Linux 2.6.17.7
[linux/fpc-iii.git] / arch / mips / kernel / traps.c
bloba7564b08eb4da273c3252d64cd46f8daf00a45d9
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
14 #include <linux/config.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/smp_lock.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
25 #include <asm/bootinfo.h>
26 #include <asm/branch.h>
27 #include <asm/break.h>
28 #include <asm/cpu.h>
29 #include <asm/dsp.h>
30 #include <asm/fpu.h>
31 #include <asm/mipsregs.h>
32 #include <asm/mipsmtregs.h>
33 #include <asm/module.h>
34 #include <asm/pgtable.h>
35 #include <asm/ptrace.h>
36 #include <asm/sections.h>
37 #include <asm/system.h>
38 #include <asm/tlbdebug.h>
39 #include <asm/traps.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/watch.h>
43 #include <asm/types.h>
45 extern asmlinkage void handle_int(void);
46 extern asmlinkage void handle_tlbm(void);
47 extern asmlinkage void handle_tlbl(void);
48 extern asmlinkage void handle_tlbs(void);
49 extern asmlinkage void handle_adel(void);
50 extern asmlinkage void handle_ades(void);
51 extern asmlinkage void handle_ibe(void);
52 extern asmlinkage void handle_dbe(void);
53 extern asmlinkage void handle_sys(void);
54 extern asmlinkage void handle_bp(void);
55 extern asmlinkage void handle_ri(void);
56 extern asmlinkage void handle_cpu(void);
57 extern asmlinkage void handle_ov(void);
58 extern asmlinkage void handle_tr(void);
59 extern asmlinkage void handle_fpe(void);
60 extern asmlinkage void handle_mdmx(void);
61 extern asmlinkage void handle_watch(void);
62 extern asmlinkage void handle_mt(void);
63 extern asmlinkage void handle_dsp(void);
64 extern asmlinkage void handle_mcheck(void);
65 extern asmlinkage void handle_reserved(void);
67 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
68 struct mips_fpu_soft_struct *ctx);
70 void (*board_be_init)(void);
71 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
72 void (*board_nmi_handler_setup)(void);
73 void (*board_ejtag_handler_setup)(void);
74 void (*board_bind_eic_interrupt)(int irq, int regset);
77 * These constant is for searching for possible module text segments.
78 * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
80 #define MODULE_RANGE (8*1024*1024)
83 * This routine abuses get_user()/put_user() to reference pointers
84 * with at least a bit of error checking ...
86 void show_stack(struct task_struct *task, unsigned long *sp)
88 const int field = 2 * sizeof(unsigned long);
89 long stackdata;
90 int i;
92 if (!sp) {
93 if (task && task != current)
94 sp = (unsigned long *) task->thread.reg29;
95 else
96 sp = (unsigned long *) &sp;
99 printk("Stack :");
100 i = 0;
101 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
102 if (i && ((i % (64 / field)) == 0))
103 printk("\n ");
104 if (i > 39) {
105 printk(" ...");
106 break;
109 if (__get_user(stackdata, sp++)) {
110 printk(" (Bad stack address)");
111 break;
114 printk(" %0*lx", field, stackdata);
115 i++;
117 printk("\n");
120 void show_trace(struct task_struct *task, unsigned long *stack)
122 const int field = 2 * sizeof(unsigned long);
123 unsigned long addr;
125 if (!stack) {
126 if (task && task != current)
127 stack = (unsigned long *) task->thread.reg29;
128 else
129 stack = (unsigned long *) &stack;
132 printk("Call Trace:");
133 #ifdef CONFIG_KALLSYMS
134 printk("\n");
135 #endif
136 while (!kstack_end(stack)) {
137 addr = *stack++;
138 if (__kernel_text_address(addr)) {
139 printk(" [<%0*lx>] ", field, addr);
140 print_symbol("%s\n", addr);
143 printk("\n");
147 * The architecture-independent dump_stack generator
149 void dump_stack(void)
151 unsigned long stack;
153 show_trace(current, &stack);
156 EXPORT_SYMBOL(dump_stack);
158 void show_code(unsigned int *pc)
160 long i;
162 printk("\nCode:");
164 for(i = -3 ; i < 6 ; i++) {
165 unsigned int insn;
166 if (__get_user(insn, pc + i)) {
167 printk(" (Bad address in epc)\n");
168 break;
170 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
174 void show_regs(struct pt_regs *regs)
176 const int field = 2 * sizeof(unsigned long);
177 unsigned int cause = regs->cp0_cause;
178 int i;
180 printk("Cpu %d\n", smp_processor_id());
183 * Saved main processor registers
185 for (i = 0; i < 32; ) {
186 if ((i % 4) == 0)
187 printk("$%2d :", i);
188 if (i == 0)
189 printk(" %0*lx", field, 0UL);
190 else if (i == 26 || i == 27)
191 printk(" %*s", field, "");
192 else
193 printk(" %0*lx", field, regs->regs[i]);
195 i++;
196 if ((i % 4) == 0)
197 printk("\n");
200 printk("Hi : %0*lx\n", field, regs->hi);
201 printk("Lo : %0*lx\n", field, regs->lo);
204 * Saved cp0 registers
206 printk("epc : %0*lx ", field, regs->cp0_epc);
207 print_symbol("%s ", regs->cp0_epc);
208 printk(" %s\n", print_tainted());
