMINFO_BACKLOG
] = sk
->sk_backlog
.len
;
3107 mem
[SK_MEMINFO_DROPS
] = atomic_read(&sk
->sk_drops
);
3110 #ifdef CONFIG_PROC_FS
3111 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3113 int val
[PROTO_INUSE_NR
];
3116 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
3118 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
3120 __this_cpu_add(net
->core
.prot_inuse
->val
[prot
->inuse_idx
], val
);
3122 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
3124 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
3126 int cpu
, idx
= prot
->inuse_idx
;
3129 for_each_possible_cpu(cpu
)
3130 res
+= per_cpu_ptr(net
->core
.prot_inuse
, cpu
)->val
[idx
];
3132 return res
>= 0 ? res
: 0;
3134 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
3136 static void sock_inuse_add(struct net
*net
, int val
)
3138 this_cpu_add(*net
->core
.sock_inuse
, val
);
3141 int sock_inuse_get(struct net
*net
)
3145 for_each_possible_cpu(cpu
)
3146 res
+= *per_cpu_ptr(net
->core
.sock_inuse
, cpu
);
3151 EXPORT_SYMBOL_GPL(sock_inuse_get
);
3153 static int __net_init
sock_inuse_init_net(struct net
*net
)
3155 net
->core
.prot_inuse
= alloc_percpu(struct prot_inuse
);
3156 if (net
->core
.prot_inuse
== NULL
)
3159 net
->core
.sock_inuse
= alloc_percpu(int);
3160 if (net
->core
.sock_inuse
== NULL
)
3166 free_percpu(net
->core
.prot_inuse
);
3170 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
3172 free_percpu(net
->core
.prot_inuse
);
3173 free_percpu(net
->core
.sock_inuse
);
3176 static struct pernet_operations net_inuse_ops
= {
3177 .init
= sock_inuse_init_net
,
3178 .exit
= sock_inuse_exit_net
,
3181 static __init
int net_inuse_init(void)
3183 if (register_pernet_subsys(&net_inuse_ops
))
3184 panic("Cannot initialize net inuse counters");
3189 core_initcall(net_inuse_init
);
3191 static void assign_proto_idx(struct proto
*prot
)
3193 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
3195 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
3196 pr_err("PROTO_INUSE_NR exhausted\n");
3200 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
3203 static void release_proto_idx(struct proto
*prot
)
3205 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
3206 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
3209 static inline void assign_proto_idx(struct proto
*prot
)
3213 static inline void release_proto_idx(struct proto
*prot
)
3217 static void sock_inuse_add(struct net
*net
, int val
)
3222 static void req_prot_cleanup(struct request_sock_ops
*rsk_prot
)
3226 kfree(rsk_prot
->slab_name
);
3227 rsk_prot
->slab_name
= NULL
;
3228 kmem_cache_destroy(rsk_prot
->slab
);
3229 rsk_prot
->slab
= NULL
;
3232 static int req_prot_init(const struct proto
*prot
)
3234 struct request_sock_ops
*rsk_prot
= prot
->rsk_prot
;
3239 rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s",
3241 if (!rsk_prot
->slab_name
)
3244 rsk_prot
->slab
= kmem_cache_create(rsk_prot
->slab_name
,
3245 rsk_prot
->obj_size
, 0,
3246 prot
->slab_flags
, NULL
);
3248 if (!rsk_prot
->slab
) {
3249 pr_crit("%s: Can't create request sock SLAB cache!\n",
3256 int proto_register(struct proto
*prot
, int alloc_slab
)
3259 prot
->slab
= kmem_cache_create_usercopy(prot
->name
,
3261 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
3262 prot
->useroffset
, prot
->usersize
,
3265 if (prot
->slab
== NULL
) {
3266 pr_crit("%s: Can't create sock SLAB cache!\n",
3271 if (req_prot_init(prot
))
3272 goto out_free_request_sock_slab
;
3274 if (prot
->twsk_prot
!= NULL
) {
3275 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
3277 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
3278 goto out_free_request_sock_slab
;
3280 prot
->twsk_prot
->twsk_slab
=
3281 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
3282 prot
->twsk_prot
->twsk_obj_size
,
3286 if (prot
->twsk_prot
->twsk_slab
== NULL
)
3287 goto out_free_timewait_sock_slab_name
;
3291 mutex_lock(&proto_list_mutex
);
3292 list_add(&prot
->node
, &proto_list
);
3293 assign_proto_idx(prot
);
3294 mutex_unlock(&proto_list_mutex
);
3297 out_free_timewait_sock_slab_name
:
3298 kfree(prot
->twsk_prot
->twsk_slab_name
);
3299 out_free_request_sock_slab
:
3300 req_prot_cleanup(prot
->rsk_prot
);
3302 kmem_cache_destroy(prot
->slab
);
3307 EXPORT_SYMBOL(proto_register
);
3309 void proto_unregister(struct proto
*prot
)
3311 mutex_lock(&proto_list_mutex
);
3312 release_proto_idx(prot
