1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim
;
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
79 struct mem_cgroup
*target_mem_cgroup
;
81 /* Writepage batching in laptop mode; RECLAIM_WRITE */
82 unsigned int may_writepage
:1;
84 /* Can mapped pages be reclaimed? */
85 unsigned int may_unmap
:1;
87 /* Can pages be swapped as part of reclaim? */
88 unsigned int may_swap
:1;
91 * Cgroups are not reclaimed below their configured memory.low,
92 * unless we threaten to OOM. If any cgroups are skipped due to
93 * memory.low and nothing was reclaimed, go back for memory.low.
95 unsigned int memcg_low_reclaim
:1;
96 unsigned int memcg_low_skipped
:1;
98 unsigned int hibernation_mode
:1;
100 /* One of the zones is ready for compaction */
101 unsigned int compaction_ready
:1;
103 /* Allocation order */
106 /* Scan (total_size >> priority) pages at once */
109 /* The highest zone to isolate pages for reclaim from */
112 /* This context's GFP mask */
115 /* Incremented by the number of inactive pages that were scanned */
116 unsigned long nr_scanned
;
118 /* Number of pages freed so far during a call to shrink_zones() */
119 unsigned long nr_reclaimed
;
123 unsigned int unqueued_dirty
;
124 unsigned int congested
;
125 unsigned int writeback
;
126 unsigned int immediate
;
127 unsigned int file_taken
;
132 #ifdef ARCH_HAS_PREFETCH
133 #define prefetch_prev_lru_page(_page, _base, _field) \
135 if ((_page)->lru.prev != _base) { \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetch(&prev->_field); \
143 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
146 #ifdef ARCH_HAS_PREFETCHW
147 #define prefetchw_prev_lru_page(_page, _base, _field) \
149 if ((_page)->lru.prev != _base) { \
152 prev = lru_to_page(&(_page->lru)); \
153 prefetchw(&prev->_field); \
157 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
161 * From 0 .. 100. Higher means more swappy.
163 int vm_swappiness
= 60;
165 * The total number of pages which are beyond the high watermark within all
168 unsigned long vm_total_pages
;
170 static LIST_HEAD(shrinker_list
);
171 static DECLARE_RWSEM(shrinker_rwsem
);
173 #ifdef CONFIG_MEMCG_KMEM
176 * We allow subsystems to populate their shrinker-related
177 * LRU lists before register_shrinker_prepared() is called
178 * for the shrinker, since we don't want to impose
179 * restrictions on their internal registration order.
180 * In this case shrink_slab_memcg() may find corresponding
181 * bit is set in the shrinkers map.
183 * This value is used by the function to detect registering
184 * shrinkers and to skip do_shrink_slab() calls for them.
186 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
188 static DEFINE_IDR(shrinker_idr
);
189 static int shrinker_nr_max
;
191 static int prealloc_memcg_shrinker(struct shrinker
*shrinker
)
193 int id
, ret
= -ENOMEM
;
195 down_write(&shrinker_rwsem
);
196 /* This may call shrinker, so it must use down_read_trylock() */
197 id
= idr_alloc(&shrinker_idr
, SHRINKER_REGISTERING
, 0, 0, GFP_KERNEL
);
201 if (id
>= shrinker_nr_max
) {
202 if (memcg_expand_shrinker_maps(id
)) {
203 idr_remove(&shrinker_idr
, id
);
207 shrinker_nr_max
= id
+ 1;
212 up_write(&shrinker_rwsem
);
216 static void unregister_memcg_shrinker(struct shrinker
*shrinker
)
218 int id
= shrinker
->id
;
222 down_write(&shrinker_rwsem
);
223 idr_remove(&shrinker_idr
, id
);
224 up_write(&shrinker_rwsem
);
226 #else /* CONFIG_MEMCG_KMEM */
227 static int prealloc_memcg_shrinker(struct shrinker
*shrinker
)
232 static void unregister_memcg_shrinker(struct shrinker
*shrinker
)
235 #endif /* CONFIG_MEMCG_KMEM */
238 static bool global_reclaim(struct scan_control
*sc
)
240 return !sc
->target_mem_cgroup
;
244 * sane_reclaim - is the usual dirty throttling mechanism operational?
245 * @sc: scan_control in question
247 * The normal page dirty throttling mechanism in balance_dirty_pages() is
248 * completely broken with the legacy memcg and direct stalling in
249 * shrink_page_list() is used for throttling instead, which lacks all the
250 * niceties such as fairness, adaptive pausing, bandwidth proportional
251 * allocation and configurability.
253 * This function tests whether the vmscan currently in progress can assume
254 * that the normal dirty throttling mechanism is operational.
256 static bool sane_reclaim(struct scan_control
*sc
)
258 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
262 #ifdef CONFIG_CGROUP_WRITEBACK
263 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
269 static void set_memcg_congestion(pg_data_t
*pgdat
,
270 struct mem_cgroup
*memcg
,
273 struct mem_cgroup_per_node
*mn
;
278 mn
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
279 WRITE_ONCE(mn
->congested
, congested
);
282 static bool memcg_congested(pg_data_t
*pgdat
,
283 struct mem_cgroup
*memcg
)
285 struct mem_cgroup_per_node
*mn
;
287 mn
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
288 return READ_ONCE(mn
->congested
);
292 static bool global_reclaim(struct scan_control
*sc
)
297 static bool sane_reclaim(struct scan_control
*sc
)
302 static inline void set_memcg_congestion(struct pglist_data
*pgdat
,
303 struct mem_cgroup
*memcg
, bool congested
)
307 static inline bool memcg_congested(struct pglist_data
*pgdat
,
308 struct mem_cgroup
*memcg
)
316 * This misses isolated pages which are not accounted for to save counters.
317 * As the data only determines if reclaim or compaction continues, it is
318 * not expected that isolated pages will be a dominating factor.
320 unsigned long zone_reclaimable_pages(struct zone
*zone
)
324 nr
= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_FILE
) +
325 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_FILE
);
326 if (get_nr_swap_pages() > 0)
327 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_ANON
) +
328 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_ANON
);
334 * lruvec_lru_size - Returns the number of pages on the given LRU list.
335 * @lruvec: lru vector
337 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
339 unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
, int zone_idx
)
341 unsigned long lru_size
;
344 if (!mem_cgroup_disabled())
345 lru_size
= mem_cgroup_get_lru_size(lruvec
, lru
);
347 lru_size
= node_page_state(lruvec_pgdat(lruvec
), NR_LRU_BASE
+ lru
);
349 for (zid
= zone_idx
+ 1; zid
< MAX_NR_ZONES
; zid
++) {
350 struct zone
*zone
= &lruvec_pgdat(lruvec
)->node_zones
[zid
];
353 if (!managed_zone(zone
))
356 if (!mem_cgroup_disabled())
357 size
= mem_cgroup_get_zone_lru_size(lruvec
, lru
, zid
);
359 size
= zone_page_state(&lruvec_pgdat(lruvec
)->node_zones
[zid
],
360 NR_ZONE_LRU_BASE
+ lru
);
361 lru_size
-= min(size
, lru_size
);
369 * Add a shrinker callback to be called from the vm.
371 int prealloc_shrinker(struct shrinker
*shrinker
)
373 size_t size
= sizeof(*shrinker
->nr_deferred
);
375 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
378 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
379 if (!shrinker
->nr_deferred
)
382 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
) {
383 if (prealloc_memcg_shrinker(shrinker
))
390 kfree(shrinker
->nr_deferred
);
391 shrinker
->nr_deferred
= NULL
;
395 void free_prealloced_shrinker(struct shrinker
*shrinker
)
397 if (!shrinker
->nr_deferred
)
400 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
401 unregister_memcg_shrinker(shrinker
);
403 kfree(shrinker
->nr_deferred
);
404 shrinker
->nr_deferred
= NULL
;
407 void register_shrinker_prepared(struct shrinker
*shrinker
)
409 down_write(&shrinker_rwsem
);
410 list_add_tail(&shrinker
->list
, &shrinker_list
);
411 #ifdef CONFIG_MEMCG_KMEM
412 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
413 idr_replace(&shrinker_idr
, shrinker
, shrinker
->id
);
415 up_write(&shrinker_rwsem
);
418 int register_shrinker(struct shrinker
*shrinker
)
420 int err
= prealloc_shrinker(shrinker
);
424 register_shrinker_prepared(shrinker
);
427 EXPORT_SYMBOL(register_shrinker
);
432 void unregister_shrinker(struct shrinker
*shrinker
)
434 if (!shrinker
->nr_deferred
)
436 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
437 unregister_memcg_shrinker(shrinker
);
438 down_write(&shrinker_rwsem
);
439 list_del(&shrinker
->list
);
440 up_write(&shrinker_rwsem
);
441 kfree(shrinker
->nr_deferred
);
442 shrinker
->nr_deferred
= NULL
;
444 EXPORT_SYMBOL(unregister_shrinker
);
446 #define SHRINK_BATCH 128
448 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
449 struct shrinker
*shrinker
, int priority
)
451 unsigned long freed
= 0;
452 unsigned long long delta
;
457 int nid
= shrinkctl
->nid
;
458 long batch_size
= shrinker
->batch
? shrinker
->batch
460 long scanned
= 0, next_deferred
;
462 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
465 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
466 if (freeable
== 0 || freeable
== SHRINK_EMPTY
)
470 * copy the current shrinker scan count into a local variable
471 * and zero it so that other concurrent shrinker invocations
472 * don't also do this scanning work.
474 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
477 if (shrinker
->seeks
) {
478 delta
= freeable
>> priority
;
480 do_div(delta
, shrinker
->seeks
);
483 * These objects don't require any IO to create. Trim
484 * them aggressively under memory pressure to keep
485 * them from causing refetches in the IO caches.
487 delta
= freeable
/ 2;
491 * Make sure we apply some minimal pressure on default priority
492 * even on small cgroups. Stale objects are not only consuming memory
493 * by themselves, but can also hold a reference to a dying cgroup,
494 * preventing it from being reclaimed. A dying cgroup with all
495 * corresponding structures like per-cpu stats and kmem caches
496 * can be really big, so it may lead to a significant waste of memory.
498 delta
= max_t(unsigned long long, delta
, min(freeable
, batch_size
));
501 if (total_scan
< 0) {
502 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
503 shrinker
->scan_objects
, total_scan
);
504 total_scan
= freeable
;
507 next_deferred
= total_scan
;
510 * We need to avoid excessive windup on filesystem shrinkers
511 * due to large numbers of GFP_NOFS allocations causing the
512 * shrinkers to return -1 all the time. This results in a large
513 * nr being built up so when a shrink that can do some work
514 * comes along it empties the entire cache due to nr >>>
515 * freeable. This is bad for sustaining a working set in
518 * Hence only allow the shrinker to scan the entire cache when
519 * a large delta change is calculated directly.
521 if (delta
< freeable
/ 4)
522 total_scan
= min(total_scan
, freeable
/ 2);
525 * Avoid risking looping forever due to too large nr value:
526 * never try to free more than twice the estimate number of
529 if (total_scan
> freeable
* 2)
530 total_scan
= freeable
* 2;
532 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
533 freeable
, delta
, total_scan
, priority
);
536 * Normally, we should not scan less than batch_size objects in one
537 * pass to avoid too frequent shrinker calls, but if the slab has less
538 * than batch_size objects in total and we are really tight on memory,
539 * we will try to reclaim all available objects, otherwise we can end
540 * up failing allocations although there are plenty of reclaimable
541 * objects spread over several slabs with usage less than the
544 * We detect the "tight on memory" situations by looking at the total
545 * number of objects we want to scan (total_scan). If it is greater
546 * than the total number of objects on slab (freeable), we must be
547 * scanning at high prio and therefore should try to reclaim as much as
550 while (total_scan
>= batch_size
||
551 total_scan
>= freeable
) {
553 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
555 shrinkctl
->nr_to_scan
= nr_to_scan
;
556 shrinkctl
->nr_scanned
= nr_to_scan
;
557 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
558 if (ret
== SHRINK_STOP
)
562 count_vm_events(SLABS_SCANNED
, shrinkctl
->nr_scanned
);
563 total_scan
-= shrinkctl
->nr_scanned
;
564 scanned
+= shrinkctl
->nr_scanned
;
569 if (next_deferred
>= scanned
)
570 next_deferred
-= scanned
;
574 * move the unused scan count back into the shrinker in a
575 * manner that handles concurrent updates. If we exhausted the
576 * scan, there is no need to do an update.
578 if (next_deferred
> 0)
579 new_nr
= atomic_long_add_return(next_deferred
,
580 &shrinker
->nr_deferred
[nid
]);
582 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
584 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
588 #ifdef CONFIG_MEMCG_KMEM
589 static unsigned long shrink_slab_memcg(gfp_t gfp_mask
, int nid
,
590 struct mem_cgroup
*memcg
, int priority
)
592 struct memcg_shrinker_map
*map
;
593 unsigned long ret
, freed
= 0;
596 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg
))
599 if (!down_read_trylock(&shrinker_rwsem
))
602 map
= rcu_dereference_protected(memcg
->nodeinfo
[nid
]->shrinker_map
,
607 for_each_set_bit(i
, map
->map
, shrinker_nr_max
) {
608 struct shrink_control sc
= {
609 .gfp_mask
= gfp_mask
,
613 struct shrinker
*shrinker
;
615 shrinker
= idr_find(&shrinker_idr
, i
);
616 if (unlikely(!shrinker
|| shrinker
== SHRINKER_REGISTERING
)) {
618 clear_bit(i
, map
->map
);
622 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
623 if (ret
== SHRINK_EMPTY
) {
624 clear_bit(i
, map
->map
);
626 * After the shrinker reported that it had no objects to
627 * free, but before we cleared the corresponding bit in
628 * the memcg shrinker map, a new object might have been
629 * added. To make sure, we have the bit set in this
630 * case, we invoke the shrinker one more time and reset
631 * the bit if it reports that it is not empty anymore.