209 printk("ra : %0*lx ", field, regs->regs[31]);
210 print_symbol("%s\n", regs->regs[31]);
212 printk("Status: %08x ", (uint32_t) regs->cp0_status);
214 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
215 if (regs->cp0_status & ST0_KUO)
216 printk("KUo ");
217 if (regs->cp0_status & ST0_IEO)
218 printk("IEo ");
219 if (regs->cp0_status & ST0_KUP)
220 printk("KUp ");
221 if (regs->cp0_status & ST0_IEP)
222 printk("IEp ");
223 if (regs->cp0_status & ST0_KUC)
224 printk("KUc ");
225 if (regs->cp0_status & ST0_IEC)
226 printk("IEc ");
227 } else {
228 if (regs->cp0_status & ST0_KX)
229 printk("KX ");
230 if (regs->cp0_status & ST0_SX)
231 printk("SX ");
232 if (regs->cp0_status & ST0_UX)
233 printk("UX ");
234 switch (regs->cp0_status & ST0_KSU) {
235 case KSU_USER:
236 printk("USER ");
237 break;
238 case KSU_SUPERVISOR:
239 printk("SUPERVISOR ");
240 break;
241 case KSU_KERNEL:
242 printk("KERNEL ");
243 break;
244 default:
245 printk("BAD_MODE ");
246 break;
248 if (regs->cp0_status & ST0_ERL)
249 printk("ERL ");
250 if (regs->cp0_status & ST0_EXL)
251 printk("EXL ");
252 if (regs->cp0_status & ST0_IE)
253 printk("IE ");
255 printk("\n");
257 printk("Cause : %08x\n", cause);
259 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
260 if (1 <= cause && cause <= 5)
261 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
263 printk("PrId : %08x\n", read_c0_prid());
266 void show_registers(struct pt_regs *regs)
268 show_regs(regs);
269 print_modules();
270 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
271 current->comm, current->pid, current_thread_info(), current);
272 show_stack(current, (long *) regs->regs[29]);
273 show_trace(current, (long *) regs->regs[29]);
274 show_code((unsigned int *) regs->cp0_epc);
275 printk("\n");
278 static DEFINE_SPINLOCK(die_lock);
280 NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
282 static int die_counter;
283 #ifdef CONFIG_MIPS_MT_SMTC
284 unsigned long dvpret = dvpe();
285 #endif /* CONFIG_MIPS_MT_SMTC */
287 console_verbose();
288 spin_lock_irq(&die_lock);
289 bust_spinlocks(1);
290 #ifdef CONFIG_MIPS_MT_SMTC
291 mips_mt_regdump(dvpret);
292 #endif /* CONFIG_MIPS_MT_SMTC */
293 printk("%s[#%d]:\n", str, ++die_counter);
294 show_registers(regs);
295 spin_unlock_irq(&die_lock);
296 do_exit(SIGSEGV);
299 extern const struct exception_table_entry __start___dbe_table[];
300 extern const struct exception_table_entry __stop___dbe_table[];
302 void __declare_dbe_table(void)
304 __asm__ __volatile__(
305 ".section\t__dbe_table,\"a\"\n\t"
306 ".previous"
310 /* Given an address, look for it in the exception tables. */
311 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
313 const struct exception_table_entry *e;
315 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
316 if (!e)
317 e = search_module_dbetables(addr);
318 return e;
321 asmlinkage void do_be(struct pt_regs *regs)
323 const int field = 2 * sizeof(unsigned long);
324 const struct exception_table_entry *fixup = NULL;
325 int data = regs->cp0_cause & 4;
326 int action = MIPS_BE_FATAL;
328 /* XXX For now. Fixme, this searches the wrong table ... */
329 if (data && !user_mode(regs))
330 fixup = search_dbe_tables(exception_epc(regs));
332 if (fixup)
333 action = MIPS_BE_FIXUP;
335 if (board_be_handler)
336 action = board_be_handler(regs, fixup != 0);
338 switch (action) {
339 case MIPS_BE_DISCARD:
340 return;
341 case MIPS_BE_FIXUP:
342 if (fixup) {
343 regs->cp0_epc = fixup->nextinsn;
344 return;
346 break;
347 default:
348 break;
352 * Assume it would be too dangerous to continue ...
354 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
355 data ? "Data" : "Instruction",
356 field, regs->cp0_epc, field, regs->regs[31]);
357 die_if_kernel("Oops", regs);
358 force_sig(SIGBUS, current);
361 static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
363 unsigned int __user *epc;
365 epc = (unsigned int __user *) regs->cp0_epc +
366 ((regs->cp0_cause & CAUSEF_BD) != 0);
367 if (!get_user(*opcode, epc))
368 return 0;
370 force_sig(SIGSEGV, current);
371 return 1;
375 * ll/sc emulation
378 #define OPCODE 0xfc000000
379 #define BASE 0x03e00000
380 #define RT 0x001f0000
381 #define OFFSET 0x0000ffff
382 #define LL 0xc0000000
383 #define SC 0xe0000000
384 #define SPEC3 0x7c000000
385 #define RD 0x0000f800
386 #define FUNC 0x0000003f
387 #define RDHWR 0x0000003b
390 * The ll_bit is cleared by r*_switch.S
393 unsigned long ll_bit;
395 static struct task_struct *ll_task = NULL;
397 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
399 unsigned long value, __user *vaddr;
400 long offset;
401 int signal = 0;
404 * analyse the ll instruction that just caused a ri exception
405 * and put the referenced address to addr.