);
3313 list_del(&prot
->node
);
3314 mutex_unlock(&proto_list_mutex
);
3316 kmem_cache_destroy(prot
->slab
);
3319 req_prot_cleanup(prot
->rsk_prot
);
3321 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
3322 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
3323 kfree(prot
->twsk_prot
->twsk_slab_name
);
3324 prot
->twsk_prot
->twsk_slab
= NULL
;
3327 EXPORT_SYMBOL(proto_unregister
);
3329 int sock_load_diag_module(int family
, int protocol
)
3332 if (!sock_is_registered(family
))
3335 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK
,
3336 NETLINK_SOCK_DIAG
, family
);
3340 if (family
== AF_INET
&&
3341 !rcu_access_pointer(inet_protos
[protocol
]))
3345 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK
,
3346 NETLINK_SOCK_DIAG
, family
, protocol
);
3348 EXPORT_SYMBOL(sock_load_diag_module
);
3350 #ifdef CONFIG_PROC_FS
3351 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
3352 __acquires(proto_list_mutex
)
3354 mutex_lock(&proto_list_mutex
);
3355 return seq_list_start_head(&proto_list
, *pos
);
3358 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
3360 return seq_list_next(v
, &proto_list
, pos
);
3363 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
3364 __releases(proto_list_mutex
)
3366 mutex_unlock(&proto_list_mutex
);
3369 static char proto_method_implemented(const void *method
)
3371 return method
== NULL
? 'n' : 'y';
3373 static long sock_prot_memory_allocated(struct proto
*proto
)
3375 return proto
->memory_allocated
!= NULL
? proto_memory_allocated(proto
) : -1L;
3378 static char *sock_prot_memory_pressure(struct proto
*proto
)
3380 return proto
->memory_pressure
!= NULL
?
3381 proto_memory_pressure(proto
) ? "yes" : "no" : "NI";
3384 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
3387 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3388 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3391 sock_prot_inuse_get(seq_file_net(seq
), proto
),
3392 sock_prot_memory_allocated(proto
),
3393 sock_prot_memory_pressure(proto
),
3395 proto
->slab
== NULL
? "no" : "yes",
3396 module_name(proto
->owner
),
3397 proto_method_implemented(proto
->close
),
3398 proto_method_implemented(proto
->connect
),
3399 proto_method_implemented(proto
->disconnect
),
3400 proto_method_implemented(proto
->accept
),
3401 proto_method_implemented(proto
->ioctl
),
3402 proto_method_implemented(proto
->init
),
3403 proto_method_implemented(proto
->destroy
),
3404 proto_method_implemented(proto
->shutdown
),
3405 proto_method_implemented(proto
->setsockopt
),
3406 proto_method_implemented(proto
->getsockopt
),
3407 proto_method_implemented(proto
->sendmsg
),
3408 proto_method_implemented(proto
->recvmsg
),
3409 proto_method_implemented(proto
->sendpage
),
3410 proto_method_implemented(proto
->bind
),
3411 proto_method_implemented(proto
->backlog_rcv
),
3412 proto_method_implemented(proto
->hash
),
3413 proto_method_implemented(proto
->unhash
),
3414 proto_method_implemented(proto
->get_port
),
3415 proto_method_implemented(proto
->enter_memory_pressure
));
3418 static int proto_seq_show(struct seq_file
*seq
, void *v
)
3420 if (v
== &proto_list
)
3421 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3430 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3432 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
3436 static const struct seq_operations proto_seq_ops
= {
3437 .start
= proto_seq_start
,
3438 .next
= proto_seq_next
,
3439 .stop
= proto_seq_stop
,
3440 .show
= proto_seq_show
,
3443 static __net_init
int proto_init_net(struct net
*net
)
3445 if (!proc_create_net("protocols", 0444, net
->proc_net
, &proto_seq_ops
,
3446 sizeof(struct seq_net_private
)))
3452 static __net_exit
void proto_exit_net(struct net
*net
)
3454 remove_proc_entry("protocols", net
->proc_net
);
3458 static __net_initdata
struct pernet_operations proto_net_ops
= {
3459 .init
= proto_init_net
,
3460 .exit
= proto_exit_net
,
3463 static int __init
proto_init(void)
3465 return register_pernet_subsys(&proto_net_ops
);
3468 subsys_initcall(proto_init
);
3470 #endif /* PROC_FS */
3472 #ifdef CONFIG_NET_RX_BUSY_POLL
3473 bool sk_busy_loop_end(void *p
, unsigned long start_time
)
3475 struct sock
*sk
= p
;
3477 return !skb_queue_empty(&sk
->sk_receive_queue
) ||
3478 sk_busy_loop_timeout(sk
, start_time
);
3480 EXPORT_SYMBOL(sk_busy_loop_end
);
3481 #endif /* CONFIG_NET_RX_BUSY_POLL */