4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/config.h>
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/string.h>
31 #include <linux/kernel.h>
32 #include <linux/timer.h>
34 #include <linux/interrupt.h>
35 #include <linux/major.h>
36 #include <linux/errno.h>
37 #include <linux/genhd.h>
38 #include <linux/blkpg.h>
39 #include <linux/slab.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/ide.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
56 #include <asm/bitops.h>
58 static int __ide_end_request(ide_drive_t
*drive
, struct request
*rq
,
59 int uptodate
, int nr_sectors
)
63 BUG_ON(!(rq
->flags
& REQ_STARTED
));
66 * if failfast is set on a request, override number of sectors and
67 * complete the whole request right now
69 if (blk_noretry_request(rq
) && end_io_error(uptodate
))
70 nr_sectors
= rq
->hard_nr_sectors
;
72 if (!blk_fs_request(rq
) && end_io_error(uptodate
) && !rq
->errors
)
76 * decide whether to reenable DMA -- 3 is a random magic for now,
77 * if we DMA timeout more than 3 times, just stay in PIO
79 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
81 HWGROUP(drive
)->hwif
->ide_dma_on(drive
);
84 if (!end_that_request_first(rq
, uptodate
, nr_sectors
)) {
85 add_disk_randomness(rq
->rq_disk
);
86 blkdev_dequeue_request(rq
);
87 HWGROUP(drive
)->rq
= NULL
;
88 end_that_request_last(rq
, uptodate
);
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
99 * @nr_sectors: number of sectors completed
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
106 int ide_end_request (ide_drive_t
*drive
, int uptodate
, int nr_sectors
)
113 * room for locking improvements here, the calls below don't
114 * need the queue lock held at all
116 spin_lock_irqsave(&ide_lock
, flags
);
117 rq
= HWGROUP(drive
)->rq
;
120 nr_sectors
= rq
->hard_cur_sectors
;
122 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_sectors
);
124 spin_unlock_irqrestore(&ide_lock
, flags
);
127 EXPORT_SYMBOL(ide_end_request
);
130 * Power Management state machine. This one is rather trivial for now,
131 * we should probably add more, like switching back to PIO on suspend
132 * to help some BIOSes, re-do the door locking on resume, etc...
136 ide_pm_flush_cache
= ide_pm_state_start_suspend
,
139 idedisk_pm_idle
= ide_pm_state_start_resume
,
143 static void ide_complete_power_step(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 error
)
145 if (drive
->media
!= ide_disk
)
148 switch (rq
->pm
->pm_step
) {
149 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) complete */
150 if (rq
->pm
->pm_state
== PM_EVENT_FREEZE
)
151 rq
->pm
->pm_step
= ide_pm_state_completed
;
153 rq
->pm
->pm_step
= idedisk_pm_standby
;
155 case idedisk_pm_standby
: /* Suspend step 2 (standby) complete */
156 rq
->pm
->pm_step
= ide_pm_state_completed
;
158 case idedisk_pm_idle
: /* Resume step 1 (idle) complete */
159 rq
->pm
->pm_step
= ide_pm_restore_dma
;
164 static ide_startstop_t
ide_start_power_step(ide_drive_t
*drive
, struct request
*rq
)
166 ide_task_t
*args
= rq
->special
;
168 memset(args
, 0, sizeof(*args
));
170 if (drive
->media
!= ide_disk
) {
171 /* skip idedisk_pm_idle for ATAPI devices */
172 if (rq
->pm
->pm_step
== idedisk_pm_idle
)
173 rq
->pm
->pm_step
= ide_pm_restore_dma
;
176 switch (rq
->pm
->pm_step
) {
177 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) */
178 if (drive
->media
!= ide_disk
)
180 /* Not supported? Switch to next step now. */
181 if (!drive
->wcache
|| !ide_id_has_flush_cache(drive
->id
)) {
182 ide_complete_power_step(drive
, rq
, 0, 0);
185 if (ide_id_has_flush_cache_ext(drive
->id
))
186 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_FLUSH_CACHE_EXT
;
188 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_FLUSH_CACHE
;
189 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
190 args
->handler
= &task_no_data_intr
;
191 return do_rw_taskfile(drive
, args
);
193 case idedisk_pm_standby
: /* Suspend step 2 (standby) */
194 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_STANDBYNOW1
;
195 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
196 args
->handler
= &task_no_data_intr
;
197 return do_rw_taskfile(drive
, args
);
199 case idedisk_pm_idle
: /* Resume step 1 (idle) */
200 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_IDLEIMMEDIATE
;
201 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
202 args
->handler
= task_no_data_intr
;
203 return do_rw_taskfile(drive
, args
);
205 case ide_pm_restore_dma
: /* Resume step 2 (restore DMA) */
207 * Right now, all we do is call hwif->ide_dma_check(drive),
208 * we could be smarter and check for current xfer_speed
209 * in struct drive etc...
211 if ((drive
->id
->capability
& 1) == 0)
213 if (drive
->hwif
->ide_dma_check
== NULL
)
215 drive
->hwif
->ide_dma_check(drive
);
218 rq
->pm
->pm_step
= ide_pm_state_completed
;
223 * ide_complete_pm_request - end the current Power Management request
224 * @drive: target drive
227 * This function cleans up the current PM request and stops the queue
230 static void ide_complete_pm_request (ide_drive_t
*drive
, struct request
*rq
)
235 printk("%s: completing PM request, %s\n", drive
->name
,
236 blk_pm_suspend_request(rq
) ? "suspend" : "resume");
238 spin_lock_irqsave(&ide_lock
, flags
);
239 if (blk_pm_suspend_request(rq
)) {
240 blk_stop_queue(drive
->queue
);
243 blk_start_queue(drive
->queue
);
245 blkdev_dequeue_request(rq
);
246 HWGROUP(drive
)->rq
= NULL
;
247 end_that_request_last(rq
, 1);
248 spin_unlock_irqrestore(&ide_lock
, flags
);
252 * FIXME: probably move this somewhere else, name is bad too :)
254 u64
ide_get_error_location(ide_drive_t
*drive
, char *args
)
265 if (ide_id_has_flush_cache_ext(drive
->id
)) {
266 low
= (hcyl
<< 16) | (lcyl
<< 8) | sect
;
267 HWIF(drive
)->OUTB(drive
->ctl
|0x80, IDE_CONTROL_REG
);
268 high
= ide_read_24(drive
);
270 u8 cur
= HWIF(drive
)->INB(IDE_SELECT_REG
);
273 low
= (hcyl
<< 16) | (lcyl
<< 8) | sect
;
275 low
= hcyl
* drive
->head
* drive
->sect
;
276 low
+= lcyl
* drive
->sect
;
281 sector
= ((u64
) high
<< 24) | low
;
284 EXPORT_SYMBOL(ide_get_error_location
);
287 * ide_end_drive_cmd - end an explicit drive command
292 * Clean up after success/failure of an explicit drive command.
