3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
29 #include <linux/stddef.h>
30 #include <linux/init.h>
31 #include <linux/bootmem.h>
32 #include <linux/highmem.h>
33 #include <linux/initrd.h>
34 #include <linux/pagemap.h>
36 #include <asm/pgalloc.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
43 #include <asm/machdep.h>
44 #include <asm/btext.h>
48 #include <asm/sections.h>
53 #ifndef CPU_FTR_COHERENT_ICACHE
54 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
55 #define CPU_FTR_NOEXECUTE 0
58 int init_bootmem_done
;
60 unsigned long memory_limit
;
62 extern void hash_preload(struct mm_struct
*mm
, unsigned long ea
,
63 unsigned long access
, unsigned long trap
);
66 * This is called by /dev/mem to know if a given address has to
67 * be mapped non-cacheable or not
69 int page_is_ram(unsigned long pfn
)
71 unsigned long paddr
= (pfn
<< PAGE_SHIFT
);
73 #ifndef CONFIG_PPC64 /* XXX for now */
74 return paddr
< __pa(high_memory
);
77 for (i
=0; i
< lmb
.memory
.cnt
; i
++) {
80 base
= lmb
.memory
.region
[i
].base
;
82 if ((paddr
>= base
) &&
83 (paddr
< (base
+ lmb
.memory
.region
[i
].size
))) {
91 EXPORT_SYMBOL(page_is_ram
);
93 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
94 unsigned long size
, pgprot_t vma_prot
)
96 if (ppc_md
.phys_mem_access_prot
)
97 return ppc_md
.phys_mem_access_prot(file
, pfn
, size
, vma_prot
);
99 if (!page_is_ram(pfn
))
100 vma_prot
= __pgprot(pgprot_val(vma_prot
)
101 | _PAGE_GUARDED
| _PAGE_NO_CACHE
);
104 EXPORT_SYMBOL(phys_mem_access_prot
);
106 #ifdef CONFIG_MEMORY_HOTPLUG
108 void online_page(struct page
*page
)
110 ClearPageReserved(page
);
111 init_page_count(page
);
117 int __devinit
add_memory(u64 start
, u64 size
)
119 struct pglist_data
*pgdata
;
122 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
123 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
125 nid
= hot_add_scn_to_nid(start
);
126 pgdata
= NODE_DATA(nid
);
128 start
= (unsigned long)__va(start
);
129 create_section_mapping(start
, start
+ size
);
131 /* this should work for most non-highmem platforms */
132 zone
= pgdata
->node_zones
;
134 return __add_pages(zone
, start_pfn
, nr_pages
);
140 * First pass at this code will check to determine if the remove
141 * request is within the RMO. Do not allow removal within the RMO.
143 int __devinit
remove_memory(u64 start
, u64 size
)
146 unsigned long start_pfn
, end_pfn
, nr_pages
;
148 start_pfn
= start
>> PAGE_SHIFT
;
149 nr_pages
= size
>> PAGE_SHIFT
;
150 end_pfn
= start_pfn
+ nr_pages
;
152 printk("%s(): Attempting to remove memoy in range "
153 "%lx to %lx\n", __func__
, start
, start
+size
);
155 * check for range within RMO
157 zone
= page_zone(pfn_to_page(start_pfn
));
159 printk("%s(): memory will be removed from "
160 "the %s zone\n", __func__
, zone
->name
);
163 * not handling removing memory ranges that
164 * overlap multiple zones yet
166 if (end_pfn
> (zone
->zone_start_pfn
+ zone
->spanned_pages
))
169 /* make sure it is NOT in RMO */
170 if ((start
< lmb
.rmo_size
) || ((start
+size
) < lmb
.rmo_size
)) {
171 printk("%s(): range to be removed must NOT be in RMO!\n",
176 return __remove_pages(zone
, start_pfn
, nr_pages
);
179 printk("%s(): memory range to be removed overlaps "
180 "multiple zones!!!\n", __func__
);
184 #endif /* CONFIG_MEMORY_HOTPLUG */
188 unsigned long total
= 0, reserved
= 0;
189 unsigned long shared
= 0, cached
= 0;
190 unsigned long highmem
= 0;
195 printk("Mem-info:\n");
197 printk("Free swap: %6ldkB\n", nr_swap_pages
<<(PAGE_SHIFT
-10));
198 for_each_online_pgdat(pgdat
) {
200 pgdat_resize_lock(pgdat
, &flags
);
201 for (i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
202 if (!pfn_valid(pgdat
->node_start_pfn
+ i
))
204 page
= pgdat_page_nr(pgdat
, i
);
206 if (PageHighMem(page
))
208 if (PageReserved(page
))
210 else if (PageSwapCache(page
))
212 else if (page_count(page
))
213 shared
+= page_count(page
) - 1;
215 pgdat_resize_unlock(pgdat
, &flags
);
217 printk("%ld pages of RAM\n", total
);
218 #ifdef CONFIG_HIGHMEM
219 printk("%ld pages of HIGHMEM\n", highmem
);
221 printk("%ld reserved pages\n", reserved
);
222 printk("%ld pages shared\n", shared
);
223 printk("%ld pages swap cached\n", cached
);
227 * Initialize the bootmem system and give it all the memory we
228 * have available. If we are using highmem, we only put the
229 * lowmem into the bootmem system.