632 * The memory barrier here pairs with the barrier in
633 * memcg_set_shrinker_bit():
635 * list_lru_add() shrink_slab_memcg()
636 * list_add_tail() clear_bit()
638 * set_bit() do_shrink_slab()
640 smp_mb__after_atomic();
641 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
642 if (ret
== SHRINK_EMPTY
)
645 memcg_set_shrinker_bit(memcg
, nid
, i
);
649 if (rwsem_is_contended(&shrinker_rwsem
)) {
655 up_read(&shrinker_rwsem
);
658 #else /* CONFIG_MEMCG_KMEM */
659 static unsigned long shrink_slab_memcg(gfp_t gfp_mask
, int nid
,
660 struct mem_cgroup
*memcg
, int priority
)
664 #endif /* CONFIG_MEMCG_KMEM */
667 * shrink_slab - shrink slab caches
668 * @gfp_mask: allocation context
669 * @nid: node whose slab caches to target
670 * @memcg: memory cgroup whose slab caches to target
671 * @priority: the reclaim priority
673 * Call the shrink functions to age shrinkable caches.
675 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
676 * unaware shrinkers will receive a node id of 0 instead.
678 * @memcg specifies the memory cgroup to target. Unaware shrinkers
679 * are called only if it is the root cgroup.
681 * @priority is sc->priority, we take the number of objects and >> by priority
682 * in order to get the scan target.
684 * Returns the number of reclaimed slab objects.
686 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
687 struct mem_cgroup
*memcg
,
690 unsigned long ret
, freed
= 0;
691 struct shrinker
*shrinker
;
693 if (!mem_cgroup_is_root(memcg
))
694 return shrink_slab_memcg(gfp_mask
, nid
, memcg
, priority
);
696 if (!down_read_trylock(&shrinker_rwsem
))
699 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
700 struct shrink_control sc
= {
701 .gfp_mask
= gfp_mask
,
706 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
707 if (ret
== SHRINK_EMPTY
)
711 * Bail out if someone want to register a new shrinker to
712 * prevent the regsitration from being stalled for long periods
713 * by parallel ongoing shrinking.
715 if (rwsem_is_contended(&shrinker_rwsem
)) {
721 up_read(&shrinker_rwsem
);
727 void drop_slab_node(int nid
)
732 struct mem_cgroup
*memcg
= NULL
;
735 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
737 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
, 0);
738 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
739 } while (freed
> 10);
746 for_each_online_node(nid
)
750 static inline int is_page_cache_freeable(struct page
*page
)
753 * A freeable page cache page is referenced only by the caller
754 * that isolated the page, the page cache and optional buffer
755 * heads at page->private.
757 int page_cache_pins
= PageTransHuge(page
) && PageSwapCache(page
) ?
759 return page_count(page
) - page_has_private(page
) == 1 + page_cache_pins
;
762 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
764 if (current
->flags
& PF_SWAPWRITE
)
766 if (!inode_write_congested(inode
))
768 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
774 * We detected a synchronous write error writing a page out. Probably
775 * -ENOSPC. We need to propagate that into the address_space for a subsequent
776 * fsync(), msync() or close().
778 * The tricky part is that after writepage we cannot touch the mapping: nothing
779 * prevents it from being freed up. But we have a ref on the page and once
780 * that page is locked, the mapping is pinned.
782 * We're allowed to run sleeping lock_page() here because we know the caller has
785 static void handle_write_error(struct address_space
*mapping
,
786 struct page
*page
, int error
)
789 if (page_mapping(page
) == mapping
)
790 mapping_set_error(mapping
, error
);
794 /* possible outcome of pageout() */
796 /* failed to write page out, page is locked */
798 /* move page to the active list, page is locked */
800 /* page has been sent to the disk successfully, page is unlocked */
802 /* page is clean and locked */
807 * pageout is called by shrink_page_list() for each dirty page.
808 * Calls ->writepage().
810 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
811 struct scan_control
*sc
)
814 * If the page is dirty, only perform writeback if that write
815 * will be non-blocking. To prevent this allocation from being
816 * stalled by pagecache activity. But note that there may be
817 * stalls if we need to run get_block(). We could test
818 * PagePrivate for that.
820 * If this process is currently in __generic_file_write_iter() against
821 * this page's queue, we can perform writeback even if that
824 * If the page is swapcache, write it back even if that would
825 * block, for some throttling. This happens by accident, because
826 * swap_backing_dev_info is bust: it doesn't reflect the
827 * congestion state of the swapdevs. Easy to fix, if needed.
829 if (!is_page_cache_freeable(page
))
833 * Some data journaling orphaned pages can have
834 * page->mapping == NULL while being dirty with clean buffers.
836 if (page_has_private(page
)) {
837 if (try_to_free_buffers(page
)) {
838 ClearPageDirty(page
);
839 pr_info("%s: orphaned page\n", __func__
);
845 if (mapping
->a_ops
->writepage
== NULL
)
846 return PAGE_ACTIVATE
;
847 if (!may_write_to_inode(mapping
->host
, sc
))
850 if (clear_page_dirty_for_io(page
)) {
852 struct writeback_control wbc
= {
853 .sync_mode
= WB_SYNC_NONE
,
854 .nr_to_write
= SWAP_CLUSTER_MAX
,
856 .range_end
= LLONG_MAX
,
860 SetPageReclaim(page
);
861 res
= mapping
->a_ops
->writepage(page
, &wbc
);
863 handle_write_error(mapping
, page
, res
);
864 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
865 ClearPageReclaim(page
);
866 return PAGE_ACTIVATE
;
869 if (!PageWriteback(page
)) {
870 /* synchronous write or broken a_ops? */
871 ClearPageReclaim(page
);
873 trace_mm_vmscan_writepage(page
);
874 inc_node_page_state(page
, NR_VMSCAN_WRITE
);
882 * Same as remove_mapping, but if the page is removed from the mapping, it
883 * gets returned with a refcount of 0.
885 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
891 BUG_ON(!PageLocked(page
));
892 BUG_ON(mapping
!= page_mapping(page
));
894 xa_lock_irqsave(&mapping
->i_pages
, flags
);
896 * The non racy check for a busy page.
898 * Must be careful with the order of the tests. When someone has
899 * a ref to the page, it may be possible that they dirty it then
900 * drop the reference. So if PageDirty is tested before page_count
901 * here, then the following race may occur:
903 * get_user_pages(&page);
904 * [user mapping goes away]
906 * !PageDirty(page) [good]
907 * SetPageDirty(page);
909 * !page_count(page) [good, discard it]
911 * [oops, our write_to data is lost]
913 * Reversing the order of the tests ensures such a situation cannot
914 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
915 * load is not satisfied before that of page->_refcount.
917 * Note that if SetPageDirty is always performed via set_page_dirty,
918 * and thus under the i_pages lock, then this ordering is not required.
920 if (unlikely(PageTransHuge(page
)) && PageSwapCache(page
))
921 refcount
= 1 + HPAGE_PMD_NR
;
924 if (!page_ref_freeze(page
, refcount
))
926 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
927 if (unlikely(PageDirty(page
))) {
928 page_ref_unfreeze(page
, refcount
);
932 if (PageSwapCache(page
)) {
933 swp_entry_t swap
= { .val
= page_private(page
) };
934 mem_cgroup_swapout(page
, swap
);
935 __delete_from_swap_cache(page
, swap
);
936 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
937 put_swap_page(page
, swap
);
939 void (*freepage
)(struct page
*);
942 freepage
= mapping
->a_ops
->freepage
;
944 * Remember a shadow entry for reclaimed file cache in
945 * order to detect refaults, thus thrashing, later on.
947 * But don't store shadows in an address space that is
948 * already exiting. This is not just an optizimation,
949 * inode reclaim needs to empty out the radix tree or
950 * the nodes are lost. Don't plant shadows behind its
953 * We also don't store shadows for DAX mappings because the
954 * only page cache pages found in these are zero pages
955 * covering holes, and because we don't want to mix DAX
956 * exceptional entries and shadow exceptional entries in the
957 * same address_space.
959 if (reclaimed
&& page_is_file_cache(page
) &&
960 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
961 shadow
= workingset_eviction(mapping
, page
);
962 __delete_from_page_cache(page
, shadow
);
963 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
965 if (freepage
!= NULL
)
972 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
977 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
978 * someone else has a ref on the page, abort and return 0. If it was
979 * successfully detached, return 1. Assumes the caller has a single ref on
982 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
984 if (__remove_mapping(mapping
, page
, false)) {
986 * Unfreezing the refcount with 1 rather than 2 effectively
987 * drops the pagecache ref for us without requiring another
990 page_ref_unfreeze(page
, 1);
997 * putback_lru_page - put previously isolated page onto appropriate LRU list
998 * @page: page to be put back to appropriate lru list
1000 * Add previously isolated @page to appropriate LRU list.
1001 * Page may still be unevictable for other reasons.
1003 * lru_lock must not be held, interrupts must be enabled.
1005 void putback_lru_page(struct page
*page
)
1007 lru_cache_add(page
);
1008 put_page(page
); /* drop ref from isolate */
1011 enum page_references
{
1013 PAGEREF_RECLAIM_CLEAN
,
1018 static enum page_references
page_check_references(struct page
*page
,
1019 struct scan_control
*sc
)
1021 int referenced_ptes
, referenced_page
;
1022 unsigned long vm_flags
;
1024 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
1026 referenced_page
= TestClearPageReferenced(page
);
1029 * Mlock lost the isolation race with us. Let try_to_unmap()
1030 * move the page to the unevictable list.
1032 if (vm_flags
& VM_LOCKED
)
1033 return PAGEREF_RECLAIM
;
1035 if (referenced_ptes
) {
1036 if (PageSwapBacked(page
))
1037 return PAGEREF_ACTIVATE
;
1039 * All mapped pages start out with page table
1040 * references from the instantiating fault, so we need
1041 * to look twice if a mapped file page is used more
1044 * Mark it and spare it for another trip around the
1045 * inactive list. Another page table reference will
1046 * lead to its activation.
1048 * Note: the mark is set for activated pages as well
1049 * so that recently deactivated but used pages are
1050 * quickly recovered.
1052 SetPageReferenced(page
);
1054 if (referenced_page
|| referenced_ptes
> 1)
1055 return PAGEREF_ACTIVATE
;
1058 * Activate file-backed executable pages after first usage.
1060 if (vm_flags
& VM_EXEC
)
1061 return PAGEREF_ACTIVATE
;
1063 return PAGEREF_KEEP
;
1066 /* Reclaim if clean, defer dirty pages to writeback */
1067 if (referenced_page
&& !PageSwapBacked(page
))
1068 return PAGEREF_RECLAIM_CLEAN
;
1070 return PAGEREF_RECLAIM
;
1073 /* Check if a page is dirty or under writeback */
1074 static void page_check_dirty_writeback(struct page
*page
,
1075 bool *dirty
, bool *writeback
)
1077 struct address_space
*mapping
;
1080 * Anonymous pages are not handled by flushers and must be written
1081 * from reclaim context. Do not stall reclaim based on them
1083 if (!page_is_file_cache(page
) ||
1084 (PageAnon(page
) && !PageSwapBacked(page
))) {
1090 /* By default assume that the page flags are accurate */
1091 *dirty
= PageDirty(page
);
1092 *writeback
= PageWriteback(page
);
1094 /* Verify dirty/writeback state if the filesystem supports it */
1095 if (!page_has_private(page
))
1098 mapping
= page_mapping(page
);
1099 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
1100 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
1104 * shrink_page_list() returns the number of reclaimed pages
1106 static unsigned long shrink_page_list(struct list_head
*page_list
,
1107 struct pglist_data
*pgdat
,
1108 struct scan_control
*sc
,
1109 enum ttu_flags ttu_flags
,
1110 struct reclaim_stat
*stat
,
1113 LIST_HEAD(ret_pages
);
1114 LIST_HEAD(free_pages
);
1116 unsigned nr_unqueued_dirty
= 0;
1117 unsigned nr_dirty
= 0;
1118 unsigned nr_congested
= 0;
1119 unsigned nr_reclaimed
= 0;
1120 unsigned nr_writeback
= 0;
1121 unsigned nr_immediate
= 0;
1122 unsigned nr_ref_keep
= 0;
1123 unsigned nr_unmap_fail
= 0;
1127 while (!list_empty(page_list
)) {
1128 struct address_space
*mapping
;
1131 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
1132 bool dirty
, writeback
;
1136 page
= lru_to_page(page_list
);
1137 list_del(&page
->lru
);
1139 if (!trylock_page(page
))
1142 VM_BUG_ON_PAGE(PageActive(page
), page
);
1146 if (unlikely(!page_evictable(page
)))
1147 goto activate_locked
;
1149 if (!sc
->may_unmap
&& page_mapped(page
))
1152 /* Double the slab pressure for mapped and swapcache pages */
1153 if ((page_mapped(page
) || PageSwapCache(page
)) &&
1154 !(PageAnon(page
) && !PageSwapBacked(page
)))
1157 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
1158 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
1161 * The number of dirty pages determines if a node is marked
1162 * reclaim_congested which affects wait_iff_congested. kswapd
1163 * will stall and start writing pages if the tail of the LRU
1164 * is all dirty unqueued pages.
1166 page_check_dirty_writeback(page
, &dirty
, &writeback
);
1167 if (dirty
|| writeback
)
1170 if (dirty
&& !writeback
)
1171 nr_unqueued_dirty
++;
1174 * Treat this page as congested if the underlying BDI is or if
1175 * pages are cycling through the LRU so quickly that the
1176 * pages marked for immediate reclaim are making it to the
1177 * end of the LRU a second time.
1179 mapping
= page_mapping(page
);
1180 if (((dirty
|| writeback
) && mapping
&&
1181 inode_write_congested(mapping
->host
)) ||
1182 (writeback
&& PageReclaim(page
)))
1186 * If a page at the tail of the LRU is under writeback, there
1187 * are three cases to consider.
1189 * 1) If reclaim is encountering an excessive number of pages
1190 * under writeback and this page is both under writeback and
1191 * PageReclaim then it indicates that pages are being queued
1192 * for IO but are being recycled through the LRU before the
1193 * IO can complete. Waiting on the page itself risks an
1194 * indefinite stall if it is impossible to writeback the
1195 * page due to IO error or disconnected storage so instead
1196 * note that the LRU is being scanned too quickly and the
1197 * caller can stall after page list has been processed.