408 /* sign extend offset */
409 offset = opcode & OFFSET;
410 offset <<= 16;
411 offset >>= 16;
413 vaddr = (unsigned long __user *)
414 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
416 if ((unsigned long)vaddr & 3) {
417 signal = SIGBUS;
418 goto sig;
420 if (get_user(value, vaddr)) {
421 signal = SIGSEGV;
422 goto sig;
425 preempt_disable();
427 if (ll_task == NULL || ll_task == current) {
428 ll_bit = 1;
429 } else {
430 ll_bit = 0;
432 ll_task = current;
434 preempt_enable();
436 compute_return_epc(regs);
438 regs->regs[(opcode & RT) >> 16] = value;
440 return;
442 sig:
443 force_sig(signal, current);
446 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
448 unsigned long __user *vaddr;
449 unsigned long reg;
450 long offset;
451 int signal = 0;
454 * analyse the sc instruction that just caused a ri exception
455 * and put the referenced address to addr.
458 /* sign extend offset */
459 offset = opcode & OFFSET;
460 offset <<= 16;
461 offset >>= 16;
463 vaddr = (unsigned long __user *)
464 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
465 reg = (opcode & RT) >> 16;
467 if ((unsigned long)vaddr & 3) {
468 signal = SIGBUS;
469 goto sig;
472 preempt_disable();
474 if (ll_bit == 0 || ll_task != current) {
475 compute_return_epc(regs);
476 regs->regs[reg] = 0;
477 preempt_enable();
478 return;
481 preempt_enable();
483 if (put_user(regs->regs[reg], vaddr)) {
484 signal = SIGSEGV;
485 goto sig;
488 compute_return_epc(regs);
489 regs->regs[reg] = 1;
491 return;
493 sig:
494 force_sig(signal, current);
498 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
499 * opcodes are supposed to result in coprocessor unusable exceptions if
500 * executed on ll/sc-less processors. That's the theory. In practice a
501 * few processors such as NEC's VR4100 throw reserved instruction exceptions
502 * instead, so we're doing the emulation thing in both exception handlers.
504 static inline int simulate_llsc(struct pt_regs *regs)
506 unsigned int opcode;
508 if (unlikely(get_insn_opcode(regs, &opcode)))
509 return -EFAULT;
511 if ((opcode & OPCODE) == LL) {
512 simulate_ll(regs, opcode);
513 return 0;
515 if ((opcode & OPCODE) == SC) {
516 simulate_sc(regs, opcode);
517 return 0;
520 return -EFAULT; /* Strange things going on ... */
524 * Simulate trapping 'rdhwr' instructions to provide user accessible
525 * registers not implemented in hardware. The only current use of this
526 * is the thread area pointer.
528 static inline int simulate_rdhwr(struct pt_regs *regs)
530 struct thread_info *ti = task_thread_info(current);
531 unsigned int opcode;
533 if (unlikely(get_insn_opcode(regs, &opcode)))
534 return -EFAULT;
536 if (unlikely(compute_return_epc(regs)))
537 return -EFAULT;
539 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
540 int rd = (opcode & RD) >> 11;
541 int rt = (opcode & RT) >> 16;
542 switch (rd) {
543 case 29:
544 regs->regs[rt] = ti->tp_value;
545 return 0;
546 default:
547 return -EFAULT;
551 /* Not ours. */
552 return -EFAULT;
555 asmlinkage void do_ov(struct pt_regs *regs)
557 siginfo_t info;
559 die_if_kernel("Integer overflow", regs);
561 info.si_code = FPE_INTOVF;
562 info.si_signo = SIGFPE;
563 info.si_errno = 0;
564 info.si_addr = (void __user *) regs->cp0_epc;
565 force_sig_info(SIGFPE, &info, current);
569 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
571 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
573 if (fcr31 & FPU_CSR_UNI_X) {
574 int sig;
576 preempt_disable();
578 #ifdef CONFIG_PREEMPT
579 if (!is_fpu_owner()) {
580 /* We might lose fpu before disabling preempt... */
581 own_fpu();
582 BUG_ON(!used_math());
583 restore_fp(current);
585 #endif
587 * Unimplemented operation exception. If we've got the full
588 * software emulator on-board, let's use it...
590 * Force FPU to dump state into task/thread context. We're
591 * moving a lot of data here for what is probably a single
592 * instruction, but the alternative is to pre-decode the FP
593 * register operands before invoking the emulator, which seems
594 * a bit extreme for what should be an infrequent event.
