Linux 2.6.17.7
[linux/fpc-iii.git] / drivers / mmc / au1xmmc.c
blob5dc4bee7abebfb9c8685e61306ae54bdff754060
1 /*
2 * linux/drivers/mmc/au1xmmc.c - AU1XX0 MMC driver
4 * Copyright (c) 2005, Advanced Micro Devices, Inc.
6 * Developed with help from the 2.4.30 MMC AU1XXX controller including
7 * the following copyright notices:
8 * Copyright (c) 2003-2004 Embedded Edge, LLC.
9 * Portions Copyright (C) 2002 Embedix, Inc
10 * Copyright 2002 Hewlett-Packard Company
12 * 2.6 version of this driver inspired by:
13 * (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman,
14 * All Rights Reserved.
15 * (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King,
16 * All Rights Reserved.
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License version 2 as
21 * published by the Free Software Foundation.
24 /* Why is a timer used to detect insert events?
26 * From the AU1100 MMC application guide:
27 * If the Au1100-based design is intended to support both MultiMediaCards
28 * and 1- or 4-data bit SecureDigital cards, then the solution is to
29 * connect a weak (560KOhm) pull-up resistor to connector pin 1.
30 * In doing so, a MMC card never enters SPI-mode communications,
31 * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective
32 * (the low to high transition will not occur).
34 * So we use the timer to check the status manually.
37 #include <linux/config.h>
38 #include <linux/module.h>
39 #include <linux/init.h>
40 #include <linux/platform_device.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/dma-mapping.h>
45 #include <linux/mmc/host.h>
46 #include <linux/mmc/protocol.h>
47 #include <asm/io.h>
48 #include <asm/mach-au1x00/au1000.h>
49 #include <asm/mach-au1x00/au1xxx_dbdma.h>
50 #include <asm/mach-au1x00/au1100_mmc.h>
51 #include <asm/scatterlist.h>
53 #include <au1xxx.h>
54 #include "au1xmmc.h"
56 #define DRIVER_NAME "au1xxx-mmc"
58 /* Set this to enable special debugging macros */
60 #ifdef DEBUG
61 #define DBG(fmt, idx, args...) printk("au1xx(%d): DEBUG: " fmt, idx, ##args)
62 #else
63 #define DBG(fmt, idx, args...)
64 #endif
66 const struct {
67 u32 iobase;
68 u32 tx_devid, rx_devid;
69 u16 bcsrpwr;
70 u16 bcsrstatus;
71 u16 wpstatus;
72 } au1xmmc_card_table[] = {
73 { SD0_BASE, DSCR_CMD0_SDMS_TX0, DSCR_CMD0_SDMS_RX0,
74 BCSR_BOARD_SD0PWR, BCSR_INT_SD0INSERT, BCSR_STATUS_SD0WP },
75 #ifndef CONFIG_MIPS_DB1200
76 { SD1_BASE, DSCR_CMD0_SDMS_TX1, DSCR_CMD0_SDMS_RX1,
77 BCSR_BOARD_DS1PWR, BCSR_INT_SD1INSERT, BCSR_STATUS_SD1WP }
78 #endif
81 #define AU1XMMC_CONTROLLER_COUNT \
82 (sizeof(au1xmmc_card_table) / sizeof(au1xmmc_card_table[0]))
84 /* This array stores pointers for the hosts (used by the IRQ handler) */
85 struct au1xmmc_host *au1xmmc_hosts[AU1XMMC_CONTROLLER_COUNT];
86 static int dma = 1;
88 #ifdef MODULE
89 module_param(dma, bool, 0);
90 MODULE_PARM_DESC(dma, "Use DMA engine for data transfers (0 = disabled)");
91 #endif
93 static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask)
95 u32 val = au_readl(HOST_CONFIG(host));
96 val |= mask;
97 au_writel(val, HOST_CONFIG(host));
98 au_sync();
101 static inline void FLUSH_FIFO(struct au1xmmc_host *host)
103 u32 val = au_readl(HOST_CONFIG2(host));
105 au_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host));
106 au_sync_delay(1);
108 /* SEND_STOP will turn off clock control - this re-enables it */
109 val &= ~SD_CONFIG2_DF;
111 au_writel(val, HOST_CONFIG2(host));
112 au_sync();
115 static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask)
117 u32 val = au_readl(HOST_CONFIG(host));
118 val &= ~mask;
119 au_writel(val, HOST_CONFIG(host));
120 au_sync();
123 static inline void SEND_STOP(struct au1xmmc_host *host)
126 /* We know the value of CONFIG2, so avoid a read we don't need */
