4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
23 #include <trace/events/f2fs.h>
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 static struct kmem_cache
*discard_entry_slab
;
30 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
31 * MSB and LSB are reversed in a byte by f2fs_set_bit.
33 static inline unsigned long __reverse_ffs(unsigned long word
)
37 #if BITS_PER_LONG == 64
38 if ((word
& 0xffffffff) == 0) {
43 if ((word
& 0xffff) == 0) {
47 if ((word
& 0xff) == 0) {
51 if ((word
& 0xf0) == 0)
55 if ((word
& 0xc) == 0)
59 if ((word
& 0x2) == 0)
65 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
66 * f2fs_set_bit makes MSB and LSB reversed in a byte.
69 * f2fs_set_bit(0, bitmap) => 0000 0001
70 * f2fs_set_bit(7, bitmap) => 1000 0000
72 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
73 unsigned long size
, unsigned long offset
)
75 const unsigned long *p
= addr
+ BIT_WORD(offset
);
76 unsigned long result
= offset
& ~(BITS_PER_LONG
- 1);
78 unsigned long mask
, submask
;
79 unsigned long quot
, rest
;
85 offset
%= BITS_PER_LONG
;
90 quot
= (offset
>> 3) << 3;
93 submask
= (unsigned char)(0xff << rest
) >> rest
;
97 if (size
< BITS_PER_LONG
)
102 size
-= BITS_PER_LONG
;
103 result
+= BITS_PER_LONG
;
105 while (size
& ~(BITS_PER_LONG
-1)) {
109 result
+= BITS_PER_LONG
;
110 size
-= BITS_PER_LONG
;
116 tmp
&= (~0UL >> (BITS_PER_LONG
- size
));
117 if (tmp
== 0UL) /* Are any bits set? */
118 return result
+ size
; /* Nope. */
120 return result
+ __reverse_ffs(tmp
);
123 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
124 unsigned long size
, unsigned long offset
)
126 const unsigned long *p
= addr
+ BIT_WORD(offset
);
127 unsigned long result
= offset
& ~(BITS_PER_LONG
- 1);
129 unsigned long mask
, submask
;
130 unsigned long quot
, rest
;
136 offset
%= BITS_PER_LONG
;
141 quot
= (offset
>> 3) << 3;
143 mask
= ~(~0UL << quot
);
144 submask
= (unsigned char)~((unsigned char)(0xff << rest
) >> rest
);
148 if (size
< BITS_PER_LONG
)
153 size
-= BITS_PER_LONG
;
154 result
+= BITS_PER_LONG
;
156 while (size
& ~(BITS_PER_LONG
- 1)) {
160 result
+= BITS_PER_LONG
;
161 size
-= BITS_PER_LONG
;
169 if (tmp
== ~0UL) /* Are any bits zero? */
170 return result
+ size
; /* Nope. */
172 return result
+ __reverse_ffz(tmp
);
176 * This function balances dirty node and dentry pages.
177 * In addition, it controls garbage collection.
179 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
)
182 * We should do GC or end up with checkpoint, if there are so many dirty
183 * dir/node pages without enough free segments.
185 if (has_not_enough_free_secs(sbi
, 0)) {
186 mutex_lock(&sbi
->gc_mutex
);
191 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
)
193 /* check the # of cached NAT entries and prefree segments */
194 if (try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
) ||
195 excess_prefree_segs(sbi
))
196 f2fs_sync_fs(sbi
->sb
, true);
199 static int issue_flush_thread(void *data
)
201 struct f2fs_sb_info
*sbi
= data
;
202 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
203 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
205 if (kthread_should_stop())
208 spin_lock(&fcc
->issue_lock
);
209 if (fcc
->issue_list
) {
210 fcc
->dispatch_list
= fcc
->issue_list
;
211 fcc
->issue_list
= fcc
->issue_tail
= NULL
;
213 spin_unlock(&fcc
->issue_lock
);
215 if (fcc
->dispatch_list
) {
216 struct bio
*bio
= bio_alloc(GFP_NOIO
, 0);
217 struct flush_cmd
*cmd
, *next
;
220 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
221 ret
= submit_bio_wait(WRITE_FLUSH
, bio
);
223 for (cmd
= fcc
->dispatch_list
; cmd
; cmd
= next
) {
226 complete(&cmd
->wait
);
229 fcc
->dispatch_list
= NULL
;
232 wait_event_interruptible(*q
,
233 kthread_should_stop() || fcc
->issue_list
);
237 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
)
239 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
240 struct flush_cmd cmd
;
242 if (!test_opt(sbi
, FLUSH_MERGE
))
243 return blkdev_issue_flush(sbi
->sb
->s_bdev
, GFP_KERNEL
, NULL
);
245 init_completion(&cmd
.wait
);
248 spin_lock(&fcc
->issue_lock
);
250 fcc
->issue_tail
->next
= &cmd
;
252 fcc
->issue_list
= &cmd
;
253 fcc
->issue_tail
= &cmd
;
254 spin_unlock(&fcc
->issue_lock
);
256 if (!fcc
->dispatch_list
)
257 wake_up(&fcc
->flush_wait_queue
);
259 wait_for_completion(&cmd
.wait
);
264 int create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
266 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
267 struct flush_cmd_control
*fcc
;
270 fcc
= kzalloc(sizeof(struct flush_cmd_control
), GFP_KERNEL
);
273 spin_lock_init(&fcc
->issue_lock
);
274 init_waitqueue_head(&fcc
->flush_wait_queue
);
275 sbi
->sm_info
->cmd_control_info
= fcc
;
276 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
277 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
278 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
279 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
281 sbi
->sm_info
->cmd_control_info
= NULL
;
288 void destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
)
290 struct flush_cmd_control
*fcc
=
291 sbi
->sm_info
->cmd_control_info
;
293 if (fcc
&& fcc
->f2fs_issue_flush
)
294 kthread_stop(fcc
->f2fs_issue_flush
);
296 sbi
->sm_info
->cmd_control_info
= NULL
;
299 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
300 enum dirty_type dirty_type
)
302 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
304 /* need not be added */
305 if (IS_CURSEG(sbi
, segno
))
308 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
309 dirty_i
->nr_dirty
[dirty_type
]++;
311 if (dirty_type
== DIRTY
) {
312 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
313 enum dirty_type t
= sentry
->type
;
315 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
316 dirty_i
->nr_dirty
[t
]++;
320 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
321 enum dirty_type dirty_type
)
323 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
325 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
326 dirty_i
->nr_dirty
[dirty_type
]--;
328 if (dirty_type
== DIRTY
) {
329 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
330 enum dirty_type t
= sentry
->type
;
332 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
333 dirty_i
->nr_dirty
[t
]--;
335 if (get_valid_blocks(sbi
, segno
, sbi
->segs_per_sec
) == 0)
336 clear_bit(GET_SECNO(sbi
, segno
),
337 dirty_i
->victim_secmap
);
342 * Should not occur error such as -ENOMEM.
343 * Adding dirty entry into seglist is not critical operation.
344 * If a given segment is one of current working segments, it won't be added.
