2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
5 * (c) Copyright IBM Corp. 2003-2004
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * bettter... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
65 * - Move a bunch of definitions to .h file
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
73 * - Fix typo when reading back fan speed on 2 CPU machines
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
93 * - Add basic support for Xserve G5
94 * - Retreive pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
100 #include <linux/config.h>
101 #include <linux/types.h>
102 #include <linux/module.h>
103 #include <linux/errno.h>
104 #include <linux/kernel.h>
105 #include <linux/delay.h>
106 #include <linux/sched.h>
107 #include <linux/slab.h>
108 #include <linux/init.h>
109 #include <linux/spinlock.h>
110 #include <linux/smp_lock.h>
111 #include <linux/wait.h>
112 #include <linux/reboot.h>
113 #include <linux/kmod.h>
114 #include <linux/i2c.h>
115 #include <asm/prom.h>
116 #include <asm/machdep.h>
118 #include <asm/system.h>
119 #include <asm/sections.h>
120 #include <asm/of_device.h>
121 #include <asm/macio.h>
123 #include "therm_pm72.h"
125 #define VERSION "1.2b2"
130 #define DBG(args...) printk(args)
132 #define DBG(args...) do { } while(0)
140 static struct of_device
* of_dev
;
141 static struct i2c_adapter
* u3_0
;
142 static struct i2c_adapter
* u3_1
;
143 static struct i2c_adapter
* k2
;
144 static struct i2c_client
* fcu
;
145 static struct cpu_pid_state cpu_state
[2];
146 static struct basckside_pid_params backside_params
;
147 static struct backside_pid_state backside_state
;
148 static struct drives_pid_state drives_state
;
149 static struct dimm_pid_state dimms_state
;
151 static int cpu_count
;
152 static int cpu_pid_type
;
153 static pid_t ctrl_task
;
154 static struct completion ctrl_complete
;
155 static int critical_state
;
157 static s32 dimm_output_clamp
;
159 static DECLARE_MUTEX(driver_lock
);
162 * We have 3 types of CPU PID control. One is "split" old style control
163 * for intake & exhaust fans, the other is "combined" control for both
164 * CPUs that also deals with the pumps when present. To be "compatible"
165 * with OS X at this point, we only use "COMBINED" on the machines that
166 * are identified as having the pumps (though that identification is at
167 * least dodgy). Ultimately, we could probably switch completely to this
168 * algorithm provided we hack it to deal with the UP case
170 #define CPU_PID_TYPE_SPLIT 0
171 #define CPU_PID_TYPE_COMBINED 1
172 #define CPU_PID_TYPE_RACKMAC 2
175 * This table describes all fans in the FCU. The "id" and "type" values
176 * are defaults valid for all earlier machines. Newer machines will
177 * eventually override the table content based on the device-tree
181 char* loc
; /* location code */
182 int type
; /* 0 = rpm, 1 = pwm, 2 = pump */
183 int id
; /* id or -1 */
186 #define FCU_FAN_RPM 0
187 #define FCU_FAN_PWM 1
189 #define FCU_FAN_ABSENT_ID -1
191 #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
193 struct fcu_fan_table fcu_fans
[] = {
194 [BACKSIDE_FAN_PWM_INDEX
] = {
195 .loc
= "BACKSIDE,SYS CTRLR FAN",
197 .id
= BACKSIDE_FAN_PWM_DEFAULT_ID
,
199 [DRIVES_FAN_RPM_INDEX
] = {
202 .id
= DRIVES_FAN_RPM_DEFAULT_ID
,
204 [SLOTS_FAN_PWM_INDEX
] = {
205 .loc
= "SLOT,PCI FAN",
207 .id
= SLOTS_FAN_PWM_DEFAULT_ID
,
209 [CPUA_INTAKE_FAN_RPM_INDEX
] = {
210 .loc
= "CPU A INTAKE",
212 .id
= CPUA_INTAKE_FAN_RPM_DEFAULT_ID
,
214 [CPUA_EXHAUST_FAN_RPM_INDEX
] = {
215 .loc
= "CPU A EXHAUST",
217 .id
= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID
,
219 [CPUB_INTAKE_FAN_RPM_INDEX
] = {
220 .loc
= "CPU B INTAKE",
222 .id
= CPUB_INTAKE_FAN_RPM_DEFAULT_ID
,
224 [CPUB_EXHAUST_FAN_RPM_INDEX
] = {
225 .loc
= "CPU B EXHAUST",
227 .id
= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID
,
229 /* pumps aren't present by default, have to be looked up in the
232 [CPUA_PUMP_RPM_INDEX
] = {
235 .id
= FCU_FAN_ABSENT_ID
,
237 [CPUB_PUMP_RPM_INDEX
] = {
240 .id
= FCU_FAN_ABSENT_ID
,
243 [CPU_A1_FAN_RPM_INDEX
] = {
246 .id
= FCU_FAN_ABSENT_ID
,
248 [CPU_A2_FAN_RPM_INDEX
] = {
251 .id
= FCU_FAN_ABSENT_ID
,
253 [CPU_A3_FAN_RPM_INDEX
] = {
256 .id
= FCU_FAN_ABSENT_ID
,
258 [CPU_B1_FAN_RPM_INDEX
] = {
261 .id
= FCU_FAN_ABSENT_ID
,
263 [CPU_B2_FAN_RPM_INDEX
] = {
266 .id
= FCU_FAN_ABSENT_ID
,
268 [CPU_B3_FAN_RPM_INDEX
] = {
271 .id
= FCU_FAN_ABSENT_ID
,
276 * i2c_driver structure to attach to the host i2c controller
279 static int therm_pm72_attach(struct i2c_adapter
*adapter
);
280 static int therm_pm72_detach(struct i2c_adapter
*adapter
);
282 static struct i2c_driver therm_pm72_driver
=
285 .name
= "therm_pm72",
287 .attach_adapter
= therm_pm72_attach
,
288 .detach_adapter
= therm_pm72_detach
,
292 * Utility function to create an i2c_client structure and
293 * attach it to one of u3 adapters
295 static struct i2c_client
*attach_i2c_chip(int id
, const char *name
)
297 struct i2c_client
*clt
;
298 struct i2c_adapter
*adap
;
309 clt
= kmalloc(sizeof(struct i2c_client
), GFP_KERNEL
);
312 memset(clt
, 0, sizeof(struct i2c_client
));
314 clt
->addr
= (id
>> 1) & 0x7f;
316 clt
->driver
= &therm_pm72_driver
;
317 strncpy(clt
->name
, name
, I2C_NAME_SIZE
-1);
319 if (i2c_attach_client(clt
)) {
320 printk(KERN_ERR
"therm_pm72: Failed to attach to i2c ID 0x%x\n", id
);
328 * Utility function to get rid of the i2c_client structure
329 * (will also detach from the adapter hopepfully)
331 static void detach_i2c_chip(struct i2c_client
*clt
)
333 i2c_detach_client(clt
);
338 * Here are the i2c chip access wrappers
341 static void initialize_adc(struct cpu_pid_state
*state
)
346 /* Read ADC the configuration register and cache it. We
347 * also make sure Config2 contains proper values, I've seen
348 * cases where we got stale grabage in there, thus preventing
