2 * Common Flash Interface support:
3 * ST Advanced Architecture Command Set (ID 0x0020)
5 * (C) 2000 Red Hat. GPL'd
7 * $Id: cfi_cmdset_0020.c,v 1.22 2005/11/07 11:14:22 gleixner Exp $
9 * 10/10/2000 Nicolas Pitre <nico@cam.org>
10 * - completely revamped method functions so they are aware and
11 * independent of the flash geometry (buswidth, interleave, etc.)
12 * - scalability vs code size is completely set at compile-time
13 * (see include/linux/mtd/cfi.h for selection)
14 * - optimized write buffer method
15 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
16 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture
17 * (command set 0x0020)
18 * - added a writev function
19 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de>
20 * - Plugged memory leak in cfi_staa_writev().
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
29 #include <asm/byteorder.h>
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/cfi.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/compatmac.h>
41 static int cfi_staa_read(struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
42 static int cfi_staa_write_buffers(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
43 static int cfi_staa_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
44 unsigned long count
, loff_t to
, size_t *retlen
);
45 static int cfi_staa_erase_varsize(struct mtd_info
*, struct erase_info
*);
46 static void cfi_staa_sync (struct mtd_info
*);
47 static int cfi_staa_lock(struct mtd_info
*mtd
, loff_t ofs
, size_t len
);
48 static int cfi_staa_unlock(struct mtd_info
*mtd
, loff_t ofs
, size_t len
);
49 static int cfi_staa_suspend (struct mtd_info
*);
50 static void cfi_staa_resume (struct mtd_info
*);
52 static void cfi_staa_destroy(struct mtd_info
*);
54 struct mtd_info
*cfi_cmdset_0020(struct map_info
*, int);
56 static struct mtd_info
*cfi_staa_setup (struct map_info
*);
58 static struct mtd_chip_driver cfi_staa_chipdrv
= {
59 .probe
= NULL
, /* Not usable directly */
60 .destroy
= cfi_staa_destroy
,
61 .name
= "cfi_cmdset_0020",
65 /* #define DEBUG_LOCK_BITS */
66 //#define DEBUG_CFI_FEATURES
68 #ifdef DEBUG_CFI_FEATURES
69 static void cfi_tell_features(struct cfi_pri_intelext
*extp
)
72 printk(" Feature/Command Support: %4.4X\n", extp
->FeatureSupport
);
73 printk(" - Chip Erase: %s\n", extp
->FeatureSupport
&1?"supported":"unsupported");
74 printk(" - Suspend Erase: %s\n", extp
->FeatureSupport
&2?"supported":"unsupported");
75 printk(" - Suspend Program: %s\n", extp
->FeatureSupport
&4?"supported":"unsupported");
76 printk(" - Legacy Lock/Unlock: %s\n", extp
->FeatureSupport
&8?"supported":"unsupported");
77 printk(" - Queued Erase: %s\n", extp
->FeatureSupport
&16?"supported":"unsupported");
78 printk(" - Instant block lock: %s\n", extp
->FeatureSupport
&32?"supported":"unsupported");
79 printk(" - Protection Bits: %s\n", extp
->FeatureSupport
&64?"supported":"unsupported");
80 printk(" - Page-mode read: %s\n", extp
->FeatureSupport
&128?"supported":"unsupported");
81 printk(" - Synchronous read: %s\n", extp
->FeatureSupport
&256?"supported":"unsupported");
82 for (i
=9; i
<32; i
++) {
83 if (extp
->FeatureSupport
& (1<<i
))
84 printk(" - Unknown Bit %X: supported\n", i
);
87 printk(" Supported functions after Suspend: %2.2X\n", extp
->SuspendCmdSupport
);
88 printk(" - Program after Erase Suspend: %s\n", extp
->SuspendCmdSupport
&1?"supported":"unsupported");
90 if (extp
->SuspendCmdSupport
& (1<<i
))
91 printk(" - Unknown Bit %X: supported\n", i
);
94 printk(" Block Status Register Mask: %4.4X\n", extp
->BlkStatusRegMask
);
95 printk(" - Lock Bit Active: %s\n", extp
->BlkStatusRegMask
&1?"yes":"no");
96 printk(" - Valid Bit Active: %s\n", extp
->BlkStatusRegMask
&2?"yes":"no");
97 for (i
=2; i
<16; i
++) {
98 if (extp
->BlkStatusRegMask
& (1<<i
))
99 printk(" - Unknown Bit %X Active: yes\n",i
);
102 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
103 extp
->VccOptimal
>> 8, extp
->VccOptimal
& 0xf);
104 if (extp
->VppOptimal
)
105 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
106 extp
->VppOptimal
>> 8, extp
->VppOptimal
& 0xf);
110 /* This routine is made available to other mtd code via
111 * inter_module_register. It must only be accessed through
112 * inter_module_get which will bump the use count of this module. The
113 * addresses passed back in cfi are valid as long as the use count of
114 * this module is non-zero, i.e. between inter_module_get and
115 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