127 u32 mask = SD_CONFIG2_EN;
129 WARN_ON(host->status != HOST_S_DATA);
130 host->status = HOST_S_STOP;
132 au_writel(mask | SD_CONFIG2_DF, HOST_CONFIG2(host));
133 au_sync();
135 /* Send the stop commmand */
136 au_writel(STOP_CMD, HOST_CMD(host));
139 static void au1xmmc_set_power(struct au1xmmc_host *host, int state)
142 u32 val = au1xmmc_card_table[host->id].bcsrpwr;
144 bcsr->board &= ~val;
145 if (state) bcsr->board |= val;
147 au_sync_delay(1);
150 static inline int au1xmmc_card_inserted(struct au1xmmc_host *host)
152 return (bcsr->sig_status & au1xmmc_card_table[host->id].bcsrstatus)
153 ? 1 : 0;
156 static inline int au1xmmc_card_readonly(struct au1xmmc_host *host)
158 return (bcsr->status & au1xmmc_card_table[host->id].wpstatus)
159 ? 1 : 0;
162 static void au1xmmc_finish_request(struct au1xmmc_host *host)
165 struct mmc_request *mrq = host->mrq;
167 host->mrq = NULL;
168 host->flags &= HOST_F_ACTIVE;
170 host->dma.len = 0;
171 host->dma.dir = 0;
173 host->pio.index = 0;
174 host->pio.offset = 0;
175 host->pio.len = 0;
177 host->status = HOST_S_IDLE;
179 bcsr->disk_leds |= (1 << 8);
181 mmc_request_done(host->mmc, mrq);
184 static void au1xmmc_tasklet_finish(unsigned long param)
186 struct au1xmmc_host *host = (struct au1xmmc_host *) param;
187 au1xmmc_finish_request(host);
190 static int au1xmmc_send_command(struct au1xmmc_host *host, int wait,
191 struct mmc_command *cmd)
194 u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT);
196 switch (mmc_resp_type(cmd)) {
197 case MMC_RSP_R1:
198 mmccmd |= SD_CMD_RT_1;
199 break;
200 case MMC_RSP_R1B:
201 mmccmd |= SD_CMD_RT_1B;
202 break;
203 case MMC_RSP_R2:
204 mmccmd |= SD_CMD_RT_2;
205 break;
206 case MMC_RSP_R3:
207 mmccmd |= SD_CMD_RT_3;
208 break;
211 switch(cmd->opcode) {
212 case MMC_READ_SINGLE_BLOCK:
213 case SD_APP_SEND_SCR:
214 mmccmd |= SD_CMD_CT_2;
215 break;
216 case MMC_READ_MULTIPLE_BLOCK:
217 mmccmd |= SD_CMD_CT_4;
218 break;
219 case MMC_WRITE_BLOCK:
220 mmccmd |= SD_CMD_CT_1;
221 break;
223 case MMC_WRITE_MULTIPLE_BLOCK:
224 mmccmd |= SD_CMD_CT_3;
225 break;
226 case MMC_STOP_TRANSMISSION:
227 mmccmd |= SD_CMD_CT_7;
228 break;
231 au_writel(cmd->arg, HOST_CMDARG(host));
232 au_sync();
234 if (wait)
235 IRQ_OFF(host, SD_CONFIG_CR);
237 au_writel((mmccmd | SD_CMD_GO), HOST_CMD(host));
238 au_sync();
240 /* Wait for the command to go on the line */
242 while(1) {
243 if (!(au_readl(HOST_CMD(host)) & SD_CMD_GO))
244 break;
247 /* Wait for the command to come back */
249 if (wait) {
250 u32 status = au_readl(HOST_STATUS(host));
252 while(!(status & SD_STATUS_CR))
253 status = au_readl(HOST_STATUS(host));
255 /* Clear the CR status */
256 au_writel(SD_STATUS_CR, HOST_STATUS(host));
258 IRQ_ON(host, SD_CONFIG_CR);
261 return MMC_ERR_NONE;
264 static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status)
267 struct mmc_request *mrq = host->mrq;
268 struct mmc_data *data;
269 u32 crc;
271 WARN_ON(host->status != HOST_S_DATA && host->status != HOST_S_STOP);
273 if (host->mrq == NULL)
274 return;
276 data = mrq->cmd->data;
278 if (status == 0)
279 status = au_readl(HOST_STATUS(host));
281 /* The transaction is really over when the SD_STATUS_DB bit is clear */
283 while((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB))
284 status = au_readl(HOST_STATUS(host));
286 data->error = MMC_ERR_NONE;
287 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir);
289 /* Process any errors */
291 crc = (status & (SD_STATUS_WC | SD_STATUS_RC));
292 if (host->flags & HOST_F_XMIT)
293 crc |= ((status & 0x07) == 0x02) ? 0 : 1;
295 if (crc)
296 data->error = MMC_ERR_BADCRC;
298 /* Clear the CRC bits */
299 au_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host));
301 data->bytes_xfered = 0;
303 if (data->error == MMC_ERR_NONE) {
