2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_SPINLOCK(kvm_lock
);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
77 static cpumask_var_t cpus_hardware_enabled
;
78 static int kvm_usage_count
= 0;
79 static atomic_t hardware_enable_failed
;
81 struct kmem_cache
*kvm_vcpu_cache
;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
84 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
86 struct dentry
*kvm_debugfs_dir
;
88 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
91 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
97 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
98 static void update_memslots(struct kvm_memslots
*slots
,
99 struct kvm_memory_slot
*new, u64 last_generation
);
101 static void kvm_release_pfn_dirty(pfn_t pfn
);
102 static void mark_page_dirty_in_slot(struct kvm
*kvm
,
103 struct kvm_memory_slot
*memslot
, gfn_t gfn
);
105 __visible
bool kvm_rebooting
;
106 EXPORT_SYMBOL_GPL(kvm_rebooting
);
108 static bool largepages_enabled
= true;
110 bool kvm_is_mmio_pfn(pfn_t pfn
)
113 return PageReserved(pfn_to_page(pfn
));
119 * Switches to specified vcpu, until a matching vcpu_put()
121 int vcpu_load(struct kvm_vcpu
*vcpu
)
125 if (mutex_lock_killable(&vcpu
->mutex
))
127 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
128 /* The thread running this VCPU changed. */
129 struct pid
*oldpid
= vcpu
->pid
;
130 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
131 rcu_assign_pointer(vcpu
->pid
, newpid
);
136 preempt_notifier_register(&vcpu
->preempt_notifier
);
137 kvm_arch_vcpu_load(vcpu
, cpu
);
142 void vcpu_put(struct kvm_vcpu
*vcpu
)
145 kvm_arch_vcpu_put(vcpu
);
146 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
148 mutex_unlock(&vcpu
->mutex
);
151 static void ack_flush(void *_completed
)
155 static bool make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
160 struct kvm_vcpu
*vcpu
;
162 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
165 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
166 kvm_make_request(req
, vcpu
);
169 /* Set ->requests bit before we read ->mode */
172 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
173 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
174 cpumask_set_cpu(cpu
, cpus
);
176 if (unlikely(cpus
== NULL
))
177 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
178 else if (!cpumask_empty(cpus
))
179 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
183 free_cpumask_var(cpus
);
187 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
189 long dirty_count
= kvm
->tlbs_dirty
;
192 if (make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
193 ++kvm
->stat
.remote_tlb_flush
;
194 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
196 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
198 void kvm_reload_remote_mmus(struct kvm
*kvm
)
200 make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
203 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
205 make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
208 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
210 make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
213 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
218 mutex_init(&vcpu
->mutex
);
223 init_waitqueue_head(&vcpu
->wq
);
224 kvm_async_pf_vcpu_init(vcpu
);
226 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
231 vcpu
->run
= page_address(page
);
233 kvm_vcpu_set_in_spin_loop(vcpu
, false);
234 kvm_vcpu_set_dy_eligible(vcpu
, false);
235 vcpu
->preempted
= false;
237 r
= kvm_arch_vcpu_init(vcpu
);
243 free_page((unsigned long)vcpu
->run
);
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
249 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
252 kvm_arch_vcpu_uninit(vcpu
);
253 free_page((unsigned long)vcpu
->run
);
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
260 return container_of(mn
, struct kvm
, mmu_notifier
);
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
264 struct mm_struct
*mm
,
265 unsigned long address
)
267 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
268 int need_tlb_flush
, idx
;
271 * When ->invalidate_page runs, the linux pte has been zapped
272 * already but the page is still allocated until
273 * ->invalidate_page returns. So if we increase the sequence
274 * here the kvm page fault will notice if the spte can't be
275 * established because the page is going to be freed. If
276 * instead the kvm page fault establishes the spte before
277 * ->invalidate_page runs, kvm_unmap_hva will release it
280 * The sequence increase only need to be seen at spin_unlock
281 * time, and not at spin_lock time.
283 * Increasing the sequence after the spin_unlock would be
284 * unsafe because the kvm page fault could then establish the
285 * pte after kvm_unmap_hva returned, without noticing the page
286 * is going to be freed.
288 idx
= srcu_read_lock(&kvm
->srcu
);
289 spin_lock(&kvm
->mmu_lock
);
291 kvm
->mmu_notifier_seq
++;
292 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
293 /* we've to flush the tlb before the pages can be freed */
295 kvm_flush_remote_tlbs(kvm
);
297 spin_unlock(&kvm
->mmu_lock
);
298 srcu_read_unlock(&kvm
->srcu
, idx
);
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
302 struct mm_struct
*mm
,
303 unsigned long address
,
306 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
309 idx
= srcu_read_lock(&kvm
->srcu
);
310 spin_lock(&kvm
->mmu_lock
);
311 kvm
->mmu_notifier_seq
++;
312 kvm_set_spte_hva(kvm
, address
, pte
);
313 spin_unlock(&kvm
->mmu_lock
);
314 srcu_read_unlock(&kvm
->srcu
, idx
);
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
318 struct mm_struct
*mm
,
322 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
323 int need_tlb_flush
= 0, idx
;
325 idx
= srcu_read_lock(&kvm
->srcu
);
326 spin_lock(&kvm
->mmu_lock
);
328 * The count increase must become visible at unlock time as no
329 * spte can be established without taking the mmu_lock and
330 * count is also read inside the mmu_lock critical section.
332 kvm
->mmu_notifier_count
++;
333 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
334 need_tlb_flush
|= kvm
->tlbs_dirty
;
335 /* we've to flush the tlb before the pages can be freed */
337 kvm_flush_remote_tlbs(kvm
);
339 spin_unlock(&kvm
->mmu_lock
);
340 srcu_read_unlock(&kvm
->srcu
, idx
);
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
344 struct mm_struct
*mm
,
348 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
350 spin_lock(&kvm
->mmu_lock
);
352 * This sequence increase will notify the kvm page fault that
353 * the page that is going to be mapped in the spte could have
356 kvm
->mmu_notifier_seq
++;
359 * The above sequence increase must be visible before the
360 * below count decrease, which is ensured by the smp_wmb above
361 * in conjunction with the smp_rmb in mmu_notifier_retry().
363 kvm
->mmu_notifier_count
--;
364 spin_unlock(&kvm
->mmu_lock
);
366 BUG_ON(kvm
->mmu_notifier_count
< 0);
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
370 struct mm_struct
*mm
,
371 unsigned long address
)
373 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
376 idx
= srcu_read_lock(&kvm
->srcu
);
377 spin_lock(&kvm
->mmu_lock
);
379 young
= kvm_age_hva(kvm
, address
);
381 kvm_flush_remote_tlbs(kvm
);
383 spin_unlock(&kvm
->mmu_lock
);
384 srcu_read_unlock(&kvm
->srcu
, idx
);
389 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
390 struct mm_struct
*mm
,
391 unsigned long address
)
393 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
396 idx
= srcu_read_lock(&kvm
->srcu
);
397 spin_lock(&kvm
->mmu_lock
);
398 young
= kvm_test_age_hva(kvm
, address
);
399 spin_unlock(&kvm
->mmu_lock
);
400 srcu_read_unlock(&kvm
->srcu
, idx
);
405 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
406 struct mm_struct
*mm
)
408 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
411 idx
= srcu_read_lock(&kvm
->srcu
);
412 kvm_arch_flush_shadow_all(kvm
);
413 srcu_read_unlock(&kvm
->srcu
, idx
);
416 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
417 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
418 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
419 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
420 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
421 .test_young
= kvm_mmu_notifier_test_young
,
422 .change_pte
= kvm_mmu_notifier_change_pte
,
423 .release
= kvm_mmu_notifier_release
,
426 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
428 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
429 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
432 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
439 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441 static void kvm_init_memslots_id(struct kvm
*kvm
)
444 struct kvm_memslots
*slots
= kvm
->memslots
;
446 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
447 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
450 static struct kvm
*kvm_create_vm(unsigned long type
)
453 struct kvm
*kvm
= kvm_arch_alloc_vm();
456 return ERR_PTR(-ENOMEM
);
458 r
= kvm_arch_init_vm(kvm
, type
);
460 goto out_err_no_disable
;
462 r
= hardware_enable_all();
464 goto out_err_no_disable
;
466 #ifdef CONFIG_HAVE_KVM_IRQCHIP
467 INIT_HLIST_HEAD(&kvm
->mask_notifier_list
);
468 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
471 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
474 kvm
->memslots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
476 goto out_err_no_srcu
;
477 kvm_init_memslots_id(kvm
);
478 if (init_srcu_struct(&kvm
->srcu
))
479 goto out_err_no_srcu
;
480 if (init_srcu_struct(&kvm
->irq_srcu
))
481 goto out_err_no_irq_srcu
;
482 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
483 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
489 spin_lock_init(&kvm
->mmu_lock
);
490 kvm
->mm
= current
->mm
;
491 atomic_inc(&kvm
->mm
->mm_count
);
492 kvm_eventfd_init(kvm
);
493 mutex_init(&kvm
->lock
);
494 mutex_init(&kvm
->irq_lock
);
495 mutex_init(&kvm
->slots_lock
);
496 atomic_set(&kvm
->users_count
, 1);
497 INIT_LIST_HEAD(&kvm
->devices
);
499 r
= kvm_init_mmu_notifier(kvm
);
503 spin_lock(&kvm_lock
);
504 list_add(&kvm
->vm_list
, &vm_list
);
505 spin_unlock(&kvm_lock
);
510 cleanup_srcu_struct(&kvm
->irq_srcu
);
512 cleanup_srcu_struct(&kvm
->srcu
);
514 hardware_disable_all();
516 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
517 kfree(kvm
->buses
[i
]);
518 kfree(kvm
->memslots
);
519 kvm_arch_free_vm(kvm
);
524 * Avoid using vmalloc for a small buffer.