596 save_fp(current);
597 /* Ensure 'resume' not overwrite saved fp context again. */
598 lose_fpu();
600 preempt_enable();
602 /* Run the emulator */
603 sig = fpu_emulator_cop1Handler (regs,
604 &current->thread.fpu.soft);
606 preempt_disable();
608 own_fpu(); /* Using the FPU again. */
610 * We can't allow the emulated instruction to leave any of
611 * the cause bit set in $fcr31.
613 current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X;
615 /* Restore the hardware register state */
616 restore_fp(current);
618 preempt_enable();
620 /* If something went wrong, signal */
621 if (sig)
622 force_sig(sig, current);
624 return;
627 force_sig(SIGFPE, current);
630 asmlinkage void do_bp(struct pt_regs *regs)
632 unsigned int opcode, bcode;
633 siginfo_t info;
635 die_if_kernel("Break instruction in kernel code", regs);
637 if (get_insn_opcode(regs, &opcode))
638 return;
641 * There is the ancient bug in the MIPS assemblers that the break
642 * code starts left to bit 16 instead to bit 6 in the opcode.
643 * Gas is bug-compatible, but not always, grrr...
644 * We handle both cases with a simple heuristics. --macro
646 bcode = ((opcode >> 6) & ((1 << 20) - 1));
647 if (bcode < (1 << 10))
648 bcode <<= 10;
651 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
652 * insns, even for break codes that indicate arithmetic failures.
653 * Weird ...)
654 * But should we continue the brokenness??? --macro
656 switch (bcode) {
657 case BRK_OVERFLOW << 10:
658 case BRK_DIVZERO << 10:
659 if (bcode == (BRK_DIVZERO << 10))
660 info.si_code = FPE_INTDIV;
661 else
662 info.si_code = FPE_INTOVF;
663 info.si_signo = SIGFPE;
664 info.si_errno = 0;
665 info.si_addr = (void __user *) regs->cp0_epc;
666 force_sig_info(SIGFPE, &info, current);
667 break;
668 default:
669 force_sig(SIGTRAP, current);
673 asmlinkage void do_tr(struct pt_regs *regs)
675 unsigned int opcode, tcode = 0;
676 siginfo_t info;
678 die_if_kernel("Trap instruction in kernel code", regs);
680 if (get_insn_opcode(regs, &opcode))
681 return;
683 /* Immediate versions don't provide a code. */
684 if (!(opcode & OPCODE))
685 tcode = ((opcode >> 6) & ((1 << 10) - 1));
688 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
689 * insns, even for trap codes that indicate arithmetic failures.
690 * Weird ...)
691 * But should we continue the brokenness??? --macro
693 switch (tcode) {
694 case BRK_OVERFLOW:
695 case BRK_DIVZERO:
696 if (tcode == BRK_DIVZERO)
697 info.si_code = FPE_INTDIV;
698 else
699 info.si_code = FPE_INTOVF;
700 info.si_signo = SIGFPE;
701 info.si_errno = 0;
702 info.si_addr = (void __user *) regs->cp0_epc;
703 force_sig_info(SIGFPE, &info, current);
704 break;
705 default:
706 force_sig(SIGTRAP, current);
710 asmlinkage void do_ri(struct pt_regs *regs)
712 die_if_kernel("Reserved instruction in kernel code", regs);
714 if (!cpu_has_llsc)
715 if (!simulate_llsc(regs))
716 return;
718 if (!simulate_rdhwr(regs))
719 return;
721 force_sig(SIGILL, current);
724 asmlinkage void do_cpu(struct pt_regs *regs)
726 unsigned int cpid;
728 die_if_kernel("do_cpu invoked from kernel context!", regs);
730 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
732 switch (cpid) {
733 case 0:
734 if (!cpu_has_llsc)
735 if (!simulate_llsc(regs))
736 return;
738 if (!simulate_rdhwr(regs))
739 return;
741 break;
743 case 1:
744 preempt_disable();
746 own_fpu();
747 if (used_math()) { /* Using the FPU again. */
748 restore_fp(current);
749 } else { /* First time FPU user. */
750 init_fpu();
751 set_used_math();
754 preempt_enable();
756 if (!cpu_has_fpu) {
757 int sig = fpu_emulator_cop1Handler(regs,
758 &current->thread.fpu.soft);
759 if (sig)
760 force_sig(sig, current);
761 #ifdef CONFIG_MIPS_MT_FPAFF
762 else {
764 * MIPS MT processors may have fewer FPU contexts
765 * than CPU threads. If we've emulated more than
766 * some threshold number of instructions, force
767 * migration to a "CPU" that has FP support.
769 if(mt_fpemul_threshold > 0
770 && ((current->thread.emulated_fp++
771 > mt_fpemul_threshold))) {
773 * If there's no FPU present, or if the
774 * application has already restricted
775 * the allowed set to exclude any CPUs
776 * with FPUs, we'll skip the procedure.
778 if (cpus_intersects(current->cpus_allowed,
779 mt_fpu_cpumask)) {
780 cpumask_t tmask;
782 cpus_and(tmask,
783 current->thread.user_cpus_allowed,
784 mt_fpu_cpumask);
785 set_cpus_allowed(current, tmask);
786 current->thread.mflags |= MF_FPUBOUND;
790 #endif /* CONFIG_MIPS_MT_FPAFF */
793 return;
795 case 2:
796 case 3:
797 die_if_kernel("do_cpu invoked from kernel context!", regs);
798 break;
801 force_sig(SIGILL, current);
804 asmlinkage void do_mdmx(struct pt_regs *regs)
806 force_sig(SIGILL, current);
809 asmlinkage void do_watch(struct pt_regs *regs)
812 * We use the watch exception where available to detect stack
813 * overflows.