349 * proper reading of conv. values
355 i2c_master_send(state
->monitor
, buf
, 2);
357 /* Read & cache Config1 */
359 rc
= i2c_master_send(state
->monitor
, buf
, 1);
361 rc
= i2c_master_recv(state
->monitor
, buf
, 1);
363 state
->adc_config
= buf
[0];
364 DBG("ADC config reg: %02x\n", state
->adc_config
);
365 /* Disable shutdown mode */
366 state
->adc_config
&= 0xfe;
368 buf
[1] = state
->adc_config
;
369 rc
= i2c_master_send(state
->monitor
, buf
, 2);
373 printk(KERN_ERR
"therm_pm72: Error reading ADC config"
377 static int read_smon_adc(struct cpu_pid_state
*state
, int chan
)
379 int rc
, data
, tries
= 0;
385 buf
[1] = (state
->adc_config
& 0x1f) | (chan
<< 5);
386 rc
= i2c_master_send(state
->monitor
, buf
, 2);
389 /* Wait for convertion */
391 /* Switch to data register */
393 rc
= i2c_master_send(state
->monitor
, buf
, 1);
397 rc
= i2c_master_recv(state
->monitor
, buf
, 2);
400 data
= ((u16
)buf
[0]) << 8 | (u16
)buf
[1];
403 DBG("Error reading ADC, retrying...\n");
405 printk(KERN_ERR
"therm_pm72: Error reading ADC !\n");
412 static int read_lm87_reg(struct i2c_client
* chip
, int reg
)
420 rc
= i2c_master_send(chip
, &buf
, 1);
423 rc
= i2c_master_recv(chip
, &buf
, 1);
428 DBG("Error reading LM87, retrying...\n");
430 printk(KERN_ERR
"therm_pm72: Error reading LM87 !\n");
437 static int fan_read_reg(int reg
, unsigned char *buf
, int nb
)
444 nw
= i2c_master_send(fcu
, buf
, 1);
445 if (nw
> 0 || (nw
< 0 && nw
!= -EIO
) || tries
>= 100)
451 printk(KERN_ERR
"Failure writing address to FCU: %d", nw
);
456 nr
= i2c_master_recv(fcu
, buf
, nb
);
457 if (nr
> 0 || (nr
< 0 && nr
!= ENODEV
) || tries
>= 100)
463 printk(KERN_ERR
"Failure reading data from FCU: %d", nw
);
467 static int fan_write_reg(int reg
, const unsigned char *ptr
, int nb
)
470 unsigned char buf
[16];
473 memcpy(buf
+1, ptr
, nb
);
477 nw
= i2c_master_send(fcu
, buf
, nb
);
478 if (nw
> 0 || (nw
< 0 && nw
!= EIO
) || tries
>= 100)
484 printk(KERN_ERR
"Failure writing to FCU: %d", nw
);
488 static int start_fcu(void)
490 unsigned char buf
= 0xff;
493 rc
= fan_write_reg(0xe, &buf
, 1);
496 rc
= fan_write_reg(0x2e, &buf
, 1);
502 static int set_rpm_fan(int fan_index
, int rpm
)
504 unsigned char buf
[2];
507 if (fcu_fans
[fan_index
].type
!= FCU_FAN_RPM
)
509 id
= fcu_fans
[fan_index
].id
;
510 if (id
== FCU_FAN_ABSENT_ID
)
519 rc
= fan_write_reg(0x10 + (id
* 2), buf
, 2);
525 static int get_rpm_fan(int fan_index
, int programmed
)
527 unsigned char failure
;
528 unsigned char active
;
529 unsigned char buf
[2];
530 int rc
, id
, reg_base
;
532 if (fcu_fans
[fan_index
].type
!= FCU_FAN_RPM
)
534 id
= fcu_fans
[fan_index
].id
;
535 if (id
== FCU_FAN_ABSENT_ID
)
538 rc
= fan_read_reg(0xb, &failure
, 1);
541 if ((failure
& (1 << id
)) != 0)
543 rc
= fan_read_reg(0xd, &active
, 1);
546 if ((active
& (1 << id
)) == 0)
549 /* Programmed value or real current speed */
550 reg_base
= programmed
? 0x10 : 0x11;
551 rc
= fan_read_reg(reg_base
+ (id
* 2), buf
, 2);
555 return (buf
[0] << 5) | buf
[1] >> 3;
558 static int set_pwm_fan(int fan_index
, int pwm
)
560 unsigned char buf
[2];
563 if (fcu_fans
[fan_index
].type
!= FCU_FAN_PWM
)
565 id
= fcu_fans
[fan_index
].id
;
566 if (id
== FCU_FAN_ABSENT_ID
)
573 pwm
= (pwm
* 2559) / 1000;
575 rc
= fan_write_reg(0x30 + (id
* 2), buf
, 1);
581 static int get_pwm_fan(int fan_index
)
583 unsigned char failure
;
584 unsigned char active
;
585 unsigned char buf
[2];
588 if (fcu_fans
[fan_index
].type
!= FCU_FAN_PWM
)
590 id
= fcu_fans
[fan_index
].id
;
591 if (id
== FCU_FAN_ABSENT_ID
)
594 rc
= fan_read_reg(0x2b, &failure
, 1);
597 if ((failure
& (1 << id
)) != 0)
599 rc
= fan_read_reg(0x2d, &active
, 1);
602 if ((active
& (1 << id
)) == 0)
605 /* Programmed value or real current speed */
606 rc
= fan_read_reg(0x30 + (id
* 2), buf
, 1);
610 return (buf
[0] * 1000) / 2559;
614 * Utility routine to read the CPU calibration EEPROM data
615 * from the device-tree
617 static int read_eeprom(int cpu
, struct mpu_data
*out
)
619 struct device_node
*np
;
624 /* prom.c routine for finding a node by path is a bit brain dead
625 * and requires exact @xxx unit numbers. This is a bit ugly but
626 * will work for these machines
628 sprintf(nodename
, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu
? 2 : 0);
629 np
= of_find_node_by_path(nodename
);
631 printk(KERN_ERR
"therm_pm72: Failed to retrieve cpuid node from device-tree\n");
634 data
= (u8
*)get_property(np
, "cpuid", &len
);
636 printk(KERN_ERR
"therm_pm72: Failed to retrieve cpuid property from device-tree\n");
640 memcpy(out
, data
, sizeof(struct mpu_data
));
646 static void fetch_cpu_pumps_minmax(void)
648 struct cpu_pid_state
*state0
= &cpu_state
[0];
649 struct cpu_pid_state
*state1
= &cpu_state
[1];
650 u16 pump_min
= 0, pump_max
= 0xffff;
653 /* Try to fetch pumps min/max infos from eeprom */
655 memcpy(&tmp
, &state0
->mpu
.processor_part_num
, 8);
656 if (tmp
[0] != 0xffff && tmp
[1] != 0xffff) {
657 pump_min
= max(pump_min
, tmp
[0]);
658 pump_max
= min(pump_max
, tmp
[1]);
660 if (tmp
[2] != 0xffff && tmp
[3] != 0xffff) {
661 pump_min
= max(pump_min
, tmp
[2]);
662 pump_max
= min(pump_max
, tmp
[3]);
665 /* Double check the values, this _IS_ needed as the EEPROM on
666 * some dual 2.5Ghz G5s seem, at least, to have both min & max
667 * same to the same value ... (grrrr)
669 if (pump_min
== pump_max
|| pump_min
== 0 || pump_max
== 0xffff) {
670 pump_min
= CPU_PUMP_OUTPUT_MIN
;
671 pump_max
= CPU_PUMP_OUTPUT_MAX
;
674 state0
->pump_min
= state1
->pump_min
= pump_min
;
675 state0
->pump_max
= state1
->pump_max
= pump_max
;
679 * Now, unfortunately, sysfs doesn't give us a nice void * we could
680 * pass around to the attribute functions, so we don't really have
681 * choice but implement a bunch of them...