346 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
348 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
349 unsigned short valid_blocks
;
351 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
354 mutex_lock(&dirty_i
->seglist_lock
);
356 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
358 if (valid_blocks
== 0) {
359 __locate_dirty_segment(sbi
, segno
, PRE
);
360 __remove_dirty_segment(sbi
, segno
, DIRTY
);
361 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
362 __locate_dirty_segment(sbi
, segno
, DIRTY
);
364 /* Recovery routine with SSR needs this */
365 __remove_dirty_segment(sbi
, segno
, DIRTY
);
368 mutex_unlock(&dirty_i
->seglist_lock
);
371 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
372 block_t blkstart
, block_t blklen
)
374 sector_t start
= SECTOR_FROM_BLOCK(sbi
, blkstart
);
375 sector_t len
= SECTOR_FROM_BLOCK(sbi
, blklen
);
376 trace_f2fs_issue_discard(sbi
->sb
, blkstart
, blklen
);
377 return blkdev_issue_discard(sbi
->sb
->s_bdev
, start
, len
, GFP_NOFS
, 0);
380 void discard_next_dnode(struct f2fs_sb_info
*sbi
)
382 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_WARM_NODE
);
383 block_t blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
385 if (f2fs_issue_discard(sbi
, blkaddr
, 1)) {
386 struct page
*page
= grab_meta_page(sbi
, blkaddr
);
387 /* zero-filled page */
388 set_page_dirty(page
);
389 f2fs_put_page(page
, 1);
393 static void add_discard_addrs(struct f2fs_sb_info
*sbi
,
394 unsigned int segno
, struct seg_entry
*se
)
396 struct list_head
*head
= &SM_I(sbi
)->discard_list
;
397 struct discard_entry
*new;
398 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
399 int max_blocks
= sbi
->blocks_per_seg
;
400 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
401 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
402 unsigned long dmap
[entries
];
403 unsigned int start
= 0, end
= -1;
406 if (!test_opt(sbi
, DISCARD
))
409 /* zero block will be discarded through the prefree list */
410 if (!se
->valid_blocks
|| se
->valid_blocks
== max_blocks
)
413 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
414 for (i
= 0; i
< entries
; i
++)
415 dmap
[i
] = (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
417 while (SM_I(sbi
)->nr_discards
<= SM_I(sbi
)->max_discards
) {
418 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
419 if (start
>= max_blocks
)
422 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
424 new = f2fs_kmem_cache_alloc(discard_entry_slab
, GFP_NOFS
);
425 INIT_LIST_HEAD(&new->list
);
426 new->blkaddr
= START_BLOCK(sbi
, segno
) + start
;
427 new->len
= end
- start
;
429 list_add_tail(&new->list
, head
);
430 SM_I(sbi
)->nr_discards
+= end
- start
;
435 * Should call clear_prefree_segments after checkpoint is done.
437 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
439 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
440 unsigned int segno
= -1;
441 unsigned int total_segs
= TOTAL_SEGS(sbi
);
443 mutex_lock(&dirty_i
->seglist_lock
);
445 segno
= find_next_bit(dirty_i
->dirty_segmap
[PRE
], total_segs
,
447 if (segno
>= total_segs
)
449 __set_test_and_free(sbi
, segno
);
451 mutex_unlock(&dirty_i
->seglist_lock
);
454 void clear_prefree_segments(struct f2fs_sb_info
*sbi
)
456 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
457 struct discard_entry
*entry
, *this;
458 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
459 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
460 unsigned int total_segs
= TOTAL_SEGS(sbi
);
461 unsigned int start
= 0, end
= -1;
463 mutex_lock(&dirty_i
->seglist_lock
);
467 start
= find_next_bit(prefree_map
, total_segs
, end
+ 1);
468 if (start
>= total_segs
)
470 end
= find_next_zero_bit(prefree_map
, total_segs
, start
+ 1);
472 for (i
= start
; i
< end
; i
++)
473 clear_bit(i
, prefree_map
);
475 dirty_i
->nr_dirty
[PRE
] -= end
- start
;
477 if (!test_opt(sbi
, DISCARD
))
480 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
481 (end
- start
) << sbi
->log_blocks_per_seg
);
483 mutex_unlock(&dirty_i
->seglist_lock
);
485 /* send small discards */
486 list_for_each_entry_safe(entry
, this, head
, list
) {
487 f2fs_issue_discard(sbi
, entry
->blkaddr
, entry
->len
);
488 list_del(&entry
->list
);
489 SM_I(sbi
)->nr_discards
-= entry
->len
;
490 kmem_cache_free(discard_entry_slab
, entry
);
494 static void __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
496 struct sit_info
*sit_i
= SIT_I(sbi
);
497 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
))
498 sit_i
->dirty_sentries
++;
501 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
502 unsigned int segno
, int modified
)
504 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
507 __mark_sit_entry_dirty(sbi
, segno
);
510 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
512 struct seg_entry
*se
;
513 unsigned int segno
, offset
;
514 long int new_vblocks
;
516 segno
= GET_SEGNO(sbi
, blkaddr
);
518 se
= get_seg_entry(sbi
, segno
);
519 new_vblocks
= se
->valid_blocks
+ del
;
520 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
522 f2fs_bug_on((new_vblocks
>> (sizeof(unsigned short) << 3) ||
523 (new_vblocks
> sbi
->blocks_per_seg
)));
525 se
->valid_blocks
= new_vblocks
;
526 se
->mtime
= get_mtime(sbi
);
527 SIT_I(sbi
)->max_mtime
= se
->mtime
;
529 /* Update valid block bitmap */
531 if (f2fs_set_bit(offset
, se
->cur_valid_map
))
534 if (!f2fs_clear_bit(offset
, se
->cur_valid_map
))
537 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
538 se
->ckpt_valid_blocks
+= del
;
540 __mark_sit_entry_dirty(sbi
, segno
);
542 /* update total number of valid blocks to be written in ckpt area */
543 SIT_I(sbi
)->written_valid_blocks
+= del
;
545 if (sbi
->segs_per_sec
> 1)
546 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
549 void refresh_sit_entry(struct f2fs_sb_info
*sbi
, block_t old
, block_t
new)
551 update_sit_entry(sbi
, new, 1);
552 if (GET_SEGNO(sbi
, old
) != NULL_SEGNO
)
553 update_sit_entry(sbi
, old
, -1);
555 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old
));
556 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new));
559 void invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
561 unsigned int segno
= GET_SEGNO(sbi
, addr
);
562 struct sit_info
*sit_i
= SIT_I(sbi
);
564 f2fs_bug_on(addr
== NULL_ADDR
);
565 if (addr
== NEW_ADDR
)
568 /* add it into sit main buffer */
569 mutex_lock(&sit_i
->sentry_lock
);
571 update_sit_entry(sbi
, addr
, -1);
573 /* add it into dirty seglist */
574 locate_dirty_segment(sbi
, segno
);
576 mutex_unlock(&sit_i
->sentry_lock
);