304 if (host->flags & HOST_F_DMA) {
305 u32 chan = DMA_CHANNEL(host);
307 chan_tab_t *c = *((chan_tab_t **) chan);
308 au1x_dma_chan_t *cp = c->chan_ptr;
309 data->bytes_xfered = cp->ddma_bytecnt;
311 else
312 data->bytes_xfered =
313 (data->blocks * data->blksz) -
314 host->pio.len;
317 au1xmmc_finish_request(host);
320 static void au1xmmc_tasklet_data(unsigned long param)
322 struct au1xmmc_host *host = (struct au1xmmc_host *) param;
324 u32 status = au_readl(HOST_STATUS(host));
325 au1xmmc_data_complete(host, status);
328 #define AU1XMMC_MAX_TRANSFER 8
330 static void au1xmmc_send_pio(struct au1xmmc_host *host)
333 struct mmc_data *data = 0;
334 int sg_len, max, count = 0;
335 unsigned char *sg_ptr;
336 u32 status = 0;
337 struct scatterlist *sg;
339 data = host->mrq->data;
341 if (!(host->flags & HOST_F_XMIT))
342 return;
344 /* This is the pointer to the data buffer */
345 sg = &data->sg[host->pio.index];
346 sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset;
348 /* This is the space left inside the buffer */
349 sg_len = data->sg[host->pio.index].length - host->pio.offset;
351 /* Check to if we need less then the size of the sg_buffer */
353 max = (sg_len > host->pio.len) ? host->pio.len : sg_len;
354 if (max > AU1XMMC_MAX_TRANSFER) max = AU1XMMC_MAX_TRANSFER;
356 for(count = 0; count < max; count++ ) {
357 unsigned char val;
359 status = au_readl(HOST_STATUS(host));
361 if (!(status & SD_STATUS_TH))
362 break;
364 val = *sg_ptr++;
366 au_writel((unsigned long) val, HOST_TXPORT(host));
367 au_sync();
370 host->pio.len -= count;
371 host->pio.offset += count;
373 if (count == sg_len) {
374 host->pio.index++;
375 host->pio.offset = 0;
378 if (host->pio.len == 0) {
379 IRQ_OFF(host, SD_CONFIG_TH);
381 if (host->flags & HOST_F_STOP)
382 SEND_STOP(host);
384 tasklet_schedule(&host->data_task);
388 static void au1xmmc_receive_pio(struct au1xmmc_host *host)
391 struct mmc_data *data = 0;
392 int sg_len = 0, max = 0, count = 0;
393 unsigned char *sg_ptr = 0;
394 u32 status = 0;
395 struct scatterlist *sg;
397 data = host->mrq->data;
399 if (!(host->flags & HOST_F_RECV))
400 return;
402 max = host->pio.len;
404 if (host->pio.index < host->dma.len) {
405 sg = &data->sg[host->pio.index];
406 sg_ptr = page_address(sg->page) + sg->offset + host->pio.offset;
408 /* This is the space left inside the buffer */
409 sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset;
411 /* Check to if we need less then the size of the sg_buffer */
412 if (sg_len < max) max = sg_len;
415 if (max > AU1XMMC_MAX_TRANSFER)
416 max = AU1XMMC_MAX_TRANSFER;
418 for(count = 0; count < max; count++ ) {
419 u32 val;
420 status = au_readl(HOST_STATUS(host));
422 if (!(status & SD_STATUS_NE))
423 break;
425 if (status & SD_STATUS_RC) {
426 DBG("RX CRC Error [%d + %d].\n", host->id,
427 host->pio.len, count);
428 break;
431 if (status & SD_STATUS_RO) {
432 DBG("RX Overrun [%d + %d]\n", host->id,
433 host->pio.len, count);
434 break;
436 else if (status & SD_STATUS_RU) {
437 DBG("RX Underrun [%d + %d]\n", host->id,
438 host->pio.len, count);
439 break;
442 val = au_readl(HOST_RXPORT(host));
444 if (sg_ptr)
445 *sg_ptr++ = (unsigned char) (val & 0xFF);
448 host->pio.len -= count;
449 host->pio.offset += count;
451 if (sg_len && count == sg_len) {
452 host->pio.index++;
453 host->pio.offset = 0;
456 if (host->pio.len == 0) {
457 //IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF);
458 IRQ_OFF(host, SD_CONFIG_NE);
460 if (host->flags & HOST_F_STOP)
461 SEND_STOP(host);
463 tasklet_schedule(&host->data_task);
467 /* static void au1xmmc_cmd_complete
468 This is called when a command has been completed - grab the response
469 and check for errors. Then start the data transfer if it is indicated.