683 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
684 * the input twice... I accept patches :)
686 #define BUILD_SHOW_FUNC_FIX(name, data) \
687 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
690 down(&driver_lock); \
691 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
695 #define BUILD_SHOW_FUNC_INT(name, data) \
696 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
698 return sprintf(buf, "%d", data); \
701 BUILD_SHOW_FUNC_FIX(cpu0_temperature
, cpu_state
[0].last_temp
)
702 BUILD_SHOW_FUNC_FIX(cpu0_voltage
, cpu_state
[0].voltage
)
703 BUILD_SHOW_FUNC_FIX(cpu0_current
, cpu_state
[0].current_a
)
704 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm
, cpu_state
[0].rpm
)
705 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm
, cpu_state
[0].intake_rpm
)
707 BUILD_SHOW_FUNC_FIX(cpu1_temperature
, cpu_state
[1].last_temp
)
708 BUILD_SHOW_FUNC_FIX(cpu1_voltage
, cpu_state
[1].voltage
)
709 BUILD_SHOW_FUNC_FIX(cpu1_current
, cpu_state
[1].current_a
)
710 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm
, cpu_state
[1].rpm
)
711 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm
, cpu_state
[1].intake_rpm
)
713 BUILD_SHOW_FUNC_FIX(backside_temperature
, backside_state
.last_temp
)
714 BUILD_SHOW_FUNC_INT(backside_fan_pwm
, backside_state
.pwm
)
716 BUILD_SHOW_FUNC_FIX(drives_temperature
, drives_state
.last_temp
)
717 BUILD_SHOW_FUNC_INT(drives_fan_rpm
, drives_state
.rpm
)
719 BUILD_SHOW_FUNC_FIX(dimms_temperature
, dimms_state
.last_temp
)
721 static DEVICE_ATTR(cpu0_temperature
,S_IRUGO
,show_cpu0_temperature
,NULL
);
722 static DEVICE_ATTR(cpu0_voltage
,S_IRUGO
,show_cpu0_voltage
,NULL
);
723 static DEVICE_ATTR(cpu0_current
,S_IRUGO
,show_cpu0_current
,NULL
);
724 static DEVICE_ATTR(cpu0_exhaust_fan_rpm
,S_IRUGO
,show_cpu0_exhaust_fan_rpm
,NULL
);
725 static DEVICE_ATTR(cpu0_intake_fan_rpm
,S_IRUGO
,show_cpu0_intake_fan_rpm
,NULL
);
727 static DEVICE_ATTR(cpu1_temperature
,S_IRUGO
,show_cpu1_temperature
,NULL
);
728 static DEVICE_ATTR(cpu1_voltage
,S_IRUGO
,show_cpu1_voltage
,NULL
);
729 static DEVICE_ATTR(cpu1_current
,S_IRUGO
,show_cpu1_current
,NULL
);
730 static DEVICE_ATTR(cpu1_exhaust_fan_rpm
,S_IRUGO
,show_cpu1_exhaust_fan_rpm
,NULL
);
731 static DEVICE_ATTR(cpu1_intake_fan_rpm
,S_IRUGO
,show_cpu1_intake_fan_rpm
,NULL
);
733 static DEVICE_ATTR(backside_temperature
,S_IRUGO
,show_backside_temperature
,NULL
);
734 static DEVICE_ATTR(backside_fan_pwm
,S_IRUGO
,show_backside_fan_pwm
,NULL
);
736 static DEVICE_ATTR(drives_temperature
,S_IRUGO
,show_drives_temperature
,NULL
);
737 static DEVICE_ATTR(drives_fan_rpm
,S_IRUGO
,show_drives_fan_rpm
,NULL
);
739 static DEVICE_ATTR(dimms_temperature
,S_IRUGO
,show_dimms_temperature
,NULL
);
742 * CPUs fans control loop
745 static int do_read_one_cpu_values(struct cpu_pid_state
*state
, s32
*temp
, s32
*power
)
747 s32 ltemp
, volts
, amps
;
750 /* Default (in case of error) */
751 *temp
= state
->cur_temp
;
752 *power
= state
->cur_power
;
754 if (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
)
755 index
= (state
->index
== 0) ?
756 CPU_A1_FAN_RPM_INDEX
: CPU_B1_FAN_RPM_INDEX
;
758 index
= (state
->index
== 0) ?
759 CPUA_EXHAUST_FAN_RPM_INDEX
: CPUB_EXHAUST_FAN_RPM_INDEX
;
761 /* Read current fan status */
762 rc
= get_rpm_fan(index
, !RPM_PID_USE_ACTUAL_SPEED
);
764 /* XXX What do we do now ? Nothing for now, keep old value, but
765 * return error upstream
767 DBG(" cpu %d, fan reading error !\n", state
->index
);
770 DBG(" cpu %d, exhaust RPM: %d\n", state
->index
, state
->rpm
);
773 /* Get some sensor readings and scale it */
774 ltemp
= read_smon_adc(state
, 1);
776 /* XXX What do we do now ? */
780 DBG(" cpu %d, temp reading error !\n", state
->index
);
782 /* Fixup temperature according to diode calibration
784 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
786 ltemp
, state
->mpu
.mdiode
, state
->mpu
.bdiode
);
787 *temp
= ((s32
)ltemp
* (s32
)state
->mpu
.mdiode
+ ((s32
)state
->mpu
.bdiode
<< 12)) >> 2;
788 state
->last_temp
= *temp
;
789 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp
)));
793 * Read voltage & current and calculate power
795 volts
= read_smon_adc(state
, 3);
796 amps
= read_smon_adc(state
, 4);
798 /* Scale voltage and current raw sensor values according to fixed scales
799 * obtained in Darwin and calculate power from I and V
801 volts
*= ADC_CPU_VOLTAGE_SCALE
;
802 amps
*= ADC_CPU_CURRENT_SCALE
;
803 *power
= (((u64
)volts
) * ((u64
)amps
)) >> 16;
804 state
->voltage
= volts
;
805 state
->current_a
= amps
;
806 state
->last_power
= *power
;
808 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
809 state
->index
, FIX32TOPRINT(state
->current_a
),
810 FIX32TOPRINT(state
->voltage
), FIX32TOPRINT(*power
));
815 static void do_cpu_pid(struct cpu_pid_state
*state
, s32 temp
, s32 power
)
817 s32 power_target
, integral
, derivative
, proportional
, adj_in_target
, sval
;
818 s64 integ_p
, deriv_p
, prop_p
, sum
;
821 /* Calculate power target value (could be done once for all)
822 * and convert to a 16.16 fp number
824 power_target
= ((u32
)(state
->mpu
.pmaxh
- state
->mpu
.padjmax
)) << 16;
825 DBG(" power target: %d.%03d, error: %d.%03d\n",
826 FIX32TOPRINT(power_target
), FIX32TOPRINT(power_target
- power
));
828 /* Store temperature and power in history array */
829 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
830 state
->temp_history
[state
->cur_temp
] = temp
;
831 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
832 state
->power_history
[state
->cur_power
] = power
;
833 state
->error_history
[state
->cur_power
] = power_target
- power
;
835 /* If first loop, fill the history table */
837 for (i
= 0; i
< (state
->count_power
- 1); i
++) {
838 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
839 state
->power_history
[state
->cur_power
] = power
;
840 state
->error_history
[state
->cur_power
] = power_target
- power
;
842 for (i
= 0; i
< (CPU_TEMP_HISTORY_SIZE
- 1); i
++) {
843 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
844 state
->temp_history
[state
->cur_temp
] = temp
;
849 /* Calculate the integral term normally based on the "power" values */
852 for (i
= 0; i
< state
->count_power
; i
++)
853 integral
+= state
->error_history
[i
];
854 integral
*= CPU_PID_INTERVAL
;
855 DBG(" integral: %08x\n", integral
);
857 /* Calculate the adjusted input (sense value).