117 struct mtd_info
*cfi_cmdset_0020(struct map_info
*map
, int primary
)
119 struct cfi_private
*cfi
= map
->fldrv_priv
;
124 * It's a real CFI chip, not one for which the probe
125 * routine faked a CFI structure. So we read the feature
128 __u16 adr
= primary
?cfi
->cfiq
->P_ADR
:cfi
->cfiq
->A_ADR
;
129 struct cfi_pri_intelext
*extp
;
131 extp
= (struct cfi_pri_intelext
*)cfi_read_pri(map
, adr
, sizeof(*extp
), "ST Microelectronics");
135 if (extp
->MajorVersion
!= '1' ||
136 (extp
->MinorVersion
< '0' || extp
->MinorVersion
> '3')) {
137 printk(KERN_ERR
" Unknown ST Microelectronics"
138 " Extended Query version %c.%c.\n",
139 extp
->MajorVersion
, extp
->MinorVersion
);
144 /* Do some byteswapping if necessary */
145 extp
->FeatureSupport
= cfi32_to_cpu(extp
->FeatureSupport
);
146 extp
->BlkStatusRegMask
= cfi32_to_cpu(extp
->BlkStatusRegMask
);
148 #ifdef DEBUG_CFI_FEATURES
149 /* Tell the user about it in lots of lovely detail */
150 cfi_tell_features(extp
);
153 /* Install our own private info structure */
154 cfi
->cmdset_priv
= extp
;
157 for (i
=0; i
< cfi
->numchips
; i
++) {
158 cfi
->chips
[i
].word_write_time
= 128;
159 cfi
->chips
[i
].buffer_write_time
= 128;
160 cfi
->chips
[i
].erase_time
= 1024;
163 return cfi_staa_setup(map
);
166 static struct mtd_info
*cfi_staa_setup(struct map_info
*map
)
168 struct cfi_private
*cfi
= map
->fldrv_priv
;
169 struct mtd_info
*mtd
;
170 unsigned long offset
= 0;
172 unsigned long devsize
= (1<<cfi
->cfiq
->DevSize
) * cfi
->interleave
;
174 mtd
= kmalloc(sizeof(*mtd
), GFP_KERNEL
);
175 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
178 printk(KERN_ERR
"Failed to allocate memory for MTD device\n");
179 kfree(cfi
->cmdset_priv
);
183 memset(mtd
, 0, sizeof(*mtd
));
185 mtd
->type
= MTD_NORFLASH
;
186 mtd
->size
= devsize
* cfi
->numchips
;
188 mtd
->numeraseregions
= cfi
->cfiq
->NumEraseRegions
* cfi
->numchips
;
189 mtd
->eraseregions
= kmalloc(sizeof(struct mtd_erase_region_info
)
190 * mtd
->numeraseregions
, GFP_KERNEL
);
191 if (!mtd
->eraseregions
) {
192 printk(KERN_ERR
"Failed to allocate memory for MTD erase region info\n");
193 kfree(cfi
->cmdset_priv
);
198 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++) {
199 unsigned long ernum
, ersize
;
200 ersize
= ((cfi
->cfiq
->EraseRegionInfo
[i
] >> 8) & ~0xff) * cfi
->interleave
;
201 ernum
= (cfi
->cfiq
->EraseRegionInfo
[i
] & 0xffff) + 1;
203 if (mtd
->erasesize
< ersize
) {
204 mtd
->erasesize
= ersize
;
206 for (j
=0; j
<cfi
->numchips
; j
++) {
207 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].offset
= (j
*devsize
)+offset
;
208 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].erasesize
= ersize
;
209 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].numblocks
= ernum
;
211 offset
+= (ersize
* ernum
);
214 if (offset
!= devsize
) {
216 printk(KERN_WARNING
"Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset
, devsize
);
217 kfree(mtd
->eraseregions
);
218 kfree(cfi
->cmdset_priv
);
223 for (i
=0; i
<mtd
->numeraseregions
;i
++){
224 printk(KERN_DEBUG
"%d: offset=0x%x,size=0x%x,blocks=%d\n",
225 i
,mtd
->eraseregions
[i
].offset
,
226 mtd
->eraseregions
[i
].erasesize
,
227 mtd
->eraseregions
[i
].numblocks
);
230 /* Also select the correct geometry setup too */
231 mtd
->erase
= cfi_staa_erase_varsize
;
232 mtd
->read
= cfi_staa_read
;
233 mtd
->write
= cfi_staa_write_buffers
;
234 mtd
->writev
= cfi_staa_writev
;
235 mtd
->sync
= cfi_staa_sync
;
236 mtd
->lock
= cfi_staa_lock
;
237 mtd
->unlock
= cfi_staa_unlock
;
238 mtd
->suspend
= cfi_staa_suspend
;
239 mtd
->resume
= cfi_staa_resume
;
240 mtd
->flags
= MTD_CAP_NORFLASH
;
241 mtd
->flags
|= MTD_ECC
; /* FIXME: Not all STMicro flashes have this */
242 mtd
->eccsize
= 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
243 map
->fldrv
= &cfi_staa_chipdrv
;
244 __module_get(THIS_MODULE
);
245 mtd
->name
= map
->name
;
250 static inline int do_read_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
252 map_word status
, status_OK
;
254 DECLARE_WAITQUEUE(wait
, current
);
256 unsigned long cmd_addr
;
257 struct cfi_private
*cfi
= map
->fldrv_priv
;
261 /* Ensure cmd read/writes are aligned. */
262 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
264 /* Let's determine this according to the interleave only once */
265 status_OK
= CMD(0x80);
267 timeo
= jiffies
+ HZ
;
269 spin_lock_bh(chip
->mutex
);
271 /* Check that the chip's ready to talk to us.
