4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/blkdev.h>
14 #define NULL_SEGNO ((unsigned int)(~0))
15 #define NULL_SECNO ((unsigned int)(~0))
17 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
23 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
26 #define IS_CURSEG(sbi, seg) \
27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34 #define IS_CURSEC(sbi, secno) \
35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
36 sbi->segs_per_sec) || \
37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
38 sbi->segs_per_sec) || \
39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
48 #define START_BLOCK(sbi, segno) \
49 (SM_I(sbi)->seg0_blkaddr + \
50 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51 #define NEXT_FREE_BLKADDR(sbi, curseg) \
52 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
54 #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
57 ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
59 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
61 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
63 #define GET_SEGNO(sbi, blk_addr) \
64 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
65 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
66 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
67 #define GET_SECNO(sbi, segno) \
68 ((segno) / sbi->segs_per_sec)
69 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
70 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
72 #define GET_SUM_BLOCK(sbi, segno) \
73 ((sbi->sm_info->ssa_blkaddr) + segno)
75 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
76 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
78 #define SIT_ENTRY_OFFSET(sit_i, segno) \
79 (segno % sit_i->sents_per_block)
80 #define SIT_BLOCK_OFFSET(sit_i, segno) \
81 (segno / SIT_ENTRY_PER_BLOCK)
82 #define START_SEGNO(sit_i, segno) \
83 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
84 #define SIT_BLK_CNT(sbi) \
85 ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
86 #define f2fs_bitmap_size(nr) \
87 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
88 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
89 #define TOTAL_SECS(sbi) (sbi->total_sections)
91 #define SECTOR_FROM_BLOCK(sbi, blk_addr) \
92 (((sector_t)blk_addr) << (sbi)->log_sectors_per_block)
93 #define SECTOR_TO_BLOCK(sbi, sectors) \
94 (sectors >> (sbi)->log_sectors_per_block)
95 #define MAX_BIO_BLOCKS(max_hw_blocks) \
96 (min((int)max_hw_blocks, BIO_MAX_PAGES))
99 * indicate a block allocation direction: RIGHT and LEFT.
100 * RIGHT means allocating new sections towards the end of volume.
101 * LEFT means the opposite direction.
109 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
110 * LFS writes data sequentially with cleaning operations.
111 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
119 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
120 * GC_CB is based on cost-benefit algorithm.
121 * GC_GREEDY is based on greedy algorithm.
129 * BG_GC means the background cleaning job.
130 * FG_GC means the on-demand cleaning job.
137 /* for a function parameter to select a victim segment */
138 struct victim_sel_policy
{
139 int alloc_mode
; /* LFS or SSR */
140 int gc_mode
; /* GC_CB or GC_GREEDY */
141 unsigned long *dirty_segmap
; /* dirty segment bitmap */
142 unsigned int max_search
; /* maximum # of segments to search */
143 unsigned int offset
; /* last scanned bitmap offset */
144 unsigned int ofs_unit
; /* bitmap search unit */
145 unsigned int min_cost
; /* minimum cost */
146 unsigned int min_segno
; /* segment # having min. cost */
150 unsigned short valid_blocks
; /* # of valid blocks */
151 unsigned char *cur_valid_map
; /* validity bitmap of blocks */
153 * # of valid blocks and the validity bitmap stored in the the last
154 * checkpoint pack. This information is used by the SSR mode.
