5 * $Id: ide-timing.h,v 1.6 2001/12/23 22:47:56 vojtech Exp $
7 * Copyright (c) 1999-2001 Vojtech Pavlik
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 * Should you need to contact me, the author, you can do so either by
26 * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
27 * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
30 #include <linux/kernel.h>
31 #include <linux/hdreg.h>
33 #define XFER_PIO_5 0x0d
34 #define XFER_UDMA_SLOW 0x4f
39 short act8b
; /* t2 for 8-bit io */
40 short rec8b
; /* t2i for 8-bit io */
41 short cyc8b
; /* t0 for 8-bit io */
42 short active
; /* t2 or tD */
43 short recover
; /* t2i or tK */
45 short udma
; /* t2CYCTYP/2 */
49 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
50 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
51 * for PIO 5, which is a nonstandard extension and UDMA6, which
52 * is currently supported only by Maxtor drives.
55 static struct ide_timing ide_timing
[] = {
57 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
58 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
59 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
60 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
62 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
63 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
64 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
66 { XFER_UDMA_SLOW
, 0, 0, 0, 0, 0, 0, 0, 150 },
68 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
69 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
70 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
72 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
73 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
74 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
76 { XFER_PIO_5
, 20, 50, 30, 100, 50, 30, 100, 0 },
77 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
78 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
80 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
81 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
82 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
84 { XFER_PIO_SLOW
, 120, 290, 240, 960, 290, 240, 960, 0 },
89 #define IDE_TIMING_SETUP 0x01
90 #define IDE_TIMING_ACT8B 0x02
91 #define IDE_TIMING_REC8B 0x04
92 #define IDE_TIMING_CYC8B 0x08
93 #define IDE_TIMING_8BIT 0x0e
94 #define IDE_TIMING_ACTIVE 0x10
95 #define IDE_TIMING_RECOVER 0x20
96 #define IDE_TIMING_CYCLE 0x40
97 #define IDE_TIMING_UDMA 0x80
98 #define IDE_TIMING_ALL 0xff
100 #define FIT(v,vmin,vmax) max_t(short,min_t(short,v,vmax),vmin)
101 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
102 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
104 #define XFER_MODE 0xf0
105 #define XFER_UDMA_133 0x48
106 #define XFER_UDMA_100 0x44
107 #define XFER_UDMA_66 0x42
108 #define XFER_UDMA 0x40
109 #define XFER_MWDMA 0x20
110 #define XFER_SWDMA 0x10
111 #define XFER_EPIO 0x01
112 #define XFER_PIO 0x00
114 static short ide_find_best_mode(ide_drive_t
*drive
, int map
)
116 struct hd_driveid
*id
= drive
->id
;
120 return XFER_PIO_SLOW
;
122 if ((map
& XFER_UDMA
) && (id
->field_valid
& 4)) { /* Want UDMA and UDMA bitmap valid */
124 if ((map
& XFER_UDMA_133
) == XFER_UDMA_133
)
125 if ((best
= (id
->dma_ultra
& 0x0040) ? XFER_UDMA_6
: 0)) return best
;
127 if ((map
& XFER_UDMA_100
) == XFER_UDMA_100
)
128 if ((best
= (id
->dma_ultra
& 0x0020) ? XFER_UDMA_5
: 0)) return best
;
130 if ((map
& XFER_UDMA_66
) == XFER_UDMA_66
)
131 if ((best
= (id
->dma_ultra
& 0x0010) ? XFER_UDMA_4
:
132 (id
->dma_ultra
& 0x0008) ? XFER_UDMA_3
: 0)) return best
;
134 if ((best
= (id
->dma_ultra
& 0x0004) ? XFER_UDMA_2
:
135 (id
->dma_ultra
& 0x0002) ? XFER_UDMA_1
:
136 (id
->dma_ultra
& 0x0001) ? XFER_UDMA_0
: 0)) return best
;
139 if ((map
& XFER_MWDMA
) && (id
->field_valid
& 2)) { /* Want MWDMA and drive has EIDE fields */
141 if ((best
= (id
->dma_mword