815 dump_tlb_all();
816 show_regs(regs);
817 panic("Caught WATCH exception - probably caused by stack overflow.");
820 asmlinkage void do_mcheck(struct pt_regs *regs)
822 const int field = 2 * sizeof(unsigned long);
823 int multi_match = regs->cp0_status & ST0_TS;
825 show_regs(regs);
827 if (multi_match) {
828 printk("Index : %0x\n", read_c0_index());
829 printk("Pagemask: %0x\n", read_c0_pagemask());
830 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
831 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
832 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
833 printk("\n");
834 dump_tlb_all();
837 show_code((unsigned int *) regs->cp0_epc);
840 * Some chips may have other causes of machine check (e.g. SB1
841 * graduation timer)
843 panic("Caught Machine Check exception - %scaused by multiple "
844 "matching entries in the TLB.",
845 (multi_match) ? "" : "not ");
848 asmlinkage void do_mt(struct pt_regs *regs)
850 int subcode;
852 die_if_kernel("MIPS MT Thread exception in kernel", regs);
854 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
855 >> VPECONTROL_EXCPT_SHIFT;
856 switch (subcode) {
857 case 0:
858 printk(KERN_ERR "Thread Underflow\n");
859 break;
860 case 1:
861 printk(KERN_ERR "Thread Overflow\n");
862 break;
863 case 2:
864 printk(KERN_ERR "Invalid YIELD Qualifier\n");
865 break;
866 case 3:
867 printk(KERN_ERR "Gating Storage Exception\n");
868 break;
869 case 4:
870 printk(KERN_ERR "YIELD Scheduler Exception\n");
871 break;
872 case 5:
873 printk(KERN_ERR "Gating Storage Schedulier Exception\n");
874 break;
875 default:
876 printk(KERN_ERR "*** UNKNOWN THREAD EXCEPTION %d ***\n",
877 subcode);
878 break;
880 die_if_kernel("MIPS MT Thread exception in kernel", regs);
882 force_sig(SIGILL, current);
886 asmlinkage void do_dsp(struct pt_regs *regs)
888 if (cpu_has_dsp)
889 panic("Unexpected DSP exception\n");
891 force_sig(SIGILL, current);
894 asmlinkage void do_reserved(struct pt_regs *regs)
897 * Game over - no way to handle this if it ever occurs. Most probably
898 * caused by a new unknown cpu type or after another deadly
899 * hard/software error.
901 show_regs(regs);
902 panic("Caught reserved exception %ld - should not happen.",
903 (regs->cp0_cause & 0x7f) >> 2);
906 asmlinkage void do_default_vi(struct pt_regs *regs)
908 show_regs(regs);
909 panic("Caught unexpected vectored interrupt.");
913 * Some MIPS CPUs can enable/disable for cache parity detection, but do
914 * it different ways.
916 static inline void parity_protection_init(void)
918 switch (current_cpu_data.cputype) {
919 case CPU_24K:
920 case CPU_34K:
921 case CPU_5KC:
922 write_c0_ecc(0x80000000);
923 back_to_back_c0_hazard();
924 /* Set the PE bit (bit 31) in the c0_errctl register. */
925 printk(KERN_INFO "Cache parity protection %sabled\n",
926 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
927 break;
928 case CPU_20KC:
929 case CPU_25KF:
930 /* Clear the DE bit (bit 16) in the c0_status register. */
931 printk(KERN_INFO "Enable cache parity protection for "
932 "MIPS 20KC/25KF CPUs.\n");
933 clear_c0_status(ST0_DE);
934 break;
935 default:
936 break;
940 asmlinkage void cache_parity_error(void)
942 const int field = 2 * sizeof(unsigned long);
943 unsigned int reg_val;
945 /* For the moment, report the problem and hang. */
946 printk("Cache error exception:\n");
947 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
948 reg_val = read_c0_cacheerr();
949 printk("c0_cacheerr == %08x\n", reg_val);
951 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
952 reg_val & (1<<30) ? "secondary" : "primary",
953 reg_val & (1<<31) ? "data" : "insn");
954 printk("Error bits: %s%s%s%s%s%s%s\n",
955 reg_val & (1<<29) ? "ED " : "",
956 reg_val & (1<<28) ? "ET " : "",
957 reg_val & (1<<26) ? "EE " : "",
958 reg_val & (1<<25) ? "EB " : "",
959 reg_val & (1<<24) ? "EI " : "",
960 reg_val & (1<<23) ? "E1 " : "",
961 reg_val & (1<<22) ? "E0 " : "");
962 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
964 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
965 if (reg_val & (1<<22))
966 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
968 if (reg_val & (1<<23))
969 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
970 #endif
972 panic("Can't handle the cache error!");
976 * SDBBP EJTAG debug exception handler.
977 * We skip the instruction and return to the next instruction.
