Linux 2.6.17.7
[linux/fpc-iii.git] / drivers / mtd / onenand / onenand_base.c
bloba53a73fc2a5af0d0a07a8f880793e2b8c37c4489
1 /*
2 * linux/drivers/mtd/onenand/onenand_base.c
4 * Copyright (C) 2005 Samsung Electronics
5 * Kyungmin Park <kyungmin.park@samsung.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/sched.h>
16 #include <linux/jiffies.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/onenand.h>
19 #include <linux/mtd/partitions.h>
21 #include <asm/io.h>
23 /**
24 * onenand_oob_64 - oob info for large (2KB) page
26 static struct nand_oobinfo onenand_oob_64 = {
27 .useecc = MTD_NANDECC_AUTOPLACE,
28 .eccbytes = 20,
29 .eccpos = {
30 8, 9, 10, 11, 12,
31 24, 25, 26, 27, 28,
32 40, 41, 42, 43, 44,
33 56, 57, 58, 59, 60,
35 .oobfree = {
36 {2, 3}, {14, 2}, {18, 3}, {30, 2},
37 {24, 3}, {46, 2}, {40, 3}, {62, 2} }
40 /**
41 * onenand_oob_32 - oob info for middle (1KB) page
43 static struct nand_oobinfo onenand_oob_32 = {
44 .useecc = MTD_NANDECC_AUTOPLACE,
45 .eccbytes = 10,
46 .eccpos = {
47 8, 9, 10, 11, 12,
48 24, 25, 26, 27, 28,
50 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
53 static const unsigned char ffchars[] = {
54 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
55 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
56 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
57 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
59 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
60 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
64 /**
65 * onenand_readw - [OneNAND Interface] Read OneNAND register
66 * @param addr address to read
68 * Read OneNAND register
70 static unsigned short onenand_readw(void __iomem *addr)
72 return readw(addr);
75 /**
76 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
77 * @param value value to write
78 * @param addr address to write
80 * Write OneNAND register with value
82 static void onenand_writew(unsigned short value, void __iomem *addr)
84 writew(value, addr);
87 /**
88 * onenand_block_address - [DEFAULT] Get block address
89 * @param this onenand chip data structure
90 * @param block the block
91 * @return translated block address if DDP, otherwise same
93 * Setup Start Address 1 Register (F100h)
95 static int onenand_block_address(struct onenand_chip *this, int block)
97 if (this->device_id & ONENAND_DEVICE_IS_DDP) {
98 /* Device Flash Core select, NAND Flash Block Address */
99 int dfs = 0;
101 if (block & this->density_mask)
102 dfs = 1;
104 return (dfs << ONENAND_DDP_SHIFT) |
105 (block & (this->density_mask - 1));
108 return block;
112 * onenand_bufferram_address - [DEFAULT] Get bufferram address
113 * @param this onenand chip data structure
114 * @param block the block
115 * @return set DBS value if DDP, otherwise 0
117 * Setup Start Address 2 Register (F101h) for DDP
119 static int onenand_bufferram_address(struct onenand_chip *this, int block)
121 if (this->device_id & ONENAND_DEVICE_IS_DDP) {
122 /* Device BufferRAM Select */
123 int dbs = 0;
125 if (block & this->density_mask)
126 dbs = 1;
128 return (dbs << ONENAND_DDP_SHIFT);
131 return 0;
135 * onenand_page_address - [DEFAULT] Get page address
136 * @param page the page address
137 * @param sector the sector address
138 * @return combined page and sector address
140 * Setup Start Address 8 Register (F107h)
142 static int onenand_page_address(int page, int sector)
144 /* Flash Page Address, Flash Sector Address */
145 int fpa, fsa;
147 fpa = page & ONENAND_FPA_MASK;
148 fsa = sector & ONENAND_FSA_MASK;
150 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
154 * onenand_buffer_address - [DEFAULT] Get buffer address
155 * @param dataram1 DataRAM index
156 * @param sectors the sector address
157 * @param count the number of sectors
158 * @return the start buffer value
160 * Setup Start Buffer Register (F200h)
162 static int onenand_buffer_address(int dataram1, int sectors, int count)
164 int bsa, bsc;
166 /* BufferRAM Sector Address */
167 bsa = sectors & ONENAND_BSA_MASK;
169 if (dataram1)