525 * Should not be used when the size is statically known.
527 void *kvm_kvzalloc(unsigned long size
)
529 if (size
> PAGE_SIZE
)
530 return vzalloc(size
);
532 return kzalloc(size
, GFP_KERNEL
);
535 void kvm_kvfree(const void *addr
)
537 if (is_vmalloc_addr(addr
))
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
545 if (!memslot
->dirty_bitmap
)
548 kvm_kvfree(memslot
->dirty_bitmap
);
549 memslot
->dirty_bitmap
= NULL
;
553 * Free any memory in @free but not in @dont.
555 static void kvm_free_physmem_slot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
556 struct kvm_memory_slot
*dont
)
558 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
559 kvm_destroy_dirty_bitmap(free
);
561 kvm_arch_free_memslot(kvm
, free
, dont
);
566 static void kvm_free_physmem(struct kvm
*kvm
)
568 struct kvm_memslots
*slots
= kvm
->memslots
;
569 struct kvm_memory_slot
*memslot
;
571 kvm_for_each_memslot(memslot
, slots
)
572 kvm_free_physmem_slot(kvm
, memslot
, NULL
);
574 kfree(kvm
->memslots
);
577 static void kvm_destroy_devices(struct kvm
*kvm
)
579 struct list_head
*node
, *tmp
;
581 list_for_each_safe(node
, tmp
, &kvm
->devices
) {
582 struct kvm_device
*dev
=
583 list_entry(node
, struct kvm_device
, vm_node
);
586 dev
->ops
->destroy(dev
);
590 static void kvm_destroy_vm(struct kvm
*kvm
)
593 struct mm_struct
*mm
= kvm
->mm
;
595 kvm_arch_sync_events(kvm
);
596 spin_lock(&kvm_lock
);
597 list_del(&kvm
->vm_list
);
598 spin_unlock(&kvm_lock
);
599 kvm_free_irq_routing(kvm
);
600 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
601 kvm_io_bus_destroy(kvm
->buses
[i
]);
602 kvm_coalesced_mmio_free(kvm
);
603 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
604 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
606 kvm_arch_flush_shadow_all(kvm
);
608 kvm_arch_destroy_vm(kvm
);
609 kvm_destroy_devices(kvm
);
610 kvm_free_physmem(kvm
);
611 cleanup_srcu_struct(&kvm
->irq_srcu
);
612 cleanup_srcu_struct(&kvm
->srcu
);
613 kvm_arch_free_vm(kvm
);
614 hardware_disable_all();
618 void kvm_get_kvm(struct kvm
*kvm
)
620 atomic_inc(&kvm
->users_count
);
622 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
624 void kvm_put_kvm(struct kvm
*kvm
)
626 if (atomic_dec_and_test(&kvm
->users_count
))
629 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
632 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
634 struct kvm
*kvm
= filp
->private_data
;
636 kvm_irqfd_release(kvm
);
643 * Allocation size is twice as large as the actual dirty bitmap size.
644 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
646 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
648 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
650 memslot
->dirty_bitmap
= kvm_kvzalloc(dirty_bytes
);
651 if (!memslot
->dirty_bitmap
)
657 static int cmp_memslot(const void *slot1
, const void *slot2
)
659 struct kvm_memory_slot
*s1
, *s2
;
661 s1
= (struct kvm_memory_slot
*)slot1
;
662 s2
= (struct kvm_memory_slot
*)slot2
;
664 if (s1
->npages
< s2
->npages
)
666 if (s1
->npages
> s2
->npages
)
673 * Sort the memslots base on its size, so the larger slots
674 * will get better fit.
676 static void sort_memslots(struct kvm_memslots
*slots
)
680 sort(slots
->memslots
, KVM_MEM_SLOTS_NUM
,
681 sizeof(struct kvm_memory_slot
), cmp_memslot
, NULL
);
683 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
684 slots
->id_to_index
[slots
->memslots
[i
].id
] = i
;
687 static void update_memslots(struct kvm_memslots
*slots
,
688 struct kvm_memory_slot
*new,
693 struct kvm_memory_slot
*old
= id_to_memslot(slots
, id
);
694 unsigned long npages
= old
->npages
;
697 if (new->npages
!= npages
)
698 sort_memslots(slots
);
701 slots
->generation
= last_generation
+ 1;
704 static int check_memory_region_flags(struct kvm_userspace_memory_region
*mem
)
706 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
708 #ifdef KVM_CAP_READONLY_MEM
709 valid_flags
|= KVM_MEM_READONLY
;
712 if (mem
->flags
& ~valid_flags
)
718 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
719 struct kvm_memslots
*slots
, struct kvm_memory_slot
*new)
721 struct kvm_memslots
*old_memslots
= kvm
->memslots
;
723 update_memslots(slots
, new, kvm
->memslots
->generation
);
724 rcu_assign_pointer(kvm
->memslots
, slots
);
725 synchronize_srcu_expedited(&kvm
->srcu
);
727 kvm_arch_memslots_updated(kvm
);
733 * Allocate some memory and give it an address in the guest physical address
736 * Discontiguous memory is allowed, mostly for framebuffers.
738 * Must be called holding mmap_sem for write.