293 * These get thrown onto the queue so they are synchronized with
294 * real I/O operations on the drive.
296 * In LBA48 mode we have to read the register set twice to get
297 * all the extra information out.
300 void ide_end_drive_cmd (ide_drive_t
*drive
, u8 stat
, u8 err
)
302 ide_hwif_t
*hwif
= HWIF(drive
);
306 spin_lock_irqsave(&ide_lock
, flags
);
307 rq
= HWGROUP(drive
)->rq
;
308 spin_unlock_irqrestore(&ide_lock
, flags
);
310 if (rq
->flags
& REQ_DRIVE_CMD
) {
311 u8
*args
= (u8
*) rq
->buffer
;
313 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
318 args
[2] = hwif
->INB(IDE_NSECTOR_REG
);
320 } else if (rq
->flags
& REQ_DRIVE_TASK
) {
321 u8
*args
= (u8
*) rq
->buffer
;
323 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
328 args
[2] = hwif
->INB(IDE_NSECTOR_REG
);
329 args
[3] = hwif
->INB(IDE_SECTOR_REG
);
330 args
[4] = hwif
->INB(IDE_LCYL_REG
);
331 args
[5] = hwif
->INB(IDE_HCYL_REG
);
332 args
[6] = hwif
->INB(IDE_SELECT_REG
);
334 } else if (rq
->flags
& REQ_DRIVE_TASKFILE
) {
335 ide_task_t
*args
= (ide_task_t
*) rq
->special
;
337 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
340 if (args
->tf_in_flags
.b
.data
) {
341 u16 data
= hwif
->INW(IDE_DATA_REG
);
342 args
->tfRegister
[IDE_DATA_OFFSET
] = (data
) & 0xFF;
343 args
->hobRegister
[IDE_DATA_OFFSET
] = (data
>> 8) & 0xFF;
345 args
->tfRegister
[IDE_ERROR_OFFSET
] = err
;
346 /* be sure we're looking at the low order bits */
347 hwif
->OUTB(drive
->ctl
& ~0x80, IDE_CONTROL_REG
);
348 args
->tfRegister
[IDE_NSECTOR_OFFSET
] = hwif
->INB(IDE_NSECTOR_REG
);
349 args
->tfRegister
[IDE_SECTOR_OFFSET
] = hwif
->INB(IDE_SECTOR_REG
);
350 args
->tfRegister
[IDE_LCYL_OFFSET
] = hwif
->INB(IDE_LCYL_REG
);
351 args
->tfRegister
[IDE_HCYL_OFFSET
] = hwif
->INB(IDE_HCYL_REG
);
352 args
->tfRegister
[IDE_SELECT_OFFSET
] = hwif
->INB(IDE_SELECT_REG
);
353 args
->tfRegister
[IDE_STATUS_OFFSET
] = stat
;
355 if (drive
->addressing
== 1) {
356 hwif
->OUTB(drive
->ctl
|0x80, IDE_CONTROL_REG
);
357 args
->hobRegister
[IDE_FEATURE_OFFSET
] = hwif
->INB(IDE_FEATURE_REG
);
358 args
->hobRegister
[IDE_NSECTOR_OFFSET
] = hwif
->INB(IDE_NSECTOR_REG
);
359 args
->hobRegister
[IDE_SECTOR_OFFSET
] = hwif
->INB(IDE_SECTOR_REG
);
360 args
->hobRegister
[IDE_LCYL_OFFSET
] = hwif
->INB(IDE_LCYL_REG
);
361 args
->hobRegister
[IDE_HCYL_OFFSET
] = hwif
->INB(IDE_HCYL_REG
);
364 } else if (blk_pm_request(rq
)) {
366 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
367 drive
->name
, rq
->pm
->pm_step
, stat
, err
);
369 ide_complete_power_step(drive
, rq
, stat
, err
);
370 if (rq
->pm
->pm_step
== ide_pm_state_completed
)
371 ide_complete_pm_request(drive
, rq
);
375 spin_lock_irqsave(&ide_lock
, flags
);
376 blkdev_dequeue_request(rq
);
377 HWGROUP(drive
)->rq
= NULL
;
379 end_that_request_last(rq
, !rq
->errors
);
380 spin_unlock_irqrestore(&ide_lock
, flags
);
383 EXPORT_SYMBOL(ide_end_drive_cmd
);
386 * try_to_flush_leftover_data - flush junk
387 * @drive: drive to flush
389 * try_to_flush_leftover_data() is invoked in response to a drive
390 * unexpectedly having its DRQ_STAT bit set. As an alternative to
391 * resetting the drive, this routine tries to clear the condition
392 * by read a sector's worth of data from the drive. Of course,
393 * this may not help if the drive is *waiting* for data from *us*.