860 * so the result is 28.36
862 * input target is mpu.ttarget, input max is mpu.tmax
864 integ_p
= ((s64
)state
->mpu
.pid_gr
) * (s64
)integral
;
865 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
866 sval
= (state
->mpu
.tmax
<< 16) - ((integ_p
>> 20) & 0xffffffff);
867 adj_in_target
= (state
->mpu
.ttarget
<< 16);
868 if (adj_in_target
> sval
)
869 adj_in_target
= sval
;
870 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target
),
873 /* Calculate the derivative term */
874 derivative
= state
->temp_history
[state
->cur_temp
] -
875 state
->temp_history
[(state
->cur_temp
+ CPU_TEMP_HISTORY_SIZE
- 1)
876 % CPU_TEMP_HISTORY_SIZE
];
877 derivative
/= CPU_PID_INTERVAL
;
878 deriv_p
= ((s64
)state
->mpu
.pid_gd
) * (s64
)derivative
;
879 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
882 /* Calculate the proportional term */
883 proportional
= temp
- adj_in_target
;
884 prop_p
= ((s64
)state
->mpu
.pid_gp
) * (s64
)proportional
;
885 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
891 DBG(" sum: %d\n", (int)sum
);
892 state
->rpm
+= (s32
)sum
;
895 static void do_monitor_cpu_combined(void)
897 struct cpu_pid_state
*state0
= &cpu_state
[0];
898 struct cpu_pid_state
*state1
= &cpu_state
[1];
899 s32 temp0
, power0
, temp1
, power1
;
900 s32 temp_combi
, power_combi
;
901 int rc
, intake
, pump
;
903 rc
= do_read_one_cpu_values(state0
, &temp0
, &power0
);
905 /* XXX What do we do now ? */
907 state1
->overtemp
= 0;
908 rc
= do_read_one_cpu_values(state1
, &temp1
, &power1
);
910 /* XXX What do we do now ? */
912 if (state1
->overtemp
)
915 temp_combi
= max(temp0
, temp1
);
916 power_combi
= max(power0
, power1
);
918 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
919 * full blown immediately and try to trigger a shutdown
921 if (temp_combi
>= ((state0
->mpu
.tmax
+ 8) << 16)) {
922 printk(KERN_WARNING
"Warning ! Temperature way above maximum (%d) !\n",
924 state0
->overtemp
+= CPU_MAX_OVERTEMP
/ 4;
925 } else if (temp_combi
> (state0
->mpu
.tmax
<< 16))
928 state0
->overtemp
= 0;
929 if (state0
->overtemp
>= CPU_MAX_OVERTEMP
)
931 if (state0
->overtemp
> 0) {
932 state0
->rpm
= state0
->mpu
.rmaxn_exhaust_fan
;
933 state0
->intake_rpm
= intake
= state0
->mpu
.rmaxn_intake_fan
;
934 pump
= state0
->pump_max
;
939 do_cpu_pid(state0
, temp_combi
, power_combi
);
942 state0
->rpm
= max(state0
->rpm
, (int)state0
->mpu
.rminn_exhaust_fan
);
943 state0
->rpm
= min(state0
->rpm
, (int)state0
->mpu
.rmaxn_exhaust_fan
);
945 /* Calculate intake fan speed */
946 intake
= (state0
->rpm
* CPU_INTAKE_SCALE
) >> 16;
947 intake
= max(intake
, (int)state0
->mpu
.rminn_intake_fan
);
948 intake
= min(intake
, (int)state0
->mpu
.rmaxn_intake_fan
);
949 state0
->intake_rpm
= intake
;
951 /* Calculate pump speed */
952 pump
= (state0
->rpm
* state0
->pump_max
) /
953 state0
->mpu
.rmaxn_exhaust_fan
;
954 pump
= min(pump
, state0
->pump_max
);
955 pump
= max(pump
, state0
->pump_min
);
958 /* We copy values from state 0 to state 1 for /sysfs */
959 state1
->rpm
= state0
->rpm
;
960 state1
->intake_rpm
= state0
->intake_rpm
;
962 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
963 state1
->index
, (int)state1
->rpm
, intake
, pump
, state1
->overtemp
);
965 /* We should check for errors, shouldn't we ? But then, what
966 * do we do once the error occurs ? For FCU notified fan
967 * failures (-EFAULT) we probably want to notify userland
970 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX
, intake
);
971 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX
, state0
->rpm
);
972 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX
, intake
);
973 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX
, state0
->rpm
);
975 if (fcu_fans
[CPUA_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
)
976 set_rpm_fan(CPUA_PUMP_RPM_INDEX
, pump
);
977 if (fcu_fans
[CPUB_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
)
978 set_rpm_fan(CPUB_PUMP_RPM_INDEX
, pump
);
981 static void do_monitor_cpu_split(struct cpu_pid_state
*state
)
986 /* Read current fan status */
987 rc
= do_read_one_cpu_values(state
, &temp
, &power
);
989 /* XXX What do we do now ? */
992 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
993 * full blown immediately and try to trigger a shutdown
995 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
996 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
998 state
->index
, temp
>> 16);
999 state
->overtemp
+= CPU_MAX_OVERTEMP
/ 4;
1000 } else if (temp
> (state
->mpu
.tmax
<< 16))
1003 state
->overtemp
= 0;
1004 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
1006 if (state
->overtemp
> 0) {
1007 state
->rpm
= state
->mpu
.rmaxn_exhaust_fan
;
1008 state
->intake_rpm
= intake
= state
->mpu
.rmaxn_intake_fan
;
1013 do_cpu_pid(state
, temp
, power
);
1016 state
->rpm
= max(state
->rpm
, (int)state
->mpu
.rminn_exhaust_fan
);
1017 state
->rpm
= min(state
->rpm
, (int)state
->mpu
.rmaxn_exhaust_fan
);
1019 /* Calculate intake fan */
1020 intake
= (state
->rpm
* CPU_INTAKE_SCALE
) >> 16;
1021 intake
= max(intake
, (int)state
->mpu
.rminn_intake_fan
);
1022 intake
= min(intake
, (int)state
->mpu
.rmaxn_intake_fan
);
1023 state
->intake_rpm
= intake
;
1026 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1027 state
->index
, (int)state
->rpm
, intake
, state
->overtemp
);
1029 /* We should check for errors, shouldn't we ? But then, what
1030 * do we do once the error occurs ? For FCU notified fan
1031 * failures (-EFAULT) we probably want to notify userland
1034 if (state
->index
== 0) {
1035 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX
, intake
);
1036 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX
, state
->rpm
);
1038 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX
, intake
);
1039 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX
, state
->rpm
);
1043 static void do_monitor_cpu_rack(struct cpu_pid_state
*state
)
1045 s32 temp
, power
, fan_min
;
1048 /* Read current fan status */
1049 rc
= do_read_one_cpu_values(state
, &temp
, &power
);
1051 /* XXX What do we do now ? */
1054 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1055 * full blown immediately and try to trigger a shutdown
1057 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
1058 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
1060 state
->index
, temp
>> 16);
1061 state
->overtemp
= CPU_MAX_OVERTEMP
/ 4;
1062 } else if (temp
> (state
->mpu
.tmax
<< 16))
1065 state