740 int __kvm_set_memory_region(struct kvm
*kvm
,
741 struct kvm_userspace_memory_region
*mem
)
745 unsigned long npages
;
746 struct kvm_memory_slot
*slot
;
747 struct kvm_memory_slot old
, new;
748 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
749 enum kvm_mr_change change
;
751 r
= check_memory_region_flags(mem
);
756 /* General sanity checks */
757 if (mem
->memory_size
& (PAGE_SIZE
- 1))
759 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
761 /* We can read the guest memory with __xxx_user() later on. */
762 if ((mem
->slot
< KVM_USER_MEM_SLOTS
) &&
763 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
764 !access_ok(VERIFY_WRITE
,
765 (void __user
*)(unsigned long)mem
->userspace_addr
,
768 if (mem
->slot
>= KVM_MEM_SLOTS_NUM
)
770 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
773 slot
= id_to_memslot(kvm
->memslots
, mem
->slot
);
774 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
775 npages
= mem
->memory_size
>> PAGE_SHIFT
;
778 if (npages
> KVM_MEM_MAX_NR_PAGES
)
782 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
787 new.base_gfn
= base_gfn
;
789 new.flags
= mem
->flags
;
794 change
= KVM_MR_CREATE
;
795 else { /* Modify an existing slot. */
796 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
797 (npages
!= old
.npages
) ||
798 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
801 if (base_gfn
!= old
.base_gfn
)
802 change
= KVM_MR_MOVE
;
803 else if (new.flags
!= old
.flags
)
804 change
= KVM_MR_FLAGS_ONLY
;
805 else { /* Nothing to change. */
810 } else if (old
.npages
) {
811 change
= KVM_MR_DELETE
;
812 } else /* Modify a non-existent slot: disallowed. */
815 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
816 /* Check for overlaps */
818 kvm_for_each_memslot(slot
, kvm
->memslots
) {
819 if ((slot
->id
>= KVM_USER_MEM_SLOTS
) ||
820 (slot
->id
== mem
->slot
))
822 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
823 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
828 /* Free page dirty bitmap if unneeded */
829 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
830 new.dirty_bitmap
= NULL
;
833 if (change
== KVM_MR_CREATE
) {
834 new.userspace_addr
= mem
->userspace_addr
;
836 if (kvm_arch_create_memslot(kvm
, &new, npages
))
840 /* Allocate page dirty bitmap if needed */
841 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
842 if (kvm_create_dirty_bitmap(&new) < 0)
846 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
848 slots
= kmemdup(kvm
->memslots
, sizeof(struct kvm_memslots
),
852 slot
= id_to_memslot(slots
, mem
->slot
);
853 slot
->flags
|= KVM_MEMSLOT_INVALID
;
855 old_memslots
= install_new_memslots(kvm
, slots
, NULL
);
857 /* slot was deleted or moved, clear iommu mapping */
858 kvm_iommu_unmap_pages(kvm
, &old
);
859 /* From this point no new shadow pages pointing to a deleted,
860 * or moved, memslot will be created.
862 * validation of sp->gfn happens in:
863 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
864 * - kvm_is_visible_gfn (mmu_check_roots)
866 kvm_arch_flush_shadow_memslot(kvm
, slot
);
867 slots
= old_memslots
;
870 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
876 * We can re-use the old_memslots from above, the only difference
877 * from the currently installed memslots is the invalid flag. This
878 * will get overwritten by update_memslots anyway.
881 slots
= kmemdup(kvm
->memslots
, sizeof(struct kvm_memslots
),
887 /* actual memory is freed via old in kvm_free_physmem_slot below */
888 if (change
== KVM_MR_DELETE
) {
889 new.dirty_bitmap
= NULL
;
890 memset(&new.arch
, 0, sizeof(new.arch
));
893 old_memslots
= install_new_memslots(kvm
, slots
, &new);
895 kvm_arch_commit_memory_region(kvm
, mem
, &old
, change
);
897 kvm_free_physmem_slot(kvm
, &old
, &new);
901 * IOMMU mapping: New slots need to be mapped. Old slots need to be
902 * un-mapped and re-mapped if their base changes. Since base change
903 * unmapping is handled above with slot deletion, mapping alone is
904 * needed here. Anything else the iommu might care about for existing
905 * slots (size changes, userspace addr changes and read-only flag
906 * changes) is disallowed above, so any other attribute changes getting
907 * here can be skipped.
909 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
910 r
= kvm_iommu_map_pages(kvm
, &new);
919 kvm_free_physmem_slot(kvm
, &new, &old
);
923 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
925 int kvm_set_memory_region(struct kvm
*kvm
,
926 struct kvm_userspace_memory_region
*mem
)
930 mutex_lock(&kvm
->slots_lock
);
931 r
= __kvm_set_memory_region(kvm
, mem
);
932 mutex_unlock(&kvm
->slots_lock
);
935 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
937 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
938 struct kvm_userspace_memory_region
*mem
)
940 if (mem
->slot
>= KVM_USER_MEM_SLOTS
)
942 return kvm_set_memory_region(kvm
, mem
);
945 int kvm_get_dirty_log(struct kvm
*kvm
,
946 struct kvm_dirty_log
*log
, int *is_dirty
)
948 struct kvm_memory_slot
*memslot
;
951 unsigned long any
= 0;
954 if (log
->slot
>= KVM_USER_MEM_SLOTS
)
957 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
959 if (!memslot
->dirty_bitmap
)
962 n
= kvm_dirty_bitmap_bytes(memslot
);
964 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
965 any
= memslot
->dirty_bitmap
[i
];
968 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
978 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
980 bool kvm_largepages_enabled(void)
982 return largepages_enabled
;
985 void kvm_disable_largepages(void)
987 largepages_enabled
= false;
989 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
991 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
993 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
995 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
997 int kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
999 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1001 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1002 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1007 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1009 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1011 struct vm_area_struct
*vma
;
1012 unsigned long addr
, size
;
1016 addr
= gfn_to_hva(kvm
, gfn
);
1017 if (kvm_is_error_hva(addr
))
1020 down_read(¤t
->mm
->mmap_sem
);
1021 vma
= find_vma(current
->mm
, addr
);
1025 size
= vma_kernel_pagesize(vma
);
1028 up_read(¤t
->mm
->mmap_sem
);
1033 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1035 return slot
->flags
& KVM_MEM_READONLY
;
1038 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1039 gfn_t
*nr_pages
, bool write
)
1041 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1042 return KVM_HVA_ERR_BAD
;
1044 if (memslot_is_readonly(slot
) && write
)
1045 return KVM_HVA_ERR_RO_BAD
;
1048 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1050 return __gfn_to_hva_memslot(slot
, gfn
);
1053 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1056 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1059 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1062 return gfn_to_hva_many(slot
, gfn
, NULL
);
1064 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1066 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1068 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1070 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1073 * If writable is set to false, the hva returned by this function is only
1074 * allowed to be read.
1076 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1078 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1079 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1081 if (!kvm_is_error_hva(hva
) && writable
)
1082 *writable
= !memslot_is_readonly(slot
);
1087 static int kvm_read_hva(void *data
, void __user
*hva
, int len
)
1089 return __copy_from_user(data
, hva
, len
);
1092 static int kvm_read_hva_atomic(void *data
, void __user
*hva
, int len
)
1094 return __copy_from_user_inatomic(data
, hva
, len
);
1097 static int get_user_page_nowait(struct task_struct
*tsk
, struct mm_struct
*mm
,
1098 unsigned long start
, int write
, struct page
**page
)
1100 int flags
= FOLL_TOUCH
| FOLL_NOWAIT
| FOLL_HWPOISON
| FOLL_GET
;
1103 flags
|= FOLL_WRITE
;
1105 return __get_user_pages(tsk
, mm
, start
, 1, flags
, page
, NULL
, NULL
);
1108 static inline int check_user_page_hwpoison(unsigned long addr
)
1110 int rc
, flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_WRITE
;
1112 rc
= __get_user_pages(current
, current
->mm
, addr
, 1,
1113 flags
, NULL
, NULL
, NULL
);
1114 return rc
== -EHWPOISON
;
1118 * The atomic path to get the writable pfn which will be stored in @pfn,
1119 * true indicates success, otherwise false is returned.
1121 static bool hva_to_pfn_fast(unsigned long addr
, bool atomic
, bool *async
,
1122 bool write_fault
, bool *writable
, pfn_t
*pfn
)
1124 struct page
*page
[1];
1127 if (!(async
|| atomic
))
1131 * Fast pin a writable pfn only if it is a write fault request
1132 * or the caller allows to map a writable pfn for a read fault
1135 if (!(write_fault
|| writable
))
1138 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1140 *pfn
= page_to_pfn(page
[0]);
1151 * The slow path to get the pfn of the specified host virtual address,
1152 * 1 indicates success, -errno is returned if error is detected.