156 unsigned short ckpt_valid_blocks
;
157 unsigned char *ckpt_valid_map
;
158 unsigned char type
; /* segment type like CURSEG_XXX_TYPE */
159 unsigned long long mtime
; /* modification time of the segment */
163 unsigned int valid_blocks
; /* # of valid blocks in a section */
166 struct segment_allocation
{
167 void (*allocate_segment
)(struct f2fs_sb_info
*, int, bool);
171 const struct segment_allocation
*s_ops
;
173 block_t sit_base_addr
; /* start block address of SIT area */
174 block_t sit_blocks
; /* # of blocks used by SIT area */
175 block_t written_valid_blocks
; /* # of valid blocks in main area */
176 char *sit_bitmap
; /* SIT bitmap pointer */
177 unsigned int bitmap_size
; /* SIT bitmap size */
179 unsigned long *dirty_sentries_bitmap
; /* bitmap for dirty sentries */
180 unsigned int dirty_sentries
; /* # of dirty sentries */
181 unsigned int sents_per_block
; /* # of SIT entries per block */
182 struct mutex sentry_lock
; /* to protect SIT cache */
183 struct seg_entry
*sentries
; /* SIT segment-level cache */
184 struct sec_entry
*sec_entries
; /* SIT section-level cache */
186 /* for cost-benefit algorithm in cleaning procedure */
187 unsigned long long elapsed_time
; /* elapsed time after mount */
188 unsigned long long mounted_time
; /* mount time */
189 unsigned long long min_mtime
; /* min. modification time */
190 unsigned long long max_mtime
; /* max. modification time */
193 struct free_segmap_info
{
194 unsigned int start_segno
; /* start segment number logically */
195 unsigned int free_segments
; /* # of free segments */
196 unsigned int free_sections
; /* # of free sections */
197 rwlock_t segmap_lock
; /* free segmap lock */
198 unsigned long *free_segmap
; /* free segment bitmap */
199 unsigned long *free_secmap
; /* free section bitmap */
202 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
204 DIRTY_HOT_DATA
, /* dirty segments assigned as hot data logs */
205 DIRTY_WARM_DATA
, /* dirty segments assigned as warm data logs */
206 DIRTY_COLD_DATA
, /* dirty segments assigned as cold data logs */
207 DIRTY_HOT_NODE
, /* dirty segments assigned as hot node logs */
208 DIRTY_WARM_NODE
, /* dirty segments assigned as warm node logs */
209 DIRTY_COLD_NODE
, /* dirty segments assigned as cold node logs */
210 DIRTY
, /* to count # of dirty segments */
211 PRE
, /* to count # of entirely obsolete segments */
215 struct dirty_seglist_info
{
216 const struct victim_selection
*v_ops
; /* victim selction operation */
217 unsigned long *dirty_segmap
[NR_DIRTY_TYPE
];
218 struct mutex seglist_lock
; /* lock for segment bitmaps */
219 int nr_dirty
[NR_DIRTY_TYPE
]; /* # of dirty segments */
220 unsigned long *victim_secmap
; /* background GC victims */
223 /* victim selection function for cleaning and SSR */
224 struct victim_selection
{
225 int (*get_victim
)(struct f2fs_sb_info
*, unsigned int *,
229 /* for active log information */
231 struct mutex curseg_mutex
; /* lock for consistency */
232 struct f2fs_summary_block
*sum_blk
; /* cached summary block */
233 unsigned char alloc_type
; /* current allocation type */
234 unsigned int segno
; /* current segment number */
235 unsigned short next_blkoff
; /* next block offset to write */
236 unsigned int zone
; /* current zone number */
237 unsigned int next_segno
; /* preallocated segment */
243 static inline struct curseg_info
*CURSEG_I(struct f2fs_sb_info
*sbi
, int type
)
245 return (struct curseg_info
*)(SM_I(sbi
)->curseg_array
+ type
);
248 static inline struct seg_entry
*get_seg_entry(struct f2fs_sb_info
*sbi
,
251 struct sit_info
*sit_i
= SIT_I(sbi
);
252 return &sit_i
->sentries
[segno
];
255 static inline struct sec_entry
*get_sec_entry(struct f2fs_sb_info
*sbi
,
258 struct sit_info
*sit_i
= SIT_I(sbi
);
259 return &sit_i
->sec_entries
[GET_SECNO(sbi
, segno
)];
262 static inline unsigned int get_valid_blocks(struct f2fs_sb_info
*sbi
,
263 unsigned int segno
, int section
)
266 * In order to get # of valid blocks in a section instantly from many
267 * segments, f2fs manages two counting structures separately.