->overtemp
= 0;
1066 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
1068 if (state
->overtemp
> 0) {
1069 state
->rpm
= state
->intake_rpm
= state
->mpu
.rmaxn_intake_fan
;
1074 do_cpu_pid(state
, temp
, power
);
1076 /* Check clamp from dimms */
1077 fan_min
= dimm_output_clamp
;
1078 fan_min
= max(fan_min
, (int)state
->mpu
.rminn_intake_fan
);
1080 state
->rpm
= max(state
->rpm
, (int)fan_min
);
1081 state
->rpm
= min(state
->rpm
, (int)state
->mpu
.rmaxn_intake_fan
);
1082 state
->intake_rpm
= state
->rpm
;
1085 DBG("** CPU %d RPM: %d overtemp: %d\n",
1086 state
->index
, (int)state
->rpm
, state
->overtemp
);
1088 /* We should check for errors, shouldn't we ? But then, what
1089 * do we do once the error occurs ? For FCU notified fan
1090 * failures (-EFAULT) we probably want to notify userland
1093 if (state
->index
== 0) {
1094 set_rpm_fan(CPU_A1_FAN_RPM_INDEX
, state
->rpm
);
1095 set_rpm_fan(CPU_A2_FAN_RPM_INDEX
, state
->rpm
);
1096 set_rpm_fan(CPU_A3_FAN_RPM_INDEX
, state
->rpm
);
1098 set_rpm_fan(CPU_B1_FAN_RPM_INDEX
, state
->rpm
);
1099 set_rpm_fan(CPU_B2_FAN_RPM_INDEX
, state
->rpm
);
1100 set_rpm_fan(CPU_B3_FAN_RPM_INDEX
, state
->rpm
);
1105 * Initialize the state structure for one CPU control loop
1107 static int init_cpu_state(struct cpu_pid_state
*state
, int index
)
1109 state
->index
= index
;
1111 state
->rpm
= (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
) ? 4000 : 1000;
1112 state
->overtemp
= 0;
1113 state
->adc_config
= 0x00;
1117 state
->monitor
= attach_i2c_chip(SUPPLY_MONITOR_ID
, "CPU0_monitor");
1118 else if (index
== 1)
1119 state
->monitor
= attach_i2c_chip(SUPPLY_MONITORB_ID
, "CPU1_monitor");
1120 if (state
->monitor
== NULL
)
1123 if (read_eeprom(index
, &state
->mpu
))
1126 state
->count_power
= state
->mpu
.tguardband
;
1127 if (state
->count_power
> CPU_POWER_HISTORY_SIZE
) {
1128 printk(KERN_WARNING
"Warning ! too many power history slots\n");
1129 state
->count_power
= CPU_POWER_HISTORY_SIZE
;
1131 DBG("CPU %d Using %d power history entries\n", index
, state
->count_power
);
1134 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
1135 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
1136 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
1137 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
1138 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
1140 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
1141 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
1142 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
1143 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
1144 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
1150 detach_i2c_chip(state
->monitor
);
1151 state
->monitor
= NULL
;
1157 * Dispose of the state data for one CPU control loop
1159 static void dispose_cpu_state(struct cpu_pid_state
*state
)
1161 if (state
->monitor
== NULL
)
1164 if (state
->index
== 0) {
1165 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
1166 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
1167 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
1168 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
1169 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
1171 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
1172 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
1173 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
1174 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
1175 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
1178 detach_i2c_chip(state
->monitor
);
1179 state
->monitor
= NULL
;
1183 * Motherboard backside & U3 heatsink fan control loop
1185 static void do_monitor_backside(struct backside_pid_state
*state
)
1187 s32 temp
, integral
, derivative
, fan_min
;
1188 s64 integ_p
, deriv_p
, prop_p
, sum
;
1191 if (--state
->ticks
!= 0)
1193 state
->ticks
= backside_params
.interval
;
1197 /* Check fan status */
1198 rc
= get_pwm_fan(BACKSIDE_FAN_PWM_INDEX
);
1200 printk(KERN_WARNING
"Error %d reading backside fan !\n", rc
);
1201 /* XXX What do we do now ? */
1204 DBG(" current pwm: %d\n", state
->pwm
);
1206 /* Get some sensor readings */
1207 temp
= i2c_smbus_read_byte_data(state
->monitor
, MAX6690_EXT_TEMP
) << 16;
1208 state
->last_temp
= temp
;
1209 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1210 FIX32TOPRINT(backside_params
.input_target
));
1212 /* Store temperature and error in history array */
1213 state
->cur_sample
= (state
->cur_sample
+ 1) % BACKSIDE_PID_HISTORY_SIZE
;
1214 state
->sample_history
[state
->cur_sample
] = temp
;
1215 state
->error_history
[state
->cur_sample
] = temp
- backside_params
.input_target
;
1217 /* If first loop, fill the history table */
1219 for (i
= 0; i
< (BACKSIDE_PID_HISTORY_SIZE
- 1); i
++) {
1220 state
->cur_sample
= (state
->cur_sample
+ 1) %
1221 BACKSIDE_PID_HISTORY_SIZE
;
1222 state
->sample_history
[state
->cur_sample
] = temp
;
1223 state
->error_history
[state
->cur_sample
] =
1224 temp
- backside_params
.input_target
;
1229 /* Calculate the integral term */
1232 for (i
= 0; i
< BACKSIDE_PID_HISTORY_SIZE
; i
++)
1233 integral
+= state
->error_history
[i
];
1234 integral
*= backside_params
.interval
;
1235 DBG(" integral: %08x\n", integral
);
1236 integ_p
= ((s64
)backside_params
.G_r
) * (s64
)integral
;
1237 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1240 /* Calculate the derivative term */
1241 derivative
= state
->error_history
[state
->cur_sample
] -
1242 state
->error_history
[(state
->cur_sample
+ BACKSIDE_PID_HISTORY_SIZE
- 1)
1243 % BACKSIDE_PID_HISTORY_SIZE
];
1244 derivative
/= backside_params
.interval
;
1245 deriv_p
= ((s64
)backside_params
.G_d
) * (s64
)derivative
;
1246 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1249 /* Calculate the proportional term */
1250 prop_p
= ((s64
)backside_params
.G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1251 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1257 DBG(" sum: %d\n", (int)sum
);
1258 if (backside_params
.additive
)
1259 state
->pwm
+= (s32
)sum
;
1263 /* Check for clamp */
1264 fan_min
= (dimm_output_clamp
* 100) / 14000;
1265 fan_min
= max(fan_min
, backside_params
.output_min
);
1267 state
->pwm
= max(state
->pwm
, fan_min
);
1268 state
->pwm
= min(state
->pwm
, backside_params
.output_max
);
1270 DBG("** BACKSIDE PWM: %d\n", (int)state
->pwm
);
1271 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX
, state
->pwm
);