1154 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1155 bool *writable
, pfn_t
*pfn
)
1157 struct page
*page
[1];
1163 *writable
= write_fault
;
1166 down_read(¤t
->mm
->mmap_sem
);
1167 npages
= get_user_page_nowait(current
, current
->mm
,
1168 addr
, write_fault
, page
);
1169 up_read(¤t
->mm
->mmap_sem
);
1171 npages
= get_user_pages_fast(addr
, 1, write_fault
,
1176 /* map read fault as writable if possible */
1177 if (unlikely(!write_fault
) && writable
) {
1178 struct page
*wpage
[1];
1180 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1189 *pfn
= page_to_pfn(page
[0]);
1193 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1195 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1198 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1205 * Pin guest page in memory and return its pfn.
1206 * @addr: host virtual address which maps memory to the guest
1207 * @atomic: whether this function can sleep
1208 * @async: whether this function need to wait IO complete if the
1209 * host page is not in the memory
1210 * @write_fault: whether we should get a writable host page
1211 * @writable: whether it allows to map a writable host page for !@write_fault
1213 * The function will map a writable host page for these two cases:
1214 * 1): @write_fault = true
1215 * 2): @write_fault = false && @writable, @writable will tell the caller
1216 * whether the mapping is writable.
1218 static pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1219 bool write_fault
, bool *writable
)
1221 struct vm_area_struct
*vma
;
1225 /* we can do it either atomically or asynchronously, not both */
1226 BUG_ON(atomic
&& async
);
1228 if (hva_to_pfn_fast(addr
, atomic
, async
, write_fault
, writable
, &pfn
))
1232 return KVM_PFN_ERR_FAULT
;
1234 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1238 down_read(¤t
->mm
->mmap_sem
);
1239 if (npages
== -EHWPOISON
||
1240 (!async
&& check_user_page_hwpoison(addr
))) {
1241 pfn
= KVM_PFN_ERR_HWPOISON
;
1245 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1248 pfn
= KVM_PFN_ERR_FAULT
;
1249 else if ((vma
->vm_flags
& VM_PFNMAP
)) {
1250 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
1252 BUG_ON(!kvm_is_mmio_pfn(pfn
));
1254 if (async
&& vma_is_valid(vma
, write_fault
))
1256 pfn
= KVM_PFN_ERR_FAULT
;
1259 up_read(¤t
->mm
->mmap_sem
);
1264 __gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
, bool atomic
,
1265 bool *async
, bool write_fault
, bool *writable
)
1267 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1269 if (addr
== KVM_HVA_ERR_RO_BAD
)
1270 return KVM_PFN_ERR_RO_FAULT
;
1272 if (kvm_is_error_hva(addr
))
1273 return KVM_PFN_NOSLOT
;
1275 /* Do not map writable pfn in the readonly memslot. */
1276 if (writable
&& memslot_is_readonly(slot
)) {
1281 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1285 static pfn_t
__gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
, bool atomic
, bool *async
,
1286 bool write_fault
, bool *writable
)
1288 struct kvm_memory_slot
*slot
;
1293 slot
= gfn_to_memslot(kvm
, gfn
);
1295 return __gfn_to_pfn_memslot(slot
, gfn
, atomic
, async
, write_fault
,
1299 pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1301 return __gfn_to_pfn(kvm
, gfn
, true, NULL
, true, NULL
);
1303 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1305 pfn_t
gfn_to_pfn_async(struct kvm
*kvm
, gfn_t gfn
, bool *async
,
1306 bool write_fault
, bool *writable
)
1308 return __gfn_to_pfn(kvm
, gfn
, false, async
, write_fault
, writable
);
1310 EXPORT_SYMBOL_GPL(gfn_to_pfn_async
);
1312 pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1314 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, true, NULL
);
1316 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1318 pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1321 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, write_fault
, writable
);
1323 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1325 pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1327 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1330 pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1332 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1334 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1336 int gfn_to_page_many_atomic(struct kvm
*kvm
, gfn_t gfn
, struct page
**pages
,
1342 addr
= gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, &entry
);
1343 if (kvm_is_error_hva(addr
))
1346 if (entry
< nr_pages
)
1349 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1351 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1353 static struct page
*kvm_pfn_to_page(pfn_t pfn
)
1355 if (is_error_noslot_pfn(pfn
))
1356 return KVM_ERR_PTR_BAD_PAGE
;
1358 if (kvm_is_mmio_pfn(pfn
)) {
1360 return KVM_ERR_PTR_BAD_PAGE
;
1363 return pfn_to_page(pfn
);
1366 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1370 pfn
= gfn_to_pfn(kvm
, gfn
);
1372 return kvm_pfn_to_page(pfn
);
1375 EXPORT_SYMBOL_GPL(gfn_to_page
);
1377 void kvm_release_page_clean(struct page
*page
)
1379 WARN_ON(is_error_page(page
));
1381 kvm_release_pfn_clean(page_to_pfn(page
));
1383 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1385 void kvm_release_pfn_clean(pfn_t pfn
)
1387 if (!is_error_noslot_pfn(pfn
) && !kvm_is_mmio_pfn(pfn
))
1388 put_page(pfn_to_page(pfn
));
1390 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1392 void kvm_release_page_dirty(struct page
*page
)
1394 WARN_ON(is_error_page(page
));
1396 kvm_release_pfn_dirty(page_to_pfn(page
));
1398 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1400 static void kvm_release_pfn_dirty(pfn_t pfn
)
1402 kvm_set_pfn_dirty(pfn
);
1403 kvm_release_pfn_clean(pfn
);
1406 void kvm_set_pfn_dirty(pfn_t pfn
)
1408 if (!kvm_is_mmio_pfn(pfn
)) {
1409 struct page
*page
= pfn_to_page(pfn
);
1410 if (!PageReserved(page
))
1414 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1416 void kvm_set_pfn_accessed(pfn_t pfn
)
1418 if (!kvm_is_mmio_pfn(pfn
))
1419 mark_page_accessed(pfn_to_page(pfn
));
1421 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1423 void kvm_get_pfn(pfn_t pfn
)
1425 if (!kvm_is_mmio_pfn(pfn
))
1426 get_page(pfn_to_page(pfn
));
1428 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1430 static int next_segment(unsigned long len
, int offset
)
1432 if (len
> PAGE_SIZE
- offset
)
1433 return PAGE_SIZE
- offset
;
1438 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1444 addr
= gfn_to_hva_prot(kvm
, gfn
, NULL
);
1445 if (kvm_is_error_hva(addr
))
1447 r
= kvm_read_hva(data
, (void __user
*)addr
+ offset
, len
);
1452 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1454 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1456 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1458 int offset
= offset_in_page(gpa
);
1461 while ((seg
= next_segment(len
, offset
)) != 0) {
1462 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1472 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1474 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1479 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1480 int offset
= offset_in_page(gpa
);
1482 addr
= gfn_to_hva_prot(kvm
, gfn
, NULL
);
1483 if (kvm_is_error_hva(addr
))
1485 pagefault_disable();
1486 r
= kvm_read_hva_atomic(data
, (void __user
*)addr
+ offset
, len
);
1492 EXPORT_SYMBOL(kvm_read_guest_atomic
);
1494 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
, const void *data
,
1495 int offset
, int len
)
1500 addr
= gfn_to_hva(kvm
, gfn
);
1501 if (kvm_is_error_hva(addr
))
1503 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1506 mark_page_dirty(kvm
, gfn
);
1509 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1511 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1514 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1516 int offset
= offset_in_page(gpa
);
1519 while ((seg
= next_segment(len
, offset
)) != 0) {
1520 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1531 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1532 gpa_t gpa
, unsigned long len
)
1534 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1535 int offset
= offset_in_page(gpa
);
1536 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
1537 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
1538 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
1539 gfn_t nr_pages_avail
;
1542 ghc
->generation
= slots
->generation
;
1544 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1545 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
, &nr_pages_avail
);
1546 if (!kvm_is_error_hva(ghc
->hva
) && nr_pages_avail
>= nr_pages_needed
) {
1550 * If the requested region crosses two memslots, we still
1551 * verify that the entire region is valid here.