272 * If it's in FL_ERASING state, suspend it and make it talk now.
274 switch (chip
->state
) {
276 if (!(((struct cfi_pri_intelext
*)cfi
->cmdset_priv
)->FeatureSupport
& 2))
277 goto sleep
; /* We don't support erase suspend */
279 map_write (map
, CMD(0xb0), cmd_addr
);
280 /* If the flash has finished erasing, then 'erase suspend'
281 * appears to make some (28F320) flash devices switch to
282 * 'read' mode. Make sure that we switch to 'read status'
283 * mode so we get the right data. --rmk
285 map_write(map
, CMD(0x70), cmd_addr
);
286 chip
->oldstate
= FL_ERASING
;
287 chip
->state
= FL_ERASE_SUSPENDING
;
288 // printk("Erase suspending at 0x%lx\n", cmd_addr);
290 status
= map_read(map
, cmd_addr
);
291 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
294 if (time_after(jiffies
, timeo
)) {
296 map_write(map
, CMD(0xd0), cmd_addr
);
297 /* make sure we're in 'read status' mode */
298 map_write(map
, CMD(0x70), cmd_addr
);
299 chip
->state
= FL_ERASING
;
300 spin_unlock_bh(chip
->mutex
);
301 printk(KERN_ERR
"Chip not ready after erase "
302 "suspended: status = 0x%lx\n", status
.x
[0]);
306 spin_unlock_bh(chip
->mutex
);
308 spin_lock_bh(chip
->mutex
);
312 map_write(map
, CMD(0xff), cmd_addr
);
313 chip
->state
= FL_READY
;
326 map_write(map
, CMD(0x70), cmd_addr
);
327 chip
->state
= FL_STATUS
;
330 status
= map_read(map
, cmd_addr
);
331 if (map_word_andequal(map
, status
, status_OK
, status_OK
)) {
332 map_write(map
, CMD(0xff), cmd_addr
);
333 chip
->state
= FL_READY
;
337 /* Urgh. Chip not yet ready to talk to us. */
338 if (time_after(jiffies
, timeo
)) {
339 spin_unlock_bh(chip
->mutex
);
340 printk(KERN_ERR
"waiting for chip to be ready timed out in read. WSM status = %lx\n", status
.x
[0]);
344 /* Latency issues. Drop the lock, wait a while and retry */
345 spin_unlock_bh(chip
->mutex
);
351 /* Stick ourselves on a wait queue to be woken when
352 someone changes the status */
353 set_current_state(TASK_UNINTERRUPTIBLE
);
354 add_wait_queue(&chip
->wq
, &wait
);
355 spin_unlock_bh(chip
->mutex
);
357 remove_wait_queue(&chip
->wq
, &wait
);
358 timeo
= jiffies
+ HZ
;
362 map_copy_from(map
, buf
, adr
, len
);
365 chip
->state
= chip
->oldstate
;
366 /* What if one interleaved chip has finished and the
367 other hasn't? The old code would leave the finished
368 one in READY mode. That's bad, and caused -EROFS
369 errors to be returned from do_erase_oneblock because
370 that's the only bit it checked for at the time.
371 As the state machine appears to explicitly allow
372 sending the 0x70 (Read Status) command to an erasing
373 chip and expecting it to be ignored, that's what we
375 map_write(map
, CMD(0xd0), cmd_addr
);
376 map_write(map
, CMD(0x70), cmd_addr
);
380 spin_unlock_bh(chip
->mutex
);
384 static int cfi_staa_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
386 struct map_info
*map
= mtd
->priv
;
387 struct cfi_private
*cfi
= map
->fldrv_priv
;
392 /* ofs: offset within the first chip that the first read should start */
393 chipnum
= (from
>> cfi
->chipshift
);
394 ofs
= from
- (chipnum
<< cfi
->chipshift
);
399 unsigned long thislen
;
401 if (chipnum
>= cfi
->numchips
)
404 if ((len
+ ofs
-1) >> cfi
->chipshift
)
405 thislen
= (1<<cfi
->chipshift
) - ofs
;
409 ret
= do_read_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
423 static inline int do_write_buffer(struct map_info
*map
, struct flchip
*chip
,
424 unsigned long adr
, const u_char
*buf
, int len
)
426 struct cfi_private
*cfi
= map
->fldrv_priv
;
427 map_word status
, status_OK
;
428 unsigned long cmd_adr
, timeo
;
429 DECLARE_WAITQUEUE(wait
, current
);
432 /* M58LW064A requires bus alignment for buffer wriets -- saw */
433 if (adr
& (map_bankwidth(map
)-1))
436 wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
438 cmd_adr
= adr
& ~(wbufsize
-1);
440 /* Let's determine this according to the interleave only once */
441 status_OK
= CMD(0x80);
443 timeo
= jiffies
+ HZ
;
446 #ifdef DEBUG_CFI_FEATURES
447 printk("%s: chip->state[%d]\n", __FUNCTION__
, chip
->state
);
449 spin_lock_bh(chip
->mutex
);
451 /* Check that the chip's ready to talk to us.
452 * Later, we can actually think about interrupting it
453 * if it's in FL_ERASING state.
454 * Not just yet, though.