580 * This function should be resided under the curseg_mutex lock
582 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
583 struct f2fs_summary
*sum
)
585 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
586 void *addr
= curseg
->sum_blk
;
587 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
588 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
592 * Calculate the number of current summary pages for writing
594 int npages_for_summary_flush(struct f2fs_sb_info
*sbi
)
596 int valid_sum_count
= 0;
599 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
600 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
601 valid_sum_count
+= sbi
->blocks_per_seg
;
603 valid_sum_count
+= curseg_blkoff(sbi
, i
);
606 sum_in_page
= (PAGE_CACHE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
607 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
608 if (valid_sum_count
<= sum_in_page
)
610 else if ((valid_sum_count
- sum_in_page
) <=
611 (PAGE_CACHE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
617 * Caller should put this summary page
619 struct page
*get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
621 return get_meta_page(sbi
, GET_SUM_BLOCK(sbi
, segno
));
624 static void write_sum_page(struct f2fs_sb_info
*sbi
,
625 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
627 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
628 void *kaddr
= page_address(page
);
629 memcpy(kaddr
, sum_blk
, PAGE_CACHE_SIZE
);
630 set_page_dirty(page
);
631 f2fs_put_page(page
, 1);
634 static int is_next_segment_free(struct f2fs_sb_info
*sbi
, int type
)
636 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
637 unsigned int segno
= curseg
->segno
+ 1;
638 struct free_segmap_info
*free_i
= FREE_I(sbi
);
640 if (segno
< TOTAL_SEGS(sbi
) && segno
% sbi
->segs_per_sec
)
641 return !test_bit(segno
, free_i
->free_segmap
);
646 * Find a new segment from the free segments bitmap to right order
647 * This function should be returned with success, otherwise BUG
649 static void get_new_segment(struct f2fs_sb_info
*sbi
,
650 unsigned int *newseg
, bool new_sec
, int dir
)
652 struct free_segmap_info
*free_i
= FREE_I(sbi
);
653 unsigned int segno
, secno
, zoneno
;
654 unsigned int total_zones
= TOTAL_SECS(sbi
) / sbi
->secs_per_zone
;
655 unsigned int hint
= *newseg
/ sbi
->segs_per_sec
;
656 unsigned int old_zoneno
= GET_ZONENO_FROM_SEGNO(sbi
, *newseg
);
657 unsigned int left_start
= hint
;
662 write_lock(&free_i
->segmap_lock
);
664 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
665 segno
= find_next_zero_bit(free_i
->free_segmap
,
666 TOTAL_SEGS(sbi
), *newseg
+ 1);
667 if (segno
- *newseg
< sbi
->segs_per_sec
-
668 (*newseg
% sbi
->segs_per_sec
))
672 secno
= find_next_zero_bit(free_i
->free_secmap
, TOTAL_SECS(sbi
), hint
);
673 if (secno
>= TOTAL_SECS(sbi
)) {
674 if (dir
== ALLOC_RIGHT
) {
675 secno
= find_next_zero_bit(free_i
->free_secmap
,
677 f2fs_bug_on(secno
>= TOTAL_SECS(sbi
));
680 left_start
= hint
- 1;
686 while (test_bit(left_start
, free_i
->free_secmap
)) {
687 if (left_start
> 0) {
691 left_start
= find_next_zero_bit(free_i
->free_secmap
,
693 f2fs_bug_on(left_start
>= TOTAL_SECS(sbi
));
699 segno
= secno
* sbi
->segs_per_sec
;
700 zoneno
= secno
/ sbi
->secs_per_zone
;
702 /* give up on finding another zone */
705 if (sbi
->secs_per_zone
== 1)
707 if (zoneno
== old_zoneno
)
709 if (dir
== ALLOC_LEFT
) {
710 if (!go_left
&& zoneno
+ 1 >= total_zones
)
712 if (go_left
&& zoneno
== 0)
715 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
716 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
719 if (i
< NR_CURSEG_TYPE
) {
720 /* zone is in user, try another */
722 hint
= zoneno
* sbi
->secs_per_zone
- 1;
723 else if (zoneno
+ 1 >= total_zones
)
726 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
728 goto find_other_zone
;
731 /* set it as dirty segment in free segmap */
732 f2fs_bug_on(test_bit(segno
, free_i
->free_segmap
));
733 __set_inuse(sbi
, segno
);
735 write_unlock(&free_i
->segmap_lock
);
738 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
740 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
741 struct summary_footer
*sum_footer
;
743 curseg
->segno
= curseg
->next_segno
;
744 curseg
->zone
= GET_ZONENO_FROM_SEGNO(sbi
, curseg
->segno
);
745 curseg
->next_blkoff
= 0;
746 curseg
->next_segno
= NULL_SEGNO
;
748 sum_footer
= &(curseg
->sum_blk
->footer
);
749 memset(sum_footer
, 0, sizeof(struct summary_footer
));
750 if (IS_DATASEG(type
))
751 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
752 if (IS_NODESEG(type
))
753 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
754 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
758 * Allocate a current working segment.
759 * This function always allocates a free segment in LFS manner.
761 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
763 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
764 unsigned int segno
= curseg
->segno
;
765 int dir
= ALLOC_LEFT
;
767 write_sum_page(sbi
, curseg
->sum_blk
,
768 GET_SUM_BLOCK(sbi
, segno
));
769 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
772 if (test_opt(sbi
, NOHEAP
))
775 get_new_segment(sbi
, &segno
, new_sec
, dir
);
776 curseg
->next_segno
= segno
;
777 reset_curseg(sbi
, type
, 1);
778 curseg
->alloc_type
= LFS
;
781 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
782 struct curseg_info
*seg
, block_t start
)
784 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
785 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
786 unsigned long target_map
[entries
];
787 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
788 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
791 for (i
= 0; i
< entries
; i
++)
792 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
794 pos
= __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
796 seg
->next_blkoff
= pos
;
800 * If a segment is written by LFS manner, next block offset is just obtained
801 * by increasing the current block offset. However, if a segment is written by
802 * SSR manner, next block offset obtained by calling __next_free_blkoff
804 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
805 struct curseg_info
*seg
)
807 if (seg
->alloc_type
== SSR
)
808 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
814 * This function always allocates a used segment (from dirty seglist) by SSR
815 * manner, so it should recover the existing segment information of valid blocks
817 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
, bool reuse
)
819 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