395 static void try_to_flush_leftover_data (ide_drive_t
*drive
)
397 int i
= (drive
->mult_count
? drive
->mult_count
: 1) * SECTOR_WORDS
;
399 if (drive
->media
!= ide_disk
)
403 u32 wcount
= (i
> 16) ? 16 : i
;
406 HWIF(drive
)->ata_input_data(drive
, buffer
, wcount
);
410 static void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
415 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
416 drv
->end_request(drive
, 0, 0);
418 ide_end_request(drive
, 0, 0);
421 static ide_startstop_t
ide_ata_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
423 ide_hwif_t
*hwif
= drive
->hwif
;
425 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
426 /* other bits are useless when BUSY */
427 rq
->errors
|= ERROR_RESET
;
428 } else if (stat
& ERR_STAT
) {
429 /* err has different meaning on cdrom and tape */
430 if (err
== ABRT_ERR
) {
431 if (drive
->select
.b
.lba
&&
432 /* some newer drives don't support WIN_SPECIFY */
433 hwif
->INB(IDE_COMMAND_REG
) == WIN_SPECIFY
)
435 } else if ((err
& BAD_CRC
) == BAD_CRC
) {
436 /* UDMA crc error, just retry the operation */
438 } else if (err
& (BBD_ERR
| ECC_ERR
)) {
439 /* retries won't help these */
440 rq
->errors
= ERROR_MAX
;
441 } else if (err
& TRK0_ERR
) {
442 /* help it find track zero */
443 rq
->errors
|= ERROR_RECAL
;
447 if ((stat
& DRQ_STAT
) && rq_data_dir(rq
) == READ
)
448 try_to_flush_leftover_data(drive
);
450 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
452 hwif
->OUTB(WIN_IDLEIMMEDIATE
, IDE_COMMAND_REG
);
454 if (rq
->errors
>= ERROR_MAX
|| blk_noretry_request(rq
))
455 ide_kill_rq(drive
, rq
);
457 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
459 return ide_do_reset(drive
);
461 if ((rq
->errors
& ERROR_RECAL
) == ERROR_RECAL
)
462 drive
->special
.b
.recalibrate
= 1;
468 static ide_startstop_t
ide_atapi_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
470 ide_hwif_t
*hwif
= drive
->hwif
;
472 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
473 /* other bits are useless when BUSY */
474 rq
->errors
|= ERROR_RESET
;
476 /* add decoding error stuff */
479 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
481 hwif
->OUTB(WIN_IDLEIMMEDIATE
, IDE_COMMAND_REG
);
483 if (rq
->errors
>= ERROR_MAX
) {
484 ide_kill_rq(drive
, rq
);
486 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
488 return ide_do_reset(drive
);
497 __ide_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
499 if (drive
->media
== ide_disk
)
500 return ide_ata_error(drive
, rq
, stat
, err
);
501 return ide_atapi_error(drive
, rq
, stat
, err
);
504 EXPORT_SYMBOL_GPL(__ide_error
);
507 * ide_error - handle an error on the IDE
508 * @drive: drive the error occurred on
509 * @msg: message to report
512 * ide_error() takes action based on the error returned by the drive.
513 * For normal I/O that may well include retries. We deal with
514 * both new-style (taskfile) and old style command handling here.
515 * In the case of taskfile command handling there is work left to
519 ide_startstop_t
ide_error (ide_drive_t
*drive
, const char *msg
, u8 stat
)
524 err
= ide_dump_status(drive
, msg
, stat
);
526 if ((rq
= HWGROUP(drive
)->rq
) == NULL
)
529 /* retry only "normal" I/O: */
530 if (rq
->flags
& (REQ_DRIVE_CMD
| REQ_DRIVE_TASK
| REQ_DRIVE_TASKFILE
)) {
532 ide_end_drive_cmd(drive
, stat
, err
);
539 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
540 return drv
->error(drive
, rq
, stat
, err
);
542 return __ide_error(drive
, rq
, stat
, err
);
545 EXPORT_SYMBOL_GPL(ide_error
);
547 ide_startstop_t
__ide_abort(ide_drive_t
*drive
, struct request
*rq
)
549 if (drive
->media
!= ide_disk
)
550 rq
->errors
|= ERROR_RESET
;
552 ide_kill_rq(drive
, rq
);
557 EXPORT_SYMBOL_GPL(__ide_abort
);
560 * ide_abort - abort pending IDE operations
561 * @drive: drive the error occurred on
562 * @msg: message to report
564 * ide_abort kills and cleans up when we are about to do a
565 * host initiated reset on active commands. Longer term we
566 * want handlers to have sensible abort handling themselves
568 * This differs fundamentally from ide_error because in
569 * this case the command is doing just fine when we
573 ide_startstop_t
ide_abort(ide_drive_t
*drive
, const char *msg
)
577 if (drive
== NULL
|| (rq
= HWGROUP(drive
)->rq
) == NULL
)
580 /* retry only "normal" I/O: */
581 if (rq
->flags
& (REQ_DRIVE_CMD
| REQ_DRIVE_TASK
| REQ_DRIVE_TASKFILE
)) {
583 ide_end_drive_cmd(drive
, BUSY_STAT
, 0);
590 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
591 return drv
->abort(drive
, rq
);
593 return __ide_abort(drive
, rq
);
597 * ide_cmd - issue a simple drive command
598 * @drive: drive the command is for
600 * @nsect: sector byte
601 * @handler: handler for the command completion
603 * Issue a simple drive command with interrupts.
604 * The drive must be selected beforehand.
607 static void ide_cmd (ide_drive_t
*drive
, u8 cmd
, u8 nsect
,
608 ide_handler_t
*handler
)
610 ide_hwif_t
*hwif
= HWIF(drive
);
612 hwif
->OUTB(drive
->ctl
,IDE_CONTROL_REG
); /* clear nIEN */
613 SELECT_MASK(drive
,0);
614 hwif
->OUTB(nsect
,IDE_NSECTOR_REG
);
615 ide_execute_command(drive
, cmd
, handler
, WAIT_CMD
, NULL
);
619 * drive_cmd_intr - drive command completion interrupt
620 * @drive: drive the completion interrupt occurred on
622 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
623 * We do any necessary data reading and then wait for the drive to
624 * go non busy. At that point we may read the error data and complete
628 static ide_startstop_t
drive_cmd_intr (ide_drive_t
*drive
)
630 struct request
*rq
= HWGROUP(drive
)->rq
;
631 ide_hwif_t
*hwif
= HWIF(drive
);
632 u8
*args
= (u8
*) rq
->buffer
;
633 u8 stat
= hwif
->INB(IDE_STATUS_REG
);
637 if ((stat
& DRQ_STAT
) && args
&& args
[3]) {
638 u8 io_32bit
= drive
->io_32bit
;
640 hwif
->ata_input_data(drive
, &args
[4], args