456 switch (chip
->state
) {
462 map_write(map
, CMD(0x70), cmd_adr
);
463 chip
->state
= FL_STATUS
;
464 #ifdef DEBUG_CFI_FEATURES
465 printk("%s: 1 status[%x]\n", __FUNCTION__
, map_read(map
, cmd_adr
));
469 status
= map_read(map
, cmd_adr
);
470 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
472 /* Urgh. Chip not yet ready to talk to us. */
473 if (time_after(jiffies
, timeo
)) {
474 spin_unlock_bh(chip
->mutex
);
475 printk(KERN_ERR
"waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
476 status
.x
[0], map_read(map
, cmd_adr
).x
[0]);
480 /* Latency issues. Drop the lock, wait a while and retry */
481 spin_unlock_bh(chip
->mutex
);
486 /* Stick ourselves on a wait queue to be woken when
487 someone changes the status */
488 set_current_state(TASK_UNINTERRUPTIBLE
);
489 add_wait_queue(&chip
->wq
, &wait
);
490 spin_unlock_bh(chip
->mutex
);
492 remove_wait_queue(&chip
->wq
, &wait
);
493 timeo
= jiffies
+ HZ
;
498 map_write(map
, CMD(0xe8), cmd_adr
);
499 chip
->state
= FL_WRITING_TO_BUFFER
;
503 status
= map_read(map
, cmd_adr
);
504 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
507 spin_unlock_bh(chip
->mutex
);
509 spin_lock_bh(chip
->mutex
);
512 /* Argh. Not ready for write to buffer */
514 map_write(map
, CMD(0x70), cmd_adr
);
515 chip
->state
= FL_STATUS
;
516 spin_unlock_bh(chip
->mutex
);
517 printk(KERN_ERR
"Chip not ready for buffer write. Xstatus = %lx\n", status
.x
[0]);
522 /* Write length of data to come */
523 map_write(map
, CMD(len
/map_bankwidth(map
)-1), cmd_adr
);
527 z
+= map_bankwidth(map
), buf
+= map_bankwidth(map
)) {
529 d
= map_word_load(map
, buf
);
530 map_write(map
, d
, adr
+z
);
533 map_write(map
, CMD(0xd0), cmd_adr
);
534 chip
->state
= FL_WRITING
;
536 spin_unlock_bh(chip
->mutex
);
537 cfi_udelay(chip
->buffer_write_time
);
538 spin_lock_bh(chip
->mutex
);
540 timeo
= jiffies
+ (HZ
/2);
543 if (chip
->state
!= FL_WRITING
) {
544 /* Someone's suspended the write. Sleep */
545 set_current_state(TASK_UNINTERRUPTIBLE
);
546 add_wait_queue(&chip
->wq
, &wait
);
547 spin_unlock_bh(chip
->mutex
);
549 remove_wait_queue(&chip
->wq
, &wait
);
550 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
551 spin_lock_bh(chip
->mutex
);
555 status
= map_read(map
, cmd_adr
);
556 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
559 /* OK Still waiting */
560 if (time_after(jiffies
, timeo
)) {
562 map_write(map
, CMD(0x50), cmd_adr
);
563 /* put back into read status register mode */
564 map_write(map
, CMD(0x70), adr
);
565 chip
->state
= FL_STATUS
;
567 spin_unlock_bh(chip
->mutex
);
568 printk(KERN_ERR
"waiting for chip to be ready timed out in bufwrite\n");
572 /* Latency issues. Drop the lock, wait a while and retry */
573 spin_unlock_bh(chip
->mutex
);
576 spin_lock_bh(chip
->mutex
);
579 chip
->buffer_write_time
--;
580 if (!chip
->buffer_write_time
)
581 chip
->buffer_write_time
++;
584 chip
->buffer_write_time
++;
586 /* Done and happy. */
588 chip
->state
= FL_STATUS
;
590 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
591 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
592 #ifdef DEBUG_CFI_FEATURES
593 printk("%s: 2 status[%lx]\n", __FUNCTION__
, status
.x
[0]);
596 map_write(map
, CMD(0x50), cmd_adr
);
597 /* put back into read status register mode */
598 map_write(map
, CMD(0x70), adr
);
600 spin_unlock_bh(chip
->mutex
);
601 return map_word_bitsset(map
, status
, CMD(0x02)) ? -EROFS
: -EIO
;
604 spin_unlock_bh(chip
->mutex
);
609 static int cfi_staa_write_buffers (struct mtd_info
*mtd
, loff_t to
,
610 size_t len
, size_t *retlen
, const u_char
*buf
)
612 struct map_info
*map
= mtd
->priv
;
613 struct cfi_private
*cfi
= map
->fldrv_priv
;
614 int wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
623 chipnum
= to
>> cfi
->chipshift
;
624 ofs
= to
- (chipnum
<< cfi
->chipshift
);
626 #ifdef DEBUG_CFI_FEATURES
627 printk("%s: map_bankwidth(map)[%x]\n", __FUNCTION__
, map_bankwidth(map
));
628 printk("%s: chipnum[%x] wbufsize[%x]\n", __FUNCTION__
, chipnum
, wbufsize
);
629 printk("%s: ofs[%x] len[%x]\n", __FUNCTION__
, ofs
, len
);
632 /* Write buffer is worth it only if more than one word to write... */
634 /* We must not cross write block boundaries */
635 int size
= wbufsize
- (ofs
& (wbufsize
-1));
640 ret
= do_write_buffer(map
, &cfi
->chips
[chipnum
],
650 if (ofs
>> cfi
->chipshift
) {
653 if (chipnum
== cfi
->numchips
)
662 * Writev for ECC-Flashes is a little more complicated. We need to maintain
663 * a small buffer for this.