1275 * Initialize the state structure for the backside fan control loop
1277 static int init_backside_state(struct backside_pid_state
*state
)
1279 struct device_node
*u3
;
1280 int u3h
= 1; /* conservative by default */
1283 * There are different PID params for machines with U3 and machines
1284 * with U3H, pick the right ones now
1286 u3
= of_find_node_by_path("/u3@0,f8000000");
1288 u32
*vers
= (u32
*)get_property(u3
, "device-rev", NULL
);
1290 if (((*vers
) & 0x3f) < 0x34)
1296 backside_params
.G_d
= BACKSIDE_PID_RACK_G_d
;
1297 backside_params
.input_target
= BACKSIDE_PID_RACK_INPUT_TARGET
;
1298 backside_params
.output_min
= BACKSIDE_PID_U3H_OUTPUT_MIN
;
1299 backside_params
.interval
= BACKSIDE_PID_RACK_INTERVAL
;
1300 backside_params
.G_p
= BACKSIDE_PID_RACK_G_p
;
1301 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1302 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1303 backside_params
.additive
= 0;
1305 backside_params
.G_d
= BACKSIDE_PID_U3H_G_d
;
1306 backside_params
.input_target
= BACKSIDE_PID_U3H_INPUT_TARGET
;
1307 backside_params
.output_min
= BACKSIDE_PID_U3H_OUTPUT_MIN
;
1308 backside_params
.interval
= BACKSIDE_PID_INTERVAL
;
1309 backside_params
.G_p
= BACKSIDE_PID_G_p
;
1310 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1311 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1312 backside_params
.additive
= 1;
1314 backside_params
.G_d
= BACKSIDE_PID_U3_G_d
;
1315 backside_params
.input_target
= BACKSIDE_PID_U3_INPUT_TARGET
;
1316 backside_params
.output_min
= BACKSIDE_PID_U3_OUTPUT_MIN
;
1317 backside_params
.interval
= BACKSIDE_PID_INTERVAL
;
1318 backside_params
.G_p
= BACKSIDE_PID_G_p
;
1319 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1320 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1321 backside_params
.additive
= 1;
1328 state
->monitor
= attach_i2c_chip(BACKSIDE_MAX_ID
, "backside_temp");
1329 if (state
->monitor
== NULL
)
1332 device_create_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
1333 device_create_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
1339 * Dispose of the state data for the backside control loop
1341 static void dispose_backside_state(struct backside_pid_state
*state
)
1343 if (state
->monitor
== NULL
)
1346 device_remove_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
1347 device_remove_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
1349 detach_i2c_chip(state
->monitor
);
1350 state
->monitor
= NULL
;
1354 * Drives bay fan control loop
1356 static void do_monitor_drives(struct drives_pid_state
*state
)
1358 s32 temp
, integral
, derivative
;
1359 s64 integ_p
, deriv_p
, prop_p
, sum
;
1362 if (--state
->ticks
!= 0)
1364 state
->ticks
= DRIVES_PID_INTERVAL
;
1368 /* Check fan status */
1369 rc
= get_rpm_fan(DRIVES_FAN_RPM_INDEX
, !RPM_PID_USE_ACTUAL_SPEED
);
1371 printk(KERN_WARNING
"Error %d reading drives fan !\n", rc
);
1372 /* XXX What do we do now ? */
1375 DBG(" current rpm: %d\n", state
->rpm
);
1377 /* Get some sensor readings */
1378 temp
= le16_to_cpu(i2c_smbus_read_word_data(state
->monitor
, DS1775_TEMP
)) << 8;
1379 state
->last_temp
= temp
;
1380 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1381 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET
));
1383 /* Store temperature and error in history array */
1384 state
->cur_sample
= (state
->cur_sample
+ 1) % DRIVES_PID_HISTORY_SIZE
;
1385 state
->sample_history
[state
->cur_sample
] = temp
;
1386 state
->error_history
[state
->cur_sample
] = temp
- DRIVES_PID_INPUT_TARGET
;
1388 /* If first loop, fill the history table */
1390 for (i
= 0; i
< (DRIVES_PID_HISTORY_SIZE
- 1); i
++) {
1391 state
->cur_sample
= (state
->cur_sample
+ 1) %
1392 DRIVES_PID_HISTORY_SIZE
;
1393 state
->sample_history
[state
->cur_sample
] = temp
;
1394 state
->error_history
[state
->cur_sample
] =
1395 temp
- DRIVES_PID_INPUT_TARGET
;
1400 /* Calculate the integral term */
1403 for (i
= 0; i
< DRIVES_PID_HISTORY_SIZE
; i
++)
1404 integral
+= state
->error_history
[i
];
1405 integral
*= DRIVES_PID_INTERVAL
;
1406 DBG(" integral: %08x\n", integral
);
1407 integ_p
= ((s64
)DRIVES_PID_G_r
) * (s64
)integral
;
1408 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1411 /* Calculate the derivative term */
1412 derivative
= state
->error_history
[state
->cur_sample
] -
1413 state
->error_history
[(state
->cur_sample
+ DRIVES_PID_HISTORY_SIZE
- 1)
1414 % DRIVES_PID_HISTORY_SIZE
];
1415 derivative
/= DRIVES_PID_INTERVAL
;
1416 deriv_p
= ((s64
)DRIVES_PID_G_d
) * (s64
)derivative
;
1417 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1420 /* Calculate the proportional term */
1421 prop_p
= ((s64
)DRIVES_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1422 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1428 DBG(" sum: %d\n", (int)sum
);
1429 state
->rpm
+= (s32
)sum
;
1431 state
->rpm
= max(state
->rpm
, DRIVES_PID_OUTPUT_MIN
);
1432 state
->rpm
= min(state
->rpm
, DRIVES_PID_OUTPUT_MAX
);
1434 DBG("** DRIVES RPM: %d\n", (int)state
->rpm
);
1435 set_rpm_fan(DRIVES_FAN_RPM_INDEX
, state
->rpm
);
1439 * Initialize the state structure for the drives bay fan control loop
1441 static int init_drives_state(struct drives_pid_state
*state
)
1447 state
->monitor
= attach_i2c_chip(DRIVES_DALLAS_ID
, "drives_temp");
1448 if (state
->monitor
== NULL
)
1451 device_create_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
1452 device_create_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1458 * Dispose of the state data for the drives control loop
1460 static void dispose_drives_state(struct drives_pid_state
*state
)
1462 if (state
->monitor
== NULL
)
1465 device_remove_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
1466 device_remove_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1468 detach_i2c_chip(state
->monitor
);
1469 state
->monitor
= NULL
;
1473 * DIMMs temp control loop
1475 static void do_monitor_dimms(struct dimm_pid_state
*state
)
1477 s32 temp
, integral
, derivative
, fan_min
;
1478 s64 integ_p
, deriv_p
, prop_p
, sum
;
1481 if (--state
->ticks
!= 0)
1483 state
->ticks
= DIMM_PID_INTERVAL
;
1487 DBG(" current value: %d\n", state
->output
);
1489 temp
= read_lm87_reg(state
->monitor
, LM87_INT_TEMP
);
1493 state
->last_temp
= temp
;
1494 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1495 FIX32TOPRINT(DIMM_PID_INPUT_TARGET
));
1497 /* Store temperature and error in history array */
1498 state
->cur_sample
= (state
->cur_sample
+ 1) % DIMM_PID_HISTORY_SIZE