[3] * SECTOR_WORDS
);
641 drive
->io_32bit
= io_32bit
;
642 while (((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) && retries
--)
646 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
))
647 return ide_error(drive
, "drive_cmd", stat
);
648 /* calls ide_end_drive_cmd */
649 ide_end_drive_cmd(drive
, stat
, hwif
->INB(IDE_ERROR_REG
));
653 static void ide_init_specify_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
655 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->sect
;
656 task
->tfRegister
[IDE_SECTOR_OFFSET
] = drive
->sect
;
657 task
->tfRegister
[IDE_LCYL_OFFSET
] = drive
->cyl
;
658 task
->tfRegister
[IDE_HCYL_OFFSET
] = drive
->cyl
>>8;
659 task
->tfRegister
[IDE_SELECT_OFFSET
] = ((drive
->head
-1)|drive
->select
.all
)&0xBF;
660 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_SPECIFY
;
662 task
->handler
= &set_geometry_intr
;
665 static void ide_init_restore_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
667 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->sect
;
668 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_RESTORE
;
670 task
->handler
= &recal_intr
;
673 static void ide_init_setmult_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
675 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->mult_req
;
676 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_SETMULT
;
678 task
->handler
= &set_multmode_intr
;
681 static ide_startstop_t
ide_disk_special(ide_drive_t
*drive
)
683 special_t
*s
= &drive
->special
;
686 memset(&args
, 0, sizeof(ide_task_t
));
687 args
.command_type
= IDE_DRIVE_TASK_NO_DATA
;
689 if (s
->b
.set_geometry
) {
690 s
->b
.set_geometry
= 0;
691 ide_init_specify_cmd(drive
, &args
);
692 } else if (s
->b
.recalibrate
) {
693 s
->b
.recalibrate
= 0;
694 ide_init_restore_cmd(drive
, &args
);
695 } else if (s
->b
.set_multmode
) {
696 s
->b
.set_multmode
= 0;
697 if (drive
->mult_req
> drive
->id
->max_multsect
)
698 drive
->mult_req
= drive
->id
->max_multsect
;
699 ide_init_setmult_cmd(drive
, &args
);
701 int special
= s
->all
;
703 printk(KERN_ERR
"%s: bad special flag: 0x%02x\n", drive
->name
, special
);
707 do_rw_taskfile(drive
, &args
);
713 * do_special - issue some special commands
714 * @drive: drive the command is for
716 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
717 * commands to a drive. It used to do much more, but has been scaled
721 static ide_startstop_t
do_special (ide_drive_t
*drive
)
723 special_t
*s
= &drive
->special
;
726 printk("%s: do_special: 0x%02x\n", drive
->name
, s
->all
);
730 if (HWIF(drive
)->tuneproc
!= NULL
)
731 HWIF(drive
)->tuneproc(drive
, drive
->tune_req
);
734 if (drive
->media
== ide_disk
)
735 return ide_disk_special(drive
);
743 void ide_map_sg(ide_drive_t
*drive
, struct request
*rq
)
745 ide_hwif_t
*hwif
= drive
->hwif
;
746 struct scatterlist
*sg
= hwif
->sg_table
;
748 if (hwif
->sg_mapped
) /* needed by ide-scsi */
751 if ((rq
->flags
& REQ_DRIVE_TASKFILE
) == 0) {
752 hwif
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
754 sg_init_one(sg
, rq
->buffer
, rq
->nr_sectors
* SECTOR_SIZE
);
759 EXPORT_SYMBOL_GPL(ide_map_sg
);
761 void ide_init_sg_cmd(ide_drive_t
*drive
, struct request
*rq
)
763 ide_hwif_t
*hwif
= drive
->hwif
;
765 hwif
->nsect
= hwif
->nleft
= rq
->nr_sectors
;
766 hwif
->cursg
= hwif
->cursg_ofs
= 0;
769 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
772 * execute_drive_command - issue special drive command
773 * @drive: the drive to issue the command on
774 * @rq: the request structure holding the command
776 * execute_drive_cmd() issues a special drive command, usually
777 * initiated by ioctl() from the external hdparm program. The
778 * command can be a drive command, drive task or taskfile
779 * operation. Weirdly you can call it with NULL to wait for
780 * all commands to finish. Don't do this as that is due to change
783 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
786 ide_hwif_t
*hwif
= HWIF(drive
);
787 if (rq
->flags
& REQ_DRIVE_TASKFILE
) {
788 ide_task_t
*args
= rq
->special
;
793 hwif
->data_phase
= args
->data_phase
;
795 switch (hwif
->data_phase
) {
796 case TASKFILE_MULTI_OUT
:
798 case TASKFILE_MULTI_IN
:
800 ide_init_sg_cmd(drive
, rq
);
801 ide_map_sg(drive
, rq
);
806 if (args
->tf_out_flags
.all
!= 0)
807 return flagged_taskfile(drive
, args
);
808 return do_rw_taskfile(drive
, args
);
809 } else if (rq
->flags
& REQ_DRIVE_TASK
) {
810 u8
*args
= rq
->buffer
;
816 printk("%s: DRIVE_TASK_CMD ", drive
->name
);
817 printk("cmd=0x%02x ", args
[0]);
818 printk("fr=0x%02x ", args
[1]);
819 printk("ns=0x%02x ", args
[2]);
820 printk("sc=0x%02x ", args
[3]);
821 printk("lcyl=0x%02x ", args
[4]);
822 printk("hcyl=0x%02x ", args
[5]);
823 printk("sel=0x%02x\n", args
[6]);
825 hwif
->OUTB(args
[1], IDE_FEATURE_REG
);
826 hwif
->OUTB(args
[3], IDE_SECTOR_REG
);
827 hwif
->OUTB(args
[4], IDE_LCYL_REG
);
828 hwif
->OUTB(args
[5], IDE_HCYL_REG
);
829 sel
= (args
[6] & ~0x10);
830 if (drive
->select
.b
.unit
)
832 hwif
->OUTB(sel
, IDE_SELECT_REG
);
833 ide_cmd(drive
, args
[0], args
[2], &drive_cmd_intr
);
835 } else if (rq
->flags
& REQ_DRIVE_CMD
) {
836 u8
*args
= rq
->buffer
;
841 printk("%s: DRIVE_CMD ", drive
->name
);
842 printk("cmd=0x%02x ", args
[0]);
843 printk("sc=0x%02x ", args
[1]);
844 printk("fr=0x%02x ", args
[2]);
845 printk("xx=0x%02x\n", args
[3]);
847 if (args
[0] == WIN_SMART
) {
848 hwif
->OUTB(0x4f, IDE_LCYL_REG
);
849 hwif
->OUTB(0xc2, IDE_HCYL_REG
);
850 hwif
->OUTB(args
[2],IDE_FEATURE_REG
);
851 hwif
->OUTB(args
[1],IDE_SECTOR_REG
);
852 ide_cmd(drive
, args
[0], args
[3], &drive_cmd_intr
);
855 hwif
->OUTB(args
[2],IDE_FEATURE_REG
);
856 ide_cmd(drive
, args
[0], args
[1], &drive_cmd_intr
);
862 * NULL is actually a valid way of waiting for
863 * all current requests to be flushed from the queue.