170 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
171 else
172 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
174 /* BufferRAM Sector Count */
175 bsc = count & ONENAND_BSC_MASK;
177 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
181 * onenand_command - [DEFAULT] Send command to OneNAND device
182 * @param mtd MTD device structure
183 * @param cmd the command to be sent
184 * @param addr offset to read from or write to
185 * @param len number of bytes to read or write
187 * Send command to OneNAND device. This function is used for middle/large page
188 * devices (1KB/2KB Bytes per page)
190 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
192 struct onenand_chip *this = mtd->priv;
193 int value, readcmd = 0;
194 int block, page;
195 /* Now we use page size operation */
196 int sectors = 4, count = 4;
198 /* Address translation */
199 switch (cmd) {
200 case ONENAND_CMD_UNLOCK:
201 case ONENAND_CMD_LOCK:
202 case ONENAND_CMD_LOCK_TIGHT:
203 block = -1;
204 page = -1;
205 break;
207 case ONENAND_CMD_ERASE:
208 case ONENAND_CMD_BUFFERRAM:
209 block = (int) (addr >> this->erase_shift);
210 page = -1;
211 break;
213 default:
214 block = (int) (addr >> this->erase_shift);
215 page = (int) (addr >> this->page_shift);
216 page &= this->page_mask;
217 break;
220 /* NOTE: The setting order of the registers is very important! */
221 if (cmd == ONENAND_CMD_BUFFERRAM) {
222 /* Select DataRAM for DDP */
223 value = onenand_bufferram_address(this, block);
224 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
226 /* Switch to the next data buffer */
227 ONENAND_SET_NEXT_BUFFERRAM(this);
229 return 0;
232 if (block != -1) {
233 /* Write 'DFS, FBA' of Flash */
234 value = onenand_block_address(this, block);
235 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
238 if (page != -1) {
239 int dataram;
241 switch (cmd) {
242 case ONENAND_CMD_READ:
243 case ONENAND_CMD_READOOB:
244 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
245 readcmd = 1;
246 break;
248 default:
249 dataram = ONENAND_CURRENT_BUFFERRAM(this);
250 break;
253 /* Write 'FPA, FSA' of Flash */
254 value = onenand_page_address(page, sectors);
255 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
257 /* Write 'BSA, BSC' of DataRAM */
258 value = onenand_buffer_address(dataram, sectors, count);
259 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
261 if (readcmd) {
262 /* Select DataRAM for DDP */
263 value = onenand_bufferram_address(this, block);
264 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
268 /* Interrupt clear */
269 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
271 /* Write command */
272 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
274 return 0;
278 * onenand_wait - [DEFAULT] wait until the command is done
279 * @param mtd MTD device structure
280 * @param state state to select the max. timeout value
282 * Wait for command done. This applies to all OneNAND command
283 * Read can take up to 30us, erase up to 2ms and program up to 350us
284 * according to general OneNAND specs
286 static int onenand_wait(struct mtd_info *mtd, int state)
288 struct onenand_chip * this = mtd->priv;
289 unsigned long timeout;
290 unsigned int flags = ONENAND_INT_MASTER;
291 unsigned int interrupt = 0;
292 unsigned int ctrl, ecc;
294 /* The 20 msec is enough */
295 timeout = jiffies + msecs_to_jiffies(20);
296 while (time_before(jiffies, timeout)) {
297 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
299 if (interrupt & flags)
300 break;
302 if (state != FL_READING)
303 cond_resched();
305 /* To get correct interrupt status in timeout case */
306 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
308 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
310 if (ctrl & ONENAND_CTRL_ERROR) {
311 /* It maybe occur at initial bad block */
312 DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: controller error = 0x%04x\n", ctrl);
313 /* Clear other interrupt bits for preventing ECC error */
314 interrupt &= ONENAND_INT_MASTER;