664 * XXX: If the buffer size is not a multiple of 2, this will break
666 #define ECCBUF_SIZE (mtd->eccsize)
667 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
668 #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
670 cfi_staa_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
671 unsigned long count
, loff_t to
, size_t *retlen
)
674 size_t totlen
= 0, thislen
;
680 /* We should fall back to a general writev implementation.
681 * Until that is written, just break.
685 buffer
= kmalloc(ECCBUF_SIZE
, GFP_KERNEL
);
689 for (i
=0; i
<count
; i
++) {
690 size_t elem_len
= vecs
[i
].iov_len
;
691 void *elem_base
= vecs
[i
].iov_base
;
692 if (!elem_len
) /* FIXME: Might be unnecessary. Check that */
694 if (buflen
) { /* cut off head */
695 if (buflen
+ elem_len
< ECCBUF_SIZE
) { /* just accumulate */
696 memcpy(buffer
+buflen
, elem_base
, elem_len
);
700 memcpy(buffer
+buflen
, elem_base
, ECCBUF_SIZE
-buflen
);
701 ret
= mtd
->write(mtd
, to
, ECCBUF_SIZE
, &thislen
, buffer
);
703 if (ret
|| thislen
!= ECCBUF_SIZE
)
705 elem_len
-= thislen
-buflen
;
706 elem_base
+= thislen
-buflen
;
709 if (ECCBUF_DIV(elem_len
)) { /* write clean aligned data */
710 ret
= mtd
->write(mtd
, to
, ECCBUF_DIV(elem_len
), &thislen
, elem_base
);
712 if (ret
|| thislen
!= ECCBUF_DIV(elem_len
))
716 buflen
= ECCBUF_MOD(elem_len
); /* cut off tail */
718 memset(buffer
, 0xff, ECCBUF_SIZE
);
719 memcpy(buffer
, elem_base
+ thislen
, buflen
);
722 if (buflen
) { /* flush last page, even if not full */
723 /* This is sometimes intended behaviour, really */
724 ret
= mtd
->write(mtd
, to
, buflen
, &thislen
, buffer
);
726 if (ret
|| thislen
!= ECCBUF_SIZE
)
737 static inline int do_erase_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
739 struct cfi_private
*cfi
= map
->fldrv_priv
;
740 map_word status
, status_OK
;
743 DECLARE_WAITQUEUE(wait
, current
);
748 /* Let's determine this according to the interleave only once */
749 status_OK
= CMD(0x80);
751 timeo
= jiffies
+ HZ
;
753 spin_lock_bh(chip
->mutex
);
755 /* Check that the chip's ready to talk to us. */
756 switch (chip
->state
) {
760 map_write(map
, CMD(0x70), adr
);
761 chip
->state
= FL_STATUS
;
764 status
= map_read(map
, adr
);
765 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
768 /* Urgh. Chip not yet ready to talk to us. */
769 if (time_after(jiffies
, timeo
)) {
770 spin_unlock_bh(chip
->mutex
);
771 printk(KERN_ERR
"waiting for chip to be ready timed out in erase\n");
775 /* Latency issues. Drop the lock, wait a while and retry */
776 spin_unlock_bh(chip
->mutex
);
781 /* Stick ourselves on a wait queue to be woken when
782 someone changes the status */
783 set_current_state(TASK_UNINTERRUPTIBLE
);
784 add_wait_queue(&chip
->wq
, &wait
);
785 spin_unlock_bh(chip
->mutex
);
787 remove_wait_queue(&chip
->wq
, &wait
);
788 timeo
= jiffies
+ HZ
;
793 /* Clear the status register first */
794 map_write(map
, CMD(0x50), adr
);
797 map_write(map
, CMD(0x20), adr
);
798 map_write(map
, CMD(0xD0), adr
);
799 chip
->state
= FL_ERASING
;
801 spin_unlock_bh(chip
->mutex
);
803 spin_lock_bh(chip
->mutex
);
805 /* FIXME. Use a timer to check this, and return immediately. */
806 /* Once the state machine's known to be working I'll do that */
808 timeo
= jiffies
+ (HZ
*20);
810 if (chip
->state
!= FL_ERASING
) {
811 /* Someone's suspended the erase. Sleep */
812 set_current_state(TASK_UNINTERRUPTIBLE
);
813 add_wait_queue(&chip
->wq
, &wait
);
814 spin_unlock_bh(chip
->mutex
);
816 remove_wait_queue(&chip
->wq
, &wait
);
817 timeo
= jiffies
+ (HZ
*20); /* FIXME */
818 spin_lock_bh(chip
->mutex
);
822 status
= map_read(map
, adr
);
823 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
826 /* OK Still waiting */
827 if (time_after(jiffies
, timeo
)) {
828 map_write(map
, CMD(0x70), adr
);
829 chip
->state
= FL_STATUS
;
830 printk(KERN_ERR
"waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
832 spin_unlock_bh(chip
->mutex
);
836 /* Latency issues. Drop the lock, wait a while and retry */
837 spin_unlock_bh(chip