866 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
868 ide_end_drive_cmd(drive
,
869 hwif
->INB(IDE_STATUS_REG
),
870 hwif
->INB(IDE_ERROR_REG
));
875 * start_request - start of I/O and command issuing for IDE
877 * start_request() initiates handling of a new I/O request. It
878 * accepts commands and I/O (read/write) requests. It also does
879 * the final remapping for weird stuff like EZDrive. Once
880 * device mapper can work sector level the EZDrive stuff can go away
882 * FIXME: this function needs a rename
885 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
887 ide_startstop_t startstop
;
890 BUG_ON(!(rq
->flags
& REQ_STARTED
));
893 printk("%s: start_request: current=0x%08lx\n",
894 HWIF(drive
)->name
, (unsigned long) rq
);
897 /* bail early if we've exceeded max_failures */
898 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
903 if (blk_fs_request(rq
) &&
904 (drive
->media
== ide_disk
|| drive
->media
== ide_floppy
)) {
905 block
+= drive
->sect0
;
907 /* Yecch - this will shift the entire interval,
908 possibly killing some innocent following sector */
909 if (block
== 0 && drive
->remap_0_to_1
== 1)
910 block
= 1; /* redirect MBR access to EZ-Drive partn table */
912 if (blk_pm_suspend_request(rq
) &&
913 rq
->pm
->pm_step
== ide_pm_state_start_suspend
)
914 /* Mark drive blocked when starting the suspend sequence. */
916 else if (blk_pm_resume_request(rq
) &&
917 rq
->pm
->pm_step
== ide_pm_state_start_resume
) {
919 * The first thing we do on wakeup is to wait for BSY bit to
920 * go away (with a looong timeout) as a drive on this hwif may
921 * just be POSTing itself.
922 * We do that before even selecting as the "other" device on
923 * the bus may be broken enough to walk on our toes at this
928 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive
->name
);
930 rc
= ide_wait_not_busy(HWIF(drive
), 35000);
932 printk(KERN_WARNING
"%s: bus not ready on wakeup\n", drive
->name
);
934 HWIF(drive
)->OUTB(8, HWIF(drive
)->io_ports
[IDE_CONTROL_OFFSET
]);
935 rc
= ide_wait_not_busy(HWIF(drive
), 100000);
937 printk(KERN_WARNING
"%s: drive not ready on wakeup\n", drive
->name
);
941 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
, BUSY_STAT
|DRQ_STAT
, WAIT_READY
)) {
942 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
945 if (!drive
->special
.all
) {
948 if (rq
->flags
& (REQ_DRIVE_CMD
| REQ_DRIVE_TASK
))
949 return execute_drive_cmd(drive
, rq
);
950 else if (rq
->flags
& REQ_DRIVE_TASKFILE
)
951 return execute_drive_cmd(drive
, rq
);
952 else if (blk_pm_request(rq
)) {
954 printk("%s: start_power_step(step: %d)\n",
955 drive
->name
, rq
->pm
->pm_step
);
957 startstop
= ide_start_power_step(drive
, rq
);
958 if (startstop
== ide_stopped
&&
959 rq
->pm
->pm_step
== ide_pm_state_completed
)
960 ide_complete_pm_request(drive
, rq
);
964 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
965 return drv
->do_request(drive
, rq
, block
);
967 return do_special(drive
);
969 ide_kill_rq(drive
, rq
);
974 * ide_stall_queue - pause an IDE device
975 * @drive: drive to stall
976 * @timeout: time to stall for (jiffies)
978 * ide_stall_queue() can be used by a drive to give excess bandwidth back
979 * to the hwgroup by sleeping for timeout jiffies.
982 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
984 if (timeout
> WAIT_WORSTCASE
)
985 timeout
= WAIT_WORSTCASE
;
986 drive
->sleep
= timeout
+ jiffies
;
990 EXPORT_SYMBOL(ide_stall_queue
);
992 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
995 * choose_drive - select a drive to service
996 * @hwgroup: hardware group to select on
998 * choose_drive() selects the next drive which will be serviced.
999 * This is necessary because the IDE layer can't issue commands
1000 * to both drives on the same cable, unlike SCSI.
1003 static inline ide_drive_t
*choose_drive (ide_hwgroup_t
*hwgroup
)
1005 ide_drive_t
*drive
, *best
;
1009 drive
= hwgroup
->drive
;
1012 * drive is doing pre-flush, ordered write, post-flush sequence. even
1013 * though that is 3 requests, it must be seen as a single transaction.
1014 * we must not preempt this drive until that is complete
1016 if (blk_queue_flushing(drive
->queue
)) {
1018 * small race where queue could get replugged during
1019 * the 3-request flush cycle, just yank the plug since
1020 * we want it to finish asap
1022 blk_remove_plug(drive
->queue
);
1027 if ((!drive
->sleeping
|| time_after_eq(jiffies
, drive
->sleep
))
1028 && !elv_queue_empty(drive
->queue
)) {
1030 || (drive
->sleeping
&& (!best
->sleeping
|| time_before(drive
->sleep
, best
->sleep
)))
1031 || (!best
->sleeping
&& time_before(WAKEUP(drive
), WAKEUP(best
))))
1033 if (!blk_queue_plugged(drive
->queue
))
1037 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1038 if (best
&& best
->nice1
&& !best
->sleeping
&& best
!= hwgroup
->drive
&& best
->service_time
> WAIT_MIN_SLEEP
) {
1039 long t
= (signed long)(WAKEUP(best
) - jiffies
);
1040 if (t
>= WAIT_MIN_SLEEP
) {
1042 * We *may* have some time to spare, but first let's see if
1043 * someone can potentially benefit from our nice mood today..
1047 if (!drive
->sleeping
1048 && time_before(jiffies
- best
->service_time
, WAKEUP(drive
))
1049 && time_before(WAKEUP(drive
), jiffies
+ t
))
1051 ide_stall_queue(best
, min_t(long, t
, 10 * WAIT_MIN_SLEEP
));
1054 } while ((drive
= drive
->next
) != best
);
1061 * Issue a new request to a drive from hwgroup
1062 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1064 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1065 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1066 * may have both interfaces in a single hwgroup to "serialize" access.
1067 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1068 * together into one hwgroup for serialized access.
1070 * Note also that several hwgroups can end up sharing a single IRQ,
1071 * possibly along with many other devices. This is especially common in
1072 * PCI-based systems with off-board IDE controller cards.
1074 * The IDE driver uses the single global ide_lock spinlock to protect
1075 * access to the request queues, and to protect the hwgroup->busy flag.
1077 * The first thread into the driver for a particular hwgroup sets the
1078 * hwgroup->busy flag to indicate that this hwgroup is now active,
1079 * and then initiates processing of the top request from the request queue.
1081 * Other threads attempting entry notice the busy setting, and will simply
1082 * queue their new requests and exit immediately. Note that hwgroup->busy
1083 * remains set even when the driver is merely awaiting the next interrupt.
1084 * Thus, the meaning is "this hwgroup is busy processing a request".