979 void ejtag_exception_handler(struct pt_regs *regs)
981 const int field = 2 * sizeof(unsigned long);
982 unsigned long depc, old_epc;
983 unsigned int debug;
985 printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
986 depc = read_c0_depc();
987 debug = read_c0_debug();
988 printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
989 if (debug & 0x80000000) {
991 * In branch delay slot.
992 * We cheat a little bit here and use EPC to calculate the
993 * debug return address (DEPC). EPC is restored after the
994 * calculation.
996 old_epc = regs->cp0_epc;
997 regs->cp0_epc = depc;
998 __compute_return_epc(regs);
999 depc = regs->cp0_epc;
1000 regs->cp0_epc = old_epc;
1001 } else
1002 depc += 4;
1003 write_c0_depc(depc);
1005 #if 0
1006 printk("\n\n----- Enable EJTAG single stepping ----\n\n");
1007 write_c0_debug(debug | 0x100);
1008 #endif
1012 * NMI exception handler.
1014 void nmi_exception_handler(struct pt_regs *regs)
1016 #ifdef CONFIG_MIPS_MT_SMTC
1017 unsigned long dvpret = dvpe();
1018 bust_spinlocks(1);
1019 printk("NMI taken!!!!\n");
1020 mips_mt_regdump(dvpret);
1021 #else
1022 bust_spinlocks(1);
1023 printk("NMI taken!!!!\n");
1024 #endif /* CONFIG_MIPS_MT_SMTC */
1025 die("NMI", regs);
1026 while(1) ;
1029 #define VECTORSPACING 0x100 /* for EI/VI mode */
1031 unsigned long ebase;
1032 unsigned long exception_handlers[32];
1033 unsigned long vi_handlers[64];
1036 * As a side effect of the way this is implemented we're limited
1037 * to interrupt handlers in the address range from
1038 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1040 void *set_except_vector(int n, void *addr)
1042 unsigned long handler = (unsigned long) addr;
1043 unsigned long old_handler = exception_handlers[n];
1045 exception_handlers[n] = handler;
1046 if (n == 0 && cpu_has_divec) {
1047 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1048 (0x03ffffff & (handler >> 2));
1049 flush_icache_range(ebase + 0x200, ebase + 0x204);
1051 return (void *)old_handler;
1054 #ifdef CONFIG_CPU_MIPSR2
1056 * MIPSR2 shadow register set allocation
1057 * FIXME: SMP...
1060 static struct shadow_registers {
1062 * Number of shadow register sets supported
1064 unsigned long sr_supported;
1066 * Bitmap of allocated shadow registers
1068 unsigned long sr_allocated;
1069 } shadow_registers;
1071 static void mips_srs_init(void)
1073 #ifdef CONFIG_CPU_MIPSR2_SRS
1074 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1075 printk(KERN_INFO "%d MIPSR2 register sets available\n",
1076 shadow_registers.sr_supported);
1077 #endif
1078 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
1081 int mips_srs_max(void)
1083 return shadow_registers.sr_supported;
1086 int mips_srs_alloc(void)
1088 struct shadow_registers *sr = &shadow_registers;
1089 int set;
1091 again:
1092 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1093 if (set >= sr->sr_supported)
1094 return -1;
1096 if (test_and_set_bit(set, &sr->sr_allocated))
1097 goto again;
1099 return set;
1102 void mips_srs_free(int set)
1104 struct shadow_registers *sr = &shadow_registers;
1106 clear_bit(set, &sr->sr_allocated);
1109 static void *set_vi_srs_handler(int n, void *addr, int srs)
1111 unsigned long handler;
1112 unsigned long old_handler = vi_handlers[n];
1113 u32 *w;
1114 unsigned char *b;
1116 if (!cpu_has_veic && !cpu_has_vint)
1117 BUG();
1119 if (addr == NULL) {
1120 handler = (unsigned long) do_default_vi;
1121 srs = 0;
1122 } else
1123 handler = (unsigned long) addr;
1124 vi_handlers[n] = (unsigned long) addr;
1126 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1128 if (srs >= mips_srs_max())
1129 panic("Shadow register set %d not supported", srs);
1131 if (cpu_has_veic) {
1132 if (board_bind_eic_interrupt)
1133 board_bind_eic_interrupt (n, srs);
1134 } else if (cpu_has_vint) {
1135 /* SRSMap is only defined if shadow sets are implemented */
1136 if (mips_srs_max() > 1)
1137 change_c0_srsmap (0xf << n*4, srs << n*4);
1140 if (srs == 0) {
1142 * If no shadow set is selected then use the default handler
1143 * that does normal register saving and a standard interrupt exit
1146 extern char except_vec_vi, except_vec_vi_lui;
1147 extern char except_vec_vi_ori, except_vec_vi_end;
1148 #ifdef CONFIG_MIPS_MT_SMTC
1150 * We need to provide the SMTC vectored interrupt handler
1151 * not only with the address of the handler, but with the
1152 * Status.IM bit to be masked before going there.