->mutex
);
839 spin_lock_bh(chip
->mutex
);
845 /* We've broken this before. It doesn't hurt to be safe */
846 map_write(map
, CMD(0x70), adr
);
847 chip
->state
= FL_STATUS
;
848 status
= map_read(map
, adr
);
850 /* check for lock bit */
851 if (map_word_bitsset(map
, status
, CMD(0x3a))) {
852 unsigned char chipstatus
= status
.x
[0];
853 if (!map_word_equal(map
, status
, CMD(chipstatus
))) {
855 for (w
=0; w
<map_words(map
); w
++) {
856 for (i
= 0; i
<cfi_interleave(cfi
); i
++) {
857 chipstatus
|= status
.x
[w
] >> (cfi
->device_type
* 8);
860 printk(KERN_WARNING
"Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
861 status
.x
[0], chipstatus
);
863 /* Reset the error bits */
864 map_write(map
, CMD(0x50), adr
);
865 map_write(map
, CMD(0x70), adr
);
867 if ((chipstatus
& 0x30) == 0x30) {
868 printk(KERN_NOTICE
"Chip reports improper command sequence: status 0x%x\n", chipstatus
);
870 } else if (chipstatus
& 0x02) {
871 /* Protection bit set */
873 } else if (chipstatus
& 0x8) {
875 printk(KERN_WARNING
"Chip reports voltage low on erase: status 0x%x\n", chipstatus
);
877 } else if (chipstatus
& 0x20) {
879 printk(KERN_DEBUG
"Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr
, chipstatus
);
880 timeo
= jiffies
+ HZ
;
881 chip
->state
= FL_STATUS
;
882 spin_unlock_bh(chip
->mutex
);
885 printk(KERN_DEBUG
"Chip erase failed at 0x%08lx: status 0x%x\n", adr
, chipstatus
);
891 spin_unlock_bh(chip
->mutex
);
895 int cfi_staa_erase_varsize(struct mtd_info
*mtd
, struct erase_info
*instr
)
896 { struct map_info
*map
= mtd
->priv
;
897 struct cfi_private
*cfi
= map
->fldrv_priv
;
898 unsigned long adr
, len
;
899 int chipnum
, ret
= 0;
901 struct mtd_erase_region_info
*regions
= mtd
->eraseregions
;
903 if (instr
->addr
> mtd
->size
)
906 if ((instr
->len
+ instr
->addr
) > mtd
->size
)
909 /* Check that both start and end of the requested erase are
910 * aligned with the erasesize at the appropriate addresses.
915 /* Skip all erase regions which are ended before the start of
916 the requested erase. Actually, to save on the calculations,
917 we skip to the first erase region which starts after the
918 start of the requested erase, and then go back one.
921 while (i
< mtd
->numeraseregions
&& instr
->addr
>= regions
[i
].offset
)
925 /* OK, now i is pointing at the erase region in which this
926 erase request starts. Check the start of the requested
927 erase range is aligned with the erase size which is in
931 if (instr
->addr
& (regions
[i
].erasesize
-1))
934 /* Remember the erase region we start on */
937 /* Next, check that the end of the requested erase is aligned
938 * with the erase region at that address.
941 while (i
<mtd
->numeraseregions
&& (instr
->addr
+ instr
->len
) >= regions
[i
].offset
)
944 /* As before, drop back one to point at the region in which
945 the address actually falls
949 if ((instr
->addr
+ instr
->len
) & (regions
[i
].erasesize
-1))
952 chipnum
= instr
->addr
>> cfi
->chipshift
;
953 adr
= instr
->addr
- (chipnum
<< cfi
->chipshift
);
959 ret
= do_erase_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
964 adr
+= regions
[i
].erasesize
;
965 len
-= regions
[i
].erasesize
;
967 if (adr
% (1<< cfi
->chipshift
) == ((regions
[i
].offset
+ (regions
[i
].erasesize
* regions
[i
].numblocks
)) %( 1<< cfi
->chipshift
)))
970 if (adr
>> cfi
->chipshift
) {
974 if (chipnum
>= cfi
->numchips
)
979 instr
->state
= MTD_ERASE_DONE
;
980 mtd_erase_callback(instr
);
985 static void cfi_staa_sync (struct mtd_info
*mtd
)
987 struct map_info
*map
= mtd
->priv
;
988 struct cfi_private
*cfi
= map
->fldrv_priv
;
992 DECLARE_WAITQUEUE(wait
, current
);
994 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
995 chip
= &cfi
->chips
[i
];
998 spin_lock_bh(chip
->mutex
);
1000 switch(chip
->state
) {
1004 case FL_JEDEC_QUERY
:
1005 chip
->oldstate
= chip
->state
;
1006 chip
->state
= FL_SYNCING
;
1007 /* No need to wake_up() on this state change -
1008 * as the whole point is that nobody can do anything
1009 * with the chip now anyway.