820 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
821 unsigned int new_segno
= curseg
->next_segno
;
822 struct f2fs_summary_block
*sum_node
;
823 struct page
*sum_page
;
825 write_sum_page(sbi
, curseg
->sum_blk
,
826 GET_SUM_BLOCK(sbi
, curseg
->segno
));
827 __set_test_and_inuse(sbi
, new_segno
);
829 mutex_lock(&dirty_i
->seglist_lock
);
830 __remove_dirty_segment(sbi
, new_segno
, PRE
);
831 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
832 mutex_unlock(&dirty_i
->seglist_lock
);
834 reset_curseg(sbi
, type
, 1);
835 curseg
->alloc_type
= SSR
;
836 __next_free_blkoff(sbi
, curseg
, 0);
839 sum_page
= get_sum_page(sbi
, new_segno
);
840 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
841 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
842 f2fs_put_page(sum_page
, 1);
846 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
)
848 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
849 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
851 if (IS_NODESEG(type
) || !has_not_enough_free_secs(sbi
, 0))
852 return v_ops
->get_victim(sbi
,
853 &(curseg
)->next_segno
, BG_GC
, type
, SSR
);
855 /* For data segments, let's do SSR more intensively */
856 for (; type
>= CURSEG_HOT_DATA
; type
--)
857 if (v_ops
->get_victim(sbi
, &(curseg
)->next_segno
,
864 * flush out current segment and replace it with new segment
865 * This function should be returned with success, otherwise BUG
867 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
868 int type
, bool force
)
870 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
873 new_curseg(sbi
, type
, true);
874 else if (type
== CURSEG_WARM_NODE
)
875 new_curseg(sbi
, type
, false);
876 else if (curseg
->alloc_type
== LFS
&& is_next_segment_free(sbi
, type
))
877 new_curseg(sbi
, type
, false);
878 else if (need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
879 change_curseg(sbi
, type
, true);
881 new_curseg(sbi
, type
, false);
883 stat_inc_seg_type(sbi
, curseg
);
886 void allocate_new_segments(struct f2fs_sb_info
*sbi
)
888 struct curseg_info
*curseg
;
889 unsigned int old_curseg
;
892 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
893 curseg
= CURSEG_I(sbi
, i
);
894 old_curseg
= curseg
->segno
;
895 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, i
, true);
896 locate_dirty_segment(sbi
, old_curseg
);
900 static const struct segment_allocation default_salloc_ops
= {
901 .allocate_segment
= allocate_segment_by_default
,
904 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
906 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
907 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
912 static int __get_segment_type_2(struct page
*page
, enum page_type p_type
)
915 return CURSEG_HOT_DATA
;
917 return CURSEG_HOT_NODE
;
920 static int __get_segment_type_4(struct page
*page
, enum page_type p_type
)
922 if (p_type
== DATA
) {
923 struct inode
*inode
= page
->mapping
->host
;
925 if (S_ISDIR(inode
->i_mode
))
926 return CURSEG_HOT_DATA
;
928 return CURSEG_COLD_DATA
;
930 if (IS_DNODE(page
) && !is_cold_node(page
))
931 return CURSEG_HOT_NODE
;
933 return CURSEG_COLD_NODE
;
937 static int __get_segment_type_6(struct page
*page
, enum page_type p_type
)
939 if (p_type
== DATA
) {
940 struct inode
*inode
= page
->mapping
->host
;
942 if (S_ISDIR(inode
->i_mode
))
943 return CURSEG_HOT_DATA
;
944 else if (is_cold_data(page
) || file_is_cold(inode
))
945 return CURSEG_COLD_DATA
;
947 return CURSEG_WARM_DATA
;
950 return is_cold_node(page
) ? CURSEG_WARM_NODE
:
953 return CURSEG_COLD_NODE
;
957 static int __get_segment_type(struct page
*page
, enum page_type p_type
)
959 struct f2fs_sb_info
*sbi
= F2FS_SB(page
->mapping
->host
->i_sb
);
960 switch (sbi
->active_logs
) {
962 return __get_segment_type_2(page
, p_type
);
964 return __get_segment_type_4(page
, p_type
);
966 /* NR_CURSEG_TYPE(6) logs by default */
967 f2fs_bug_on(sbi
->active_logs
!= NR_CURSEG_TYPE
);
968 return __get_segment_type_6(page
, p_type
);
971 void allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
972 block_t old_blkaddr
, block_t
*new_blkaddr
,
973 struct f2fs_summary
*sum
, int type
)
975 struct sit_info
*sit_i
= SIT_I(sbi
);
976 struct curseg_info
*curseg
;
977 unsigned int old_cursegno
;
979 curseg
= CURSEG_I(sbi
, type
);
981 mutex_lock(&curseg
->curseg_mutex
);
983 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
984 old_cursegno
= curseg
->segno
;
987 * __add_sum_entry should be resided under the curseg_mutex
988 * because, this function updates a summary entry in the
989 * current summary block.
991 __add_sum_entry(sbi
, type
, sum
);
993 mutex_lock(&sit_i
->sentry_lock
);
994 __refresh_next_blkoff(sbi
, curseg
);
996 stat_inc_block_count(sbi
, curseg
);
998 if (!__has_curseg_space(sbi
, type
))
999 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
1001 * SIT information should be updated before segment allocation,
1002 * since SSR needs latest valid block information.
1004 refresh_sit_entry(sbi
, old_blkaddr
, *new_blkaddr
);
1005 locate_dirty_segment(sbi
, old_cursegno
);
1007 mutex_unlock(&sit_i
->sentry_lock
);
1009 if (page
&& IS_NODESEG(type
))
1010 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
1012 mutex_unlock(&curseg
->curseg_mutex
);
1015 static void do_write_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
1016 block_t old_blkaddr
, block_t
*new_blkaddr
,
1017 struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
1019 int type
= __get_segment_type(page
, fio
->type
);
1021 allocate_data_block(sbi
, page
, old_blkaddr
, new_blkaddr
, sum
, type
);
1023 /* writeout dirty page into bdev */
1024 f2fs_submit_page_mbio(sbi
, page
, *new_blkaddr
, fio
);
1027 void write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
1029 struct f2fs_io_info fio
= {
1031 .rw
= WRITE_SYNC
| REQ_META
| REQ_PRIO
1034 set_page_writeback(page
);
1035 f2fs_submit_page_mbio(sbi
, page
, page
->index
, &fio
);
1038 void write_node_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
1039 struct f2fs_io_info
*fio
,
1040 unsigned int nid
, block_t old_blkaddr
, block_t
*new_blkaddr
)
1042 struct f2fs_summary sum
;
1043 set_summary(&sum
, nid
, 0, 0);
1044 do_write_page(sbi
, page
, old_blkaddr
, new_blkaddr
, &sum
, fio
);
1047 void write_data_page(struct page
*page
, struct dnode_of_data
*dn
,
1048 block_t
*new_blkaddr
, struct f2fs_io_info
*fio
)
1050 struct f2fs_sb_info
*sbi
= F2FS_SB(dn
->inode
->i_sb
);
1051 struct f2fs_summary sum
;
1052 struct node_info ni
;
1054 f2fs_bug_on(dn
->data_blkaddr
== NULL_ADDR
);
1055 get_node_info(sbi
, dn
->nid
, &ni
);