472 static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status)
475 struct mmc_request *mrq = host->mrq;
476 struct mmc_command *cmd;
477 int trans;
479 if (!host->mrq)
480 return;
482 cmd = mrq->cmd;
483 cmd->error = MMC_ERR_NONE;
485 if (cmd->flags & MMC_RSP_PRESENT) {
486 if (cmd->flags & MMC_RSP_136) {
487 u32 r[4];
488 int i;
490 r[0] = au_readl(host->iobase + SD_RESP3);
491 r[1] = au_readl(host->iobase + SD_RESP2);
492 r[2] = au_readl(host->iobase + SD_RESP1);
493 r[3] = au_readl(host->iobase + SD_RESP0);
495 /* The CRC is omitted from the response, so really
496 * we only got 120 bytes, but the engine expects
497 * 128 bits, so we have to shift things up
500 for(i = 0; i < 4; i++) {
501 cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8;
502 if (i != 3)
503 cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24;
505 } else {
506 /* Techincally, we should be getting all 48 bits of
507 * the response (SD_RESP1 + SD_RESP2), but because
508 * our response omits the CRC, our data ends up
509 * being shifted 8 bits to the right. In this case,
510 * that means that the OSR data starts at bit 31,
511 * so we can just read RESP0 and return that
513 cmd->resp[0] = au_readl(host->iobase + SD_RESP0);
517 /* Figure out errors */
519 if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC))
520 cmd->error = MMC_ERR_BADCRC;
522 trans = host->flags & (HOST_F_XMIT | HOST_F_RECV);
524 if (!trans || cmd->error != MMC_ERR_NONE) {
526 IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA|SD_CONFIG_RF);
527 tasklet_schedule(&host->finish_task);
528 return;
531 host->status = HOST_S_DATA;
533 if (host->flags & HOST_F_DMA) {
534 u32 channel = DMA_CHANNEL(host);
536 /* Start the DMA as soon as the buffer gets something in it */
538 if (host->flags & HOST_F_RECV) {
539 u32 mask = SD_STATUS_DB | SD_STATUS_NE;
541 while((status & mask) != mask)
542 status = au_readl(HOST_STATUS(host));
545 au1xxx_dbdma_start(channel);
549 static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate)
552 unsigned int pbus = get_au1x00_speed();
553 unsigned int divisor;
554 u32 config;
556 /* From databook:
557 divisor = ((((cpuclock / sbus_divisor) / 2) / mmcclock) / 2) - 1
560 pbus /= ((au_readl(SYS_POWERCTRL) & 0x3) + 2);
561 pbus /= 2;
563 divisor = ((pbus / rate) / 2) - 1;
565 config = au_readl(HOST_CONFIG(host));
567 config &= ~(SD_CONFIG_DIV);
568 config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE;
570 au_writel(config, HOST_CONFIG(host));
571 au_sync();
574 static int
575 au1xmmc_prepare_data(struct au1xmmc_host *host, struct mmc_data *data)
578 int datalen = data->blocks * data->blksz;
580 if (dma != 0)
581 host->flags |= HOST_F_DMA;
583 if (data->flags & MMC_DATA_READ)
584 host->flags |= HOST_F_RECV;
585 else
586 host->flags |= HOST_F_XMIT;
588 if (host->mrq->stop)
589 host->flags |= HOST_F_STOP;
591 host->dma.dir = DMA_BIDIRECTIONAL;
593 host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg,
594 data->sg_len, host->dma.dir);
596 if (host->dma.len == 0)
597 return MMC_ERR_TIMEOUT;
599 au_writel(data->blksz - 1, HOST_BLKSIZE(host));
601 if (host->flags & HOST_F_DMA) {
602 int i;
603 u32 channel = DMA_CHANNEL(host);
605 au1xxx_dbdma_stop(channel);