1199 * 2) Global or new memcg reclaim encounters a page that is
1200 * not marked for immediate reclaim, or the caller does not
1201 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1202 * not to fs). In this case mark the page for immediate
1203 * reclaim and continue scanning.
1205 * Require may_enter_fs because we would wait on fs, which
1206 * may not have submitted IO yet. And the loop driver might
1207 * enter reclaim, and deadlock if it waits on a page for
1208 * which it is needed to do the write (loop masks off
1209 * __GFP_IO|__GFP_FS for this reason); but more thought
1210 * would probably show more reasons.
1212 * 3) Legacy memcg encounters a page that is already marked
1213 * PageReclaim. memcg does not have any dirty pages
1214 * throttling so we could easily OOM just because too many
1215 * pages are in writeback and there is nothing else to
1216 * reclaim. Wait for the writeback to complete.
1218 * In cases 1) and 2) we activate the pages to get them out of
1219 * the way while we continue scanning for clean pages on the
1220 * inactive list and refilling from the active list. The
1221 * observation here is that waiting for disk writes is more
1222 * expensive than potentially causing reloads down the line.
1223 * Since they're marked for immediate reclaim, they won't put
1224 * memory pressure on the cache working set any longer than it
1225 * takes to write them to disk.
1227 if (PageWriteback(page
)) {
1229 if (current_is_kswapd() &&
1230 PageReclaim(page
) &&
1231 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1233 goto activate_locked
;
1236 } else if (sane_reclaim(sc
) ||
1237 !PageReclaim(page
) || !may_enter_fs
) {
1239 * This is slightly racy - end_page_writeback()
1240 * might have just cleared PageReclaim, then
1241 * setting PageReclaim here end up interpreted
1242 * as PageReadahead - but that does not matter
1243 * enough to care. What we do want is for this
1244 * page to have PageReclaim set next time memcg
1245 * reclaim reaches the tests above, so it will
1246 * then wait_on_page_writeback() to avoid OOM;
1247 * and it's also appropriate in global reclaim.
1249 SetPageReclaim(page
);
1251 goto activate_locked
;
1256 wait_on_page_writeback(page
);
1257 /* then go back and try same page again */
1258 list_add_tail(&page
->lru
, page_list
);
1264 references
= page_check_references(page
, sc
);
1266 switch (references
) {
1267 case PAGEREF_ACTIVATE
:
1268 goto activate_locked
;
1272 case PAGEREF_RECLAIM
:
1273 case PAGEREF_RECLAIM_CLEAN
:
1274 ; /* try to reclaim the page below */
1278 * Anonymous process memory has backing store?
1279 * Try to allocate it some swap space here.
1280 * Lazyfree page could be freed directly
1282 if (PageAnon(page
) && PageSwapBacked(page
)) {
1283 if (!PageSwapCache(page
)) {
1284 if (!(sc
->gfp_mask
& __GFP_IO
))
1286 if (PageTransHuge(page
)) {
1287 /* cannot split THP, skip it */
1288 if (!can_split_huge_page(page
, NULL
))
1289 goto activate_locked
;
1291 * Split pages without a PMD map right
1292 * away. Chances are some or all of the
1293 * tail pages can be freed without IO.
1295 if (!compound_mapcount(page
) &&
1296 split_huge_page_to_list(page
,
1298 goto activate_locked
;
1300 if (!add_to_swap(page
)) {
1301 if (!PageTransHuge(page
))
1302 goto activate_locked
;
1303 /* Fallback to swap normal pages */
1304 if (split_huge_page_to_list(page
,
1306 goto activate_locked
;
1307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1308 count_vm_event(THP_SWPOUT_FALLBACK
);
1310 if (!add_to_swap(page
))
1311 goto activate_locked
;
1316 /* Adding to swap updated mapping */
1317 mapping
= page_mapping(page
);
1319 } else if (unlikely(PageTransHuge(page
))) {
1320 /* Split file THP */
1321 if (split_huge_page_to_list(page
, page_list
))
1326 * The page is mapped into the page tables of one or more
1327 * processes. Try to unmap it here.
1329 if (page_mapped(page
)) {
1330 enum ttu_flags flags
= ttu_flags
| TTU_BATCH_FLUSH
;
1332 if (unlikely(PageTransHuge(page
)))
1333 flags
|= TTU_SPLIT_HUGE_PMD
;
1334 if (!try_to_unmap(page
, flags
)) {
1336 goto activate_locked
;
1340 if (PageDirty(page
)) {
1342 * Only kswapd can writeback filesystem pages
1343 * to avoid risk of stack overflow. But avoid
1344 * injecting inefficient single-page IO into
1345 * flusher writeback as much as possible: only
1346 * write pages when we've encountered many
1347 * dirty pages, and when we've already scanned
1348 * the rest of the LRU for clean pages and see
1349 * the same dirty pages again (PageReclaim).
1351 if (page_is_file_cache(page
) &&
1352 (!current_is_kswapd() || !PageReclaim(page
) ||
1353 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1355 * Immediately reclaim when written back.
1356 * Similar in principal to deactivate_page()
1357 * except we already have the page isolated
1358 * and know it's dirty
1360 inc_node_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1361 SetPageReclaim(page
);
1363 goto activate_locked
;
1366 if (references
== PAGEREF_RECLAIM_CLEAN
)
1370 if (!sc
->may_writepage
)
1374 * Page is dirty. Flush the TLB if a writable entry
1375 * potentially exists to avoid CPU writes after IO
1376 * starts and then write it out here.
1378 try_to_unmap_flush_dirty();
1379 switch (pageout(page
, mapping
, sc
)) {
1383 goto activate_locked
;
1385 if (PageWriteback(page
))
1387 if (PageDirty(page
))
1391 * A synchronous write - probably a ramdisk. Go
1392 * ahead and try to reclaim the page.
1394 if (!trylock_page(page
))
1396 if (PageDirty(page
) || PageWriteback(page
))
1398 mapping
= page_mapping(page
);
1400 ; /* try to free the page below */
1405 * If the page has buffers, try to free the buffer mappings
1406 * associated with this page. If we succeed we try to free
1409 * We do this even if the page is PageDirty().
1410 * try_to_release_page() does not perform I/O, but it is
1411 * possible for a page to have PageDirty set, but it is actually
1412 * clean (all its buffers are clean). This happens if the
1413 * buffers were written out directly, with submit_bh(). ext3
1414 * will do this, as well as the blockdev mapping.
1415 * try_to_release_page() will discover that cleanness and will
1416 * drop the buffers and mark the page clean - it can be freed.
1418 * Rarely, pages can have buffers and no ->mapping. These are
1419 * the pages which were not successfully invalidated in
1420 * truncate_complete_page(). We try to drop those buffers here
1421 * and if that worked, and the page is no longer mapped into
1422 * process address space (page_count == 1) it can be freed.
1423 * Otherwise, leave the page on the LRU so it is swappable.
1425 if (page_has_private(page
)) {
1426 if (!try_to_release_page(page
, sc
->gfp_mask
))
1427 goto activate_locked
;
1428 if (!mapping
&& page_count(page
) == 1) {
1430 if (put_page_testzero(page
))
1434 * rare race with speculative reference.
1435 * the speculative reference will free
1436 * this page shortly, so we may
1437 * increment nr_reclaimed here (and
1438 * leave it off the LRU).
1446 if (PageAnon(page
) && !PageSwapBacked(page
)) {
1447 /* follow __remove_mapping for reference */
1448 if (!page_ref_freeze(page
, 1))
1450 if (PageDirty(page
)) {
1451 page_ref_unfreeze(page
, 1);
1455 count_vm_event(PGLAZYFREED
);
1456 count_memcg_page_event(page
, PGLAZYFREED
);
1457 } else if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1460 * At this point, we have no other references and there is
1461 * no way to pick any more up (removed from LRU, removed
1462 * from pagecache). Can use non-atomic bitops now (and
1463 * we obviously don't have to worry about waking up a process
1464 * waiting on the page lock, because there are no references.
1466 __ClearPageLocked(page
);
1471 * Is there need to periodically free_page_list? It would
1472 * appear not as the counts should be low
1474 if (unlikely(PageTransHuge(page
))) {
1475 mem_cgroup_uncharge(page
);
1476 (*get_compound_page_dtor(page
))(page
);
1478 list_add(&page
->lru
, &free_pages
);
1482 /* Not a candidate for swapping, so reclaim swap space. */
1483 if (PageSwapCache(page
) && (mem_cgroup_swap_full(page
) ||
1485 try_to_free_swap(page
);
1486 VM_BUG_ON_PAGE(PageActive(page
), page
);
1487 if (!PageMlocked(page
)) {
1488 SetPageActive(page
);
1490 count_memcg_page_event(page
, PGACTIVATE
);
1495 list_add(&page
->lru
, &ret_pages
);
1496 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1499 mem_cgroup_uncharge_list(&free_pages
);
1500 try_to_unmap_flush();
1501 free_unref_page_list(&free_pages
);
1503 list_splice(&ret_pages
, page_list
);
1504 count_vm_events(PGACTIVATE
, pgactivate
);
1507 stat
->nr_dirty
= nr_dirty
;
1508 stat
->nr_congested
= nr_congested
;
1509 stat
->nr_unqueued_dirty
= nr_unqueued_dirty
;
1510 stat
->nr_writeback
= nr_writeback
;
1511 stat
->nr_immediate
= nr_immediate
;
1512 stat
->nr_activate
= pgactivate
;
1513 stat
->nr_ref_keep
= nr_ref_keep
;
1514 stat
->nr_unmap_fail
= nr_unmap_fail
;
1516 return nr_reclaimed
;
1519 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1520 struct list_head
*page_list
)
1522 struct scan_control sc
= {
1523 .gfp_mask
= GFP_KERNEL
,
1524 .priority
= DEF_PRIORITY
,
1528 struct page
*page
, *next
;
1529 LIST_HEAD(clean_pages
);
1531 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1532 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1533 !__PageMovable(page
)) {
1534 ClearPageActive(page
);
1535 list_move(&page
->lru
, &clean_pages
);
1539 ret
= shrink_page_list(&clean_pages
, zone
->zone_pgdat
, &sc
,
1540 TTU_IGNORE_ACCESS
, NULL
, true);
1541 list_splice(&clean_pages
, page_list
);
1542 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
, -ret
);
1547 * Attempt to remove the specified page from its LRU. Only take this page
1548 * if it is of the appropriate PageActive status. Pages which are being
1549 * freed elsewhere are also ignored.
1551 * page: page to consider
1552 * mode: one of the LRU isolation modes defined above
1554 * returns 0 on success, -ve errno on failure.
1556 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1560 /* Only take pages on the LRU. */
1564 /* Compaction should not handle unevictable pages but CMA can do so */
1565 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1571 * To minimise LRU disruption, the caller can indicate that it only
1572 * wants to isolate pages it will be able to operate on without
1573 * blocking - clean pages for the most part.
1575 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1576 * that it is possible to migrate without blocking
1578 if (mode
& ISOLATE_ASYNC_MIGRATE
) {
1579 /* All the caller can do on PageWriteback is block */
1580 if (PageWriteback(page
))
1583 if (PageDirty(page
)) {
1584 struct address_space
*mapping
;
1588 * Only pages without mappings or that have a
1589 * ->migratepage callback are possible to migrate
1590 * without blocking. However, we can be racing with
1591 * truncation so it's necessary to lock the page
1592 * to stabilise the mapping as truncation holds
1593 * the page lock until after the page is removed
1594 * from the page cache.
1596 if (!trylock_page(page
))
1599 mapping
= page_mapping(page
);
1600 migrate_dirty
= !mapping
|| mapping
->a_ops
->migratepage
;
1607 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1610 if (likely(get_page_unless_zero(page
))) {
1612 * Be careful not to clear PageLRU until after we're
1613 * sure the page is not being freed elsewhere -- the
1614 * page release code relies on it.
1625 * Update LRU sizes after isolating pages. The LRU size updates must
1626 * be complete before mem_cgroup_update_lru_size due to a santity check.
1628 static __always_inline
void update_lru_sizes(struct lruvec
*lruvec
,
1629 enum lru_list lru
, unsigned long *nr_zone_taken
)
1633 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1634 if (!nr_zone_taken
[zid
])
1637 __update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1639 mem_cgroup_update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1646 * zone_lru_lock is heavily contended. Some of the functions that
1647 * shrink the lists perform better by taking out a batch of pages
1648 * and working on them outside the LRU lock.
1650 * For pagecache intensive workloads, this function is the hottest
1651 * spot in the kernel (apart from copy_*_user functions).
1653 * Appropriate locks must be held before calling this function.
1655 * @nr_to_scan: The number of eligible pages to look through on the list.
1656 * @lruvec: The LRU vector to pull pages from.
1657 * @dst: The temp list to put pages on to.
1658 * @nr_scanned: The number of pages that were scanned.
1659 * @sc: The scan_control struct for this reclaim session
1660 * @mode: One of the LRU isolation modes
1661 * @lru: LRU list id for isolating
1663 * returns how many pages were moved onto *@dst.
1665 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1666 struct lruvec
*lruvec
, struct list_head
*dst
,
1667 unsigned long *nr_scanned
, struct scan_control
*sc
,
1668 isolate_mode_t mode
, enum lru_list lru
)
1670 struct list_head
*src
= &lruvec
->lists
[lru
];
1671 unsigned long nr_taken
= 0;
1672 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1673 unsigned long nr_skipped
[MAX_NR_ZONES
] = { 0, };
1674 unsigned long skipped
= 0;
1675 unsigned long scan
, total_scan
, nr_pages
;
1676 LIST_HEAD(pages_skipped
);
1679 for (total_scan
= 0;
1680 scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&& !list_empty(src
);
1684 page
= lru_to_page(src
);
1685 prefetchw_prev_lru_page(page
, src
, flags
);
1687 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1689 if (page_zonenum(page
) > sc
->reclaim_idx
) {
1690 list_move(&page
->lru
, &pages_skipped
);
1691 nr_skipped
[page_zonenum(page
)]++;
1696 * Do not count skipped pages because that makes the function
1697 * return with no isolated pages if the LRU mostly contains
1698 * ineligible pages. This causes the VM to not reclaim any
1699 * pages, triggering a premature OOM.