& 0x0004) ? XFER_MW_DMA_2
:
142 (id
->dma_mword
& 0x0002) ? XFER_MW_DMA_1
:
143 (id
->dma_mword
& 0x0001) ? XFER_MW_DMA_0
: 0)) return best
;
146 if (map
& XFER_SWDMA
) { /* Want SWDMA */
148 if (id
->field_valid
& 2) { /* EIDE SWDMA */
150 if ((best
= (id
->dma_1word
& 0x0004) ? XFER_SW_DMA_2
:
151 (id
->dma_1word
& 0x0002) ? XFER_SW_DMA_1
:
152 (id
->dma_1word
& 0x0001) ? XFER_SW_DMA_0
: 0)) return best
;
155 if (id
->capability
& 1) { /* Pre-EIDE style SWDMA */
157 if ((best
= (id
->tDMA
== 2) ? XFER_SW_DMA_2
:
158 (id
->tDMA
== 1) ? XFER_SW_DMA_1
:
159 (id
->tDMA
== 0) ? XFER_SW_DMA_0
: 0)) return best
;
164 if ((map
& XFER_EPIO
) && (id
->field_valid
& 2)) { /* EIDE PIO modes */
166 if ((best
= (drive
->id
->eide_pio_modes
& 4) ? XFER_PIO_5
:
167 (drive
->id
->eide_pio_modes
& 2) ? XFER_PIO_4
:
168 (drive
->id
->eide_pio_modes
& 1) ? XFER_PIO_3
: 0)) return best
;
171 return (drive
->id
->tPIO
== 2) ? XFER_PIO_2
:
172 (drive
->id
->tPIO
== 1) ? XFER_PIO_1
:
173 (drive
->id
->tPIO
== 0) ? XFER_PIO_0
: XFER_PIO_SLOW
;
176 static void ide_timing_quantize(struct ide_timing
*t
, struct ide_timing
*q
, int T
, int UT
)
178 q
->setup
= EZ(t
->setup
* 1000, T
);
179 q
->act8b
= EZ(t
->act8b
* 1000, T
);
180 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
181 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
182 q
->active
= EZ(t
->active
* 1000, T
);
183 q
->recover
= EZ(t
->recover
* 1000, T
);
184 q
->cycle
= EZ(t
->cycle
* 1000, T
);
185 q
->udma
= EZ(t
->udma
* 1000, UT
);
188 static void ide_timing_merge(struct ide_timing
*a
, struct ide_timing
*b
, struct ide_timing
*m
, unsigned int what
)
190 if (what
& IDE_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
191 if (what
& IDE_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
192 if (what
& IDE_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
193 if (what
& IDE_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
194 if (what
& IDE_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
195 if (what
& IDE_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
196 if (what
& IDE_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
197 if (what
& IDE_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
200 static struct ide_timing
* ide_timing_find_mode(short speed
)
202 struct ide_timing
*t
;
204 for (t
= ide_timing
; t
->mode
!= speed
; t
++)
210 static int ide_timing_compute(ide_drive_t
*drive
, short speed
, struct ide_timing
*t
, int T
, int UT
)
212 struct hd_driveid
*id
= drive
->id
;
213 struct ide_timing
*s
, p
;
219 if (!(s
= ide_timing_find_mode(speed
)))
223 * If the drive is an EIDE drive, it can tell us it needs extended
224 * PIO/MWDMA cycle timing.
227 if (id
&& id
->field_valid
& 2) { /* EIDE drive */
229 memset(&p
, 0, sizeof(p
));
231 switch (speed
& XFER_MODE
) {
234 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= id
->eide_pio
;
235 else p
.cycle
= p
.cyc8b
= id
->eide_pio_iordy
;
239 p
.cycle
= id
->eide_dma_min
;
243 ide_timing_merge(&p
, t
, t
, IDE_TIMING_CYCLE
| IDE_TIMING_CYC8B
);
247 * Convert the timing to bus clock counts.
250 ide_timing_quantize(s
, t
, T
, UT
);
253 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
254 * and some other commands. We have to ensure that the DMA cycle timing is
255 * slower/equal than the fastest PIO timing.
258 if ((speed
& XFER_MODE
) != XFER_PIO
) {
259 ide_timing_compute(drive
, ide_find_best_mode(drive
, XFER_PIO
| XFER_EPIO
), &p
, T
, UT
);
260 ide_timing_merge(&p
, t
, t
, IDE_TIMING_ALL
);
264 * Lenghten active & recovery time so that cycle time is correct.
267 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
268 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
269 t
->rec8b
= t
->cyc8b
- t
->act8b
;
272 if (t
->active
+ t
->recover
< t
->cycle
) {
273 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
274 t
->recover
= t
->cycle
- t
->active
;