;
1499 state
->sample_history
[state
->cur_sample
] = temp
;
1500 state
->error_history
[state
->cur_sample
] = temp
- DIMM_PID_INPUT_TARGET
;
1502 /* If first loop, fill the history table */
1504 for (i
= 0; i
< (DIMM_PID_HISTORY_SIZE
- 1); i
++) {
1505 state
->cur_sample
= (state
->cur_sample
+ 1) %
1506 DIMM_PID_HISTORY_SIZE
;
1507 state
->sample_history
[state
->cur_sample
] = temp
;
1508 state
->error_history
[state
->cur_sample
] =
1509 temp
- DIMM_PID_INPUT_TARGET
;
1514 /* Calculate the integral term */
1517 for (i
= 0; i
< DIMM_PID_HISTORY_SIZE
; i
++)
1518 integral
+= state
->error_history
[i
];
1519 integral
*= DIMM_PID_INTERVAL
;
1520 DBG(" integral: %08x\n", integral
);
1521 integ_p
= ((s64
)DIMM_PID_G_r
) * (s64
)integral
;
1522 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1525 /* Calculate the derivative term */
1526 derivative
= state
->error_history
[state
->cur_sample
] -
1527 state
->error_history
[(state
->cur_sample
+ DIMM_PID_HISTORY_SIZE
- 1)
1528 % DIMM_PID_HISTORY_SIZE
];
1529 derivative
/= DIMM_PID_INTERVAL
;
1530 deriv_p
= ((s64
)DIMM_PID_G_d
) * (s64
)derivative
;
1531 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1534 /* Calculate the proportional term */
1535 prop_p
= ((s64
)DIMM_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1536 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1542 DBG(" sum: %d\n", (int)sum
);
1543 state
->output
= (s32
)sum
;
1544 state
->output
= max(state
->output
, DIMM_PID_OUTPUT_MIN
);
1545 state
->output
= min(state
->output
, DIMM_PID_OUTPUT_MAX
);
1546 dimm_output_clamp
= state
->output
;
1548 DBG("** DIMM clamp value: %d\n", (int)state
->output
);
1550 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1551 fan_min
= (dimm_output_clamp
* 100) / 14000;
1552 fan_min
= max(fan_min
, backside_params
.output_min
);
1553 if (backside_state
.pwm
< fan_min
) {
1554 backside_state
.pwm
= fan_min
;
1555 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min
);
1556 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX
, fan_min
);
1561 * Initialize the state structure for the DIMM temp control loop
1563 static int init_dimms_state(struct dimm_pid_state
*state
)
1567 state
->output
= 4000;
1569 state
->monitor
= attach_i2c_chip(XSERVE_DIMMS_LM87
, "dimms_temp");
1570 if (state
->monitor
== NULL
)
1573 device_create_file(&of_dev
->dev
, &dev_attr_dimms_temperature
);
1579 * Dispose of the state data for the drives control loop
1581 static void dispose_dimms_state(struct dimm_pid_state
*state
)
1583 if (state
->monitor
== NULL
)
1586 device_remove_file(&of_dev
->dev
, &dev_attr_dimms_temperature
);
1588 detach_i2c_chip(state
->monitor
);
1589 state
->monitor
= NULL
;
1592 static int call_critical_overtemp(void)
1594 char *argv
[] = { critical_overtemp_path
, NULL
};
1595 static char *envp
[] = { "HOME=/",
1597 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1600 return call_usermodehelper(critical_overtemp_path
, argv
, envp
, 0);
1605 * Here's the kernel thread that calls the various control loops
1607 static int main_control_loop(void *x
)
1611 DBG("main_control_loop started\n");
1615 if (start_fcu() < 0) {
1616 printk(KERN_ERR
"kfand: failed to start FCU\n");
1621 /* Set the PCI fan once for now */
1622 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, SLOTS_FAN_DEFAULT_PWM
);
1624 /* Initialize ADCs */
1625 initialize_adc(&cpu_state
[0]);
1626 if (cpu_state
[1].monitor
!= NULL
)
1627 initialize_adc(&cpu_state
[1]);
1631 while (state
== state_attached
) {
1632 unsigned long elapsed
, start
;
1638 /* First, we always calculate the new DIMMs state on an Xserve */
1640 do_monitor_dimms(&dimms_state
);
1642 /* Then, the CPUs */
1643 if (cpu_pid_type
== CPU_PID_TYPE_COMBINED
)
1644 do_monitor_cpu_combined();
1645 else if (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
) {
1646 do_monitor_cpu_rack(&cpu_state
[0]);
1647 if (cpu_state
[1].monitor
!= NULL
)
1648 do_monitor_cpu_rack(&cpu_state
[1]);
1649 // better deal with UP
1651 do_monitor_cpu_split(&cpu_state
[0]);
1652 if (cpu_state
[1].monitor
!= NULL
)
1653 do_monitor_cpu_split(&cpu_state
[1]);
1654 // better deal with UP
1656 /* Then, the rest */
1657 do_monitor_backside(&backside_state
);
1659 do_monitor_drives(&drives_state
);
1662 if (critical_state
== 1) {
1663 printk(KERN_WARNING
"Temperature control detected a critical condition\n");
1664 printk(KERN_WARNING
"Attempting to shut down...\n");
1665 if (call_critical_overtemp()) {
1666 printk(KERN_WARNING
"Can't call %s, power off now!\n",
1667 critical_overtemp_path
);
1668 machine_power_off();
1671 if (critical_state
> 0)
1673 if (critical_state
> MAX_CRITICAL_STATE
) {
1674 printk(KERN_WARNING
"Shutdown timed out, power off now !\n");
1675 machine_power_off();
1678 // FIXME: Deal with signals
1679 elapsed
= jiffies
- start
;
1681 schedule_timeout_interruptible(HZ
- elapsed
);
1685 DBG("main_control_loop ended\n");
1688 complete_and_exit(&ctrl_complete
, 0);
1692 * Dispose the control loops when tearing down
1694 static void dispose_control_loops(void)
1696 dispose_cpu_state(&cpu_state
[0]);
1697 dispose_cpu_state(&cpu_state
[1]);
1698 dispose_backside_state(&backside_state
);
1699 dispose_drives_state(&drives_state
);
1700 dispose_dimms_state(&dimms_state
);
1704 * Create the control loops. U3-0 i2c bus is up, so we can now
1705 * get to the various sensors
1707 static int create_control_loops(void)
1709 struct device_node
*np
;
1711 /* Count CPUs from the device-tree, we don't care how many are
1712 * actually used by Linux
1715 for (np
= NULL
; NULL
!= (np
= of_find_node_by_type(np
, "cpu"));)
1718 DBG("counted %d CPUs in the device-tree\n", cpu_count
);
1720 /* Decide the type of PID algorithm to use based on the presence of
1721 * the pumps, though that may not be the best way, that is good enough
1725 cpu_pid_type
= CPU_PID_TYPE_RACKMAC
;
1726 else if (machine_is_compatible("PowerMac7,3")
1728 && fcu_fans
[CPUA_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
1729 && fcu_fans
[CPUB_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
) {
1730 printk(KERN_INFO
"Liquid cooling pumps detected, using new algorithm !\n");
1731 cpu_pid_type
= CPU_PID_TYPE_COMBINED
;
1733 cpu_pid_type
= CPU_PID_TYPE_SPLIT
;
1735 /* Create control loops for everything. If any fail, everything
1738 if (init_cpu_state(&cpu_state
[0], 0))
1740 if (cpu_pid_type
== CPU_PID_TYPE_COMBINED
)
1741 fetch_cpu_pumps_minmax();
1743 if (cpu_count