1012 spin_unlock_bh(chip
->mutex
);
1016 /* Not an idle state */
1017 add_wait_queue(&chip
->wq
, &wait
);
1019 spin_unlock_bh(chip
->mutex
);
1021 remove_wait_queue(&chip
->wq
, &wait
);
1027 /* Unlock the chips again */
1029 for (i
--; i
>=0; i
--) {
1030 chip
= &cfi
->chips
[i
];
1032 spin_lock_bh(chip
->mutex
);
1034 if (chip
->state
== FL_SYNCING
) {
1035 chip
->state
= chip
->oldstate
;
1038 spin_unlock_bh(chip
->mutex
);
1042 static inline int do_lock_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1044 struct cfi_private
*cfi
= map
->fldrv_priv
;
1045 map_word status
, status_OK
;
1046 unsigned long timeo
= jiffies
+ HZ
;
1047 DECLARE_WAITQUEUE(wait
, current
);
1051 /* Let's determine this according to the interleave only once */
1052 status_OK
= CMD(0x80);
1054 timeo
= jiffies
+ HZ
;
1056 spin_lock_bh(chip
->mutex
);
1058 /* Check that the chip's ready to talk to us. */
1059 switch (chip
->state
) {
1061 case FL_JEDEC_QUERY
:
1063 map_write(map
, CMD(0x70), adr
);
1064 chip
->state
= FL_STATUS
;
1067 status
= map_read(map
, adr
);
1068 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1071 /* Urgh. Chip not yet ready to talk to us. */
1072 if (time_after(jiffies
, timeo
)) {
1073 spin_unlock_bh(chip
->mutex
);
1074 printk(KERN_ERR
"waiting for chip to be ready timed out in lock\n");
1078 /* Latency issues. Drop the lock, wait a while and retry */
1079 spin_unlock_bh(chip
->mutex
);
1084 /* Stick ourselves on a wait queue to be woken when
1085 someone changes the status */
1086 set_current_state(TASK_UNINTERRUPTIBLE
);
1087 add_wait_queue(&chip
->wq
, &wait
);
1088 spin_unlock_bh(chip
->mutex
);
1090 remove_wait_queue(&chip
->wq
, &wait
);
1091 timeo
= jiffies
+ HZ
;
1096 map_write(map
, CMD(0x60), adr
);
1097 map_write(map
, CMD(0x01), adr
);
1098 chip
->state
= FL_LOCKING
;
1100 spin_unlock_bh(chip
->mutex
);
1102 spin_lock_bh(chip
->mutex
);
1104 /* FIXME. Use a timer to check this, and return immediately. */
1105 /* Once the state machine's known to be working I'll do that */
1107 timeo
= jiffies
+ (HZ
*2);
1110 status
= map_read(map
, adr
);
1111 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1114 /* OK Still waiting */
1115 if (time_after(jiffies
, timeo
)) {
1116 map_write(map
, CMD(0x70), adr
);
1117 chip
->state
= FL_STATUS
;
1118 printk(KERN_ERR
"waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
1120 spin_unlock_bh(chip
->mutex
);
1124 /* Latency issues. Drop the lock, wait a while and retry */
1125 spin_unlock_bh(chip
->mutex
);
1127 spin_lock_bh(chip
->mutex
);
1130 /* Done and happy. */
1131 chip
->state
= FL_STATUS
;
1134 spin_unlock_bh(chip
->mutex
);
1137 static int cfi_staa_lock(struct mtd_info
*mtd
, loff_t ofs
, size_t len
)
1139 struct map_info
*map
= mtd
->priv
;
1140 struct cfi_private
*cfi
= map
->fldrv_priv
;
1142 int chipnum
, ret
= 0;
1143 #ifdef DEBUG_LOCK_BITS
1144 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1147 if (ofs
& (mtd
->erasesize
- 1))
1150 if (len
& (mtd
->erasesize
-1))
1153 if ((len
+ ofs
) > mtd
->size
)
1156 chipnum
= ofs
>> cfi
->chipshift
;
1157 adr
= ofs
- (chipnum
<< cfi
->chipshift
);
1161 #ifdef DEBUG_LOCK_BITS
1162 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1163 printk("before lock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1164 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1167 ret
= do_lock_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
1169 #ifdef DEBUG_LOCK_BITS
1170 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1171 printk("after lock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1172 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1178 adr
+= mtd
->erasesize
;
1179 len
-= mtd
->erasesize
;
1181 if (adr
>> cfi
->chipshift
) {
1185 if (chipnum
>= cfi
->numchips
)
1191 static inline int do_unlock_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
1193 struct cfi_private
*cfi
= map
->fldrv_priv
;
1194 map_word status
, status_OK
;
1195 unsigned long timeo
= jiffies
+ HZ
;
1196 DECLARE_WAITQUEUE(wait
, current
);
1200 /* Let's determine this according to the interleave only once */
1201 status_OK
= CMD(0x80);
1203 timeo
= jiffies
+ HZ
;
1205 spin_lock_bh(chip
->mutex
);
1207 /* Check that the chip's ready to talk to us. */
1208 switch (chip
->state
) {
1210 case FL_JEDEC_QUERY
:
1212 map_write(map
, CMD(0x70), adr
);
1213 chip
->state
= FL_STATUS
;
1216 status
= map_read(map
, adr
);
1217 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1220 /* Urgh. Chip not yet ready to talk to us. */
1221 if (time_after(jiffies
, timeo
)) {
1222 spin_unlock_bh(chip
->mutex
);