1553 while (start_gfn
<= end_gfn
) {
1554 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1555 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
1557 if (kvm_is_error_hva(ghc
->hva
))
1559 start_gfn
+= nr_pages_avail
;
1561 /* Use the slow path for cross page reads and writes. */
1562 ghc
->memslot
= NULL
;
1566 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1568 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1569 void *data
, unsigned long len
)
1571 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1574 BUG_ON(len
> ghc
->len
);
1576 if (slots
->generation
!= ghc
->generation
)
1577 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1579 if (unlikely(!ghc
->memslot
))
1580 return kvm_write_guest(kvm
, ghc
->gpa
, data
, len
);
1582 if (kvm_is_error_hva(ghc
->hva
))
1585 r
= __copy_to_user((void __user
*)ghc
->hva
, data
, len
);
1588 mark_page_dirty_in_slot(kvm
, ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
1592 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1594 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1595 void *data
, unsigned long len
)
1597 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1600 BUG_ON(len
> ghc
->len
);
1602 if (slots
->generation
!= ghc
->generation
)
1603 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1605 if (unlikely(!ghc
->memslot
))
1606 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
1608 if (kvm_is_error_hva(ghc
->hva
))
1611 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
1617 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
1619 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1621 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1623 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
1625 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1627 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1629 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1631 int offset
= offset_in_page(gpa
);
1634 while ((seg
= next_segment(len
, offset
)) != 0) {
1635 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1644 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1646 static void mark_page_dirty_in_slot(struct kvm
*kvm
,
1647 struct kvm_memory_slot
*memslot
,
1650 if (memslot
&& memslot
->dirty_bitmap
) {
1651 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1653 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
1657 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
1659 struct kvm_memory_slot
*memslot
;
1661 memslot
= gfn_to_memslot(kvm
, gfn
);
1662 mark_page_dirty_in_slot(kvm
, memslot
, gfn
);
1664 EXPORT_SYMBOL_GPL(mark_page_dirty
);
1667 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1669 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
1674 prepare_to_wait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
1676 if (kvm_arch_vcpu_runnable(vcpu
)) {
1677 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
1680 if (kvm_cpu_has_pending_timer(vcpu
))
1682 if (signal_pending(current
))
1688 finish_wait(&vcpu
->wq
, &wait
);
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
1694 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1696 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
1699 int cpu
= vcpu
->cpu
;
1700 wait_queue_head_t
*wqp
;
1702 wqp
= kvm_arch_vcpu_wq(vcpu
);
1703 if (waitqueue_active(wqp
)) {
1704 wake_up_interruptible(wqp
);
1705 ++vcpu
->stat
.halt_wakeup
;
1709 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
1710 if (kvm_arch_vcpu_should_kick(vcpu
))
1711 smp_send_reschedule(cpu
);
1714 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
1715 #endif /* !CONFIG_S390 */
1717 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
1720 struct task_struct
*task
= NULL
;
1724 pid
= rcu_dereference(target
->pid
);
1726 task
= get_pid_task(target
->pid
, PIDTYPE_PID
);
1730 if (task
->flags
& PF_VCPU
) {
1731 put_task_struct(task
);
1734 ret
= yield_to(task
, 1);
1735 put_task_struct(task
);
1739 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
1742 * Helper that checks whether a VCPU is eligible for directed yield.
1743 * Most eligible candidate to yield is decided by following heuristics:
1745 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1746 * (preempted lock holder), indicated by @in_spin_loop.
1747 * Set at the beiginning and cleared at the end of interception/PLE handler.
1749 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1750 * chance last time (mostly it has become eligible now since we have probably
1751 * yielded to lockholder in last iteration. This is done by toggling
1752 * @dy_eligible each time a VCPU checked for eligibility.)
1754 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1755 * to preempted lock-holder could result in wrong VCPU selection and CPU
1756 * burning. Giving priority for a potential lock-holder increases lock
1759 * Since algorithm is based on heuristics, accessing another VCPU data without
1760 * locking does not harm. It may result in trying to yield to same VCPU, fail
1761 * and continue with next VCPU and so on.
1763 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
1765 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1768 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
1769 (vcpu
->spin_loop
.in_spin_loop
&&
1770 vcpu
->spin_loop
.dy_eligible
);
1772 if (vcpu
->spin_loop
.in_spin_loop
)
1773 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
1781 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
1783 struct kvm
*kvm
= me
->kvm
;
1784 struct kvm_vcpu
*vcpu
;
1785 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
1791 kvm_vcpu_set_in_spin_loop(me
, true);
1793 * We boost the priority of a VCPU that is runnable but not
1794 * currently running, because it got preempted by something
1795 * else and called schedule in __vcpu_run. Hopefully that
1796 * VCPU is holding the lock that we need and will release it.
1797 * We approximate round-robin by starting at the last boosted VCPU.
1799 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
1800 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1801 if (!pass
&& i
<= last_boosted_vcpu
) {
1802 i
= last_boosted_vcpu
;
1804 } else if (pass
&& i
> last_boosted_vcpu
)
1806 if (!ACCESS_ONCE(vcpu
->preempted
))
1810 if (waitqueue_active(&vcpu
->wq
) && !kvm_arch_vcpu_runnable(vcpu
))
1812 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
1815 yielded
= kvm_vcpu_yield_to(vcpu
);
1817 kvm
->last_boosted_vcpu
= i
;
1819 } else if (yielded
< 0) {
1826 kvm_vcpu_set_in_spin_loop(me
, false);
1828 /* Ensure vcpu is not eligible during next spinloop */
1829 kvm_vcpu_set_dy_eligible(me
, false);
1831 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
1833 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1835 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
1838 if (vmf
->pgoff
== 0)
1839 page
= virt_to_page(vcpu
->run
);
1841 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
1842 page
= virt_to_page(vcpu
->arch
.pio_data
);
1844 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1845 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
1846 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
1849 return kvm_arch_vcpu_fault(vcpu
, vmf
);
1855 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
1856 .fault
= kvm_vcpu_fault
,
1859 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1861 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
1865 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
1867 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1869 kvm_put_kvm(vcpu
->kvm
);
1873 static struct file_operations kvm_vcpu_fops
= {
1874 .release
= kvm_vcpu_release
,
1875 .unlocked_ioctl
= kvm_vcpu_ioctl
,
1876 #ifdef CONFIG_COMPAT
1877 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
1879 .mmap
= kvm_vcpu_mmap
,
1880 .llseek
= noop_llseek
,
1884 * Allocates an inode for the vcpu.
1886 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
1888 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
1892 * Creates some virtual cpus. Good luck creating more than one.
1894 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
1897 struct kvm_vcpu
*vcpu
, *v
;
1899 if (id
>= KVM_MAX_VCPUS
)
1902 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
1904 return PTR_ERR(vcpu
);
1906 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
1908 r
= kvm_arch_vcpu_setup(vcpu
);
1912 mutex_lock(&kvm
->lock
);
1913 if (!kvm_vcpu_compatible(vcpu
)) {
1915 goto unlock_vcpu_destroy
;
1917 if (atomic_read(&kvm
->online_vcpus
) == KVM_MAX_VCPUS
) {
1919 goto unlock_vcpu_destroy
;
1922 kvm_for_each_vcpu(r
, v
, kvm
)
1923 if (v
->vcpu_id
== id
) {
1925 goto unlock_vcpu_destroy
;
1928 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
1930 /* Now it's all set up, let userspace reach it */
1932 r
= create_vcpu_fd(vcpu
);
1935 goto unlock_vcpu_destroy
;
1938 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
1940 atomic_inc(&kvm
->online_vcpus
);
1942 mutex_unlock(&kvm
->lock
);
1943 kvm_arch_vcpu_postcreate(vcpu
);
1946 unlock_vcpu_destroy
:
1947 mutex_unlock(&kvm
->lock
);
1949 kvm_arch_vcpu_destroy(vcpu
);
1953 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
1956 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
1957 vcpu
->sigset_active
= 1;
1958 vcpu
->sigset
= *sigset
;
1960 vcpu
->sigset_active
= 0;
1964 static long kvm_vcpu_ioctl(struct file
*filp
,
1965 unsigned int ioctl
, unsigned long arg
)
1967 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1968 void __user
*argp
= (void __user
*)arg
;
1970 struct kvm_fpu
*fpu
= NULL
;
1971 struct kvm_sregs
*kvm_sregs
= NULL
;
1973 if (vcpu
->kvm
->mm
!= current
->mm
)
1976 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1978 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1979 * so vcpu_load() would break it.