1056 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
1058 do_write_page(sbi
, page
, dn
->data_blkaddr
, new_blkaddr
, &sum
, fio
);
1061 void rewrite_data_page(struct page
*page
, block_t old_blkaddr
,
1062 struct f2fs_io_info
*fio
)
1064 struct inode
*inode
= page
->mapping
->host
;
1065 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
1066 f2fs_submit_page_mbio(sbi
, page
, old_blkaddr
, fio
);
1069 void recover_data_page(struct f2fs_sb_info
*sbi
,
1070 struct page
*page
, struct f2fs_summary
*sum
,
1071 block_t old_blkaddr
, block_t new_blkaddr
)
1073 struct sit_info
*sit_i
= SIT_I(sbi
);
1074 struct curseg_info
*curseg
;
1075 unsigned int segno
, old_cursegno
;
1076 struct seg_entry
*se
;
1079 segno
= GET_SEGNO(sbi
, new_blkaddr
);
1080 se
= get_seg_entry(sbi
, segno
);
1083 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
1084 if (old_blkaddr
== NULL_ADDR
)
1085 type
= CURSEG_COLD_DATA
;
1087 type
= CURSEG_WARM_DATA
;
1089 curseg
= CURSEG_I(sbi
, type
);
1091 mutex_lock(&curseg
->curseg_mutex
);
1092 mutex_lock(&sit_i
->sentry_lock
);
1094 old_cursegno
= curseg
->segno
;
1096 /* change the current segment */
1097 if (segno
!= curseg
->segno
) {
1098 curseg
->next_segno
= segno
;
1099 change_curseg(sbi
, type
, true);
1102 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
1103 __add_sum_entry(sbi
, type
, sum
);
1105 refresh_sit_entry(sbi
, old_blkaddr
, new_blkaddr
);
1106 locate_dirty_segment(sbi
, old_cursegno
);
1108 mutex_unlock(&sit_i
->sentry_lock
);
1109 mutex_unlock(&curseg
->curseg_mutex
);
1112 void rewrite_node_page(struct f2fs_sb_info
*sbi
,
1113 struct page
*page
, struct f2fs_summary
*sum
,
1114 block_t old_blkaddr
, block_t new_blkaddr
)
1116 struct sit_info
*sit_i
= SIT_I(sbi
);
1117 int type
= CURSEG_WARM_NODE
;
1118 struct curseg_info
*curseg
;
1119 unsigned int segno
, old_cursegno
;
1120 block_t next_blkaddr
= next_blkaddr_of_node(page
);
1121 unsigned int next_segno
= GET_SEGNO(sbi
, next_blkaddr
);
1122 struct f2fs_io_info fio
= {
1127 curseg
= CURSEG_I(sbi
, type
);
1129 mutex_lock(&curseg
->curseg_mutex
);
1130 mutex_lock(&sit_i
->sentry_lock
);
1132 segno
= GET_SEGNO(sbi
, new_blkaddr
);
1133 old_cursegno
= curseg
->segno
;
1135 /* change the current segment */
1136 if (segno
!= curseg
->segno
) {
1137 curseg
->next_segno
= segno
;
1138 change_curseg(sbi
, type
, true);
1140 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
1141 __add_sum_entry(sbi
, type
, sum
);
1143 /* change the current log to the next block addr in advance */
1144 if (next_segno
!= segno
) {
1145 curseg
->next_segno
= next_segno
;
1146 change_curseg(sbi
, type
, true);
1148 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, next_blkaddr
);
1150 /* rewrite node page */
1151 set_page_writeback(page
);
1152 f2fs_submit_page_mbio(sbi
, page
, new_blkaddr
, &fio
);
1153 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
1154 refresh_sit_entry(sbi
, old_blkaddr
, new_blkaddr
);
1155 locate_dirty_segment(sbi
, old_cursegno
);
1157 mutex_unlock(&sit_i
->sentry_lock
);
1158 mutex_unlock(&curseg
->curseg_mutex
);
1161 static inline bool is_merged_page(struct f2fs_sb_info
*sbi
,
1162 struct page
*page
, enum page_type type
)
1164 enum page_type btype
= PAGE_TYPE_OF_BIO(type
);
1165 struct f2fs_bio_info
*io
= &sbi
->write_io
[btype
];
1166 struct bio_vec
*bvec
;
1169 down_read(&io
->io_rwsem
);
1173 bio_for_each_segment_all(bvec
, io
->bio
, i
) {
1174 if (page
== bvec
->bv_page
) {
1175 up_read(&io
->io_rwsem
);
1181 up_read(&io
->io_rwsem
);
1185 void f2fs_wait_on_page_writeback(struct page
*page
,
1186 enum page_type type
)
1188 struct f2fs_sb_info
*sbi
= F2FS_SB(page
->mapping
->host
->i_sb
);
1189 if (PageWriteback(page
)) {
1190 if (is_merged_page(sbi
, page
, type
))
1191 f2fs_submit_merged_bio(sbi
, type
, WRITE
);
1192 wait_on_page_writeback(page
);
1196 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
1198 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1199 struct curseg_info
*seg_i
;
1200 unsigned char *kaddr
;
1205 start
= start_sum_block(sbi
);
1207 page
= get_meta_page(sbi
, start
++);
1208 kaddr
= (unsigned char *)page_address(page
);
1210 /* Step 1: restore nat cache */
1211 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1212 memcpy(&seg_i
->sum_blk
->n_nats
, kaddr
, SUM_JOURNAL_SIZE
);
1214 /* Step 2: restore sit cache */
1215 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1216 memcpy(&seg_i
->sum_blk
->n_sits
, kaddr
+ SUM_JOURNAL_SIZE
,
1218 offset
= 2 * SUM_JOURNAL_SIZE
;
1220 /* Step 3: restore summary entries */
1221 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1222 unsigned short blk_off
;
1225 seg_i
= CURSEG_I(sbi
, i
);
1226 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
1227 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
1228 seg_i
->next_segno
= segno
;
1229 reset_curseg(sbi
, i
, 0);
1230 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
1231 seg_i
->next_blkoff
= blk_off
;
1233 if (seg_i
->alloc_type
== SSR
)
1234 blk_off
= sbi
->blocks_per_seg
;
1236 for (j
= 0; j
< blk_off
; j
++) {
1237 struct f2fs_summary
*s
;
1238 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
1239 seg_i
->sum_blk
->entries
[j
] = *s
;
1240 offset
+= SUMMARY_SIZE
;
1241 if (offset
+ SUMMARY_SIZE
<= PAGE_CACHE_SIZE
-
1245 f2fs_put_page(page
, 1);
1248 page
= get_meta_page(sbi
, start
++);
1249 kaddr
= (unsigned char *)page_address(page
);
1253 f2fs_put_page(page
, 1);
1257 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
1259 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1260 struct f2fs_summary_block
*sum
;
1261 struct curseg_info
*curseg
;
1263 unsigned short blk_off
;
1264 unsigned int segno
= 0;
1265 block_t blk_addr
= 0;
1267 /* get segment number and block addr */
1268 if (IS_DATASEG(type
)) {
1269 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
1270 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
1272 if (is_set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
))
1273 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
1275 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
1277 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
1279 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
1281 if (is_set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
))
1282 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
1283 type
- CURSEG_HOT_NODE
);
1285 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
1288 new = get_meta_page(sbi
, blk_addr
);
1289 sum
= (struct f2fs_summary_block
*)page_address(new);
1291 if (IS_NODESEG(type
)) {
1292 if (is_set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