1702 switch (__isolate_lru_page(page
, mode
)) {
1704 nr_pages
= hpage_nr_pages(page
);
1705 nr_taken
+= nr_pages
;
1706 nr_zone_taken
[page_zonenum(page
)] += nr_pages
;
1707 list_move(&page
->lru
, dst
);
1711 /* else it is being freed elsewhere */
1712 list_move(&page
->lru
, src
);
1721 * Splice any skipped pages to the start of the LRU list. Note that
1722 * this disrupts the LRU order when reclaiming for lower zones but
1723 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1724 * scanning would soon rescan the same pages to skip and put the
1725 * system at risk of premature OOM.
1727 if (!list_empty(&pages_skipped
)) {
1730 list_splice(&pages_skipped
, src
);
1731 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1732 if (!nr_skipped
[zid
])
1735 __count_zid_vm_events(PGSCAN_SKIP
, zid
, nr_skipped
[zid
]);
1736 skipped
+= nr_skipped
[zid
];
1739 *nr_scanned
= total_scan
;
1740 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, nr_to_scan
,
1741 total_scan
, skipped
, nr_taken
, mode
, lru
);
1742 update_lru_sizes(lruvec
, lru
, nr_zone_taken
);
1747 * isolate_lru_page - tries to isolate a page from its LRU list
1748 * @page: page to isolate from its LRU list
1750 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1751 * vmstat statistic corresponding to whatever LRU list the page was on.
1753 * Returns 0 if the page was removed from an LRU list.
1754 * Returns -EBUSY if the page was not on an LRU list.
1756 * The returned page will have PageLRU() cleared. If it was found on
1757 * the active list, it will have PageActive set. If it was found on
1758 * the unevictable list, it will have the PageUnevictable bit set. That flag
1759 * may need to be cleared by the caller before letting the page go.
1761 * The vmstat statistic corresponding to the list on which the page was
1762 * found will be decremented.
1766 * (1) Must be called with an elevated refcount on the page. This is a
1767 * fundamentnal difference from isolate_lru_pages (which is called
1768 * without a stable reference).
1769 * (2) the lru_lock must not be held.
1770 * (3) interrupts must be enabled.
1772 int isolate_lru_page(struct page
*page
)
1776 VM_BUG_ON_PAGE(!page_count(page
), page
);
1777 WARN_RATELIMIT(PageTail(page
), "trying to isolate tail page");
1779 if (PageLRU(page
)) {
1780 struct zone
*zone
= page_zone(page
);
1781 struct lruvec
*lruvec
;
1783 spin_lock_irq(zone_lru_lock(zone
));
1784 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
1785 if (PageLRU(page
)) {
1786 int lru
= page_lru(page
);
1789 del_page_from_lru_list(page
, lruvec
, lru
);
1792 spin_unlock_irq(zone_lru_lock(zone
));
1798 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1799 * then get resheduled. When there are massive number of tasks doing page
1800 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1801 * the LRU list will go small and be scanned faster than necessary, leading to
1802 * unnecessary swapping, thrashing and OOM.
1804 static int too_many_isolated(struct pglist_data
*pgdat
, int file
,
1805 struct scan_control
*sc
)
1807 unsigned long inactive
, isolated
;
1809 if (current_is_kswapd())
1812 if (!sane_reclaim(sc
))
1816 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1817 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1819 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1820 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1824 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1825 * won't get blocked by normal direct-reclaimers, forming a circular
1828 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1831 return isolated
> inactive
;
1834 static noinline_for_stack
void
1835 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1837 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1838 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1839 LIST_HEAD(pages_to_free
);
1842 * Put back any unfreeable pages.
1844 while (!list_empty(page_list
)) {
1845 struct page
*page
= lru_to_page(page_list
);
1848 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1849 list_del(&page
->lru
);
1850 if (unlikely(!page_evictable(page
))) {
1851 spin_unlock_irq(&pgdat
->lru_lock
);
1852 putback_lru_page(page
);
1853 spin_lock_irq(&pgdat
->lru_lock
);
1857 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1860 lru
= page_lru(page
);
1861 add_page_to_lru_list(page
, lruvec
, lru
);
1863 if (is_active_lru(lru
)) {
1864 int file
= is_file_lru(lru
);
1865 int numpages
= hpage_nr_pages(page
);
1866 reclaim_stat
->recent_rotated
[file
] += numpages
;
1868 if (put_page_testzero(page
)) {
1869 __ClearPageLRU(page
);
1870 __ClearPageActive(page
);
1871 del_page_from_lru_list(page
, lruvec
, lru
);
1873 if (unlikely(PageCompound(page
))) {
1874 spin_unlock_irq(&pgdat
->lru_lock
);
1875 mem_cgroup_uncharge(page
);
1876 (*get_compound_page_dtor(page
))(page
);
1877 spin_lock_irq(&pgdat
->lru_lock
);
1879 list_add(&page
->lru
, &pages_to_free
);
1884 * To save our caller's stack, now use input list for pages to free.
1886 list_splice(&pages_to_free
, page_list
);
1890 * If a kernel thread (such as nfsd for loop-back mounts) services
1891 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1892 * In that case we should only throttle if the backing device it is
1893 * writing to is congested. In other cases it is safe to throttle.
1895 static int current_may_throttle(void)
1897 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1898 current
->backing_dev_info
== NULL
||
1899 bdi_write_congested(current
->backing_dev_info
);
1903 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1904 * of reclaimed pages
1906 static noinline_for_stack
unsigned long
1907 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1908 struct scan_control
*sc
, enum lru_list lru
)
1910 LIST_HEAD(page_list
);
1911 unsigned long nr_scanned
;
1912 unsigned long nr_reclaimed
= 0;
1913 unsigned long nr_taken
;
1914 struct reclaim_stat stat
= {};
1915 isolate_mode_t isolate_mode
= 0;
1916 int file
= is_file_lru(lru
);
1917 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1918 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1919 bool stalled
= false;
1921 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1925 /* wait a bit for the reclaimer. */
1929 /* We are about to die and free our memory. Return now. */
1930 if (fatal_signal_pending(current
))
1931 return SWAP_CLUSTER_MAX
;
1937 isolate_mode
|= ISOLATE_UNMAPPED
;
1939 spin_lock_irq(&pgdat
->lru_lock
);
1941 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1942 &nr_scanned
, sc
, isolate_mode
, lru
);
1944 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1945 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1947 if (current_is_kswapd()) {
1948 if (global_reclaim(sc
))
1949 __count_vm_events(PGSCAN_KSWAPD
, nr_scanned
);
1950 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_KSWAPD
,
1953 if (global_reclaim(sc
))
1954 __count_vm_events(PGSCAN_DIRECT
, nr_scanned
);
1955 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_DIRECT
,
1958 spin_unlock_irq(&pgdat
->lru_lock
);
1963 nr_reclaimed
= shrink_page_list(&page_list
, pgdat
, sc
, 0,
1966 spin_lock_irq(&pgdat
->lru_lock
);
1968 if (current_is_kswapd()) {
1969 if (global_reclaim(sc
))
1970 __count_vm_events(PGSTEAL_KSWAPD
, nr_reclaimed
);
1971 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_KSWAPD
,
1974 if (global_reclaim(sc
))
1975 __count_vm_events(PGSTEAL_DIRECT
, nr_reclaimed
);
1976 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_DIRECT
,
1980 putback_inactive_pages(lruvec
, &page_list
);
1982 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1984 spin_unlock_irq(&pgdat
->lru_lock
);
1986 mem_cgroup_uncharge_list(&page_list
);
1987 free_unref_page_list(&page_list
);
1990 * If dirty pages are scanned that are not queued for IO, it
1991 * implies that flushers are not doing their job. This can
1992 * happen when memory pressure pushes dirty pages to the end of
1993 * the LRU before the dirty limits are breached and the dirty
1994 * data has expired. It can also happen when the proportion of
1995 * dirty pages grows not through writes but through memory
1996 * pressure reclaiming all the clean cache. And in some cases,
1997 * the flushers simply cannot keep up with the allocation
1998 * rate. Nudge the flusher threads in case they are asleep.
2000 if (stat
.nr_unqueued_dirty
== nr_taken
)
2001 wakeup_flusher_threads(WB_REASON_VMSCAN
);
2003 sc
->nr
.dirty
+= stat
.nr_dirty
;
2004 sc
->nr
.congested
+= stat
.nr_congested
;
2005 sc
->nr
.unqueued_dirty
+= stat
.nr_unqueued_dirty
;
2006 sc
->nr
.writeback
+= stat
.nr_writeback
;
2007 sc
->nr
.immediate
+= stat
.nr_immediate
;
2008 sc
->nr
.taken
+= nr_taken
;
2010 sc
->nr
.file_taken
+= nr_taken
;
2012 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
2013 nr_scanned
, nr_reclaimed
, &stat
, sc
->priority
, file
);
2014 return nr_reclaimed
;
2018 * This moves pages from the active list to the inactive list.
2020 * We move them the other way if the page is referenced by one or more
2021 * processes, from rmap.
2023 * If the pages are mostly unmapped, the processing is fast and it is
2024 * appropriate to hold zone_lru_lock across the whole operation. But if
2025 * the pages are mapped, the processing is slow (page_referenced()) so we
2026 * should drop zone_lru_lock around each page. It's impossible to balance
2027 * this, so instead we remove the pages from the LRU while processing them.
2028 * It is safe to rely on PG_active against the non-LRU pages in here because
2029 * nobody will play with that bit on a non-LRU page.
2031 * The downside is that we have to touch page->_refcount against each page.
2032 * But we had to alter page->flags anyway.
2034 * Returns the number of pages moved to the given lru.
2037 static unsigned move_active_pages_to_lru(struct lruvec
*lruvec
,
2038 struct list_head
*list
,
2039 struct list_head
*pages_to_free
,
2042 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2047 while (!list_empty(list
)) {
2048 page
= lru_to_page(list
);
2049 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
2051 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2054 nr_pages
= hpage_nr_pages(page
);
2055 update_lru_size(lruvec
, lru
, page_zonenum(page
), nr_pages
);
2056 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
2058 if (put_page_testzero(page
)) {
2059 __ClearPageLRU(page
);
2060 __ClearPageActive(page
);
2061 del_page_from_lru_list(page
, lruvec
, lru
);
2063 if (unlikely(PageCompound(page
))) {
2064 spin_unlock_irq(&pgdat
->lru_lock
);
2065 mem_cgroup_uncharge(page
);
2066 (*get_compound_page_dtor(page
))(page
);
2067 spin_lock_irq(&pgdat
->lru_lock
);
2069 list_add(&page
->lru
, pages_to_free
);
2071 nr_moved
+= nr_pages
;
2075 if (!is_active_lru(lru
)) {
2076 __count_vm_events(PGDEACTIVATE
, nr_moved
);
2077 count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
,
2084 static void shrink_active_list(unsigned long nr_to_scan
,
2085 struct lruvec
*lruvec
,
2086 struct scan_control
*sc
,
2089 unsigned long nr_taken
;
2090 unsigned long nr_scanned
;
2091 unsigned long vm_flags
;
2092 LIST_HEAD(l_hold
); /* The pages which were snipped off */
2093 LIST_HEAD(l_active
);
2094 LIST_HEAD(l_inactive
);
2096 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2097 unsigned nr_deactivate
, nr_activate
;
2098 unsigned nr_rotated
= 0;
2099 isolate_mode_t isolate_mode
= 0;
2100 int file
= is_file_lru(lru
);
2101 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2106 isolate_mode
|= ISOLATE_UNMAPPED
;
2108 spin_lock_irq(&pgdat
->lru_lock
);
2110 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
2111 &nr_scanned
, sc
, isolate_mode
, lru
);
2113 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
2114 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
2116 __count_vm_events(PGREFILL
, nr_scanned
);
2117 count_memcg_events(lruvec_memcg(lruvec
), PGREFILL
, nr_scanned
);
2119 spin_unlock_irq(&pgdat
->lru_lock
);
2121 while (!list_empty(&l_hold
)) {
2123 page
= lru_to_page(&l_hold
);
2124 list_del(&page
->lru
);
2126 if (unlikely(!page_evictable(page
))) {
2127 putback_lru_page(page
);
2131 if (unlikely(buffer_heads_over_limit
)) {
2132 if (page_has_private(page
) && trylock_page(page
)) {
2133 if (page_has_private(page
))
2134 try_to_release_page(page
, 0);
2139 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
2141 nr_rotated
+= hpage_nr_pages(page
);
2143 * Identify referenced, file-backed active pages and
2144 * give them one more trip around the active list. So
2145 * that executable code get better chances to stay in
2146 * memory under moderate memory pressure. Anon pages
2147 * are not likely to be evicted by use-once streaming
2148 * IO, plus JVM can create lots of anon VM_EXEC pages,
2149 * so we ignore them here.
2151 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
2152 list_add(&page
->lru
, &l_active
);
2157 ClearPageActive(page
); /* we are de-activating */
2158 SetPageWorkingset(page
);
2159 list_add(&page
->lru
, &l_inactive
);
2163 * Move pages back to the lru list.
2165 spin_lock_irq(&pgdat
->lru_lock
);
2167 * Count referenced pages from currently used mappings as rotated,
2168 * even though only some of them are actually re-activated. This
2169 * helps balance scan pressure between file and anonymous pages in
2172 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
2174 nr_activate
= move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
2175 nr_deactivate
= move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
2176 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
2177 spin_unlock_irq(&pgdat
->lru_lock
);
2179 mem_cgroup_uncharge_list(&l_hold
);
2180 free_unref_page_list(&l_hold
);
2181 trace_mm_vmscan_lru_shrink_active(pgdat
->node_id
, nr_taken
, nr_activate
,
2182 nr_deactivate
, nr_rotated
, sc
->priority
, file
);
2186 * The inactive anon list should be small enough that the VM never has
2187 * to do too much work.