607 for(i = 0; i < host->dma.len; i++) {
608 u32 ret = 0, flags = DDMA_FLAGS_NOIE;
609 struct scatterlist *sg = &data->sg[i];
610 int sg_len = sg->length;
612 int len = (datalen > sg_len) ? sg_len : datalen;
614 if (i == host->dma.len - 1)
615 flags = DDMA_FLAGS_IE;
617 if (host->flags & HOST_F_XMIT){
618 ret = au1xxx_dbdma_put_source_flags(channel,
619 (void *) (page_address(sg->page) +
620 sg->offset),
621 len, flags);
623 else {
624 ret = au1xxx_dbdma_put_dest_flags(channel,
625 (void *) (page_address(sg->page) +
626 sg->offset),
627 len, flags);
630 if (!ret)
631 goto dataerr;
633 datalen -= len;
636 else {
637 host->pio.index = 0;
638 host->pio.offset = 0;
639 host->pio.len = datalen;
641 if (host->flags & HOST_F_XMIT)
642 IRQ_ON(host, SD_CONFIG_TH);
643 else
644 IRQ_ON(host, SD_CONFIG_NE);
645 //IRQ_ON(host, SD_CONFIG_RA|SD_CONFIG_RF);
648 return MMC_ERR_NONE;
650 dataerr:
651 dma_unmap_sg(mmc_dev(host->mmc),data->sg,data->sg_len,host->dma.dir);
652 return MMC_ERR_TIMEOUT;
655 /* static void au1xmmc_request
656 This actually starts a command or data transaction
659 static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq)
662 struct au1xmmc_host *host = mmc_priv(mmc);
663 int ret = MMC_ERR_NONE;
665 WARN_ON(irqs_disabled());
666 WARN_ON(host->status != HOST_S_IDLE);
668 host->mrq = mrq;
669 host->status = HOST_S_CMD;
671 bcsr->disk_leds &= ~(1 << 8);
673 if (mrq->data) {
674 FLUSH_FIFO(host);
675 ret = au1xmmc_prepare_data(host, mrq->data);
678 if (ret == MMC_ERR_NONE)
679 ret = au1xmmc_send_command(host, 0, mrq->cmd);
681 if (ret != MMC_ERR_NONE) {
682 mrq->cmd->error = ret;
683 au1xmmc_finish_request(host);
687 static void au1xmmc_reset_controller(struct au1xmmc_host *host)
690 /* Apply the clock */
691 au_writel(SD_ENABLE_CE, HOST_ENABLE(host));
692 au_sync_delay(1);
694 au_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host));
695 au_sync_delay(5);
697 au_writel(~0, HOST_STATUS(host));
698 au_sync();
700 au_writel(0, HOST_BLKSIZE(host));
701 au_writel(0x001fffff, HOST_TIMEOUT(host));
702 au_sync();
704 au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
705 au_sync();
707 au_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host));
708 au_sync_delay(1);
710 au_writel(SD_CONFIG2_EN, HOST_CONFIG2(host));
711 au_sync();
713 /* Configure interrupts */
714 au_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host));
715 au_sync();
719 static void au1xmmc_set_ios(struct mmc_host* mmc, struct mmc_ios* ios)
721 struct au1xmmc_host *host = mmc_priv(mmc);
723 if (ios->power_mode == MMC_POWER_OFF)
724 au1xmmc_set_power(host, 0);
725 else if (ios->power_mode == MMC_POWER_ON) {
726 au1xmmc_set_power(host, 1);
729 if (ios->clock && ios->clock != host->clock) {
730 au1xmmc_set_clock(host, ios->clock);
731 host->clock = ios->clock;
735 static void au1xmmc_dma_callback(int irq, void *dev_id, struct pt_regs *regs)
737 struct au1xmmc_host *host = (struct au1xmmc_host *) dev_id;
739 /* Avoid spurious interrupts */
741 if (!host->mrq)
742 return;
744 if (host->flags & HOST_F_STOP)
745 SEND_STOP(host);
747 tasklet_schedule(&host->data_task);
750 #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT)
751 #define STATUS_DATA_IN (SD_STATUS_NE)
752 #define STATUS_DATA_OUT (SD_STATUS_TH)