1086 * When processing of a request completes, the completing thread or IRQ-handler
1087 * will start the next request from the queue. If no more work remains,
1088 * the driver will clear the hwgroup->busy flag and exit.
1090 * The ide_lock (spinlock) is used to protect all access to the
1091 * hwgroup->busy flag, but is otherwise not needed for most processing in
1092 * the driver. This makes the driver much more friendlier to shared IRQs
1093 * than previous designs, while remaining 100% (?) SMP safe and capable.
1095 static void ide_do_request (ide_hwgroup_t
*hwgroup
, int masked_irq
)
1100 ide_startstop_t startstop
;
1103 /* for atari only: POSSIBLY BROKEN HERE(?) */
1104 ide_get_lock(ide_intr
, hwgroup
);
1106 /* caller must own ide_lock */
1107 BUG_ON(!irqs_disabled());
1109 while (!hwgroup
->busy
) {
1111 drive
= choose_drive(hwgroup
);
1112 if (drive
== NULL
) {
1114 unsigned long sleep
= 0; /* shut up, gcc */
1116 drive
= hwgroup
->drive
;
1118 if (drive
->sleeping
&& (!sleeping
|| time_before(drive
->sleep
, sleep
))) {
1120 sleep
= drive
->sleep
;
1122 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1125 * Take a short snooze, and then wake up this hwgroup again.
1126 * This gives other hwgroups on the same a chance to
1127 * play fairly with us, just in case there are big differences
1128 * in relative throughputs.. don't want to hog the cpu too much.
1130 if (time_before(sleep
, jiffies
+ WAIT_MIN_SLEEP
))
1131 sleep
= jiffies
+ WAIT_MIN_SLEEP
;
1133 if (timer_pending(&hwgroup
->timer
))
1134 printk(KERN_CRIT
"ide_set_handler: timer already active\n");
1136 /* so that ide_timer_expiry knows what to do */
1137 hwgroup
->sleeping
= 1;
1138 mod_timer(&hwgroup
->timer
, sleep
);
1139 /* we purposely leave hwgroup->busy==1
1142 /* Ugly, but how can we sleep for the lock
1143 * otherwise? perhaps from tq_disk?
1146 /* for atari only */
1151 /* no more work for this hwgroup (for now) */
1156 if (hwgroup
->hwif
->sharing_irq
&&
1157 hwif
!= hwgroup
->hwif
&&
1158 hwif
->io_ports
[IDE_CONTROL_OFFSET
]) {
1159 /* set nIEN for previous hwif */
1160 SELECT_INTERRUPT(drive
);
1162 hwgroup
->hwif
= hwif
;
1163 hwgroup
->drive
= drive
;
1164 drive
->sleeping
= 0;
1165 drive
->service_start
= jiffies
;
1167 if (blk_queue_plugged(drive
->queue
)) {
1168 printk(KERN_ERR
"ide: huh? queue was plugged!\n");
1173 * we know that the queue isn't empty, but this can happen
1174 * if the q->prep_rq_fn() decides to kill a request
1176 rq
= elv_next_request(drive
->queue
);
1183 * Sanity: don't accept a request that isn't a PM request
1184 * if we are currently power managed. This is very important as
1185 * blk_stop_queue() doesn't prevent the elv_next_request()
1186 * above to return us whatever is in the queue. Since we call
1187 * ide_do_request() ourselves, we end up taking requests while
1188 * the queue is blocked...
1190 * We let requests forced at head of queue with ide-preempt
1191 * though. I hope that doesn't happen too much, hopefully not
1192 * unless the subdriver triggers such a thing in its own PM
1195 * We count how many times we loop here to make sure we service
1196 * all drives in the hwgroup without looping for ever
1198 if (drive
->blocked
&& !blk_pm_request(rq
) && !(rq
->flags
& REQ_PREEMPT
)) {
1199 drive
= drive
->next
? drive
->next
: hwgroup
->drive
;
1200 if (loops
++ < 4 && !blk_queue_plugged(drive
->queue
))
1202 /* We clear busy, there should be no pending ATA command at this point. */
1210 * Some systems have trouble with IDE IRQs arriving while
1211 * the driver is still setting things up. So, here we disable
1212 * the IRQ used by this interface while the request is being started.
1213 * This may look bad at first, but pretty much the same thing
1214 * happens anyway when any interrupt comes in, IDE or otherwise
1215 * -- the kernel masks the IRQ while it is being handled.
1217 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1218 disable_irq_nosync(hwif
->irq
);
1219 spin_unlock(&ide_lock
);
1221 /* allow other IRQs while we start this request */
1222 startstop
= start_request(drive
, rq
);
1223 spin_lock_irq(&ide_lock
);
1224 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1225 enable_irq(hwif
->irq
);
1226 if (startstop
== ide_stopped
)
1232 * Passes the stuff to ide_do_request
1234 void do_ide_request(request_queue_t
*q
)
1236 ide_drive_t
*drive
= q
->queuedata
;
1238 ide_do_request(HWGROUP(drive
), IDE_NO_IRQ
);
1242 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1243 * retry the current request in pio mode instead of risking tossing it
1246 static ide_startstop_t
ide_dma_timeout_retry(ide_drive_t
*drive
, int error
)
1248 ide_hwif_t
*hwif
= HWIF(drive
);
1250 ide_startstop_t ret
= ide_stopped
;
1253 * end current dma transaction
1257 printk(KERN_WARNING
"%s: DMA timeout error\n", drive
->name
);
1258 (void)HWIF(drive
)->ide_dma_end(drive
);
1259 ret
= ide_error(drive
, "dma timeout error",
1260 hwif
->INB(IDE_STATUS_REG
));
1262 printk(KERN_WARNING
"%s: DMA timeout retry\n", drive
->name
);
1263 (void) hwif
->ide_dma_timeout(drive
);
1267 * disable dma for now, but remember that we did so because of
1268 * a timeout -- we'll reenable after we finish this next request
1269 * (or rather the first chunk of it) in pio.