> 1 && init_cpu_state(&cpu_state
[1], 1))
1745 if (init_backside_state(&backside_state
))
1747 if (rackmac
&& init_dimms_state(&dimms_state
))
1749 if (!rackmac
&& init_drives_state(&drives_state
))
1752 DBG("all control loops up !\n");
1757 DBG("failure creating control loops, disposing\n");
1759 dispose_control_loops();
1765 * Start the control loops after everything is up, that is create
1766 * the thread that will make them run
1768 static void start_control_loops(void)
1770 init_completion(&ctrl_complete
);
1772 ctrl_task
= kernel_thread(main_control_loop
, NULL
, SIGCHLD
| CLONE_KERNEL
);
1776 * Stop the control loops when tearing down
1778 static void stop_control_loops(void)
1781 wait_for_completion(&ctrl_complete
);
1785 * Attach to the i2c FCU after detecting U3-1 bus
1787 static int attach_fcu(void)
1789 fcu
= attach_i2c_chip(FAN_CTRLER_ID
, "fcu");
1793 DBG("FCU attached\n");
1799 * Detach from the i2c FCU when tearing down
1801 static void detach_fcu(void)
1804 detach_i2c_chip(fcu
);
1809 * Attach to the i2c controller. We probe the various chips based
1810 * on the device-tree nodes and build everything for the driver to
1811 * run, we then kick the driver monitoring thread
1813 static int therm_pm72_attach(struct i2c_adapter
*adapter
)
1818 if (state
== state_detached
)
1819 state
= state_attaching
;
1820 if (state
!= state_attaching
) {
1825 /* Check if we are looking for one of these */
1826 if (u3_0
== NULL
&& !strcmp(adapter
->name
, "u3 0")) {
1828 DBG("found U3-0\n");
1830 if (create_control_loops())
1832 } else if (u3_1
== NULL
&& !strcmp(adapter
->name
, "u3 1")) {
1834 DBG("found U3-1, attaching FCU\n");
1837 } else if (k2
== NULL
&& !strcmp(adapter
->name
, "mac-io 0")) {
1840 if (u3_0
&& rackmac
)
1841 if (create_control_loops())
1844 /* We got all we need, start control loops */
1845 if (u3_0
!= NULL
&& u3_1
!= NULL
&& (k2
|| !rackmac
)) {
1846 DBG("everything up, starting control loops\n");
1847 state
= state_attached
;
1848 start_control_loops();
1856 * Called on every adapter when the driver or the i2c controller
1859 static int therm_pm72_detach(struct i2c_adapter
*adapter
)
1863 if (state
!= state_detached
)
1864 state
= state_detaching
;
1866 /* Stop control loops if any */
1867 DBG("stopping control loops\n");
1869 stop_control_loops();
1872 if (u3_0
!= NULL
&& !strcmp(adapter
->name
, "u3 0")) {
1873 DBG("lost U3-0, disposing control loops\n");
1874 dispose_control_loops();
1878 if (u3_1
!= NULL
&& !strcmp(adapter
->name
, "u3 1")) {
1879 DBG("lost U3-1, detaching FCU\n");
1883 if (u3_0
== NULL
&& u3_1
== NULL
)
1884 state
= state_detached
;
1891 static int fan_check_loc_match(const char *loc
, int fan
)
1896 strlcpy(tmp
, fcu_fans
[fan
].loc
, 64);
1903 if (strcmp(loc
, c
) == 0)
1912 static void fcu_lookup_fans(struct device_node
*fcu_node
)
1914 struct device_node
*np
= NULL
;
1917 /* The table is filled by default with values that are suitable
1918 * for the old machines without device-tree informations. We scan
1919 * the device-tree and override those values with whatever is
1923 DBG("Looking up FCU controls in device-tree...\n");
1925 while ((np
= of_get_next_child(fcu_node
, np
)) != NULL
) {
1930 DBG(" control: %s, type: %s\n", np
->name
, np
->type
);
1932 /* Detect control type */
1933 if (!strcmp(np
->type
, "fan-rpm-control") ||
1934 !strcmp(np
->type
, "fan-rpm"))
1936 if (!strcmp(np
->type
, "fan-pwm-control") ||
1937 !strcmp(np
->type
, "fan-pwm"))
1939 /* Only care about fans for now */
1943 /* Lookup for a matching location */
1944 loc
= (char *)get_property(np
, "location", NULL
);
1945 reg
= (u32
*)get_property(np
, "reg", NULL
);
1946 if (loc
== NULL
|| reg
== NULL
)
1948 DBG(" matching location: %s, reg: 0x%08x\n", loc
, *reg
);
1950 for (i
= 0; i
< FCU_FAN_COUNT
; i
++) {
1953 if (!fan_check_loc_match(loc
, i
))
1955 DBG(" location match, index: %d\n", i
);
1956 fcu_fans
[i
].id
= FCU_FAN_ABSENT_ID
;
1957 if (type
!= fcu_fans
[i
].type
) {
1958 printk(KERN_WARNING
"therm_pm72: Fan type mismatch "
1959 "in device-tree for %s\n", np
->full_name
);
1962 if (type
== FCU_FAN_RPM
)
1963 fan_id
= ((*reg
) - 0x10) / 2;
1965 fan_id
= ((*reg
) - 0x30) / 2;
1967 printk(KERN_WARNING
"therm_pm72: Can't parse "
1968 "fan ID in device-tree for %s\n", np
->full_name
);
1971 DBG(" fan id -> %d, type -> %d\n", fan_id
, type
);
1972 fcu_fans
[i
].id
= fan_id
;
1976 /* Now dump the array */
1977 printk(KERN_INFO
"Detected fan controls:\n");
1978 for (i
= 0; i
< FCU_FAN_COUNT
; i
++) {
1979 if (fcu_fans
[i
].id
== FCU_FAN_ABSENT_ID
)
1981 printk(KERN_INFO
" %d: %s fan, id %d, location: %s\n", i
,
1982 fcu_fans
[i
].type
== FCU_FAN_RPM
? "RPM" : "PWM",
1983 fcu_fans
[i
].id
, fcu_fans
[i
].loc
);
1987 static int fcu_of_probe(struct of_device
* dev
, const struct of_device_id
*match
)
1989 state
= state_detached
;
1991 /* Lookup the fans in the device tree */
1992 fcu_lookup_fans(dev
->node
);
1994 /* Add the driver */
1995 return i2c_add_driver(&therm_pm72_driver
);
1998 static int fcu_of_remove(struct of_device
* dev
)
2000 i2c_del_driver(&therm_pm72_driver
);
2005 static struct of_device_id fcu_match
[] =
2013 static struct of_platform_driver fcu_of_platform_driver
=
2015 .name
= "temperature",
2016 .match_table
= fcu_match
,
2017 .probe
= fcu_of_probe
,
2018 .remove
= fcu_of_remove
2022 * Check machine type, attach to i2c controller
2024 static int __init
therm_pm72_init(void)
2026 struct device_node
*np
;
2028 rackmac
= machine_is_compatible("RackMac3,1");
2030 if (!machine_is_compatible("PowerMac7,2") &&
2031 !machine_is_compatible("PowerMac7,3") &&
2035 printk(KERN_INFO
"PowerMac G5 Thermal control driver %s\n", VERSION
);
2037 np
= of_find_node_by_type(NULL
, "fcu");
2039 /* Some machines have strangely broken device-tree */
2040 np
= of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2042 printk(KERN_ERR
"Can't find FCU in device-tree !\n");
2046 of_dev
= of_platform_device_create(np
, "temperature", NULL
);
2047 if (of_dev
== NULL
) {
2048 printk(KERN_ERR
"Can't register FCU platform device !\n");
2052 of_register_driver(&fcu_of_platform_driver
);
2057 static void __exit
therm_pm72_exit(void)
2059 of_unregister_driver(&fcu_of_platform_driver
);
2062 of_device_unregister(of_dev
);
2065 module_init(therm_pm72_init
);
2066 module_exit(therm_pm72_exit
);
2068 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2069 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2070 MODULE_LICENSE("GPL");