231 #ifndef CONFIG_NEED_MULTIPLE_NODES
232 void __init
do_init_bootmem(void)
235 unsigned long start
, bootmap_pages
;
236 unsigned long total_pages
;
239 max_pfn
= total_pages
= lmb_end_of_DRAM() >> PAGE_SHIFT
;
240 #ifdef CONFIG_HIGHMEM
241 total_pages
= total_lowmem
>> PAGE_SHIFT
;
245 * Find an area to use for the bootmem bitmap. Calculate the size of
246 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
247 * Add 1 additional page in case the address isn't page-aligned.
249 bootmap_pages
= bootmem_bootmap_pages(total_pages
);
251 start
= lmb_alloc(bootmap_pages
<< PAGE_SHIFT
, PAGE_SIZE
);
253 boot_mapsize
= init_bootmem(start
>> PAGE_SHIFT
, total_pages
);
255 /* Add all physical memory to the bootmem map, mark each area
258 for (i
= 0; i
< lmb
.memory
.cnt
; i
++) {
259 unsigned long base
= lmb
.memory
.region
[i
].base
;
260 unsigned long size
= lmb_size_bytes(&lmb
.memory
, i
);
261 #ifdef CONFIG_HIGHMEM
262 if (base
>= total_lowmem
)
264 if (base
+ size
> total_lowmem
)
265 size
= total_lowmem
- base
;
267 free_bootmem(base
, size
);
270 /* reserve the sections we're already using */
271 for (i
= 0; i
< lmb
.reserved
.cnt
; i
++)
272 reserve_bootmem(lmb
.reserved
.region
[i
].base
,
273 lmb_size_bytes(&lmb
.reserved
, i
));
275 /* XXX need to clip this if using highmem? */
276 for (i
= 0; i
< lmb
.memory
.cnt
; i
++)
277 memory_present(0, lmb_start_pfn(&lmb
.memory
, i
),
278 lmb_end_pfn(&lmb
.memory
, i
));
279 init_bootmem_done
= 1;
283 * paging_init() sets up the page tables - in fact we've already done this.
285 void __init
paging_init(void)
287 unsigned long zones_size
[MAX_NR_ZONES
];
288 unsigned long zholes_size
[MAX_NR_ZONES
];
289 unsigned long total_ram
= lmb_phys_mem_size();
290 unsigned long top_of_ram
= lmb_end_of_DRAM();
292 #ifdef CONFIG_HIGHMEM
293 map_page(PKMAP_BASE
, 0, 0); /* XXX gross */
294 pkmap_page_table
= pte_offset_kernel(pmd_offset(pgd_offset_k
295 (PKMAP_BASE
), PKMAP_BASE
), PKMAP_BASE
);
296 map_page(KMAP_FIX_BEGIN
, 0, 0); /* XXX gross */
297 kmap_pte
= pte_offset_kernel(pmd_offset(pgd_offset_k
298 (KMAP_FIX_BEGIN
), KMAP_FIX_BEGIN
), KMAP_FIX_BEGIN
);
299 kmap_prot
= PAGE_KERNEL
;
300 #endif /* CONFIG_HIGHMEM */
302 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
303 top_of_ram
, total_ram
);
304 printk(KERN_INFO
"Memory hole size: %ldMB\n",
305 (top_of_ram
- total_ram
) >> 20);
307 * All pages are DMA-able so we put them all in the DMA zone.