270 return get_sec_entry(sbi
, segno
)->valid_blocks
;
272 return get_seg_entry(sbi
, segno
)->valid_blocks
;
275 static inline void seg_info_from_raw_sit(struct seg_entry
*se
,
276 struct f2fs_sit_entry
*rs
)
278 se
->valid_blocks
= GET_SIT_VBLOCKS(rs
);
279 se
->ckpt_valid_blocks
= GET_SIT_VBLOCKS(rs
);
280 memcpy(se
->cur_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
281 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
282 se
->type
= GET_SIT_TYPE(rs
);
283 se
->mtime
= le64_to_cpu(rs
->mtime
);
286 static inline void seg_info_to_raw_sit(struct seg_entry
*se
,
287 struct f2fs_sit_entry
*rs
)
289 unsigned short raw_vblocks
= (se
->type
<< SIT_VBLOCKS_SHIFT
) |
291 rs
->vblocks
= cpu_to_le16(raw_vblocks
);
292 memcpy(rs
->valid_map
, se
->cur_valid_map
, SIT_VBLOCK_MAP_SIZE
);
293 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
294 se
->ckpt_valid_blocks
= se
->valid_blocks
;
295 rs
->mtime
= cpu_to_le64(se
->mtime
);
298 static inline unsigned int find_next_inuse(struct free_segmap_info
*free_i
,
299 unsigned int max
, unsigned int segno
)
302 read_lock(&free_i
->segmap_lock
);
303 ret
= find_next_bit(free_i
->free_segmap
, max
, segno
);
304 read_unlock(&free_i
->segmap_lock
);
308 static inline void __set_free(struct f2fs_sb_info
*sbi
, unsigned int segno
)
310 struct free_segmap_info
*free_i
= FREE_I(sbi
);
311 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
312 unsigned int start_segno
= secno
* sbi
->segs_per_sec
;
315 write_lock(&free_i
->segmap_lock
);
316 clear_bit(segno
, free_i
->free_segmap
);
317 free_i
->free_segments
++;
319 next
= find_next_bit(free_i
->free_segmap
, TOTAL_SEGS(sbi
), start_segno
);
320 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
321 clear_bit(secno
, free_i
->free_secmap
);
322 free_i
->free_sections
++;
324 write_unlock(&free_i
->segmap_lock
);
327 static inline void __set_inuse(struct f2fs_sb_info
*sbi
,
330 struct free_segmap_info
*free_i
= FREE_I(sbi
);
331 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
332 set_bit(segno
, free_i
->free_segmap
);
333 free_i
->free_segments
--;
334 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
335 free_i
->free_sections
--;
338 static inline void __set_test_and_free(struct f2fs_sb_info
*sbi
,
341 struct free_segmap_info
*free_i
= FREE_I(sbi
);
342 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
343 unsigned int start_segno
= secno
* sbi
->segs_per_sec
;
346 write_lock(&free_i
->segmap_lock
);
347 if (test_and_clear_bit(segno
, free_i
->free_segmap
)) {
348 free_i
->free_segments
++;
350 next
= find_next_bit(free_i
->free_segmap
, TOTAL_SEGS(sbi
),
352 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
353 if (test_and_clear_bit(secno
, free_i
->free_secmap
))
354 free_i
->free_sections
++;
357 write_unlock(&free_i
->segmap_lock
);
360 static inline void __set_test_and_inuse(struct f2fs_sb_info
*sbi
,
363 struct free_segmap_info
*free_i
= FREE_I(sbi
);
364 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
365 write_lock(&free_i
->segmap_lock
);
366 if (!test_and_set_bit(segno
, free_i
->free_segmap
)) {
367 free_i
->free_segments
--;
368 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
369 free_i
->free_sections
--;
371 write_unlock(&free_i
->segmap_lock
);
374 static inline void get_sit_bitmap(struct f2fs_sb_info
*sbi
,
377 struct sit_info
*sit_i
= SIT_I(sbi
);
378 memcpy(dst_addr
, sit_i
->sit_bitmap
, sit_i
->bitmap_size
);
381 static inline block_t
written_block_count(struct f2fs_sb_info
*sbi
)
383 return SIT_I(sbi
)->written_valid_blocks
;
386 static inline unsigned int free_segments(struct f2fs_sb_info
*sbi
)
388 return FREE_I(sbi
)->free_segments
;
391 static inline int reserved_segments(struct f2fs_sb_info
*sbi
)
393 return SM_I(sbi
)->reserved_segments
;
396 static inline unsigned int free_sections(struct f2fs_sb_info
*sbi
)
398 return FREE_I(sbi
)->free_sections
;
401 static inline unsigned int prefree_segments(struct f2fs_sb_info
*sbi
)
403 return DIRTY_I(sbi
)->nr_dirty
[PRE
];