1272 drive
->state
= DMA_PIO_RETRY
;
1273 (void) hwif
->ide_dma_off_quietly(drive
);
1276 * un-busy drive etc (hwgroup->busy is cleared on return) and
1277 * make sure request is sane
1279 rq
= HWGROUP(drive
)->rq
;
1280 HWGROUP(drive
)->rq
= NULL
;
1287 rq
->sector
= rq
->bio
->bi_sector
;
1288 rq
->current_nr_sectors
= bio_iovec(rq
->bio
)->bv_len
>> 9;
1289 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
1290 rq
->buffer
= bio_data(rq
->bio
);
1296 * ide_timer_expiry - handle lack of an IDE interrupt
1297 * @data: timer callback magic (hwgroup)
1299 * An IDE command has timed out before the expected drive return
1300 * occurred. At this point we attempt to clean up the current
1301 * mess. If the current handler includes an expiry handler then
1302 * we invoke the expiry handler, and providing it is happy the
1303 * work is done. If that fails we apply generic recovery rules
1304 * invoking the handler and checking the drive DMA status. We
1305 * have an excessively incestuous relationship with the DMA
1306 * logic that wants cleaning up.
1309 void ide_timer_expiry (unsigned long data
)
1311 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*) data
;
1312 ide_handler_t
*handler
;
1313 ide_expiry_t
*expiry
;
1314 unsigned long flags
;
1315 unsigned long wait
= -1;
1317 spin_lock_irqsave(&ide_lock
, flags
);
1319 if ((handler
= hwgroup
->handler
) == NULL
) {
1321 * Either a marginal timeout occurred
1322 * (got the interrupt just as timer expired),
1323 * or we were "sleeping" to give other devices a chance.
1324 * Either way, we don't really want to complain about anything.
1326 if (hwgroup
->sleeping
) {
1327 hwgroup
->sleeping
= 0;
1331 ide_drive_t
*drive
= hwgroup
->drive
;
1333 printk(KERN_ERR
"ide_timer_expiry: hwgroup->drive was NULL\n");
1334 hwgroup
->handler
= NULL
;
1337 ide_startstop_t startstop
= ide_stopped
;
1338 if (!hwgroup
->busy
) {
1339 hwgroup
->busy
= 1; /* paranoia */
1340 printk(KERN_ERR
"%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive
->name
);
1342 if ((expiry
= hwgroup
->expiry
) != NULL
) {
1344 if ((wait
= expiry(drive
)) > 0) {
1346 hwgroup
->timer
.expires
= jiffies
+ wait
;
1347 add_timer(&hwgroup
->timer
);
1348 spin_unlock_irqrestore(&ide_lock
, flags
);
1352 hwgroup
->handler
= NULL
;
1354 * We need to simulate a real interrupt when invoking
1355 * the handler() function, which means we need to
1356 * globally mask the specific IRQ:
1358 spin_unlock(&ide_lock
);
1360 #if DISABLE_IRQ_NOSYNC
1361 disable_irq_nosync(hwif
->irq
);
1363 /* disable_irq_nosync ?? */
1364 disable_irq(hwif
->irq
);
1365 #endif /* DISABLE_IRQ_NOSYNC */
1367 * as if we were handling an interrupt */
1368 local_irq_disable();
1369 if (hwgroup
->polling
) {
1370 startstop
= handler(drive
);
1371 } else if (drive_is_ready(drive
)) {
1372 if (drive
->waiting_for_dma
)
1373 (void) hwgroup
->hwif
->ide_dma_lostirq(drive
);
1374 (void)ide_ack_intr(hwif
);
1375 printk(KERN_WARNING
"%s: lost interrupt\n", drive
->name
);
1376 startstop
= handler(drive
);
1378 if (drive
->waiting_for_dma
) {
1379 startstop
= ide_dma_timeout_retry(drive
, wait
);
1382 ide_error(drive
, "irq timeout", hwif
->INB(IDE_STATUS_REG
));
1384 drive
->service_time
= jiffies
- drive
->service_start
;
1385 spin_lock_irq(&ide_lock
);
1386 enable_irq(hwif
->irq
);
1387 if (startstop
== ide_stopped
)
1391 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1392 spin_unlock_irqrestore(&ide_lock
, flags
);
1396 * unexpected_intr - handle an unexpected IDE interrupt
1397 * @irq: interrupt line
1398 * @hwgroup: hwgroup being processed
1400 * There's nothing really useful we can do with an unexpected interrupt,
1401 * other than reading the status register (to clear it), and logging it.
1402 * There should be no way that an irq can happen before we're ready for it,
1403 * so we needn't worry much about losing an "important" interrupt here.
1405 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1406 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1407 * looks "good", we just ignore the interrupt completely.
1409 * This routine assumes __cli() is in effect when called.
1411 * If an unexpected interrupt happens on irq15 while we are handling irq14
1412 * and if the two interfaces are "serialized" (CMD640), then it looks like
1413 * we could screw up by interfering with a new request being set up for
1416 * In reality, this is a non-issue. The new command is not sent unless
1417 * the drive is ready to accept one, in which case we know the drive is
1418 * not trying to interrupt us. And ide_set_handler() is always invoked
1419 * before completing the issuance of any new drive command, so we will not
1420 * be accidentally invoked as a result of any valid command completion
1423 * Note that we must walk the entire hwgroup here. We know which hwif
1424 * is doing the current command, but we don't know which hwif burped
1428 static void unexpected_intr (int irq
, ide_hwgroup_t
*hwgroup
)
1431 ide_hwif_t
*hwif
= hwgroup
->hwif
;
1434 * handle the unexpected interrupt
1437 if (hwif
->irq
== irq
) {
1438 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1439 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
)) {
1440 /* Try to not flood the console with msgs */
1441 static unsigned long last_msgtime
, count
;
1443 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
1444 last_msgtime
= jiffies
;
1445 printk(KERN_ERR
"%s%s: unexpected interrupt, "
1446 "status=0x%02x, count=%ld\n",
1448 (hwif
->next
==hwgroup
->hwif
) ? "" : "(?)", stat
, count
);
1452 } while ((hwif
= hwif
->next
) != hwgroup
->hwif
);
1456 * ide_intr - default IDE interrupt handler
1457 * @irq: interrupt number
1458 * @dev_id: hwif group
1459 * @regs: unused weirdness from the kernel irq layer
1461 * This is the default IRQ handler for the IDE layer. You should
1462 * not need to override it. If you do be aware it is subtle in
1465 * hwgroup->hwif is the interface in the group currently performing
1466 * a command. hwgroup->drive is the drive and hwgroup->handler is
1467 * the IRQ handler to call. As we issue a command the handlers
1468 * step through multiple states, reassigning the handler to the
1469 * next step in the process. Unlike a smart SCSI controller IDE
1470 * expects the main processor to sequence the various transfer
1471 * stages. We also manage a poll timer to catch up with most
1472 * timeout situations. There are still a few where the handlers
1473 * don't ever decide to give up.
1475 * The handler eventually returns ide_stopped to indicate the
1476 * request completed. At this point we issue the next request
1477 * on the hwgroup and the process begins again.