309 memset(zones_size
, 0, sizeof(zones_size
));
310 memset(zholes_size
, 0, sizeof(zholes_size
));
312 zones_size
[ZONE_DMA
] = top_of_ram
>> PAGE_SHIFT
;
313 zholes_size
[ZONE_DMA
] = (top_of_ram
- total_ram
) >> PAGE_SHIFT
;
315 #ifdef CONFIG_HIGHMEM
316 zones_size
[ZONE_DMA
] = total_lowmem
>> PAGE_SHIFT
;
317 zones_size
[ZONE_HIGHMEM
] = (total_memory
- total_lowmem
) >> PAGE_SHIFT
;
318 zholes_size
[ZONE_HIGHMEM
] = (top_of_ram
- total_ram
) >> PAGE_SHIFT
;
320 zones_size
[ZONE_DMA
] = top_of_ram
>> PAGE_SHIFT
;
321 zholes_size
[ZONE_DMA
] = (top_of_ram
- total_ram
) >> PAGE_SHIFT
;
322 #endif /* CONFIG_HIGHMEM */
324 free_area_init_node(0, NODE_DATA(0), zones_size
,
325 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, zholes_size
);
327 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
329 void __init
mem_init(void)
331 #ifdef CONFIG_NEED_MULTIPLE_NODES
337 unsigned long reservedpages
= 0, codesize
, initsize
, datasize
, bsssize
;
339 num_physpages
= lmb
.memory
.size
>> PAGE_SHIFT
;
340 high_memory
= (void *) __va(max_low_pfn
* PAGE_SIZE
);
342 #ifdef CONFIG_NEED_MULTIPLE_NODES
343 for_each_online_node(nid
) {
344 if (NODE_DATA(nid
)->node_spanned_pages
!= 0) {
345 printk("freeing bootmem node %d\n", nid
);
347 free_all_bootmem_node(NODE_DATA(nid
));
352 totalram_pages
+= free_all_bootmem();
354 for_each_online_pgdat(pgdat
) {
355 for (i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
356 if (!pfn_valid(pgdat
->node_start_pfn
+ i
))
358 page
= pgdat_page_nr(pgdat
, i
);
359 if (PageReserved(page
))
364 codesize
= (unsigned long)&_sdata
- (unsigned long)&_stext
;
365 datasize
= (unsigned long)&_edata
- (unsigned long)&_sdata
;
366 initsize
= (unsigned long)&__init_end
- (unsigned long)&__init_begin
;
367 bsssize
= (unsigned long)&__bss_stop
- (unsigned long)&__bss_start
;
369 #ifdef CONFIG_HIGHMEM
371 unsigned long pfn
, highmem_mapnr
;
373 highmem_mapnr
= total_lowmem
>> PAGE_SHIFT
;
374 for (pfn
= highmem_mapnr
; pfn
< max_mapnr
; ++pfn
) {
375 struct page
*page
= pfn_to_page(pfn
);
377 ClearPageReserved(page
);
378 init_page_count(page
);
382 totalram_pages
+= totalhigh_pages
;
383 printk(KERN_INFO
"High memory: %luk\n",
384 totalhigh_pages
<< (PAGE_SHIFT
-10));
386 #endif /* CONFIG_HIGHMEM */
388 printk(KERN_INFO
"Memory: %luk/%luk available (%luk kernel code, "
389 "%luk reserved, %luk data, %luk bss, %luk init)\n",
390 (unsigned long)nr_free_pages() << (PAGE_SHIFT
-10),
391 num_physpages
<< (PAGE_SHIFT
-10),
393 reservedpages
<< (PAGE_SHIFT
-10),
400 /* Initialize the vDSO */
405 * This is called when a page has been modified by the kernel.