1981 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_INTERRUPT
)
1982 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
1986 r
= vcpu_load(vcpu
);
1994 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
1995 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
1997 case KVM_GET_REGS
: {
1998 struct kvm_regs
*kvm_regs
;
2001 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
2004 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2008 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2015 case KVM_SET_REGS
: {
2016 struct kvm_regs
*kvm_regs
;
2019 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2020 if (IS_ERR(kvm_regs
)) {
2021 r
= PTR_ERR(kvm_regs
);
2024 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2028 case KVM_GET_SREGS
: {
2029 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
2033 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2037 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2042 case KVM_SET_SREGS
: {
2043 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2044 if (IS_ERR(kvm_sregs
)) {
2045 r
= PTR_ERR(kvm_sregs
);
2049 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2052 case KVM_GET_MP_STATE
: {
2053 struct kvm_mp_state mp_state
;
2055 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2059 if (copy_to_user(argp
, &mp_state
, sizeof mp_state
))
2064 case KVM_SET_MP_STATE
: {
2065 struct kvm_mp_state mp_state
;
2068 if (copy_from_user(&mp_state
, argp
, sizeof mp_state
))
2070 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2073 case KVM_TRANSLATE
: {
2074 struct kvm_translation tr
;
2077 if (copy_from_user(&tr
, argp
, sizeof tr
))
2079 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2083 if (copy_to_user(argp
, &tr
, sizeof tr
))
2088 case KVM_SET_GUEST_DEBUG
: {
2089 struct kvm_guest_debug dbg
;
2092 if (copy_from_user(&dbg
, argp
, sizeof dbg
))
2094 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2097 case KVM_SET_SIGNAL_MASK
: {
2098 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2099 struct kvm_signal_mask kvm_sigmask
;
2100 sigset_t sigset
, *p
;
2105 if (copy_from_user(&kvm_sigmask
, argp
,
2106 sizeof kvm_sigmask
))
2109 if (kvm_sigmask
.len
!= sizeof sigset
)
2112 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2117 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2121 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2125 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2129 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2135 fpu
= memdup_user(argp
, sizeof(*fpu
));
2141 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2145 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2154 #ifdef CONFIG_COMPAT
2155 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2156 unsigned int ioctl
, unsigned long arg
)
2158 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2159 void __user
*argp
= compat_ptr(arg
);
2162 if (vcpu
->kvm
->mm
!= current
->mm
)
2166 case KVM_SET_SIGNAL_MASK
: {
2167 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2168 struct kvm_signal_mask kvm_sigmask
;
2169 compat_sigset_t csigset
;
2174 if (copy_from_user(&kvm_sigmask
, argp
,
2175 sizeof kvm_sigmask
))
2178 if (kvm_sigmask
.len
!= sizeof csigset
)
2181 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
2184 sigset_from_compat(&sigset
, &csigset
);
2185 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2187 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2191 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2199 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2200 int (*accessor
)(struct kvm_device
*dev
,
2201 struct kvm_device_attr
*attr
),
2204 struct kvm_device_attr attr
;
2209 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2212 return accessor(dev
, &attr
);
2215 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2218 struct kvm_device
*dev
= filp
->private_data
;
2221 case KVM_SET_DEVICE_ATTR
:
2222 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2223 case KVM_GET_DEVICE_ATTR
:
2224 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2225 case KVM_HAS_DEVICE_ATTR
:
2226 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2228 if (dev
->ops
->ioctl
)
2229 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
2235 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
2237 struct kvm_device
*dev
= filp
->private_data
;
2238 struct kvm
*kvm
= dev
->kvm
;
2244 static const struct file_operations kvm_device_fops
= {
2245 .unlocked_ioctl
= kvm_device_ioctl
,
2246 #ifdef CONFIG_COMPAT
2247 .compat_ioctl
= kvm_device_ioctl
,
2249 .release
= kvm_device_release
,
2252 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
2254 if (filp
->f_op
!= &kvm_device_fops
)
2257 return filp
->private_data
;
2260 static int kvm_ioctl_create_device(struct kvm
*kvm
,
2261 struct kvm_create_device
*cd
)
2263 struct kvm_device_ops
*ops
= NULL
;
2264 struct kvm_device
*dev
;
2265 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
2269 #ifdef CONFIG_KVM_MPIC
2270 case KVM_DEV_TYPE_FSL_MPIC_20
:
2271 case KVM_DEV_TYPE_FSL_MPIC_42
:
2272 ops
= &kvm_mpic_ops
;
2275 #ifdef CONFIG_KVM_XICS
2276 case KVM_DEV_TYPE_XICS
:
2277 ops
= &kvm_xics_ops
;
2280 #ifdef CONFIG_KVM_VFIO
2281 case KVM_DEV_TYPE_VFIO
:
2282 ops
= &kvm_vfio_ops
;
2285 #ifdef CONFIG_KVM_ARM_VGIC
2286 case KVM_DEV_TYPE_ARM_VGIC_V2
:
2287 ops
= &kvm_arm_vgic_v2_ops
;
2291 case KVM_DEV_TYPE_FLIC
:
2292 ops
= &kvm_flic_ops
;
2302 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2309 ret
= ops
->create(dev
, cd
->type
);
2315 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
2321 list_add(&dev
->vm_node
, &kvm
->devices
);
2327 static long kvm_vm_ioctl(struct file
*filp
,
2328 unsigned int ioctl
, unsigned long arg
)
2330 struct kvm
*kvm
= filp
->private_data
;
2331 void __user
*argp
= (void __user
*)arg
;
2334 if (kvm
->mm
!= current
->mm
)
2337 case KVM_CREATE_VCPU
:
2338 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2340 case KVM_SET_USER_MEMORY_REGION
: {
2341 struct kvm_userspace_memory_region kvm_userspace_mem
;
2344 if (copy_from_user(&kvm_userspace_mem
, argp
,
2345 sizeof kvm_userspace_mem
))
2348 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
2351 case KVM_GET_DIRTY_LOG
: {
2352 struct kvm_dirty_log log
;
2355 if (copy_from_user(&log
, argp
, sizeof log
))
2357 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2360 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2361 case KVM_REGISTER_COALESCED_MMIO
: {
2362 struct kvm_coalesced_mmio_zone zone
;
2364 if (copy_from_user(&zone
, argp
, sizeof zone
))
2366 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2369 case KVM_UNREGISTER_COALESCED_MMIO
: {
2370 struct kvm_coalesced_mmio_zone zone
;
2372 if (copy_from_user(&zone
, argp
, sizeof zone
))
2374 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
2379 struct kvm_irqfd data
;
2382 if (copy_from_user(&data
, argp
, sizeof data
))
2384 r
= kvm_irqfd(kvm
, &data
);
2387 case KVM_IOEVENTFD
: {
2388 struct kvm_ioeventfd data
;
2391 if (copy_from_user(&data
, argp
, sizeof data
))
2393 r
= kvm_ioeventfd(kvm
, &data
);
2396 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2397 case KVM_SET_BOOT_CPU_ID
:
2399 mutex_lock(&kvm
->lock
);
2400 if (atomic_read(&kvm
->online_vcpus
) != 0)
2403 kvm
->bsp_vcpu_id
= arg
;
2404 mutex_unlock(&kvm
->lock
);
2407 #ifdef CONFIG_HAVE_KVM_MSI
2408 case KVM_SIGNAL_MSI
: {
2412 if (copy_from_user(&msi
, argp
, sizeof msi
))
2414 r
= kvm_send_userspace_msi(kvm
, &msi
);
2418 #ifdef __KVM_HAVE_IRQ_LINE
2419 case KVM_IRQ_LINE_STATUS
:
2420 case KVM_IRQ_LINE
: {
2421 struct kvm_irq_level irq_event
;
2424 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
2427 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
2428 ioctl
== KVM_IRQ_LINE_STATUS
);
2433 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
2434 if (copy_to_user(argp
, &irq_event
, sizeof irq_event
))
2442 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2443 case KVM_SET_GSI_ROUTING
: {
2444 struct kvm_irq_routing routing
;
2445 struct kvm_irq_routing __user
*urouting
;
2446 struct kvm_irq_routing_entry
*entries
;
2449 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
2452 if (routing
.nr
>= KVM_MAX_IRQ_ROUTES
)
2457 entries
= vmalloc(routing
.nr
* sizeof(*entries
));
2462 if (copy_from_user(entries
, urouting
->entries
,
2463 routing