1223 printk(KERN_ERR
"waiting for chip to be ready timed out in unlock\n");
1227 /* Latency issues. Drop the lock, wait a while and retry */
1228 spin_unlock_bh(chip
->mutex
);
1233 /* Stick ourselves on a wait queue to be woken when
1234 someone changes the status */
1235 set_current_state(TASK_UNINTERRUPTIBLE
);
1236 add_wait_queue(&chip
->wq
, &wait
);
1237 spin_unlock_bh(chip
->mutex
);
1239 remove_wait_queue(&chip
->wq
, &wait
);
1240 timeo
= jiffies
+ HZ
;
1245 map_write(map
, CMD(0x60), adr
);
1246 map_write(map
, CMD(0xD0), adr
);
1247 chip
->state
= FL_UNLOCKING
;
1249 spin_unlock_bh(chip
->mutex
);
1251 spin_lock_bh(chip
->mutex
);
1253 /* FIXME. Use a timer to check this, and return immediately. */
1254 /* Once the state machine's known to be working I'll do that */
1256 timeo
= jiffies
+ (HZ
*2);
1259 status
= map_read(map
, adr
);
1260 if (map_word_andequal(map
, status
, status_OK
, status_OK
))
1263 /* OK Still waiting */
1264 if (time_after(jiffies
, timeo
)) {
1265 map_write(map
, CMD(0x70), adr
);
1266 chip
->state
= FL_STATUS
;
1267 printk(KERN_ERR
"waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status
.x
[0], map_read(map
, adr
).x
[0]);
1269 spin_unlock_bh(chip
->mutex
);
1273 /* Latency issues. Drop the unlock, wait a while and retry */
1274 spin_unlock_bh(chip
->mutex
);
1276 spin_lock_bh(chip
->mutex
);
1279 /* Done and happy. */
1280 chip
->state
= FL_STATUS
;
1283 spin_unlock_bh(chip
->mutex
);
1286 static int cfi_staa_unlock(struct mtd_info
*mtd
, loff_t ofs
, size_t len
)
1288 struct map_info
*map
= mtd
->priv
;
1289 struct cfi_private
*cfi
= map
->fldrv_priv
;
1291 int chipnum
, ret
= 0;
1292 #ifdef DEBUG_LOCK_BITS
1293 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1296 chipnum
= ofs
>> cfi
->chipshift
;
1297 adr
= ofs
- (chipnum
<< cfi
->chipshift
);
1299 #ifdef DEBUG_LOCK_BITS
1301 unsigned long temp_adr
= adr
;
1302 unsigned long temp_len
= len
;
1304 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1306 printk("before unlock %x: block status register is %x\n",temp_adr
,cfi_read_query(map
, temp_adr
+(2*ofs_factor
)));
1307 temp_adr
+= mtd
->erasesize
;
1308 temp_len
-= mtd
->erasesize
;
1310 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1314 ret
= do_unlock_oneblock(map
, &cfi
->chips
[chipnum
], adr
);
1316 #ifdef DEBUG_LOCK_BITS
1317 cfi_send_gen_cmd(0x90, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1318 printk("after unlock: block status register is %x\n",cfi_read_query(map
, adr
+(2*ofs_factor
)));
1319 cfi_send_gen_cmd(0xff, 0x55, 0, map
, cfi
, cfi
->device_type
, NULL
);
1325 static int cfi_staa_suspend(struct mtd_info
*mtd
)
1327 struct map_info
*map
= mtd
->priv
;
1328 struct cfi_private
*cfi
= map
->fldrv_priv
;
1330 struct flchip
*chip
;
1333 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
1334 chip
= &cfi
->chips
[i
];
1336 spin_lock_bh(chip
->mutex
);
1338 switch(chip
->state
) {
1342 case FL_JEDEC_QUERY
:
1343 chip
->oldstate
= chip
->state
;
1344 chip
->state
= FL_PM_SUSPENDED
;
1345 /* No need to wake_up() on this state change -
1346 * as the whole point is that nobody can do anything
1347 * with the chip now anyway.
1349 case FL_PM_SUSPENDED
:
1356 spin_unlock_bh(chip
->mutex
);
1359 /* Unlock the chips again */
1362 for (i
--; i
>=0; i
--) {
1363 chip
= &cfi
->chips
[i
];
1365 spin_lock_bh(chip
->mutex
);
1367 if (chip
->state
== FL_PM_SUSPENDED
) {
1368 /* No need to force it into a known state here,
1369 because we're returning failure, and it didn't
1371 chip
->state
= chip
->oldstate
;
1374 spin_unlock_bh(chip
->mutex
);
1381 static void cfi_staa_resume(struct mtd_info
*mtd
)
1383 struct map_info
*map
= mtd
->priv
;
1384 struct cfi_private
*cfi
= map
->fldrv_priv
;
1386 struct flchip
*chip
;
1388 for (i
=0; i
<cfi
->numchips
; i
++) {
1390 chip
= &cfi
->chips
[i
];
1392 spin_lock_bh(chip
->mutex
);
1394 /* Go to known state. Chip may have been power cycled */
1395 if (chip
->state
== FL_PM_SUSPENDED
) {
1396 map_write(map
, CMD(0xFF), 0);
1397 chip
->state
= FL_READY
;
1401 spin_unlock_bh(chip
->mutex
);
1405 static void cfi_staa_destroy(struct mtd_info
*mtd
)
1407 struct map_info
*map
= mtd
->priv
;
1408 struct cfi_private
*cfi
= map
->fldrv_priv
;
1409 kfree(cfi
->cmdset_priv
);
1413 static char im_name
[]="cfi_cmdset_0020";
1415 static int __init
cfi_staa_init(void)
1417 inter_module_register(im_name
, THIS_MODULE
, &cfi_cmdset_0020
);
1421 static void __exit
cfi_staa_exit(void)
1423 inter_module_unregister(im_name
);
1426 module_init(cfi_staa_init
);
1427 module_exit(cfi_staa_exit
);
1429 MODULE_LICENSE("GPL");