2189 * The inactive file list should be small enough to leave most memory
2190 * to the established workingset on the scan-resistant active list,
2191 * but large enough to avoid thrashing the aggregate readahead window.
2193 * Both inactive lists should also be large enough that each inactive
2194 * page has a chance to be referenced again before it is reclaimed.
2196 * If that fails and refaulting is observed, the inactive list grows.
2198 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2199 * on this LRU, maintained by the pageout code. An inactive_ratio
2200 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2203 * memory ratio inactive
2204 * -------------------------------------
2213 static bool inactive_list_is_low(struct lruvec
*lruvec
, bool file
,
2214 struct mem_cgroup
*memcg
,
2215 struct scan_control
*sc
, bool actual_reclaim
)
2217 enum lru_list active_lru
= file
* LRU_FILE
+ LRU_ACTIVE
;
2218 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2219 enum lru_list inactive_lru
= file
* LRU_FILE
;
2220 unsigned long inactive
, active
;
2221 unsigned long inactive_ratio
;
2222 unsigned long refaults
;
2226 * If we don't have swap space, anonymous page deactivation
2229 if (!file
&& !total_swap_pages
)
2232 inactive
= lruvec_lru_size(lruvec
, inactive_lru
, sc
->reclaim_idx
);
2233 active
= lruvec_lru_size(lruvec
, active_lru
, sc
->reclaim_idx
);
2236 refaults
= memcg_page_state(memcg
, WORKINGSET_ACTIVATE
);
2238 refaults
= node_page_state(pgdat
, WORKINGSET_ACTIVATE
);
2241 * When refaults are being observed, it means a new workingset
2242 * is being established. Disable active list protection to get
2243 * rid of the stale workingset quickly.
2245 if (file
&& actual_reclaim
&& lruvec
->refaults
!= refaults
) {
2248 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
2250 inactive_ratio
= int_sqrt(10 * gb
);
2256 trace_mm_vmscan_inactive_list_is_low(pgdat
->node_id
, sc
->reclaim_idx
,
2257 lruvec_lru_size(lruvec
, inactive_lru
, MAX_NR_ZONES
), inactive
,
2258 lruvec_lru_size(lruvec
, active_lru
, MAX_NR_ZONES
), active
,
2259 inactive_ratio
, file
);
2261 return inactive
* inactive_ratio
< active
;
2264 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
2265 struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2266 struct scan_control
*sc
)
2268 if (is_active_lru(lru
)) {
2269 if (inactive_list_is_low(lruvec
, is_file_lru(lru
),
2271 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
2275 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
2286 * Determine how aggressively the anon and file LRU lists should be
2287 * scanned. The relative value of each set of LRU lists is determined
2288 * by looking at the fraction of the pages scanned we did rotate back
2289 * onto the active list instead of evict.
2291 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2292 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2294 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2295 struct scan_control
*sc
, unsigned long *nr
,
2296 unsigned long *lru_pages
)
2298 int swappiness
= mem_cgroup_swappiness(memcg
);
2299 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2301 u64 denominator
= 0; /* gcc */
2302 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2303 unsigned long anon_prio
, file_prio
;
2304 enum scan_balance scan_balance
;
2305 unsigned long anon
, file
;
2306 unsigned long ap
, fp
;
2309 /* If we have no swap space, do not bother scanning anon pages. */
2310 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2311 scan_balance
= SCAN_FILE
;
2316 * Global reclaim will swap to prevent OOM even with no
2317 * swappiness, but memcg users want to use this knob to
2318 * disable swapping for individual groups completely when
2319 * using the memory controller's swap limit feature would be
2322 if (!global_reclaim(sc
) && !swappiness
) {
2323 scan_balance
= SCAN_FILE
;
2328 * Do not apply any pressure balancing cleverness when the
2329 * system is close to OOM, scan both anon and file equally
2330 * (unless the swappiness setting disagrees with swapping).
2332 if (!sc
->priority
&& swappiness
) {
2333 scan_balance
= SCAN_EQUAL
;
2338 * Prevent the reclaimer from falling into the cache trap: as
2339 * cache pages start out inactive, every cache fault will tip
2340 * the scan balance towards the file LRU. And as the file LRU
2341 * shrinks, so does the window for rotation from references.
2342 * This means we have a runaway feedback loop where a tiny
2343 * thrashing file LRU becomes infinitely more attractive than
2344 * anon pages. Try to detect this based on file LRU size.
2346 if (global_reclaim(sc
)) {
2347 unsigned long pgdatfile
;
2348 unsigned long pgdatfree
;
2350 unsigned long total_high_wmark
= 0;
2352 pgdatfree
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2353 pgdatfile
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2354 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2356 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2357 struct zone
*zone
= &pgdat
->node_zones
[z
];
2358 if (!managed_zone(zone
))
2361 total_high_wmark
+= high_wmark_pages(zone
);
2364 if (unlikely(pgdatfile
+ pgdatfree
<= total_high_wmark
)) {
2366 * Force SCAN_ANON if there are enough inactive
2367 * anonymous pages on the LRU in eligible zones.
2368 * Otherwise, the small LRU gets thrashed.
2370 if (!inactive_list_is_low(lruvec
, false, memcg
, sc
, false) &&
2371 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, sc
->reclaim_idx
)
2373 scan_balance
= SCAN_ANON
;
2380 * If there is enough inactive page cache, i.e. if the size of the
2381 * inactive list is greater than that of the active list *and* the
2382 * inactive list actually has some pages to scan on this priority, we
2383 * do not reclaim anything from the anonymous working set right now.
2384 * Without the second condition we could end up never scanning an
2385 * lruvec even if it has plenty of old anonymous pages unless the
2386 * system is under heavy pressure.
2388 if (!inactive_list_is_low(lruvec
, true, memcg
, sc
, false) &&
2389 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, sc
->reclaim_idx
) >> sc
->priority
) {
2390 scan_balance
= SCAN_FILE
;
2394 scan_balance
= SCAN_FRACT
;
2397 * With swappiness at 100, anonymous and file have the same priority.
2398 * This scanning priority is essentially the inverse of IO cost.
2400 anon_prio
= swappiness
;
2401 file_prio
= 200 - anon_prio
;
2404 * OK, so we have swap space and a fair amount of page cache
2405 * pages. We use the recently rotated / recently scanned
2406 * ratios to determine how valuable each cache is.
2408 * Because workloads change over time (and to avoid overflow)
2409 * we keep these statistics as a floating average, which ends
2410 * up weighing recent references more than old ones.
2412 * anon in [0], file in [1]
2415 anon
= lruvec_lru_size(lruvec
, LRU_ACTIVE_ANON
, MAX_NR_ZONES
) +
2416 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, MAX_NR_ZONES
);
2417 file
= lruvec_lru_size(lruvec
, LRU_ACTIVE_FILE
, MAX_NR_ZONES
) +
2418 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, MAX_NR_ZONES
);
2420 spin_lock_irq(&pgdat
->lru_lock
);
2421 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2422 reclaim_stat
->recent_scanned
[0] /= 2;
2423 reclaim_stat
->recent_rotated
[0] /= 2;
2426 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2427 reclaim_stat
->recent_scanned
[1] /= 2;
2428 reclaim_stat
->recent_rotated
[1] /= 2;
2432 * The amount of pressure on anon vs file pages is inversely
2433 * proportional to the fraction of recently scanned pages on
2434 * each list that were recently referenced and in active use.
2436 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2437 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2439 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2440 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2441 spin_unlock_irq(&pgdat
->lru_lock
);
2445 denominator
= ap
+ fp
+ 1;
2448 for_each_evictable_lru(lru
) {
2449 int file
= is_file_lru(lru
);
2453 size
= lruvec_lru_size(lruvec
, lru
, sc
->reclaim_idx
);
2454 scan
= size
>> sc
->priority
;
2456 * If the cgroup's already been deleted, make sure to
2457 * scrape out the remaining cache.
2459 if (!scan
&& !mem_cgroup_online(memcg
))
2460 scan
= min(size
, SWAP_CLUSTER_MAX
);
2462 switch (scan_balance
) {
2464 /* Scan lists relative to size */
2468 * Scan types proportional to swappiness and
2469 * their relative recent reclaim efficiency.
2470 * Make sure we don't miss the last page
2471 * because of a round-off error.
2473 scan
= DIV64_U64_ROUND_UP(scan
* fraction
[file
],
2478 /* Scan one type exclusively */
2479 if ((scan_balance
== SCAN_FILE
) != file
) {
2485 /* Look ma, no brain */
2495 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2497 static void shrink_node_memcg(struct pglist_data
*pgdat
, struct mem_cgroup
*memcg
,
2498 struct scan_control
*sc
, unsigned long *lru_pages
)
2500 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2501 unsigned long nr
[NR_LRU_LISTS
];
2502 unsigned long targets
[NR_LRU_LISTS
];
2503 unsigned long nr_to_scan
;
2505 unsigned long nr_reclaimed
= 0;
2506 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2507 struct blk_plug plug
;
2510 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2512 /* Record the original scan target for proportional adjustments later */
2513 memcpy(targets
, nr
, sizeof(nr
));
2516 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2517 * event that can occur when there is little memory pressure e.g.
2518 * multiple streaming readers/writers. Hence, we do not abort scanning
2519 * when the requested number of pages are reclaimed when scanning at
2520 * DEF_PRIORITY on the assumption that the fact we are direct
2521 * reclaiming implies that kswapd is not keeping up and it is best to
2522 * do a batch of work at once. For memcg reclaim one check is made to
2523 * abort proportional reclaim if either the file or anon lru has already
2524 * dropped to zero at the first pass.
2526 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2527 sc
->priority
== DEF_PRIORITY
);
2529 blk_start_plug(&plug
);
2530 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2531 nr
[LRU_INACTIVE_FILE
]) {
2532 unsigned long nr_anon
, nr_file
, percentage
;
2533 unsigned long nr_scanned
;
2535 for_each_evictable_lru(lru
) {
2537 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2538 nr
[lru
] -= nr_to_scan
;
2540 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2547 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2551 * For kswapd and memcg, reclaim at least the number of pages
2552 * requested. Ensure that the anon and file LRUs are scanned
2553 * proportionally what was requested by get_scan_count(). We
2554 * stop reclaiming one LRU and reduce the amount scanning
2555 * proportional to the original scan target.
2557 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2558 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2561 * It's just vindictive to attack the larger once the smaller
2562 * has gone to zero. And given the way we stop scanning the
2563 * smaller below, this makes sure that we only make one nudge
2564 * towards proportionality once we've got nr_to_reclaim.
2566 if (!nr_file
|| !nr_anon
)
2569 if (nr_file
> nr_anon
) {
2570 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2571 targets
[LRU_ACTIVE_ANON
] + 1;
2573 percentage
= nr_anon
* 100 / scan_target
;
2575 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2576 targets
[LRU_ACTIVE_FILE
] + 1;
2578 percentage
= nr_file
* 100 / scan_target
;
2581 /* Stop scanning the smaller of the LRU */
2583 nr
[lru
+ LRU_ACTIVE
] = 0;
2586 * Recalculate the other LRU scan count based on its original
2587 * scan target and the percentage scanning already complete
2589 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2590 nr_scanned
= targets
[lru
] - nr
[lru
];
2591 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2592 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2595 nr_scanned
= targets
[lru
] - nr
[lru
];
2596 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2597 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2599 scan_adjusted
= true;
2601 blk_finish_plug(&plug
);
2602 sc
->nr_reclaimed
+= nr_reclaimed
;
2605 * Even if we did not try to evict anon pages at all, we want to
2606 * rebalance the anon lru active/inactive ratio.
2608 if (inactive_list_is_low(lruvec
, false, memcg
, sc
, true))
2609 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2610 sc
, LRU_ACTIVE_ANON
);
2613 /* Use reclaim/compaction for costly allocs or under memory pressure */
2614 static bool in_reclaim_compaction(struct scan_control
*sc
)
2616 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2617 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2618 sc
->priority
< DEF_PRIORITY
- 2))
2625 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2626 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2627 * true if more pages should be reclaimed such that when the page allocator
2628 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2629 * It will give up earlier than that if there is difficulty reclaiming pages.
2631 static inline bool should_continue_reclaim(struct pglist_data
*pgdat
,
2632 unsigned long nr_reclaimed
,
2633 unsigned long nr_scanned
,
2634 struct scan_control
*sc
)
2636 unsigned long pages_for_compaction
;
2637 unsigned long inactive_lru_pages
;
2640 /* If not in reclaim/compaction mode, stop */
2641 if (!in_reclaim_compaction(sc
))
2644 /* Consider stopping depending on scan and reclaim activity */
2645 if (sc
->gfp_mask
& __GFP_RETRY_MAYFAIL
) {
2647 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2648 * full LRU list has been scanned and we are still failing
2649 * to reclaim pages. This full LRU scan is potentially
2650 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2652 if (!nr_reclaimed
&& !nr_scanned
)
2656 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2657 * fail without consequence, stop if we failed to reclaim
2658 * any pages from the last SWAP_CLUSTER_MAX number of
2659 * pages that were scanned. This will return to the
2660 * caller faster at the risk reclaim/compaction and
2661 * the resulting allocation attempt fails
2668 * If we have not reclaimed enough pages for compaction and the
2669 * inactive lists are large enough, continue reclaiming
2671 pages_for_compaction
= compact_gap(sc
->order
);
2672 inactive_lru_pages
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
2673 if (get_nr_swap_pages() > 0)
2674 inactive_lru_pages
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
2675 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2676 inactive_lru_pages
> pages_for_compaction
)
2679 /* If compaction would go ahead or the allocation would succeed, stop */
2680 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
2681 struct zone
*zone
= &pgdat
->node_zones
[z
];
2682 if (!managed_zone(zone
))
2685 switch (compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
)) {
2686 case COMPACT_SUCCESS
:
2687 case COMPACT_CONTINUE
:
2690 /* check next zone */
2697 static bool pgdat_memcg_congested(pg_data_t
*pgdat
, struct mem_cgroup
*memcg
)
2699 return test_bit(PGDAT_CONGESTED
, &pgdat
->flags
) ||
2700 (memcg
&& memcg_congested(pgdat
, memcg
));
2703 static bool shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
)
2705 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2706 unsigned long nr_reclaimed
, nr_scanned
;
2707 bool reclaimable
= false;
2710 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2711 struct mem_cgroup_reclaim_cookie reclaim
= {
2713 .priority
= sc
->priority
,
2715 unsigned long node_lru_pages
= 0;
2716 struct mem_cgroup
*memcg
;
2718 memset(&sc
->nr
, 0, sizeof(sc
->nr
));
2720 nr_reclaimed
= sc
->nr_reclaimed
;
2721 nr_scanned
= sc
->nr_scanned
;
2723 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2725 unsigned long lru_pages
;
2726 unsigned long reclaimed
;
2727 unsigned long scanned
;
2729 switch (mem_cgroup_protected(root
, memcg
)) {
2730 case MEMCG_PROT_MIN
:
2733 * If there is no reclaimable memory, OOM.