754 static irqreturn_t au1xmmc_irq(int irq, void *dev_id, struct pt_regs *regs)
757 u32 status;
758 int i, ret = 0;
760 disable_irq(AU1100_SD_IRQ);
762 for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
763 struct au1xmmc_host * host = au1xmmc_hosts[i];
764 u32 handled = 1;
766 status = au_readl(HOST_STATUS(host));
768 if (host->mrq && (status & STATUS_TIMEOUT)) {
769 if (status & SD_STATUS_RAT)
770 host->mrq->cmd->error = MMC_ERR_TIMEOUT;
772 else if (status & SD_STATUS_DT)
773 host->mrq->data->error = MMC_ERR_TIMEOUT;
775 /* In PIO mode, interrupts might still be enabled */
776 IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH);
778 //IRQ_OFF(host, SD_CONFIG_TH|SD_CONFIG_RA|SD_CONFIG_RF);
779 tasklet_schedule(&host->finish_task);
781 #if 0
782 else if (status & SD_STATUS_DD) {
784 /* Sometimes we get a DD before a NE in PIO mode */
786 if (!(host->flags & HOST_F_DMA) &&
787 (status & SD_STATUS_NE))
788 au1xmmc_receive_pio(host);
789 else {
790 au1xmmc_data_complete(host, status);
791 //tasklet_schedule(&host->data_task);
794 #endif
795 else if (status & (SD_STATUS_CR)) {
796 if (host->status == HOST_S_CMD)
797 au1xmmc_cmd_complete(host,status);
799 else if (!(host->flags & HOST_F_DMA)) {
800 if ((host->flags & HOST_F_XMIT) &&
801 (status & STATUS_DATA_OUT))
802 au1xmmc_send_pio(host);
803 else if ((host->flags & HOST_F_RECV) &&
804 (status & STATUS_DATA_IN))
805 au1xmmc_receive_pio(host);
807 else if (status & 0x203FBC70) {
808 DBG("Unhandled status %8.8x\n", host->id, status);
809 handled = 0;
812 au_writel(status, HOST_STATUS(host));
813 au_sync();
815 ret |= handled;
818 enable_irq(AU1100_SD_IRQ);
819 return ret;
822 static void au1xmmc_poll_event(unsigned long arg)
824 struct au1xmmc_host *host = (struct au1xmmc_host *) arg;
826 int card = au1xmmc_card_inserted(host);
827 int controller = (host->flags & HOST_F_ACTIVE) ? 1 : 0;
829 if (card != controller) {
830 host->flags &= ~HOST_F_ACTIVE;
831 if (card) host->flags |= HOST_F_ACTIVE;
832 mmc_detect_change(host->mmc, 0);
835 if (host->mrq != NULL) {
836 u32 status = au_readl(HOST_STATUS(host));
837 DBG("PENDING - %8.8x\n", host->id, status);
840 mod_timer(&host->timer, jiffies + AU1XMMC_DETECT_TIMEOUT);
843 static dbdev_tab_t au1xmmc_mem_dbdev =
845 DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 8, 0x00000000, 0, 0
848 static void au1xmmc_init_dma(struct au1xmmc_host *host)
851 u32 rxchan, txchan;
853 int txid = au1xmmc_card_table[host->id].tx_devid;
854 int rxid = au1xmmc_card_table[host->id].rx_devid;
856 /* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride
857 of 8 bits. And since devices are shared, we need to create
858 our own to avoid freaking out other devices
861 int memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev);
863 txchan = au1xxx_dbdma_chan_alloc(memid, txid,
864 au1xmmc_dma_callback, (void *) host);
866 rxchan = au1xxx_dbdma_chan_alloc(rxid, memid,
867 au1xmmc_dma_callback, (void *) host);
869 au1xxx_dbdma_set_devwidth(txchan, 8);
870 au1xxx_dbdma_set_devwidth(rxchan, 8);
872 au1xxx_dbdma_ring_alloc(txchan, AU1XMMC_DESCRIPTOR_COUNT);
873 au1xxx_dbdma_ring_alloc(rxchan, AU1XMMC_DESCRIPTOR_COUNT);
875 host->tx_chan = txchan;