.nr
* sizeof(*entries
)))
2464 goto out_free_irq_routing
;
2465 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
2467 out_free_irq_routing
:
2471 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2472 case KVM_CREATE_DEVICE
: {
2473 struct kvm_create_device cd
;
2476 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
2479 r
= kvm_ioctl_create_device(kvm
, &cd
);
2484 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
2491 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
2493 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
2499 #ifdef CONFIG_COMPAT
2500 struct compat_kvm_dirty_log
{
2504 compat_uptr_t dirty_bitmap
; /* one bit per page */
2509 static long kvm_vm_compat_ioctl(struct file
*filp
,
2510 unsigned int ioctl
, unsigned long arg
)
2512 struct kvm
*kvm
= filp
->private_data
;
2515 if (kvm
->mm
!= current
->mm
)
2518 case KVM_GET_DIRTY_LOG
: {
2519 struct compat_kvm_dirty_log compat_log
;
2520 struct kvm_dirty_log log
;
2523 if (copy_from_user(&compat_log
, (void __user
*)arg
,
2524 sizeof(compat_log
)))
2526 log
.slot
= compat_log
.slot
;
2527 log
.padding1
= compat_log
.padding1
;
2528 log
.padding2
= compat_log
.padding2
;
2529 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
2531 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2535 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
2543 static struct file_operations kvm_vm_fops
= {
2544 .release
= kvm_vm_release
,
2545 .unlocked_ioctl
= kvm_vm_ioctl
,
2546 #ifdef CONFIG_COMPAT
2547 .compat_ioctl
= kvm_vm_compat_ioctl
,
2549 .llseek
= noop_llseek
,
2552 static int kvm_dev_ioctl_create_vm(unsigned long type
)
2557 kvm
= kvm_create_vm(type
);
2559 return PTR_ERR(kvm
);
2560 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2561 r
= kvm_coalesced_mmio_init(kvm
);
2567 r
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
| O_CLOEXEC
);
2574 static long kvm_dev_ioctl_check_extension_generic(long arg
)
2577 case KVM_CAP_USER_MEMORY
:
2578 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2579 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2580 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2581 case KVM_CAP_SET_BOOT_CPU_ID
:
2583 case KVM_CAP_INTERNAL_ERROR_DATA
:
2584 #ifdef CONFIG_HAVE_KVM_MSI
2585 case KVM_CAP_SIGNAL_MSI
:
2587 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2588 case KVM_CAP_IRQFD_RESAMPLE
:
2591 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2592 case KVM_CAP_IRQ_ROUTING
:
2593 return KVM_MAX_IRQ_ROUTES
;
2598 return kvm_dev_ioctl_check_extension(arg
);
2601 static long kvm_dev_ioctl(struct file
*filp
,
2602 unsigned int ioctl
, unsigned long arg
)
2607 case KVM_GET_API_VERSION
:
2611 r
= KVM_API_VERSION
;
2614 r
= kvm_dev_ioctl_create_vm(arg
);
2616 case KVM_CHECK_EXTENSION
:
2617 r
= kvm_dev_ioctl_check_extension_generic(arg
);
2619 case KVM_GET_VCPU_MMAP_SIZE
:
2623 r
= PAGE_SIZE
; /* struct kvm_run */
2625 r
+= PAGE_SIZE
; /* pio data page */
2627 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2628 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
2631 case KVM_TRACE_ENABLE
:
2632 case KVM_TRACE_PAUSE
:
2633 case KVM_TRACE_DISABLE
:
2637 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
2643 static struct file_operations kvm_chardev_ops
= {
2644 .unlocked_ioctl
= kvm_dev_ioctl
,
2645 .compat_ioctl
= kvm_dev_ioctl
,
2646 .llseek
= noop_llseek
,
2649 static struct miscdevice kvm_dev
= {
2655 static void hardware_enable_nolock(void *junk
)
2657 int cpu
= raw_smp_processor_id();
2660 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2663 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
2665 r
= kvm_arch_hardware_enable(NULL
);
2668 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2669 atomic_inc(&hardware_enable_failed
);
2670 printk(KERN_INFO
"kvm: enabling virtualization on "
2671 "CPU%d failed\n", cpu
);
2675 static void hardware_enable(void)
2677 raw_spin_lock(&kvm_count_lock
);
2678 if (kvm_usage_count
)
2679 hardware_enable_nolock(NULL
);
2680 raw_spin_unlock(&kvm_count_lock
);
2683 static void hardware_disable_nolock(void *junk
)
2685 int cpu
= raw_smp_processor_id();
2687 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2689 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2690 kvm_arch_hardware_disable(NULL
);
2693 static void hardware_disable(void)
2695 raw_spin_lock(&kvm_count_lock
);
2696 if (kvm_usage_count
)
2697 hardware_disable_nolock(NULL
);
2698 raw_spin_unlock(&kvm_count_lock
);
2701 static void hardware_disable_all_nolock(void)
2703 BUG_ON(!kvm_usage_count
);
2706 if (!kvm_usage_count
)
2707 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2710 static void hardware_disable_all(void)
2712 raw_spin_lock(&kvm_count_lock
);
2713 hardware_disable_all_nolock();
2714 raw_spin_unlock(&kvm_count_lock
);
2717 static int hardware_enable_all(void)
2721 raw_spin_lock(&kvm_count_lock
);
2724 if (kvm_usage_count
== 1) {
2725 atomic_set(&hardware_enable_failed
, 0);
2726 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
2728 if (atomic_read(&hardware_enable_failed
)) {
2729 hardware_disable_all_nolock();
2734 raw_spin_unlock(&kvm_count_lock
);
2739 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
2744 val
&= ~CPU_TASKS_FROZEN
;
2747 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
2752 printk(KERN_INFO
"kvm: enabling virtualization on CPU%d\n",
2760 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
2764 * Some (well, at least mine) BIOSes hang on reboot if
2767 * And Intel TXT required VMX off for all cpu when system shutdown.
2769 printk(KERN_INFO
"kvm: exiting hardware virtualization\n");
2770 kvm_rebooting
= true;
2771 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2775 static struct notifier_block kvm_reboot_notifier
= {
2776 .notifier_call
= kvm_reboot
,
2780 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
2784 for (i
= 0; i
< bus
->dev_count
; i
++) {
2785 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
2787 kvm_iodevice_destructor(pos
);
2792 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
2793 const struct kvm_io_range
*r2
)
2795 if (r1
->addr
< r2
->addr
)
2797 if (r1
->addr
+ r1
->len
> r2
->addr
+ r2
->len
)
2802 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
2804 return kvm_io_bus_cmp(p1
, p2
);
2807 static int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
2808 gpa_t addr
, int len
)
2810 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
2816 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
2817 kvm_io_bus_sort_cmp
, NULL
);
2822 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
2823 gpa_t addr
, int len
)
2825 struct kvm_io_range
*range
, key
;
2828 key
= (struct kvm_io_range
) {
2833 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
2834 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
2838 off
= range
- bus
->range
;
2840 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
2846 static int __kvm_io_bus_write(struct kvm_io_bus
*bus
,
2847 struct kvm_io_range
*range
, const void *val
)
2851 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
2855 while (idx
< bus
->dev_count
&&
2856 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
2857 if (!kvm_iodevice_write(bus
->range
[idx
].dev
, range
->addr
,
2866 /* kvm_io_bus_write - called under kvm->slots_lock */
2867 int kvm_io_bus_write(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2868 int len
, const void *val
)
2870 struct kvm_io_bus
*bus
;
2871 struct kvm_io_range range
;
2874 range
= (struct kvm_io_range
) {
2879 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2880 r
= __kvm_io_bus_write(bus
, &range
, val
);
2881 return r
< 0 ? r
: 0;
2884 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2885 int kvm_io_bus_write_cookie(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2886 int len
, const void *val
, long cookie
)
2888 struct kvm_io_bus
*bus
;
2889 struct kvm_io_range range
;
2891 range
= (struct kvm_io_range
) {
2896 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2898 /* First try the device referenced by cookie. */
2899 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
2900 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
2901 if (!kvm_iodevice_write(bus
->range
[cookie
].dev
, addr
, len
,
2906 * cookie contained garbage; fall back to search and return the
2907 * correct cookie value.