406 static inline unsigned int dirty_segments(struct f2fs_sb_info
*sbi
)
408 return DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_DATA
] +
409 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_DATA
] +
410 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_DATA
] +
411 DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_NODE
] +
412 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_NODE
] +
413 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_NODE
];
416 static inline int overprovision_segments(struct f2fs_sb_info
*sbi
)
418 return SM_I(sbi
)->ovp_segments
;
421 static inline int overprovision_sections(struct f2fs_sb_info
*sbi
)
423 return ((unsigned int) overprovision_segments(sbi
)) / sbi
->segs_per_sec
;
426 static inline int reserved_sections(struct f2fs_sb_info
*sbi
)
428 return ((unsigned int) reserved_segments(sbi
)) / sbi
->segs_per_sec
;
431 static inline bool need_SSR(struct f2fs_sb_info
*sbi
)
433 return (prefree_segments(sbi
) / sbi
->segs_per_sec
)
434 + free_sections(sbi
) < overprovision_sections(sbi
);
437 static inline bool has_not_enough_free_secs(struct f2fs_sb_info
*sbi
, int freed
)
439 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
440 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
442 if (unlikely(sbi
->por_doing
))
445 return (free_sections(sbi
) + freed
) <= (node_secs
+ 2 * dent_secs
+
446 reserved_sections(sbi
));
449 static inline bool excess_prefree_segs(struct f2fs_sb_info
*sbi
)
451 return prefree_segments(sbi
) > SM_I(sbi
)->rec_prefree_segments
;
454 static inline int utilization(struct f2fs_sb_info
*sbi
)
456 return div_u64((u64
)valid_user_blocks(sbi
) * 100,
457 sbi
->user_block_count
);
461 * Sometimes f2fs may be better to drop out-of-place update policy.
462 * And, users can control the policy through sysfs entries.
463 * There are five policies with triggering conditions as follows.
464 * F2FS_IPU_FORCE - all the time,
465 * F2FS_IPU_SSR - if SSR mode is activated,
466 * F2FS_IPU_UTIL - if FS utilization is over threashold,
467 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
469 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
471 #define DEF_MIN_IPU_UTIL 70
481 static inline bool need_inplace_update(struct inode
*inode
)
483 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
485 /* IPU can be done only for the user data */
486 if (S_ISDIR(inode
->i_mode
))
489 switch (SM_I(sbi
)->ipu_policy
) {
497 if (utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
500 case F2FS_IPU_SSR_UTIL
:
501 if (need_SSR(sbi
) && utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
504 case F2FS_IPU_DISABLE
:
510 static inline unsigned int curseg_segno(struct f2fs_sb_info
*sbi
,
513 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
514 return curseg
->segno
;
517 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info
*sbi
,
520 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
521 return curseg
->alloc_type
;
524 static inline unsigned short curseg_blkoff(struct f2fs_sb_info
*sbi
, int type
)
526 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
527 return curseg
->next_blkoff
;
530 #ifdef CONFIG_F2FS_CHECK_FS
531 static inline void check_seg_range(struct f2fs_sb_info
*sbi
, unsigned int segno
)
533 unsigned int end_segno
= SM_I(sbi
)->segment_count
- 1;
534 BUG_ON(segno
> end_segno
);
537 static inline void verify_block_addr(struct f2fs_sb_info
*sbi
, block_t blk_addr
)
539 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
540 block_t total_blks
= sm_info
->segment_count
<< sbi
->log_blocks_per_seg
;
541 block_t start_addr
= sm_info
->seg0_blkaddr
;
542 block_t end_addr
= start_addr
+ total_blks
- 1;
543 BUG_ON(blk_addr
< start_addr
);
544 BUG_ON(blk_addr
> end_addr
);
548 * Summary block is always treated as invalid block
550 static inline void check_block_count(struct f2fs_sb_info
*sbi
,
551 int segno
, struct f2fs_sit_entry
*raw_sit
)
553 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
554 unsigned int end_segno
= sm_info
->segment_count
- 1;
555 bool is_valid