1154 extern char except_vec_vi_mori;
1155 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1156 #endif /* CONFIG_MIPS_MT_SMTC */
1157 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1158 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1159 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1161 if (handler_len > VECTORSPACING) {
1163 * Sigh... panicing won't help as the console
1164 * is probably not configured :(
1166 panic ("VECTORSPACING too small");
1169 memcpy (b, &except_vec_vi, handler_len);
1170 #ifdef CONFIG_MIPS_MT_SMTC
1171 if (n > 7)
1172 printk("Vector index %d exceeds SMTC maximum\n", n);
1173 w = (u32 *)(b + mori_offset);
1174 *w = (*w & 0xffff0000) | (0x100 << n);
1175 #endif /* CONFIG_MIPS_MT_SMTC */
1176 w = (u32 *)(b + lui_offset);
1177 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1178 w = (u32 *)(b + ori_offset);
1179 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1180 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1182 else {
1184 * In other cases jump directly to the interrupt handler
1186 * It is the handlers responsibility to save registers if required
1187 * (eg hi/lo) and return from the exception using "eret"
1189 w = (u32 *)b;
1190 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1191 *w = 0;
1192 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1195 return (void *)old_handler;
1198 void *set_vi_handler(int n, void *addr)
1200 return set_vi_srs_handler(n, addr, 0);
1202 #endif
1205 * This is used by native signal handling
1207 asmlinkage int (*save_fp_context)(struct sigcontext *sc);
1208 asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
1210 extern asmlinkage int _save_fp_context(struct sigcontext *sc);
1211 extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
1213 extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
1214 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
1216 #ifdef CONFIG_SMP
1217 static int smp_save_fp_context(struct sigcontext *sc)
1219 return cpu_has_fpu
1220 ? _save_fp_context(sc)
1221 : fpu_emulator_save_context(sc);
1224 static int smp_restore_fp_context(struct sigcontext *sc)
1226 return cpu_has_fpu
1227 ? _restore_fp_context(sc)
1228 : fpu_emulator_restore_context(sc);
1230 #endif
1232 static inline void signal_init(void)
1234 #ifdef CONFIG_SMP
1235 /* For now just do the cpu_has_fpu check when the functions are invoked */
1236 save_fp_context = smp_save_fp_context;
1237 restore_fp_context = smp_restore_fp_context;
1238 #else
1239 if (cpu_has_fpu) {
1240 save_fp_context = _save_fp_context;
1241 restore_fp_context = _restore_fp_context;
1242 } else {
1243 save_fp_context = fpu_emulator_save_context;
1244 restore_fp_context = fpu_emulator_restore_context;
1246 #endif
1249 #ifdef CONFIG_MIPS32_COMPAT
1252 * This is used by 32-bit signal stuff on the 64-bit kernel
1254 asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
1255 asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
1257 extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
1258 extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
1260 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
1261 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
1263 static inline void signal32_init(void)
1265 if (cpu_has_fpu) {
1266 save_fp_context32 = _save_fp_context32;
1267 restore_fp_context32 = _restore_fp_context32;
1268 } else {
1269 save_fp_context32 = fpu_emulator_save_context32;
1270 restore_fp_context32 = fpu_emulator_restore_context32;
1273 #endif
1275 extern void cpu_cache_init(void);
1276 extern void tlb_init(void);
1277 extern void flush_tlb_handlers(void);
1279 void __init per_cpu_trap_init(void)
1281 unsigned int cpu = smp_processor_id();
1282 unsigned int status_set = ST0_CU0;
1283 #ifdef CONFIG_MIPS_MT_SMTC
1284 int secondaryTC = 0;
1285 int bootTC = (cpu == 0);
1288 * Only do per_cpu_trap_init() for first TC of Each VPE.
1289 * Note that this hack assumes that the SMTC init code
1290 * assigns TCs consecutively and in ascending order.
1293 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1294 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1295 secondaryTC = 1;
1296 #endif /* CONFIG_MIPS_MT_SMTC */
1299 * Disable coprocessors and select 32-bit or 64-bit addressing
1300 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1301 * flag that some firmware may have left set and the TS bit (for
1302 * IP27). Set XX for ISA IV code to work.
1304 #ifdef CONFIG_64BIT
1305 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1306 #endif
1307 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1308 status_set |= ST0_XX;
1309 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1310 status_set);
1312 if (cpu_has_dsp)
1313 set_c0_status(ST0_MX);
1315 #ifdef CONFIG_CPU_MIPSR2
1316 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1317 #endif
1319 #ifdef CONFIG_MIPS_MT_SMTC
1320 if (!secondaryTC) {
1321 #endif /* CONFIG_MIPS_MT_SMTC */
1324 * Interrupt handling.