2736 case MEMCG_PROT_LOW
:
2739 * Respect the protection only as long as
2740 * there is an unprotected supply
2741 * of reclaimable memory from other cgroups.
2743 if (!sc
->memcg_low_reclaim
) {
2744 sc
->memcg_low_skipped
= 1;
2747 memcg_memory_event(memcg
, MEMCG_LOW
);
2749 case MEMCG_PROT_NONE
:
2753 reclaimed
= sc
->nr_reclaimed
;
2754 scanned
= sc
->nr_scanned
;
2755 shrink_node_memcg(pgdat
, memcg
, sc
, &lru_pages
);
2756 node_lru_pages
+= lru_pages
;
2758 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
,
2759 memcg
, sc
->priority
);
2761 /* Record the group's reclaim efficiency */
2762 vmpressure(sc
->gfp_mask
, memcg
, false,
2763 sc
->nr_scanned
- scanned
,
2764 sc
->nr_reclaimed
- reclaimed
);
2767 * Direct reclaim and kswapd have to scan all memory
2768 * cgroups to fulfill the overall scan target for the
2771 * Limit reclaim, on the other hand, only cares about
2772 * nr_to_reclaim pages to be reclaimed and it will
2773 * retry with decreasing priority if one round over the
2774 * whole hierarchy is not sufficient.
2776 if (!global_reclaim(sc
) &&
2777 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2778 mem_cgroup_iter_break(root
, memcg
);
2781 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2783 if (reclaim_state
) {
2784 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2785 reclaim_state
->reclaimed_slab
= 0;
2788 /* Record the subtree's reclaim efficiency */
2789 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2790 sc
->nr_scanned
- nr_scanned
,
2791 sc
->nr_reclaimed
- nr_reclaimed
);
2793 if (sc
->nr_reclaimed
- nr_reclaimed
)
2796 if (current_is_kswapd()) {
2798 * If reclaim is isolating dirty pages under writeback,
2799 * it implies that the long-lived page allocation rate
2800 * is exceeding the page laundering rate. Either the
2801 * global limits are not being effective at throttling
2802 * processes due to the page distribution throughout
2803 * zones or there is heavy usage of a slow backing
2804 * device. The only option is to throttle from reclaim
2805 * context which is not ideal as there is no guarantee
2806 * the dirtying process is throttled in the same way
2807 * balance_dirty_pages() manages.
2809 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2810 * count the number of pages under pages flagged for
2811 * immediate reclaim and stall if any are encountered
2812 * in the nr_immediate check below.
2814 if (sc
->nr
.writeback
&& sc
->nr
.writeback
== sc
->nr
.taken
)
2815 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
2818 * Tag a node as congested if all the dirty pages
2819 * scanned were backed by a congested BDI and
2820 * wait_iff_congested will stall.
2822 if (sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
)
2823 set_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
2825 /* Allow kswapd to start writing pages during reclaim.*/
2826 if (sc
->nr
.unqueued_dirty
== sc
->nr
.file_taken
)
2827 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
2830 * If kswapd scans pages marked marked for immediate
2831 * reclaim and under writeback (nr_immediate), it
2832 * implies that pages are cycling through the LRU
2833 * faster than they are written so also forcibly stall.
2835 if (sc
->nr
.immediate
)
2836 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2840 * Legacy memcg will stall in page writeback so avoid forcibly
2841 * stalling in wait_iff_congested().
2843 if (!global_reclaim(sc
) && sane_reclaim(sc
) &&
2844 sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
)
2845 set_memcg_congestion(pgdat
, root
, true);
2848 * Stall direct reclaim for IO completions if underlying BDIs
2849 * and node is congested. Allow kswapd to continue until it
2850 * starts encountering unqueued dirty pages or cycling through
2851 * the LRU too quickly.
2853 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
2854 current_may_throttle() && pgdat_memcg_congested(pgdat
, root
))
2855 wait_iff_congested(BLK_RW_ASYNC
, HZ
/10);
2857 } while (should_continue_reclaim(pgdat
, sc
->nr_reclaimed
- nr_reclaimed
,
2858 sc
->nr_scanned
- nr_scanned
, sc
));
2861 * Kswapd gives up on balancing particular nodes after too
2862 * many failures to reclaim anything from them and goes to
2863 * sleep. On reclaim progress, reset the failure counter. A
2864 * successful direct reclaim run will revive a dormant kswapd.
2867 pgdat
->kswapd_failures
= 0;
2873 * Returns true if compaction should go ahead for a costly-order request, or
2874 * the allocation would already succeed without compaction. Return false if we
2875 * should reclaim first.
2877 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2879 unsigned long watermark
;
2880 enum compact_result suitable
;
2882 suitable
= compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
);
2883 if (suitable
== COMPACT_SUCCESS
)
2884 /* Allocation should succeed already. Don't reclaim. */
2886 if (suitable
== COMPACT_SKIPPED
)
2887 /* Compaction cannot yet proceed. Do reclaim. */
2891 * Compaction is already possible, but it takes time to run and there
2892 * are potentially other callers using the pages just freed. So proceed
2893 * with reclaim to make a buffer of free pages available to give
2894 * compaction a reasonable chance of completing and allocating the page.
2895 * Note that we won't actually reclaim the whole buffer in one attempt
2896 * as the target watermark in should_continue_reclaim() is lower. But if
2897 * we are already above the high+gap watermark, don't reclaim at all.
2899 watermark
= high_wmark_pages(zone
) + compact_gap(sc
->order
);
2901 return zone_watermark_ok_safe(zone
, 0, watermark
, sc
->reclaim_idx
);
2905 * This is the direct reclaim path, for page-allocating processes. We only
2906 * try to reclaim pages from zones which will satisfy the caller's allocation
2909 * If a zone is deemed to be full of pinned pages then just give it a light
2910 * scan then give up on it.
2912 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2916 unsigned long nr_soft_reclaimed
;
2917 unsigned long nr_soft_scanned
;
2919 pg_data_t
*last_pgdat
= NULL
;
2922 * If the number of buffer_heads in the machine exceeds the maximum
2923 * allowed level, force direct reclaim to scan the highmem zone as
2924 * highmem pages could be pinning lowmem pages storing buffer_heads
2926 orig_mask
= sc
->gfp_mask
;
2927 if (buffer_heads_over_limit
) {
2928 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2929 sc
->reclaim_idx
= gfp_zone(sc
->gfp_mask
);
2932 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2933 sc
->reclaim_idx
, sc
->nodemask
) {
2935 * Take care memory controller reclaiming has small influence
2938 if (global_reclaim(sc
)) {
2939 if (!cpuset_zone_allowed(zone
,
2940 GFP_KERNEL
| __GFP_HARDWALL
))
2944 * If we already have plenty of memory free for
2945 * compaction in this zone, don't free any more.
2946 * Even though compaction is invoked for any
2947 * non-zero order, only frequent costly order
2948 * reclamation is disruptive enough to become a
2949 * noticeable problem, like transparent huge
2952 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2953 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2954 compaction_ready(zone
, sc
)) {
2955 sc
->compaction_ready
= true;
2960 * Shrink each node in the zonelist once. If the
2961 * zonelist is ordered by zone (not the default) then a
2962 * node may be shrunk multiple times but in that case
2963 * the user prefers lower zones being preserved.
2965 if (zone
->zone_pgdat
== last_pgdat
)
2969 * This steals pages from memory cgroups over softlimit
2970 * and returns the number of reclaimed pages and
2971 * scanned pages. This works for global memory pressure
2972 * and balancing, not for a memcg's limit.
2974 nr_soft_scanned
= 0;
2975 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
->zone_pgdat
,
2976 sc
->order
, sc
->gfp_mask
,
2978 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2979 sc
->nr_scanned
+= nr_soft_scanned
;
2980 /* need some check for avoid more shrink_zone() */
2983 /* See comment about same check for global reclaim above */
2984 if (zone
->zone_pgdat
== last_pgdat
)
2986 last_pgdat
= zone
->zone_pgdat
;
2987 shrink_node(zone
->zone_pgdat
, sc
);
2991 * Restore to original mask to avoid the impact on the caller if we
2992 * promoted it to __GFP_HIGHMEM.
2994 sc
->gfp_mask
= orig_mask
;
2997 static void snapshot_refaults(struct mem_cgroup
*root_memcg
, pg_data_t
*pgdat
)
2999 struct mem_cgroup
*memcg
;
3001 memcg
= mem_cgroup_iter(root_memcg
, NULL
, NULL
);
3003 unsigned long refaults
;
3004 struct lruvec
*lruvec
;
3007 refaults
= memcg_page_state(memcg
, WORKINGSET_ACTIVATE
);
3009 refaults
= node_page_state(pgdat
, WORKINGSET_ACTIVATE
);
3011 lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3012 lruvec
->refaults
= refaults
;
3013 } while ((memcg
= mem_cgroup_iter(root_memcg
, memcg
, NULL
)));
3017 * This is the main entry point to direct page reclaim.
3019 * If a full scan of the inactive list fails to free enough memory then we
3020 * are "out of memory" and something needs to be killed.
3022 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3023 * high - the zone may be full of dirty or under-writeback pages, which this
3024 * caller can't do much about. We kick the writeback threads and take explicit
3025 * naps in the hope that some of these pages can be written. But if the
3026 * allocating task holds filesystem locks which prevent writeout this might not
3027 * work, and the allocation attempt will fail.
3029 * returns: 0, if no pages reclaimed
3030 * else, the number of pages reclaimed
3032 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
3033 struct scan_control
*sc
)
3035 int initial_priority
= sc
->priority
;
3036 pg_data_t
*last_pgdat
;
3040 delayacct_freepages_start();
3042 if (global_reclaim(sc
))
3043 __count_zid_vm_events(ALLOCSTALL
, sc
->reclaim_idx
, 1);
3046 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
3049 shrink_zones(zonelist
, sc
);
3051 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
3054 if (sc
->compaction_ready
)
3058 * If we're getting trouble reclaiming, start doing
3059 * writepage even in laptop mode.
3061 if (sc
->priority
< DEF_PRIORITY
- 2)
3062 sc
->may_writepage
= 1;
3063 } while (--sc
->priority
>= 0);
3066 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, sc
->reclaim_idx
,
3068 if (zone
->zone_pgdat
== last_pgdat
)
3070 last_pgdat
= zone
->zone_pgdat
;
3071 snapshot_refaults(sc
->target_mem_cgroup
, zone
->zone_pgdat
);
3072 set_memcg_congestion(last_pgdat
, sc
->target_mem_cgroup
, false);
3075 delayacct_freepages_end();
3077 if (sc
->nr_reclaimed
)
3078 return sc
->nr_reclaimed
;
3080 /* Aborted reclaim to try compaction? don't OOM, then */
3081 if (sc
->compaction_ready
)
3084 /* Untapped cgroup reserves? Don't OOM, retry. */
3085 if (sc
->memcg_low_skipped
) {
3086 sc
->priority
= initial_priority
;
3087 sc
->memcg_low_reclaim
= 1;
3088 sc
->memcg_low_skipped
= 0;
3095 static bool allow_direct_reclaim(pg_data_t
*pgdat
)
3098 unsigned long pfmemalloc_reserve
= 0;
3099 unsigned long free_pages
= 0;
3103 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3106 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
3107 zone
= &pgdat
->node_zones
[i
];
3108 if (!managed_zone(zone
))
3111 if (!zone_reclaimable_pages(zone
))
3114 pfmemalloc_reserve
+= min_wmark_pages(zone
);
3115 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
3118 /* If there are no reserves (unexpected config) then do not throttle */
3119 if (!pfmemalloc_reserve
)
3122 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
3124 /* kswapd must be awake if processes are being throttled */
3125 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
3126 pgdat
->kswapd_classzone_idx
= min(pgdat
->kswapd_classzone_idx
,
3127 (enum zone_type
)ZONE_NORMAL
);
3128 wake_up_interruptible(&pgdat
->kswapd_wait
);
3135 * Throttle direct reclaimers if backing storage is backed by the network
3136 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3137 * depleted. kswapd will continue to make progress and wake the processes
3138 * when the low watermark is reached.
3140 * Returns true if a fatal signal was delivered during throttling. If this
3141 * happens, the page allocator should not consider triggering the OOM killer.
3143 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
3144 nodemask_t
*nodemask
)
3148 pg_data_t
*pgdat
= NULL
;
3151 * Kernel threads should not be throttled as they may be indirectly
3152 * responsible for cleaning pages necessary for reclaim to make forward
3153 * progress. kjournald for example may enter direct reclaim while
3154 * committing a transaction where throttling it could forcing other
3155 * processes to block on log_wait_commit().
3157 if (current
->flags
& PF_KTHREAD
)
3161 * If a fatal signal is pending, this process should not throttle.
3162 * It should return quickly so it can exit and free its memory
3164 if (fatal_signal_pending(current
))
3168 * Check if the pfmemalloc reserves are ok by finding the first node
3169 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3170 * GFP_KERNEL will be required for allocating network buffers when
3171 * swapping over the network so ZONE_HIGHMEM is unusable.