876 host->rx_chan = rxchan;
879 struct mmc_host_ops au1xmmc_ops = {
880 .request = au1xmmc_request,
881 .set_ios = au1xmmc_set_ios,
884 static int __devinit au1xmmc_probe(struct platform_device *pdev)
887 int i, ret = 0;
889 /* THe interrupt is shared among all controllers */
890 ret = request_irq(AU1100_SD_IRQ, au1xmmc_irq, SA_INTERRUPT, "MMC", 0);
892 if (ret) {
893 printk(DRIVER_NAME "ERROR: Couldn't get int %d: %d\n",
894 AU1100_SD_IRQ, ret);
895 return -ENXIO;
898 disable_irq(AU1100_SD_IRQ);
900 for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
901 struct mmc_host *mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev);
902 struct au1xmmc_host *host = 0;
904 if (!mmc) {
905 printk(DRIVER_NAME "ERROR: no mem for host %d\n", i);
906 au1xmmc_hosts[i] = 0;
907 continue;
910 mmc->ops = &au1xmmc_ops;
912 mmc->f_min = 450000;
913 mmc->f_max = 24000000;
915 mmc->max_seg_size = AU1XMMC_DESCRIPTOR_SIZE;
916 mmc->max_phys_segs = AU1XMMC_DESCRIPTOR_COUNT;
918 mmc->ocr_avail = AU1XMMC_OCR;
920 host = mmc_priv(mmc);
921 host->mmc = mmc;
923 host->id = i;
924 host->iobase = au1xmmc_card_table[host->id].iobase;
925 host->clock = 0;
926 host->power_mode = MMC_POWER_OFF;
928 host->flags = au1xmmc_card_inserted(host) ? HOST_F_ACTIVE : 0;
929 host->status = HOST_S_IDLE;
931 init_timer(&host->timer);
933 host->timer.function = au1xmmc_poll_event;
934 host->timer.data = (unsigned long) host;
935 host->timer.expires = jiffies + AU1XMMC_DETECT_TIMEOUT;
937 tasklet_init(&host->data_task, au1xmmc_tasklet_data,
938 (unsigned long) host);
940 tasklet_init(&host->finish_task, au1xmmc_tasklet_finish,
941 (unsigned long) host);
943 spin_lock_init(&host->lock);
945 if (dma != 0)
946 au1xmmc_init_dma(host);
948 au1xmmc_reset_controller(host);
950 mmc_add_host(mmc);
951 au1xmmc_hosts[i] = host;
953 add_timer(&host->timer);
955 printk(KERN_INFO DRIVER_NAME ": MMC Controller %d set up at %8.8X (mode=%s)\n",
956 host->id, host->iobase, dma ? "dma" : "pio");
959 enable_irq(AU1100_SD_IRQ);
961 return 0;
964 static int __devexit au1xmmc_remove(struct platform_device *pdev)
967 int i;
969 disable_irq(AU1100_SD_IRQ);
971 for(i = 0; i < AU1XMMC_CONTROLLER_COUNT; i++) {
972 struct au1xmmc_host *host = au1xmmc_hosts[i];
973 if (!host) continue;
975 tasklet_kill(&host->data_task);
976 tasklet_kill(&host->finish_task);
978 del_timer_sync(&host->timer);
979 au1xmmc_set_power(host, 0);
981 mmc_remove_host(host->mmc);
983 au1xxx_dbdma_chan_free(host->tx_chan);
984 au1xxx_dbdma_chan_free(host->rx_chan);
986 au_writel(0x0, HOST_ENABLE(host));
987 au_sync();
990 free_irq(AU1100_SD_IRQ, 0);
991 return 0;
994 static struct platform_driver au1xmmc_driver = {
995 .probe = au1xmmc_probe,
996 .remove = au1xmmc_remove,
997 .suspend = NULL,
998 .resume = NULL,
999 .driver = {
1000 .name = DRIVER_NAME,
1004 static int __init au1xmmc_init(void)
1006 return platform_driver_register(&au1xmmc_driver);
1009 static void __exit au1xmmc_exit(void)
1011 platform_driver_unregister(&au1xmmc_driver);
1014 module_init(au1xmmc_init);
1015 module_exit(au1xmmc_exit);
1017 #ifdef MODULE
1018 MODULE_AUTHOR("Advanced Micro Devices, Inc");
1019 MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX");
1020 MODULE_LICENSE("GPL");
1021 #endif