= test_bit_le(0, raw_sit
->valid_map
) ? true : false;
556 int valid_blocks
= 0;
557 int cur_pos
= 0, next_pos
;
559 /* check segment usage */
560 BUG_ON(GET_SIT_VBLOCKS(raw_sit
) > sbi
->blocks_per_seg
);
562 /* check boundary of a given segment number */
563 BUG_ON(segno
> end_segno
);
565 /* check bitmap with valid block count */
568 next_pos
= find_next_zero_bit_le(&raw_sit
->valid_map
,
571 valid_blocks
+= next_pos
- cur_pos
;
573 next_pos
= find_next_bit_le(&raw_sit
->valid_map
,
577 is_valid
= !is_valid
;
578 } while (cur_pos
< sbi
->blocks_per_seg
);
579 BUG_ON(GET_SIT_VBLOCKS(raw_sit
) != valid_blocks
);
582 #define check_seg_range(sbi, segno)
583 #define verify_block_addr(sbi, blk_addr)
584 #define check_block_count(sbi, segno, raw_sit)
587 static inline pgoff_t
current_sit_addr(struct f2fs_sb_info
*sbi
,
590 struct sit_info
*sit_i
= SIT_I(sbi
);
591 unsigned int offset
= SIT_BLOCK_OFFSET(sit_i
, start
);
592 block_t blk_addr
= sit_i
->sit_base_addr
+ offset
;
594 check_seg_range(sbi
, start
);
596 /* calculate sit block address */
597 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
))
598 blk_addr
+= sit_i
->sit_blocks
;
603 static inline pgoff_t
next_sit_addr(struct f2fs_sb_info
*sbi
,
606 struct sit_info
*sit_i
= SIT_I(sbi
);
607 block_addr
-= sit_i
->sit_base_addr
;
608 if (block_addr
< sit_i
->sit_blocks
)
609 block_addr
+= sit_i
->sit_blocks
;
611 block_addr
-= sit_i
->sit_blocks
;
613 return block_addr
+ sit_i
->sit_base_addr
;
616 static inline void set_to_next_sit(struct sit_info
*sit_i
, unsigned int start
)
618 unsigned int block_off
= SIT_BLOCK_OFFSET(sit_i
, start
);
620 if (f2fs_test_bit(block_off
, sit_i
->sit_bitmap
))
621 f2fs_clear_bit(block_off
, sit_i
->sit_bitmap
);
623 f2fs_set_bit(block_off
, sit_i
->sit_bitmap
);
626 static inline unsigned long long get_mtime(struct f2fs_sb_info
*sbi
)
628 struct sit_info
*sit_i
= SIT_I(sbi
);
629 return sit_i
->elapsed_time
+ CURRENT_TIME_SEC
.tv_sec
-
633 static inline void set_summary(struct f2fs_summary
*sum
, nid_t nid
,
634 unsigned int ofs_in_node
, unsigned char version
)
636 sum
->nid
= cpu_to_le32(nid
);
637 sum
->ofs_in_node
= cpu_to_le16(ofs_in_node
);
638 sum
->version
= version
;
641 static inline block_t
start_sum_block(struct f2fs_sb_info
*sbi
)
643 return __start_cp_addr(sbi
) +
644 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_start_sum
);
647 static inline block_t
sum_blk_addr(struct f2fs_sb_info
*sbi
, int base
, int type
)
649 return __start_cp_addr(sbi
) +
650 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_total_block_count
)
654 static inline bool sec_usage_check(struct f2fs_sb_info
*sbi
, unsigned int secno
)
656 if (IS_CURSEC(sbi
, secno
) || (sbi
->cur_victim_sec
== secno
))
661 static inline unsigned int max_hw_blocks(struct f2fs_sb_info
*sbi
)
663 struct block_device
*bdev
= sbi
->sb
->s_bdev
;
664 struct request_queue
*q
= bdev_get_queue(bdev
);
665 return SECTOR_TO_BLOCK(sbi
, queue_max_sectors(q
));
669 * It is very important to gather dirty pages and write at once, so that we can
670 * submit a big bio without interfering other data writes.
671 * By default, 512 pages for directory data,
672 * 512 pages (2MB) * 3 for three types of nodes, and
673 * max_bio_blocks for meta are set.
675 static inline int nr_pages_to_skip(struct f2fs_sb_info
*sbi
, int type
)
678 return sbi
->blocks_per_seg
;
679 else if (type
== NODE
)
680 return 3 * sbi
->blocks_per_seg
;
681 else if (type
== META
)
682 return MAX_BIO_BLOCKS(max_hw_blocks(sbi
));
688 * When writing pages, it'd better align nr_to_write for segment size.
690 static inline long nr_pages_to_write(struct f2fs_sb_info
*sbi
, int type
,
691 struct writeback_control
*wbc
)
693 long nr_to_write
, desired
;
695 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
698 nr_to_write
= wbc
->nr_to_write
;
702 else if (type
== NODE
)
703 desired
= 3 * max_hw_blocks(sbi
);
705 desired
= MAX_BIO_BLOCKS(max_hw_blocks(sbi
));
707 wbc
->nr_to_write
= desired
;
708 return desired
- nr_to_write
;