)) {
1293 struct f2fs_summary
*ns
= &sum
->entries
[0];
1295 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
1297 ns
->ofs_in_node
= 0;
1302 err
= restore_node_summary(sbi
, segno
, sum
);
1304 f2fs_put_page(new, 1);
1310 /* set uncompleted segment to curseg */
1311 curseg
= CURSEG_I(sbi
, type
);
1312 mutex_lock(&curseg
->curseg_mutex
);
1313 memcpy(curseg
->sum_blk
, sum
, PAGE_CACHE_SIZE
);
1314 curseg
->next_segno
= segno
;
1315 reset_curseg(sbi
, type
, 0);
1316 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
1317 curseg
->next_blkoff
= blk_off
;
1318 mutex_unlock(&curseg
->curseg_mutex
);
1319 f2fs_put_page(new, 1);
1323 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
1325 int type
= CURSEG_HOT_DATA
;
1328 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_COMPACT_SUM_FLAG
)) {
1329 /* restore for compacted data summary */
1330 if (read_compacted_summaries(sbi
))
1332 type
= CURSEG_HOT_NODE
;
1335 for (; type
<= CURSEG_COLD_NODE
; type
++) {
1336 err
= read_normal_summaries(sbi
, type
);
1344 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1347 unsigned char *kaddr
;
1348 struct f2fs_summary
*summary
;
1349 struct curseg_info
*seg_i
;
1350 int written_size
= 0;
1353 page
= grab_meta_page(sbi
, blkaddr
++);
1354 kaddr
= (unsigned char *)page_address(page
);
1356 /* Step 1: write nat cache */
1357 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1358 memcpy(kaddr
, &seg_i
->sum_blk
->n_nats
, SUM_JOURNAL_SIZE
);
1359 written_size
+= SUM_JOURNAL_SIZE
;
1361 /* Step 2: write sit cache */
1362 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1363 memcpy(kaddr
+ written_size
, &seg_i
->sum_blk
->n_sits
,
1365 written_size
+= SUM_JOURNAL_SIZE
;
1367 /* Step 3: write summary entries */
1368 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1369 unsigned short blkoff
;
1370 seg_i
= CURSEG_I(sbi
, i
);
1371 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
1372 blkoff
= sbi
->blocks_per_seg
;
1374 blkoff
= curseg_blkoff(sbi
, i
);
1376 for (j
= 0; j
< blkoff
; j
++) {
1378 page
= grab_meta_page(sbi
, blkaddr
++);
1379 kaddr
= (unsigned char *)page_address(page
);
1382 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
1383 *summary
= seg_i
->sum_blk
->entries
[j
];
1384 written_size
+= SUMMARY_SIZE
;
1386 if (written_size
+ SUMMARY_SIZE
<= PAGE_CACHE_SIZE
-
1390 set_page_dirty(page
);
1391 f2fs_put_page(page
, 1);
1396 set_page_dirty(page
);
1397 f2fs_put_page(page
, 1);
1401 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
1402 block_t blkaddr
, int type
)
1405 if (IS_DATASEG(type
))
1406 end
= type
+ NR_CURSEG_DATA_TYPE
;
1408 end
= type
+ NR_CURSEG_NODE_TYPE
;
1410 for (i
= type
; i
< end
; i
++) {
1411 struct curseg_info
*sum
= CURSEG_I(sbi
, i
);
1412 mutex_lock(&sum
->curseg_mutex
);
1413 write_sum_page(sbi
, sum
->sum_blk
, blkaddr
+ (i
- type
));
1414 mutex_unlock(&sum
->curseg_mutex
);
1418 void write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1420 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_COMPACT_SUM_FLAG
))
1421 write_compacted_summaries(sbi
, start_blk
);
1423 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
1426 void write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1428 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_UMOUNT_FLAG
))
1429 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
1432 int lookup_journal_in_cursum(struct f2fs_summary_block
*sum
, int type
,
1433 unsigned int val
, int alloc
)
1437 if (type
== NAT_JOURNAL
) {
1438 for (i
= 0; i
< nats_in_cursum(sum
); i
++) {
1439 if (le32_to_cpu(nid_in_journal(sum
, i
)) == val
)
1442 if (alloc
&& nats_in_cursum(sum
) < NAT_JOURNAL_ENTRIES
)
1443 return update_nats_in_cursum(sum
, 1);
1444 } else if (type
== SIT_JOURNAL
) {
1445 for (i
= 0; i
< sits_in_cursum(sum
); i
++)
1446 if (le32_to_cpu(segno_in_journal(sum
, i
)) == val
)
1448 if (alloc
&& sits_in_cursum(sum
) < SIT_JOURNAL_ENTRIES
)
1449 return update_sits_in_cursum(sum
, 1);
1454 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
1457 struct sit_info
*sit_i
= SIT_I(sbi
);
1458 unsigned int offset
= SIT_BLOCK_OFFSET(sit_i
, segno
);
1459 block_t blk_addr
= sit_i
->sit_base_addr
+ offset
;
1461 check_seg_range(sbi
, segno
);
1463 /* calculate sit block address */
1464 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
))
1465 blk_addr
+= sit_i
->sit_blocks
;
1467 return get_meta_page(sbi
, blk_addr
);
1470 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
1473 struct sit_info
*sit_i
= SIT_I(sbi
);
1474 struct page
*src_page
, *dst_page
;
1475 pgoff_t src_off
, dst_off
;
1476 void *src_addr
, *dst_addr
;
1478 src_off
= current_sit_addr(sbi
, start
);
1479 dst_off
= next_sit_addr(sbi
, src_off
);
1481 /* get current sit block page without lock */
1482 src_page
= get_meta_page(sbi
, src_off
);
1483 dst_page
= grab_meta_page(sbi
, dst_off
);
1484 f2fs_bug_on(PageDirty(src_page
));
1486 src_addr
= page_address(src_page
);
1487 dst_addr
= page_address(dst_page
);
1488 memcpy(dst_addr
, src_addr
, PAGE_CACHE_SIZE
);
1490 set_page_dirty(dst_page
);
1491 f2fs_put_page(src_page
, 1);
1493 set_to_next_sit(sit_i
, start
);
1498 static bool flush_sits_in_journal(struct f2fs_sb_info
*sbi
)
1500 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1501 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1505 * If the journal area in the current summary is full of sit entries,
1506 * all the sit entries will be flushed. Otherwise the sit entries
1507 * are not able to replace with newly hot sit entries.
1509 if (sits_in_cursum(sum
) >= SIT_JOURNAL_ENTRIES
) {
1510 for (i
= sits_in_cursum(sum
) - 1; i
>= 0; i
--) {
1512 segno
= le32_to_cpu(segno_in_journal(sum
, i
));
1513 __mark_sit_entry_dirty(sbi
, segno
);
1515 update_sits_in_cursum(sum
, -sits_in_cursum(sum
));
1522 * CP calls this function, which flushes SIT entries including sit_journal,
1523 * and moves prefree segs to free segs.
1525 void flush_sit_entries(struct f2fs_sb_info
*sbi
)
1527 struct sit_info
*sit_i
= SIT_I(sbi
);
1528 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
1529 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1530 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1531 unsigned long nsegs
= TOTAL_SEGS(sbi
);
1532 struct page
*page
= NULL
;
1533 struct f2fs_sit_block
*raw_sit
= NULL
;
1534 unsigned int start
= 0, end
= 0;
1535 unsigned int segno
= -1;
1538 mutex_lock(&curseg
->curseg_mutex
);
1539 mutex_lock(&sit_i
->sentry_lock
);
1542 * "flushed" indicates whether sit entries in journal are flushed
1543 * to the SIT area or not.