1326 if (cpu_has_veic || cpu_has_vint) {
1327 write_c0_ebase (ebase);
1328 /* Setting vector spacing enables EI/VI mode */
1329 change_c0_intctl (0x3e0, VECTORSPACING);
1331 if (cpu_has_divec) {
1332 if (cpu_has_mipsmt) {
1333 unsigned int vpflags = dvpe();
1334 set_c0_cause(CAUSEF_IV);
1335 evpe(vpflags);
1336 } else
1337 set_c0_cause(CAUSEF_IV);
1339 #ifdef CONFIG_MIPS_MT_SMTC
1341 #endif /* CONFIG_MIPS_MT_SMTC */
1343 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1344 TLBMISS_HANDLER_SETUP();
1346 atomic_inc(&init_mm.mm_count);
1347 current->active_mm = &init_mm;
1348 BUG_ON(current->mm);
1349 enter_lazy_tlb(&init_mm, current);
1351 #ifdef CONFIG_MIPS_MT_SMTC
1352 if (bootTC) {
1353 #endif /* CONFIG_MIPS_MT_SMTC */
1354 cpu_cache_init();
1355 tlb_init();
1356 #ifdef CONFIG_MIPS_MT_SMTC
1358 #endif /* CONFIG_MIPS_MT_SMTC */
1361 /* Install CPU exception handler */
1362 void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1364 memcpy((void *)(ebase + offset), addr, size);
1365 flush_icache_range(ebase + offset, ebase + offset + size);
1368 /* Install uncached CPU exception handler */
1369 void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1371 #ifdef CONFIG_32BIT
1372 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1373 #endif
1374 #ifdef CONFIG_64BIT
1375 unsigned long uncached_ebase = TO_UNCAC(ebase);
1376 #endif
1378 memcpy((void *)(uncached_ebase + offset), addr, size);
1381 void __init trap_init(void)
1383 extern char except_vec3_generic, except_vec3_r4000;
1384 extern char except_vec4;
1385 unsigned long i;
1387 if (cpu_has_veic || cpu_has_vint)
1388 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1389 else
1390 ebase = CAC_BASE;
1392 #ifdef CONFIG_CPU_MIPSR2
1393 mips_srs_init();
1394 #endif
1396 per_cpu_trap_init();
1399 * Copy the generic exception handlers to their final destination.
1400 * This will be overriden later as suitable for a particular
1401 * configuration.
1403 set_handler(0x180, &except_vec3_generic, 0x80);
1406 * Setup default vectors
1408 for (i = 0; i <= 31; i++)
1409 set_except_vector(i, handle_reserved);
1412 * Copy the EJTAG debug exception vector handler code to it's final
1413 * destination.
1415 if (cpu_has_ejtag && board_ejtag_handler_setup)
1416 board_ejtag_handler_setup ();
1419 * Only some CPUs have the watch exceptions.
1421 if (cpu_has_watch)
1422 set_except_vector(23, handle_watch);
1425 * Initialise interrupt handlers
1427 if (cpu_has_veic || cpu_has_vint) {
1428 int nvec = cpu_has_veic ? 64 : 8;
1429 for (i = 0; i < nvec; i++)
1430 set_vi_handler(i, NULL);
1432 else if (cpu_has_divec)
1433 set_handler(0x200, &except_vec4, 0x8);
1436 * Some CPUs can enable/disable for cache parity detection, but does
1437 * it different ways.
1439 parity_protection_init();
1442 * The Data Bus Errors / Instruction Bus Errors are signaled
1443 * by external hardware. Therefore these two exceptions
1444 * may have board specific handlers.
1446 if (board_be_init)
1447 board_be_init();
1449 set_except_vector(0, handle_int);
1450 set_except_vector(1, handle_tlbm);
1451 set_except_vector(2, handle_tlbl);
1452 set_except_vector(3, handle_tlbs);
1454 set_except_vector(4, handle_adel);
1455 set_except_vector(5, handle_ades);
1457 set_except_vector(6, handle_ibe);
1458 set_except_vector(7, handle_dbe);
1460 set_except_vector(8, handle_sys);
1461 set_except_vector(9, handle_bp);
1462 set_except_vector(10, handle_ri);
1463 set_except_vector(11, handle_cpu);
1464 set_except_vector(12, handle_ov);
1465 set_except_vector(13, handle_tr);
1467 if (current_cpu_data.cputype == CPU_R6000 ||
1468 current_cpu_data.cputype == CPU_R6000A) {
1470 * The R6000 is the only R-series CPU that features a machine
1471 * check exception (similar to the R4000 cache error) and
1472 * unaligned ldc1/sdc1 exception. The handlers have not been
1473 * written yet. Well, anyway there is no R6000 machine on the
1474 * current list of targets for Linux/MIPS.
1475 * (Duh, crap, there is someone with a triple R6k machine)
1477 //set_except_vector(14, handle_mc);
1478 //set_except_vector(15, handle_ndc);
1482 if (board_nmi_handler_setup)
1483 board_nmi_handler_setup();
1485 if (cpu_has_fpu && !cpu_has_nofpuex)
1486 set_except_vector(15, handle_fpe);
1488 set_except_vector(22, handle_mdmx);
1490 if (cpu_has_mcheck)
1491 set_except_vector(24, handle_mcheck);
1493 if (cpu_has_mipsmt)
1494 set_except_vector(25, handle_mt);
1496 if (cpu_has_dsp)
1497 set_except_vector(26, handle_dsp);
1499 if (cpu_has_vce)
1500 /* Special exception: R4[04]00 uses also the divec space. */
1501 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1502 else if (cpu_has_4kex)
1503 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1504 else
1505 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1507 signal_init();
1508 #ifdef CONFIG_MIPS32_COMPAT
1509 signal32_init();
1510 #endif
1512 flush_icache_range(ebase, ebase + 0x400);
1513 flush_tlb_handlers();