3173 * Throttling is based on the first usable node and throttled processes
3174 * wait on a queue until kswapd makes progress and wakes them. There
3175 * is an affinity then between processes waking up and where reclaim
3176 * progress has been made assuming the process wakes on the same node.
3177 * More importantly, processes running on remote nodes will not compete
3178 * for remote pfmemalloc reserves and processes on different nodes
3179 * should make reasonable progress.
3181 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
3182 gfp_zone(gfp_mask
), nodemask
) {
3183 if (zone_idx(zone
) > ZONE_NORMAL
)
3186 /* Throttle based on the first usable node */
3187 pgdat
= zone
->zone_pgdat
;
3188 if (allow_direct_reclaim(pgdat
))
3193 /* If no zone was usable by the allocation flags then do not throttle */
3197 /* Account for the throttling */
3198 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
3201 * If the caller cannot enter the filesystem, it's possible that it
3202 * is due to the caller holding an FS lock or performing a journal
3203 * transaction in the case of a filesystem like ext[3|4]. In this case,
3204 * it is not safe to block on pfmemalloc_wait as kswapd could be
3205 * blocked waiting on the same lock. Instead, throttle for up to a
3206 * second before continuing.
3208 if (!(gfp_mask
& __GFP_FS
)) {
3209 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
3210 allow_direct_reclaim(pgdat
), HZ
);
3215 /* Throttle until kswapd wakes the process */
3216 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
3217 allow_direct_reclaim(pgdat
));
3220 if (fatal_signal_pending(current
))
3227 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
3228 gfp_t gfp_mask
, nodemask_t
*nodemask
)
3230 unsigned long nr_reclaimed
;
3231 struct scan_control sc
= {
3232 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3233 .gfp_mask
= current_gfp_context(gfp_mask
),
3234 .reclaim_idx
= gfp_zone(gfp_mask
),
3236 .nodemask
= nodemask
,
3237 .priority
= DEF_PRIORITY
,
3238 .may_writepage
= !laptop_mode
,
3244 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3245 * Confirm they are large enough for max values.
3247 BUILD_BUG_ON(MAX_ORDER
> S8_MAX
);
3248 BUILD_BUG_ON(DEF_PRIORITY
> S8_MAX
);
3249 BUILD_BUG_ON(MAX_NR_ZONES
> S8_MAX
);
3252 * Do not enter reclaim if fatal signal was delivered while throttled.
3253 * 1 is returned so that the page allocator does not OOM kill at this
3256 if (throttle_direct_reclaim(sc
.gfp_mask
, zonelist
, nodemask
))
3259 trace_mm_vmscan_direct_reclaim_begin(order
,
3264 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3266 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
3268 return nr_reclaimed
;
3273 unsigned long mem_cgroup_shrink_node(struct mem_cgroup
*memcg
,
3274 gfp_t gfp_mask
, bool noswap
,
3276 unsigned long *nr_scanned
)
3278 struct scan_control sc
= {
3279 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3280 .target_mem_cgroup
= memcg
,
3281 .may_writepage
= !laptop_mode
,
3283 .reclaim_idx
= MAX_NR_ZONES
- 1,
3284 .may_swap
= !noswap
,
3286 unsigned long lru_pages
;
3288 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3289 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
3291 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
3297 * NOTE: Although we can get the priority field, using it
3298 * here is not a good idea, since it limits the pages we can scan.
3299 * if we don't reclaim here, the shrink_node from balance_pgdat
3300 * will pick up pages from other mem cgroup's as well. We hack
3301 * the priority and make it zero.
3303 shrink_node_memcg(pgdat
, memcg
, &sc
, &lru_pages
);
3305 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
3307 *nr_scanned
= sc
.nr_scanned
;
3308 return sc
.nr_reclaimed
;
3311 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
3312 unsigned long nr_pages
,
3316 struct zonelist
*zonelist
;
3317 unsigned long nr_reclaimed
;
3318 unsigned long pflags
;
3320 unsigned int noreclaim_flag
;
3321 struct scan_control sc
= {
3322 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3323 .gfp_mask
= (current_gfp_context(gfp_mask
) & GFP_RECLAIM_MASK
) |
3324 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
3325 .reclaim_idx
= MAX_NR_ZONES
- 1,
3326 .target_mem_cgroup
= memcg
,
3327 .priority
= DEF_PRIORITY
,
3328 .may_writepage
= !laptop_mode
,
3330 .may_swap
= may_swap
,
3334 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3335 * take care of from where we get pages. So the node where we start the
3336 * scan does not need to be the current node.
3338 nid
= mem_cgroup_select_victim_node(memcg
);
3340 zonelist
= &NODE_DATA(nid
)->node_zonelists
[ZONELIST_FALLBACK
];
3342 trace_mm_vmscan_memcg_reclaim_begin(0,
3347 psi_memstall_enter(&pflags
);
3348 noreclaim_flag
= memalloc_noreclaim_save();
3350 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3352 memalloc_noreclaim_restore(noreclaim_flag
);
3353 psi_memstall_leave(&pflags
);
3355 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
3357 return nr_reclaimed
;
3361 static void age_active_anon(struct pglist_data
*pgdat
,
3362 struct scan_control
*sc
)
3364 struct mem_cgroup
*memcg
;
3366 if (!total_swap_pages
)
3369 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
3371 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3373 if (inactive_list_is_low(lruvec
, false, memcg
, sc
, true))
3374 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
3375 sc
, LRU_ACTIVE_ANON
);
3377 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
3382 * Returns true if there is an eligible zone balanced for the request order
3385 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3388 unsigned long mark
= -1;
3391 for (i
= 0; i
<= classzone_idx
; i
++) {
3392 zone
= pgdat
->node_zones
+ i
;
3394 if (!managed_zone(zone
))
3397 mark
= high_wmark_pages(zone
);
3398 if (zone_watermark_ok_safe(zone
, order
, mark
, classzone_idx
))
3403 * If a node has no populated zone within classzone_idx, it does not
3404 * need balancing by definition. This can happen if a zone-restricted
3405 * allocation tries to wake a remote kswapd.
3413 /* Clear pgdat state for congested, dirty or under writeback. */
3414 static void clear_pgdat_congested(pg_data_t
*pgdat
)
3416 clear_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
3417 clear_bit(PGDAT_DIRTY
, &pgdat
->flags
);
3418 clear_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
3422 * Prepare kswapd for sleeping. This verifies that there are no processes
3423 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3425 * Returns true if kswapd is ready to sleep
3427 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3430 * The throttled processes are normally woken up in balance_pgdat() as
3431 * soon as allow_direct_reclaim() is true. But there is a potential
3432 * race between when kswapd checks the watermarks and a process gets
3433 * throttled. There is also a potential race if processes get
3434 * throttled, kswapd wakes, a large process exits thereby balancing the
3435 * zones, which causes kswapd to exit balance_pgdat() before reaching
3436 * the wake up checks. If kswapd is going to sleep, no process should
3437 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3438 * the wake up is premature, processes will wake kswapd and get
3439 * throttled again. The difference from wake ups in balance_pgdat() is
3440 * that here we are under prepare_to_wait().
3442 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3443 wake_up_all(&pgdat
->pfmemalloc_wait
);
3445 /* Hopeless node, leave it to direct reclaim */
3446 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3449 if (pgdat_balanced(pgdat
, order
, classzone_idx
)) {
3450 clear_pgdat_congested(pgdat
);
3458 * kswapd shrinks a node of pages that are at or below the highest usable
3459 * zone that is currently unbalanced.
3461 * Returns true if kswapd scanned at least the requested number of pages to
3462 * reclaim or if the lack of progress was due to pages under writeback.
3463 * This is used to determine if the scanning priority needs to be raised.
3465 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
3466 struct scan_control
*sc
)
3471 /* Reclaim a number of pages proportional to the number of zones */
3472 sc
->nr_to_reclaim
= 0;
3473 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
3474 zone
= pgdat
->node_zones
+ z
;
3475 if (!managed_zone(zone
))
3478 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
3482 * Historically care was taken to put equal pressure on all zones but
3483 * now pressure is applied based on node LRU order.
3485 shrink_node(pgdat
, sc
);
3488 * Fragmentation may mean that the system cannot be rebalanced for
3489 * high-order allocations. If twice the allocation size has been
3490 * reclaimed then recheck watermarks only at order-0 to prevent
3491 * excessive reclaim. Assume that a process requested a high-order
3492 * can direct reclaim/compact.
3494 if (sc
->order
&& sc
->nr_reclaimed
>= compact_gap(sc
->order
))
3497 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3501 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3502 * that are eligible for use by the caller until at least one zone is
3505 * Returns the order kswapd finished reclaiming at.
3507 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3508 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3509 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3510 * or lower is eligible for reclaim until at least one usable zone is
3513 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3516 unsigned long nr_soft_reclaimed
;
3517 unsigned long nr_soft_scanned
;
3518 unsigned long pflags
;
3520 struct scan_control sc
= {
3521 .gfp_mask
= GFP_KERNEL
,
3523 .priority
= DEF_PRIORITY
,
3524 .may_writepage
= !laptop_mode
,
3529 psi_memstall_enter(&pflags
);
3530 __fs_reclaim_acquire();
3532 count_vm_event(PAGEOUTRUN
);
3535 unsigned long nr_reclaimed
= sc
.nr_reclaimed
;
3536 bool raise_priority
= true;
3539 sc
.reclaim_idx
= classzone_idx
;
3542 * If the number of buffer_heads exceeds the maximum allowed
3543 * then consider reclaiming from all zones. This has a dual
3544 * purpose -- on 64-bit systems it is expected that
3545 * buffer_heads are stripped during active rotation. On 32-bit
3546 * systems, highmem pages can pin lowmem memory and shrinking
3547 * buffers can relieve lowmem pressure. Reclaim may still not
3548 * go ahead if all eligible zones for the original allocation
3549 * request are balanced to avoid excessive reclaim from kswapd.
3551 if (buffer_heads_over_limit
) {
3552 for (i
= MAX_NR_ZONES
- 1; i
>= 0; i
--) {
3553 zone
= pgdat
->node_zones
+ i
;
3554 if (!managed_zone(zone
))
3563 * Only reclaim if there are no eligible zones. Note that
3564 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3567 if (pgdat_balanced(pgdat
, sc
.order
, classzone_idx
))
3571 * Do some background aging of the anon list, to give
3572 * pages a chance to be referenced before reclaiming. All
3573 * pages are rotated regardless of classzone as this is
3574 * about consistent aging.
3576 age_active_anon(pgdat
, &sc
);
3579 * If we're getting trouble reclaiming, start doing writepage
3580 * even in laptop mode.
3582 if (sc
.priority
< DEF_PRIORITY
- 2)
3583 sc
.may_writepage
= 1;
3585 /* Call soft limit reclaim before calling shrink_node. */
3587 nr_soft_scanned
= 0;
3588 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(pgdat
, sc
.order
,
3589 sc
.gfp_mask
, &nr_soft_scanned
);
3590 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3593 * There should be no need to raise the scanning priority if
3594 * enough pages are already being scanned that that high
3595 * watermark would be met at 100% efficiency.
3597 if (kswapd_shrink_node(pgdat
, &sc
))
3598 raise_priority
= false;
3601 * If the low watermark is met there is no need for processes
3602 * to be throttled on pfmemalloc_wait as they should not be
3603 * able to safely make forward progress. Wake them
3605 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3606 allow_direct_reclaim(pgdat
))
3607 wake_up_all(&pgdat
->pfmemalloc_wait
);
3609 /* Check if kswapd should be suspending */
3610 __fs_reclaim_release();
3611 ret
= try_to_freeze();
3612 __fs_reclaim_acquire();
3613 if (ret
|| kthread_should_stop())
3617 * Raise priority if scanning rate is too low or there was no
3618 * progress in reclaiming pages
3620 nr_reclaimed
= sc
.nr_reclaimed
- nr_reclaimed
;
3621 if (raise_priority
|| !nr_reclaimed
)
3623 } while (sc
.priority
>= 1);
3625 if (!sc
.nr_reclaimed
)
3626 pgdat
->kswapd_failures
++;
3629 snapshot_refaults(NULL
, pgdat
);
3630 __fs_reclaim_release();
3631 psi_memstall_leave(&pflags
);
3633 * Return the order kswapd stopped reclaiming at as
3634 * prepare_kswapd_sleep() takes it into account. If another caller
3635 * entered the allocator slow path while kswapd was awake, order will
3636 * remain at the higher level.
3642 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3643 * allocation request woke kswapd for. When kswapd has not woken recently,
3644 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3645 * given classzone and returns it or the highest classzone index kswapd
3646 * was recently woke for.
3648 static enum zone_type
kswapd_classzone_idx(pg_data_t
*pgdat
,
3649 enum zone_type classzone_idx
)
3651 if (pgdat
->kswapd_classzone_idx
== MAX_NR_ZONES
)
3652 return classzone_idx
;
3654 return max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3657 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
3658 unsigned int classzone_idx
)
3663 if (freezing(current
) || kthread_should_stop())
3666 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3669 * Try to sleep for a short interval. Note that kcompactd will only be
3670 * woken if it is possible to sleep for a short interval. This is
3671 * deliberate on the assumption that if reclaim cannot keep an
3672 * eligible zone balanced that it's also unlikely that compaction will
3675 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3677 * Compaction records what page blocks it recently failed to
3678 * isolate pages from and skips them in the future scanning.
3679 * When kswapd is going to sleep, it is reasonable to assume
3680 * that pages and compaction may succeed so reset the cache.
3682 reset_isolation_suitable(pgdat
);
3685 * We have freed the memory, now we should compact it to make
3686 * allocation of the requested order possible.
3688 wakeup_kcompactd(pgdat
, alloc_order
, classzone_idx
);
3690 remaining
= schedule_timeout(HZ
/10);
3693 * If woken prematurely then reset kswapd_classzone_idx and
3694 * order. The values will either be from a wakeup request or
3695 * the previous request that slept prematurely.
3698 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3699 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, reclaim_order
);
3702 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3703 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3707 * After a short sleep, check if it was a premature sleep. If not, then
3708 * go fully to sleep until explicitly woken up.