1545 flushed
= flush_sits_in_journal(sbi
);
1547 while ((segno
= find_next_bit(bitmap
, nsegs
, segno
+ 1)) < nsegs
) {
1548 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
1549 int sit_offset
, offset
;
1551 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
1553 /* add discard candidates */
1554 if (SM_I(sbi
)->nr_discards
< SM_I(sbi
)->max_discards
)
1555 add_discard_addrs(sbi
, segno
, se
);
1560 offset
= lookup_journal_in_cursum(sum
, SIT_JOURNAL
, segno
, 1);
1562 segno_in_journal(sum
, offset
) = cpu_to_le32(segno
);
1563 seg_info_to_raw_sit(se
, &sit_in_journal(sum
, offset
));
1567 if (!page
|| (start
> segno
) || (segno
> end
)) {
1569 f2fs_put_page(page
, 1);
1573 start
= START_SEGNO(sit_i
, segno
);
1574 end
= start
+ SIT_ENTRY_PER_BLOCK
- 1;
1576 /* read sit block that will be updated */
1577 page
= get_next_sit_page(sbi
, start
);
1578 raw_sit
= page_address(page
);
1581 /* udpate entry in SIT block */
1582 seg_info_to_raw_sit(se
, &raw_sit
->entries
[sit_offset
]);
1584 __clear_bit(segno
, bitmap
);
1585 sit_i
->dirty_sentries
--;
1587 mutex_unlock(&sit_i
->sentry_lock
);
1588 mutex_unlock(&curseg
->curseg_mutex
);
1590 /* writeout last modified SIT block */
1591 f2fs_put_page(page
, 1);
1593 set_prefree_as_free_segments(sbi
);
1596 static int build_sit_info(struct f2fs_sb_info
*sbi
)
1598 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
1599 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1600 struct sit_info
*sit_i
;
1601 unsigned int sit_segs
, start
;
1602 char *src_bitmap
, *dst_bitmap
;
1603 unsigned int bitmap_size
;
1605 /* allocate memory for SIT information */
1606 sit_i
= kzalloc(sizeof(struct sit_info
), GFP_KERNEL
);
1610 SM_I(sbi
)->sit_info
= sit_i
;
1612 sit_i
->sentries
= vzalloc(TOTAL_SEGS(sbi
) * sizeof(struct seg_entry
));
1613 if (!sit_i
->sentries
)
1616 bitmap_size
= f2fs_bitmap_size(TOTAL_SEGS(sbi
));
1617 sit_i
->dirty_sentries_bitmap
= kzalloc(bitmap_size
, GFP_KERNEL
);
1618 if (!sit_i
->dirty_sentries_bitmap
)
1621 for (start
= 0; start
< TOTAL_SEGS(sbi
); start
++) {
1622 sit_i
->sentries
[start
].cur_valid_map
1623 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
1624 sit_i
->sentries
[start
].ckpt_valid_map
1625 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
1626 if (!sit_i
->sentries
[start
].cur_valid_map
1627 || !sit_i
->sentries
[start
].ckpt_valid_map
)
1631 if (sbi
->segs_per_sec
> 1) {
1632 sit_i
->sec_entries
= vzalloc(TOTAL_SECS(sbi
) *
1633 sizeof(struct sec_entry
));
1634 if (!sit_i
->sec_entries
)
1638 /* get information related with SIT */
1639 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
1641 /* setup SIT bitmap from ckeckpoint pack */
1642 bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
1643 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
1645 dst_bitmap
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
1649 /* init SIT information */
1650 sit_i
->s_ops
= &default_salloc_ops
;
1652 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
1653 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
1654 sit_i
->written_valid_blocks
= le64_to_cpu(ckpt
->valid_block_count
);
1655 sit_i
->sit_bitmap
= dst_bitmap
;
1656 sit_i
->bitmap_size
= bitmap_size
;
1657 sit_i
->dirty_sentries
= 0;
1658 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
1659 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
1660 sit_i
->mounted_time
= CURRENT_TIME_SEC
.tv_sec
;
1661 mutex_init(&sit_i
->sentry_lock
);
1665 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
1667 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
1668 struct free_segmap_info
*free_i
;
1669 unsigned int bitmap_size
, sec_bitmap_size
;
1671 /* allocate memory for free segmap information */
1672 free_i
= kzalloc(sizeof(struct free_segmap_info
), GFP_KERNEL
);
1676 SM_I(sbi
)->free_info
= free_i
;
1678 bitmap_size
= f2fs_bitmap_size(TOTAL_SEGS(sbi
));
1679 free_i
->free_segmap
= kmalloc(bitmap_size
, GFP_KERNEL
);
1680 if (!free_i
->free_segmap
)
1683 sec_bitmap_size
= f2fs_bitmap_size(TOTAL_SECS(sbi
));
1684 free_i
->free_secmap
= kmalloc(sec_bitmap_size
, GFP_KERNEL
);
1685 if (!free_i
->free_secmap
)
1688 /* set all segments as dirty temporarily */
1689 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
1690 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
1692 /* init free segmap information */
1693 free_i
->start_segno
=
1694 (unsigned int) GET_SEGNO_FROM_SEG0(sbi
, sm_info
->main_blkaddr
);
1695 free_i
->free_segments
= 0;
1696 free_i
->free_sections
= 0;
1697 rwlock_init(&free_i
->segmap_lock
);
1701 static int build_curseg(struct f2fs_sb_info
*sbi
)
1703 struct curseg_info
*array
;
1706 array
= kzalloc(sizeof(*array
) * NR_CURSEG_TYPE
, GFP_KERNEL
);
1710 SM_I(sbi
)->curseg_array
= array
;
1712 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
1713 mutex_init(&array
[i
].curseg_mutex
);
1714 array
[i
].sum_blk
= kzalloc(PAGE_CACHE_SIZE
, GFP_KERNEL
);
1715 if (!array
[i
].sum_blk
)
1717 array
[i
].segno
= NULL_SEGNO
;
1718 array
[i
].next_blkoff
= 0;
1720 return restore_curseg_summaries(sbi
);
1723 static void build_sit_entries(struct f2fs_sb_info
*sbi
)
1725 struct sit_info
*sit_i
= SIT_I(sbi
);
1726 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1727 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1728 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
1729 unsigned int i
, start
, end
;
1730 unsigned int readed
, start_blk
= 0;
1731 int nrpages
= MAX_BIO_BLOCKS(max_hw_blocks(sbi
));
1734 readed
= ra_meta_pages(sbi
, start_blk
, nrpages
, META_SIT
);
1736 start
= start_blk
* sit_i
->sents_per_block
;
1737 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
1739 for (; start
< end
&& start
< TOTAL_SEGS(sbi
); start
++) {
1740 struct seg_entry
*se
= &sit_i
->sentries
[start
];
1741 struct f2fs_sit_block
*sit_blk
;
1742 struct f2fs_sit_entry sit
;
1745 mutex_lock(&curseg
->curseg_mutex
);
1746 for (i
= 0; i
< sits_in_cursum(sum
); i
++) {
1747 if (le32_to_cpu(segno_in_journal(sum
, i
))
1749 sit
= sit_in_journal(sum
, i
);
1750 mutex_unlock(&curseg
->curseg_mutex
);
1754 mutex_unlock(&curseg
->curseg_mutex
);
1756 page
= get_current_sit_page(sbi
, start
);
1757 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
1758 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
1759 f2fs_put_page(page
, 1);
1761 check_block_count(sbi
, start
, &sit
);
1762 seg_info_from_raw_sit(se
, &sit
);
1763 if (sbi
->segs_per_sec
> 1) {
1764 struct sec_entry
*e
= get_sec_entry(sbi
, start
);
1765 e
->valid_blocks
+= se
->valid_blocks
;
1768 start_blk
+= readed
;
1769 } while (start_blk