1480 irqreturn_t
ide_intr (int irq
, void *dev_id
, struct pt_regs
*regs
)
1482 unsigned long flags
;
1483 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*)dev_id
;
1486 ide_handler_t
*handler
;
1487 ide_startstop_t startstop
;
1489 spin_lock_irqsave(&ide_lock
, flags
);
1490 hwif
= hwgroup
->hwif
;
1492 if (!ide_ack_intr(hwif
)) {
1493 spin_unlock_irqrestore(&ide_lock
, flags
);
1497 if ((handler
= hwgroup
->handler
) == NULL
|| hwgroup
->polling
) {
1499 * Not expecting an interrupt from this drive.
1500 * That means this could be:
1501 * (1) an interrupt from another PCI device
1502 * sharing the same PCI INT# as us.
1503 * or (2) a drive just entered sleep or standby mode,
1504 * and is interrupting to let us know.
1505 * or (3) a spurious interrupt of unknown origin.
1507 * For PCI, we cannot tell the difference,
1508 * so in that case we just ignore it and hope it goes away.
1510 * FIXME: unexpected_intr should be hwif-> then we can
1511 * remove all the ifdef PCI crap
1513 #ifdef CONFIG_BLK_DEV_IDEPCI
1514 if (hwif
->pci_dev
&& !hwif
->pci_dev
->vendor
)
1515 #endif /* CONFIG_BLK_DEV_IDEPCI */
1518 * Probably not a shared PCI interrupt,
1519 * so we can safely try to do something about it:
1521 unexpected_intr(irq
, hwgroup
);
1522 #ifdef CONFIG_BLK_DEV_IDEPCI
1525 * Whack the status register, just in case
1526 * we have a leftover pending IRQ.
1528 (void) hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1529 #endif /* CONFIG_BLK_DEV_IDEPCI */
1531 spin_unlock_irqrestore(&ide_lock
, flags
);
1534 drive
= hwgroup
->drive
;
1537 * This should NEVER happen, and there isn't much
1538 * we could do about it here.
1540 * [Note - this can occur if the drive is hot unplugged]
1542 spin_unlock_irqrestore(&ide_lock
, flags
);
1545 if (!drive_is_ready(drive
)) {
1547 * This happens regularly when we share a PCI IRQ with
1548 * another device. Unfortunately, it can also happen
1549 * with some buggy drives that trigger the IRQ before
1550 * their status register is up to date. Hopefully we have
1551 * enough advance overhead that the latter isn't a problem.
1553 spin_unlock_irqrestore(&ide_lock
, flags
);
1556 if (!hwgroup
->busy
) {
1557 hwgroup
->busy
= 1; /* paranoia */
1558 printk(KERN_ERR
"%s: ide_intr: hwgroup->busy was 0 ??\n", drive
->name
);
1560 hwgroup
->handler
= NULL
;
1561 del_timer(&hwgroup
->timer
);
1562 spin_unlock(&ide_lock
);
1566 /* service this interrupt, may set handler for next interrupt */
1567 startstop
= handler(drive
);
1568 spin_lock_irq(&ide_lock
);
1571 * Note that handler() may have set things up for another
1572 * interrupt to occur soon, but it cannot happen until
1573 * we exit from this routine, because it will be the
1574 * same irq as is currently being serviced here, and Linux
1575 * won't allow another of the same (on any CPU) until we return.
1577 drive
->service_time
= jiffies
- drive
->service_start
;
1578 if (startstop
== ide_stopped
) {
1579 if (hwgroup
->handler
== NULL
) { /* paranoia */
1581 ide_do_request(hwgroup
, hwif
->irq
);
1583 printk(KERN_ERR
"%s: ide_intr: huh? expected NULL handler "
1584 "on exit\n", drive
->name
);
1587 spin_unlock_irqrestore(&ide_lock
, flags
);
1592 * ide_init_drive_cmd - initialize a drive command request
1593 * @rq: request object
1595 * Initialize a request before we fill it in and send it down to
1596 * ide_do_drive_cmd. Commands must be set up by this function. Right
1597 * now it doesn't do a lot, but if that changes abusers will have a
1601 void ide_init_drive_cmd (struct request
*rq
)
1603 memset(rq
, 0, sizeof(*rq
));
1604 rq
->flags
= REQ_DRIVE_CMD
;
1608 EXPORT_SYMBOL(ide_init_drive_cmd
);
1611 * ide_do_drive_cmd - issue IDE special command
1612 * @drive: device to issue command
1613 * @rq: request to issue
1614 * @action: action for processing
1616 * This function issues a special IDE device request
1617 * onto the request queue.
1619 * If action is ide_wait, then the rq is queued at the end of the
1620 * request queue, and the function sleeps until it has been processed.
1621 * This is for use when invoked from an ioctl handler.
1623 * If action is ide_preempt, then the rq is queued at the head of
1624 * the request queue, displacing the currently-being-processed
1625 * request and this function returns immediately without waiting
1626 * for the new rq to be completed. This is VERY DANGEROUS, and is
1627 * intended for careful use by the ATAPI tape/cdrom driver code.
1629 * If action is ide_end, then the rq is queued at the end of the
1630 * request queue, and the function returns immediately without waiting
1631 * for the new rq to be completed. This is again intended for careful
1632 * use by the ATAPI tape/cdrom driver code.
1635 int ide_do_drive_cmd (ide_drive_t
*drive
, struct request
*rq
, ide_action_t action
)
1637 unsigned long flags
;
1638 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1639 DECLARE_COMPLETION(wait
);
1640 int where
= ELEVATOR_INSERT_BACK
, err
;
1641 int must_wait
= (action
== ide_wait
|| action
== ide_head_wait
);
1644 rq
->rq_status
= RQ_ACTIVE
;
1647 * we need to hold an extra reference to request for safe inspection
1652 rq
->waiting
= &wait
;
1653 rq
->end_io
= blk_end_sync_rq
;
1656 spin_lock_irqsave(&ide_lock
, flags
);
1657 if (action
== ide_preempt
)
1659 if (action
== ide_preempt
|| action
== ide_head_wait
) {
1660 where
= ELEVATOR_INSERT_FRONT
;
1661 rq
->flags
|= REQ_PREEMPT
;
1663 __elv_add_request(drive
->queue
, rq
, where
, 0);
1664 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1665 spin_unlock_irqrestore(&ide_lock
, flags
);
1669 wait_for_completion(&wait
);
1674 blk_put_request(rq
);
1680 EXPORT_SYMBOL(ide_do_drive_cmd
);