3711 prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3712 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3715 * vmstat counters are not perfectly accurate and the estimated
3716 * value for counters such as NR_FREE_PAGES can deviate from the
3717 * true value by nr_online_cpus * threshold. To avoid the zone
3718 * watermarks being breached while under pressure, we reduce the
3719 * per-cpu vmstat threshold while kswapd is awake and restore
3720 * them before going back to sleep.
3722 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3724 if (!kthread_should_stop())
3727 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3730 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3732 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3734 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3738 * The background pageout daemon, started as a kernel thread
3739 * from the init process.
3741 * This basically trickles out pages so that we have _some_
3742 * free memory available even if there is no other activity
3743 * that frees anything up. This is needed for things like routing
3744 * etc, where we otherwise might have all activity going on in
3745 * asynchronous contexts that cannot page things out.
3747 * If there are applications that are active memory-allocators
3748 * (most normal use), this basically shouldn't matter.
3750 static int kswapd(void *p
)
3752 unsigned int alloc_order
, reclaim_order
;
3753 unsigned int classzone_idx
= MAX_NR_ZONES
- 1;
3754 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3755 struct task_struct
*tsk
= current
;
3757 struct reclaim_state reclaim_state
= {
3758 .reclaimed_slab
= 0,
3760 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3762 if (!cpumask_empty(cpumask
))
3763 set_cpus_allowed_ptr(tsk
, cpumask
);
3764 current
->reclaim_state
= &reclaim_state
;
3767 * Tell the memory management that we're a "memory allocator",
3768 * and that if we need more memory we should get access to it
3769 * regardless (see "__alloc_pages()"). "kswapd" should
3770 * never get caught in the normal page freeing logic.
3772 * (Kswapd normally doesn't need memory anyway, but sometimes
3773 * you need a small amount of memory in order to be able to
3774 * page out something else, and this flag essentially protects
3775 * us from recursively trying to free more memory as we're
3776 * trying to free the first piece of memory in the first place).
3778 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3781 pgdat
->kswapd_order
= 0;
3782 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3786 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3787 classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3790 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
3793 /* Read the new order and classzone_idx */
3794 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3795 classzone_idx
= kswapd_classzone_idx(pgdat
, 0);
3796 pgdat
->kswapd_order
= 0;
3797 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3799 ret
= try_to_freeze();
3800 if (kthread_should_stop())
3804 * We can speed up thawing tasks if we don't call balance_pgdat
3805 * after returning from the refrigerator
3811 * Reclaim begins at the requested order but if a high-order
3812 * reclaim fails then kswapd falls back to reclaiming for
3813 * order-0. If that happens, kswapd will consider sleeping
3814 * for the order it finished reclaiming at (reclaim_order)
3815 * but kcompactd is woken to compact for the original
3816 * request (alloc_order).
3818 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, classzone_idx
,
3820 reclaim_order
= balance_pgdat(pgdat
, alloc_order
, classzone_idx
);
3821 if (reclaim_order
< alloc_order
)
3822 goto kswapd_try_sleep
;
3825 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3826 current
->reclaim_state
= NULL
;
3832 * A zone is low on free memory or too fragmented for high-order memory. If
3833 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3834 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3835 * has failed or is not needed, still wake up kcompactd if only compaction is
3838 void wakeup_kswapd(struct zone
*zone
, gfp_t gfp_flags
, int order
,
3839 enum zone_type classzone_idx
)
3843 if (!managed_zone(zone
))
3846 if (!cpuset_zone_allowed(zone
, gfp_flags
))
3848 pgdat
= zone
->zone_pgdat
;
3849 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
,
3851 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, order
);
3852 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3855 /* Hopeless node, leave it to direct reclaim if possible */
3856 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
||
3857 pgdat_balanced(pgdat
, order
, classzone_idx
)) {
3859 * There may be plenty of free memory available, but it's too
3860 * fragmented for high-order allocations. Wake up kcompactd
3861 * and rely on compaction_suitable() to determine if it's
3862 * needed. If it fails, it will defer subsequent attempts to
3863 * ratelimit its work.
3865 if (!(gfp_flags
& __GFP_DIRECT_RECLAIM
))
3866 wakeup_kcompactd(pgdat
, order
, classzone_idx
);
3870 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, classzone_idx
, order
,
3872 wake_up_interruptible(&pgdat
->kswapd_wait
);
3875 #ifdef CONFIG_HIBERNATION
3877 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3880 * Rather than trying to age LRUs the aim is to preserve the overall
3881 * LRU order by reclaiming preferentially
3882 * inactive > active > active referenced > active mapped
3884 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3886 struct reclaim_state reclaim_state
;
3887 struct scan_control sc
= {
3888 .nr_to_reclaim
= nr_to_reclaim
,
3889 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3890 .reclaim_idx
= MAX_NR_ZONES
- 1,
3891 .priority
= DEF_PRIORITY
,
3895 .hibernation_mode
= 1,
3897 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3898 struct task_struct
*p
= current
;
3899 unsigned long nr_reclaimed
;
3900 unsigned int noreclaim_flag
;
3902 fs_reclaim_acquire(sc
.gfp_mask
);
3903 noreclaim_flag
= memalloc_noreclaim_save();
3904 reclaim_state
.reclaimed_slab
= 0;
3905 p
->reclaim_state
= &reclaim_state
;
3907 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3909 p
->reclaim_state
= NULL
;
3910 memalloc_noreclaim_restore(noreclaim_flag
);
3911 fs_reclaim_release(sc
.gfp_mask
);
3913 return nr_reclaimed
;
3915 #endif /* CONFIG_HIBERNATION */
3917 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3918 not required for correctness. So if the last cpu in a node goes
3919 away, we get changed to run anywhere: as the first one comes back,
3920 restore their cpu bindings. */
3921 static int kswapd_cpu_online(unsigned int cpu
)
3925 for_each_node_state(nid
, N_MEMORY
) {
3926 pg_data_t
*pgdat
= NODE_DATA(nid
);
3927 const struct cpumask
*mask
;
3929 mask
= cpumask_of_node(pgdat
->node_id
);
3931 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3932 /* One of our CPUs online: restore mask */
3933 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3939 * This kswapd start function will be called by init and node-hot-add.
3940 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3942 int kswapd_run(int nid
)
3944 pg_data_t
*pgdat
= NODE_DATA(nid
);
3950 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3951 if (IS_ERR(pgdat
->kswapd
)) {
3952 /* failure at boot is fatal */
3953 BUG_ON(system_state
< SYSTEM_RUNNING
);
3954 pr_err("Failed to start kswapd on node %d\n", nid
);
3955 ret
= PTR_ERR(pgdat
->kswapd
);
3956 pgdat
->kswapd
= NULL
;
3962 * Called by memory hotplug when all memory in a node is offlined. Caller must
3963 * hold mem_hotplug_begin/end().
3965 void kswapd_stop(int nid
)
3967 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3970 kthread_stop(kswapd
);
3971 NODE_DATA(nid
)->kswapd
= NULL
;
3975 static int __init
kswapd_init(void)
3980 for_each_node_state(nid
, N_MEMORY
)
3982 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
3983 "mm/vmscan:online", kswapd_cpu_online
,
3989 module_init(kswapd_init
)
3995 * If non-zero call node_reclaim when the number of free pages falls below
3998 int node_reclaim_mode __read_mostly
;
4000 #define RECLAIM_OFF 0
4001 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4002 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4003 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4006 * Priority for NODE_RECLAIM. This determines the fraction of pages
4007 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4010 #define NODE_RECLAIM_PRIORITY 4
4013 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4016 int sysctl_min_unmapped_ratio
= 1;
4019 * If the number of slab pages in a zone grows beyond this percentage then
4020 * slab reclaim needs to occur.
4022 int sysctl_min_slab_ratio
= 5;
4024 static inline unsigned long node_unmapped_file_pages(struct pglist_data
*pgdat
)
4026 unsigned long file_mapped
= node_page_state(pgdat
, NR_FILE_MAPPED
);
4027 unsigned long file_lru
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
4028 node_page_state(pgdat
, NR_ACTIVE_FILE
);
4031 * It's possible for there to be more file mapped pages than
4032 * accounted for by the pages on the file LRU lists because
4033 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4035 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
4038 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4039 static unsigned long node_pagecache_reclaimable(struct pglist_data
*pgdat
)
4041 unsigned long nr_pagecache_reclaimable
;
4042 unsigned long delta
= 0;
4045 * If RECLAIM_UNMAP is set, then all file pages are considered
4046 * potentially reclaimable. Otherwise, we have to worry about
4047 * pages like swapcache and node_unmapped_file_pages() provides
4050 if (node_reclaim_mode
& RECLAIM_UNMAP
)
4051 nr_pagecache_reclaimable
= node_page_state(pgdat
, NR_FILE_PAGES
);
4053 nr_pagecache_reclaimable
= node_unmapped_file_pages(pgdat
);
4055 /* If we can't clean pages, remove dirty pages from consideration */
4056 if (!(node_reclaim_mode
& RECLAIM_WRITE
))
4057 delta
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
4059 /* Watch for any possible underflows due to delta */
4060 if (unlikely(delta
> nr_pagecache_reclaimable
))
4061 delta
= nr_pagecache_reclaimable
;
4063 return nr_pagecache_reclaimable
- delta
;
4067 * Try to free up some pages from this node through reclaim.
4069 static int __node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
4071 /* Minimum pages needed in order to stay on node */
4072 const unsigned long nr_pages
= 1 << order
;
4073 struct task_struct
*p
= current
;
4074 struct reclaim_state reclaim_state
;
4075 unsigned int noreclaim_flag
;
4076 struct scan_control sc
= {
4077 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
4078 .gfp_mask
= current_gfp_context(gfp_mask
),
4080 .priority
= NODE_RECLAIM_PRIORITY
,
4081 .may_writepage
= !!(node_reclaim_mode
& RECLAIM_WRITE
),
4082 .may_unmap
= !!(node_reclaim_mode
& RECLAIM_UNMAP
),
4084 .reclaim_idx
= gfp_zone(gfp_mask
),
4088 fs_reclaim_acquire(sc
.gfp_mask
);
4090 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4091 * and we also need to be able to write out pages for RECLAIM_WRITE
4092 * and RECLAIM_UNMAP.
4094 noreclaim_flag
= memalloc_noreclaim_save();
4095 p
->flags
|= PF_SWAPWRITE
;
4096 reclaim_state
.reclaimed_slab
= 0;
4097 p
->reclaim_state
= &reclaim_state
;
4099 if (node_pagecache_reclaimable(pgdat
) > pgdat
->min_unmapped_pages
) {
4101 * Free memory by calling shrink node with increasing
4102 * priorities until we have enough memory freed.
4105 shrink_node(pgdat
, &sc
);
4106 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
4109 p
->reclaim_state
= NULL
;
4110 current
->flags
&= ~PF_SWAPWRITE
;
4111 memalloc_noreclaim_restore(noreclaim_flag
);
4112 fs_reclaim_release(sc
.gfp_mask
);
4113 return sc
.nr_reclaimed
>= nr_pages
;
4116 int node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
4121 * Node reclaim reclaims unmapped file backed pages and
4122 * slab pages if we are over the defined limits.
4124 * A small portion of unmapped file backed pages is needed for
4125 * file I/O otherwise pages read by file I/O will be immediately
4126 * thrown out if the node is overallocated. So we do not reclaim
4127 * if less than a specified percentage of the node is used by
4128 * unmapped file backed pages.
4130 if (node_pagecache_reclaimable(pgdat
) <= pgdat
->min_unmapped_pages
&&
4131 node_page_state(pgdat
, NR_SLAB_RECLAIMABLE
) <= pgdat
->min_slab_pages
)
4132 return NODE_RECLAIM_FULL
;
4135 * Do not scan if the allocation should not be delayed.
4137 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
4138 return NODE_RECLAIM_NOSCAN
;
4141 * Only run node reclaim on the local node or on nodes that do not
4142 * have associated processors. This will favor the local processor
4143 * over remote processors and spread off node memory allocations
4144 * as wide as possible.
4146 if (node_state(pgdat
->node_id
, N_CPU
) && pgdat
->node_id
!= numa_node_id())
4147 return NODE_RECLAIM_NOSCAN
;
4149 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
))
4150 return NODE_RECLAIM_NOSCAN
;
4152 ret
= __node_reclaim(pgdat
, gfp_mask
, order
);
4153 clear_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
);
4156 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
4163 * page_evictable - test whether a page is evictable
4164 * @page: the page to test
4166 * Test whether page is evictable--i.e., should be placed on active/inactive
4167 * lists vs unevictable list.
4169 * Reasons page might not be evictable:
4170 * (1) page's mapping marked unevictable
4171 * (2) page is part of an mlocked VMA
4174 int page_evictable(struct page
*page
)
4178 /* Prevent address_space of inode and swap cache from being freed */
4180 ret
= !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
4187 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4188 * @pages: array of pages to check
4189 * @nr_pages: number of pages to check
4191 * Checks pages for evictability and moves them to the appropriate lru list.
4193 * This function is only used for SysV IPC SHM_UNLOCK.
4195 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
4197 struct lruvec
*lruvec
;
4198 struct pglist_data
*pgdat
= NULL
;
4203 for (i
= 0; i
< nr_pages
; i
++) {
4204 struct page
*page
= pages
[i
];
4205 struct pglist_data
*pagepgdat
= page_pgdat(page
);
4208 if (pagepgdat
!= pgdat
) {
4210 spin_unlock_irq(&pgdat
->lru_lock
);
4212 spin_lock_irq(&pgdat
->lru_lock
);
4214 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
4216 if (!PageLRU(page
) || !PageUnevictable(page
))
4219 if (page_evictable(page
)) {
4220 enum lru_list lru
= page_lru_base_type(page
);
4222 VM_BUG_ON_PAGE(PageActive(page
), page
);
4223 ClearPageUnevictable(page
);
4224 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
4225 add_page_to_lru_list(page
, lruvec
, lru
);
4231 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
4232 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
4233 spin_unlock_irq(&pgdat
->lru_lock
);
4236 #endif /* CONFIG_SHMEM */