< sit_blk_cnt
);
1772 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
1777 for (start
= 0; start
< TOTAL_SEGS(sbi
); start
++) {
1778 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
1779 if (!sentry
->valid_blocks
)
1780 __set_free(sbi
, start
);
1783 /* set use the current segments */
1784 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
1785 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
1786 __set_test_and_inuse(sbi
, curseg_t
->segno
);
1790 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
1792 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1793 struct free_segmap_info
*free_i
= FREE_I(sbi
);
1794 unsigned int segno
= 0, offset
= 0, total_segs
= TOTAL_SEGS(sbi
);
1795 unsigned short valid_blocks
;
1798 /* find dirty segment based on free segmap */
1799 segno
= find_next_inuse(free_i
, total_segs
, offset
);
1800 if (segno
>= total_segs
)
1803 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
1804 if (valid_blocks
>= sbi
->blocks_per_seg
|| !valid_blocks
)
1806 mutex_lock(&dirty_i
->seglist_lock
);
1807 __locate_dirty_segment(sbi
, segno
, DIRTY
);
1808 mutex_unlock(&dirty_i
->seglist_lock
);
1812 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
1814 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1815 unsigned int bitmap_size
= f2fs_bitmap_size(TOTAL_SECS(sbi
));
1817 dirty_i
->victim_secmap
= kzalloc(bitmap_size
, GFP_KERNEL
);
1818 if (!dirty_i
->victim_secmap
)
1823 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
1825 struct dirty_seglist_info
*dirty_i
;
1826 unsigned int bitmap_size
, i
;
1828 /* allocate memory for dirty segments list information */
1829 dirty_i
= kzalloc(sizeof(struct dirty_seglist_info
), GFP_KERNEL
);
1833 SM_I(sbi
)->dirty_info
= dirty_i
;
1834 mutex_init(&dirty_i
->seglist_lock
);
1836 bitmap_size
= f2fs_bitmap_size(TOTAL_SEGS(sbi
));
1838 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
1839 dirty_i
->dirty_segmap
[i
] = kzalloc(bitmap_size
, GFP_KERNEL
);
1840 if (!dirty_i
->dirty_segmap
[i
])
1844 init_dirty_segmap(sbi
);
1845 return init_victim_secmap(sbi
);
1849 * Update min, max modified time for cost-benefit GC algorithm
1851 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
1853 struct sit_info
*sit_i
= SIT_I(sbi
);
1856 mutex_lock(&sit_i
->sentry_lock
);
1858 sit_i
->min_mtime
= LLONG_MAX
;
1860 for (segno
= 0; segno
< TOTAL_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
1862 unsigned long long mtime
= 0;
1864 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
1865 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
1867 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
1869 if (sit_i
->min_mtime
> mtime
)
1870 sit_i
->min_mtime
= mtime
;
1872 sit_i
->max_mtime
= get_mtime(sbi
);
1873 mutex_unlock(&sit_i
->sentry_lock
);
1876 int build_segment_manager(struct f2fs_sb_info
*sbi
)
1878 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
1879 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1880 struct f2fs_sm_info
*sm_info
;
1883 sm_info
= kzalloc(sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
1888 sbi
->sm_info
= sm_info
;
1889 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
1890 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
1891 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
1892 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
1893 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
1894 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
1895 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
1896 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
1897 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
1898 sm_info
->ipu_policy
= F2FS_IPU_DISABLE
;
1899 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
1901 INIT_LIST_HEAD(&sm_info
->discard_list
);
1902 sm_info
->nr_discards
= 0;
1903 sm_info
->max_discards
= 0;
1905 if (test_opt(sbi
, FLUSH_MERGE
) && !f2fs_readonly(sbi
->sb
)) {
1906 err
= create_flush_cmd_control(sbi
);
1911 err
= build_sit_info(sbi
);
1914 err
= build_free_segmap(sbi
);
1917 err
= build_curseg(sbi
);
1921 /* reinit free segmap based on SIT */
1922 build_sit_entries(sbi
);
1924 init_free_segmap(sbi
);
1925 err
= build_dirty_segmap(sbi
);
1929 init_min_max_mtime(sbi
);
1933 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
1934 enum dirty_type dirty_type
)
1936 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1938 mutex_lock(&dirty_i
->seglist_lock
);
1939 kfree(dirty_i
->dirty_segmap
[dirty_type
]);
1940 dirty_i
->nr_dirty
[dirty_type
] = 0;
1941 mutex_unlock(&dirty_i
->seglist_lock
);
1944 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
1946 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1947 kfree(dirty_i
->victim_secmap
);
1950 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
1952 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1958 /* discard pre-free/dirty segments list */
1959 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
1960 discard_dirty_segmap(sbi
, i
);
1962 destroy_victim_secmap(sbi
);
1963 SM_I(sbi
)->dirty_info
= NULL
;
1967 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
1969 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
1974 SM_I(sbi
)->curseg_array
= NULL
;
1975 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
1976 kfree(array
[i
].sum_blk
);
1980 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
1982 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
1985 SM_I(sbi
)->free_info
= NULL
;
1986 kfree(free_i
->free_segmap
);
1987 kfree(free_i
->free_secmap
);
1991 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
1993 struct sit_info
*sit_i
= SIT_I(sbi
);
1999 if (sit_i
->sentries
) {
2000 for (start
= 0; start
< TOTAL_SEGS(sbi
); start
++) {
2001 kfree(sit_i
->sentries
[start
].cur_valid_map
);
2002 kfree(sit_i
->sentries
[start
].ckpt_valid_map
);
2005 vfree(sit_i
->sentries
);
2006 vfree(sit_i
->sec_entries
);
2007 kfree(sit_i
->dirty_sentries_bitmap
);
2009 SM_I(sbi
)->sit_info
= NULL
;
2010 kfree(sit_i
->sit_bitmap
);
2014 void destroy_segment_manager(struct f2fs_sb_info
*sbi
)
2016 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
2020 destroy_flush_cmd_control(sbi
);
2021 destroy_dirty_segmap(sbi
);
2022 destroy_curseg(sbi
);
2023 destroy_free_segmap(sbi
);
2024 destroy_sit_info(sbi
);
2025 sbi
->sm_info
= NULL
;
2029 int __init
create_segment_manager_caches(void)
2031 discard_entry_slab
= f2fs_kmem_cache_create("discard_entry",
2032 sizeof(struct discard_entry
));
2033 if (!discard_entry_slab
)
2038 void destroy_segment_manager_caches(void)
2040 kmem_cache_destroy(discard_entry_slab
);