2909 return __kvm_io_bus_write(bus
, &range
, val
);
2912 static int __kvm_io_bus_read(struct kvm_io_bus
*bus
, struct kvm_io_range
*range
,
2917 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
2921 while (idx
< bus
->dev_count
&&
2922 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
2923 if (!kvm_iodevice_read(bus
->range
[idx
].dev
, range
->addr
,
2931 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
2933 /* kvm_io_bus_read - called under kvm->slots_lock */
2934 int kvm_io_bus_read(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2937 struct kvm_io_bus
*bus
;
2938 struct kvm_io_range range
;
2941 range
= (struct kvm_io_range
) {
2946 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2947 r
= __kvm_io_bus_read(bus
, &range
, val
);
2948 return r
< 0 ? r
: 0;
2952 /* Caller must hold slots_lock. */
2953 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2954 int len
, struct kvm_io_device
*dev
)
2956 struct kvm_io_bus
*new_bus
, *bus
;
2958 bus
= kvm
->buses
[bus_idx
];
2959 /* exclude ioeventfd which is limited by maximum fd */
2960 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
2963 new_bus
= kzalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
2964 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
2967 memcpy(new_bus
, bus
, sizeof(*bus
) + (bus
->dev_count
*
2968 sizeof(struct kvm_io_range
)));
2969 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
2970 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
2971 synchronize_srcu_expedited(&kvm
->srcu
);
2977 /* Caller must hold slots_lock. */
2978 int kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
2979 struct kvm_io_device
*dev
)
2982 struct kvm_io_bus
*new_bus
, *bus
;
2984 bus
= kvm
->buses
[bus_idx
];
2986 for (i
= 0; i
< bus
->dev_count
; i
++)
2987 if (bus
->range
[i
].dev
== dev
) {
2995 new_bus
= kzalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
2996 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3000 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3001 new_bus
->dev_count
--;
3002 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3003 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3005 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3006 synchronize_srcu_expedited(&kvm
->srcu
);
3011 static struct notifier_block kvm_cpu_notifier
= {
3012 .notifier_call
= kvm_cpu_hotplug
,
3015 static int vm_stat_get(void *_offset
, u64
*val
)
3017 unsigned offset
= (long)_offset
;
3021 spin_lock(&kvm_lock
);
3022 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3023 *val
+= *(u32
*)((void *)kvm
+ offset
);
3024 spin_unlock(&kvm_lock
);
3028 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
3030 static int vcpu_stat_get(void *_offset
, u64
*val
)
3032 unsigned offset
= (long)_offset
;
3034 struct kvm_vcpu
*vcpu
;
3038 spin_lock(&kvm_lock
);
3039 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3040 kvm_for_each_vcpu(i
, vcpu
, kvm
)
3041 *val
+= *(u32
*)((void *)vcpu
+ offset
);
3043 spin_unlock(&kvm_lock
);
3047 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
3049 static const struct file_operations
*stat_fops
[] = {
3050 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
3051 [KVM_STAT_VM
] = &vm_stat_fops
,
3054 static int kvm_init_debug(void)
3057 struct kvm_stats_debugfs_item
*p
;
3059 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3060 if (kvm_debugfs_dir
== NULL
)
3063 for (p
= debugfs_entries
; p
->name
; ++p
) {
3064 p
->dentry
= debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
3065 (void *)(long)p
->offset
,
3066 stat_fops
[p
->kind
]);
3067 if (p
->dentry
== NULL
)
3074 debugfs_remove_recursive(kvm_debugfs_dir
);
3079 static void kvm_exit_debug(void)
3081 struct kvm_stats_debugfs_item
*p
;
3083 for (p
= debugfs_entries
; p
->name
; ++p
)
3084 debugfs_remove(p
->dentry
);
3085 debugfs_remove(kvm_debugfs_dir
);
3088 static int kvm_suspend(void)
3090 if (kvm_usage_count
)
3091 hardware_disable_nolock(NULL
);
3095 static void kvm_resume(void)
3097 if (kvm_usage_count
) {
3098 WARN_ON(raw_spin_is_locked(&kvm_count_lock
));
3099 hardware_enable_nolock(NULL
);
3103 static struct syscore_ops kvm_syscore_ops
= {
3104 .suspend
= kvm_suspend
,
3105 .resume
= kvm_resume
,
3109 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3111 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3114 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3116 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3117 if (vcpu
->preempted
)
3118 vcpu
->preempted
= false;
3120 kvm_arch_vcpu_load(vcpu
, cpu
);
3123 static void kvm_sched_out(struct preempt_notifier
*pn
,
3124 struct task_struct
*next
)
3126 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3128 if (current
->state
== TASK_RUNNING
)
3129 vcpu
->preempted
= true;
3130 kvm_arch_vcpu_put(vcpu
);
3133 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
3134 struct module
*module
)
3139 r
= kvm_arch_init(opaque
);
3144 * kvm_arch_init makes sure there's at most one caller
3145 * for architectures that support multiple implementations,
3146 * like intel and amd on x86.
3147 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3148 * conflicts in case kvm is already setup for another implementation.
3150 r
= kvm_irqfd_init();
3154 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
3159 r
= kvm_arch_hardware_setup();
3163 for_each_online_cpu(cpu
) {
3164 smp_call_function_single(cpu
,
3165 kvm_arch_check_processor_compat
,
3171 r
= register_cpu_notifier(&kvm_cpu_notifier
);
3174 register_reboot_notifier(&kvm_reboot_notifier
);
3176 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3178 vcpu_align
= __alignof__(struct kvm_vcpu
);
3179 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
3181 if (!kvm_vcpu_cache
) {
3186 r
= kvm_async_pf_init();
3190 kvm_chardev_ops
.owner
= module
;
3191 kvm_vm_fops
.owner
= module
;
3192 kvm_vcpu_fops
.owner
= module
;
3194 r
= misc_register(&kvm_dev
);
3196 printk(KERN_ERR
"kvm: misc device register failed\n");
3200 register_syscore_ops(&kvm_syscore_ops
);
3202 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
3203 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
3205 r
= kvm_init_debug();
3207 printk(KERN_ERR
"kvm: create debugfs files failed\n");
3214 unregister_syscore_ops(&kvm_syscore_ops
);
3215 misc_deregister(&kvm_dev
);
3217 kvm_async_pf_deinit();
3219 kmem_cache_destroy(kvm_vcpu_cache
);
3221 unregister_reboot_notifier(&kvm_reboot_notifier
);
3222 unregister_cpu_notifier(&kvm_cpu_notifier
);
3225 kvm_arch_hardware_unsetup();
3227 free_cpumask_var(cpus_hardware_enabled
);
3235 EXPORT_SYMBOL_GPL(kvm_init
);
3240 misc_deregister(&kvm_dev
);
3241 kmem_cache_destroy(kvm_vcpu_cache
);
3242 kvm_async_pf_deinit();
3243 unregister_syscore_ops(&kvm_syscore_ops
);
3244 unregister_reboot_notifier(&kvm_reboot_notifier
);
3245 unregister_cpu_notifier(&kvm_cpu_notifier
);
3246 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3247 kvm_arch_hardware_unsetup();
3250 free_cpumask_var(cpus_hardware_enabled
);
3252 EXPORT_SYMBOL_GPL(kvm_exit
);