406 * It just marks the page as not i-cache clean. We do the i-cache
407 * flush later when the page is given to a user process, if necessary.
409 void flush_dcache_page(struct page
*page
)
411 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE
))
413 /* avoid an atomic op if possible */
414 if (test_bit(PG_arch_1
, &page
->flags
))
415 clear_bit(PG_arch_1
, &page
->flags
);
417 EXPORT_SYMBOL(flush_dcache_page
);
419 void flush_dcache_icache_page(struct page
*page
)
422 void *start
= kmap_atomic(page
, KM_PPC_SYNC_ICACHE
);
423 __flush_dcache_icache(start
);
424 kunmap_atomic(start
, KM_PPC_SYNC_ICACHE
);
425 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
426 /* On 8xx there is no need to kmap since highmem is not supported */
427 __flush_dcache_icache(page_address(page
));
429 __flush_dcache_icache_phys(page_to_pfn(page
) << PAGE_SHIFT
);
433 void clear_user_page(void *page
, unsigned long vaddr
, struct page
*pg
)
438 * We shouldnt have to do this, but some versions of glibc
439 * require it (ld.so assumes zero filled pages are icache clean)
442 flush_dcache_page(pg
);
444 EXPORT_SYMBOL(clear_user_page
);
446 void copy_user_page(void *vto
, void *vfrom
, unsigned long vaddr
,
449 copy_page(vto
, vfrom
);
452 * We should be able to use the following optimisation, however
453 * there are two problems.
454 * Firstly a bug in some versions of binutils meant PLT sections
455 * were not marked executable.
456 * Secondly the first word in the GOT section is blrl, used
457 * to establish the GOT address. Until recently the GOT was
458 * not marked executable.
462 if (!vma
->vm_file
&& ((vma
->vm_flags
& VM_EXEC
) == 0))
466 flush_dcache_page(pg
);
469 void flush_icache_user_range(struct vm_area_struct
*vma
, struct page
*page
,
470 unsigned long addr
, int len
)
474 maddr
= (unsigned long) kmap(page
) + (addr
& ~PAGE_MASK
);
475 flush_icache_range(maddr
, maddr
+ len
);
478 EXPORT_SYMBOL(flush_icache_user_range
);
481 * This is called at the end of handling a user page fault, when the
482 * fault has been handled by updating a PTE in the linux page tables.
483 * We use it to preload an HPTE into the hash table corresponding to
484 * the updated linux PTE.
486 * This must always be called with the pte lock held.
488 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
,
491 #ifdef CONFIG_PPC_STD_MMU
492 unsigned long access
= 0, trap
;
494 unsigned long pfn
= pte_pfn(pte
);
496 /* handle i-cache coherency */
497 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE
) &&
498 !cpu_has_feature(CPU_FTR_NOEXECUTE
) &&
500 struct page
*page
= pfn_to_page(pfn
);
501 if (!PageReserved(page
)
502 && !test_bit(PG_arch_1
, &page
->flags
)) {
503 if (vma
->vm_mm
== current
->active_mm
) {
505 /* On 8xx, cache control instructions (particularly
506 * "dcbst" from flush_dcache_icache) fault as write
507 * operation if there is an unpopulated TLB entry
508 * for the address in question. To workaround that,
509 * we invalidate the TLB here, thus avoiding dcbst
514 __flush_dcache_icache((void *) address
);
516 flush_dcache_icache_page(page
);
517 set_bit(PG_arch_1
, &page
->flags
);
521 #ifdef CONFIG_PPC_STD_MMU
522 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
523 if (!pte_young(pte
) || address
>= TASK_SIZE
)
526 /* We try to figure out if we are coming from an instruction
527 * access fault and pass that down to __hash_page so we avoid
528 * double-faulting on execution of fresh text. We have to test
529 * for regs NULL since init will get here first thing at boot
531 * We also avoid filling the hash if not coming from a fault
533 if (current
->thread
.regs
== NULL
)
535 trap
= TRAP(current
->thread
.regs
);
537 access
|= _PAGE_EXEC
;
538 else if (trap
!= 0x300)
540 hash_preload(vma
->vm_mm
, address
, access
, trap
);
541 #endif /* CONFIG_PPC_STD_MMU */