317 if (ctrl & ONENAND_CTRL_LOCK) {
318 DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: it's locked error = 0x%04x\n", ctrl);
319 return -EACCES;
322 if (interrupt & ONENAND_INT_READ) {
323 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
324 if (ecc & ONENAND_ECC_2BIT_ALL) {
325 DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: ECC error = 0x%04x\n", ecc);
326 return -EBADMSG;
330 return 0;
334 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
335 * @param mtd MTD data structure
336 * @param area BufferRAM area
337 * @return offset given area
339 * Return BufferRAM offset given area
341 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
343 struct onenand_chip *this = mtd->priv;
345 if (ONENAND_CURRENT_BUFFERRAM(this)) {
346 if (area == ONENAND_DATARAM)
347 return mtd->oobblock;
348 if (area == ONENAND_SPARERAM)
349 return mtd->oobsize;
352 return 0;
356 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
357 * @param mtd MTD data structure
358 * @param area BufferRAM area
359 * @param buffer the databuffer to put/get data
360 * @param offset offset to read from or write to
361 * @param count number of bytes to read/write
363 * Read the BufferRAM area
365 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
366 unsigned char *buffer, int offset, size_t count)
368 struct onenand_chip *this = mtd->priv;
369 void __iomem *bufferram;
371 bufferram = this->base + area;
373 bufferram += onenand_bufferram_offset(mtd, area);
375 memcpy(buffer, bufferram + offset, count);
377 return 0;
381 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
382 * @param mtd MTD data structure
383 * @param area BufferRAM area
384 * @param buffer the databuffer to put/get data
385 * @param offset offset to read from or write to
386 * @param count number of bytes to read/write
388 * Read the BufferRAM area with Sync. Burst Mode
390 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
391 unsigned char *buffer, int offset, size_t count)
393 struct onenand_chip *this = mtd->priv;
394 void __iomem *bufferram;
396 bufferram = this->base + area;
398 bufferram += onenand_bufferram_offset(mtd, area);
400 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
402 memcpy(buffer, bufferram + offset, count);
404 this->mmcontrol(mtd, 0);
406 return 0;
410 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
411 * @param mtd MTD data structure
412 * @param area BufferRAM area
413 * @param buffer the databuffer to put/get data
414 * @param offset offset to read from or write to
415 * @param count number of bytes to read/write
417 * Write the BufferRAM area
419 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
420 const unsigned char *buffer, int offset, size_t count)
422 struct onenand_chip *this = mtd->priv;
423 void __iomem *bufferram;
425 bufferram = this->base + area;
427 bufferram += onenand_bufferram_offset(mtd, area);
429 memcpy(bufferram + offset, buffer, count);
431 return 0;
435 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
436 * @param mtd MTD data structure
437 * @param addr address to check
438 * @return 1 if there are valid data, otherwise 0
440 * Check bufferram if there is data we required
442 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
444 struct onenand_chip *this = mtd->priv;
445 int block, page;
446 int i;
448 block = (int) (addr >> this->erase_shift);
449 page = (int) (addr >> this->page_shift);
450 page &= this->page_mask;
452 i = ONENAND_CURRENT_BUFFERRAM(this);
454 /* Is there valid data? */
455 if (this->bufferram[i].block == block &&
456 this->bufferram[i].page == page &&
457 this->bufferram[i].valid)
458 return 1;
460 return 0;
464 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
465 * @param mtd MTD data structure
466 * @param addr address to update
467 * @param valid valid flag
469 * Update BufferRAM information
471 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
472 int valid)
474 struct onenand_chip *this = mtd->priv;
475 int block, page;
476 int i;
478 block = (int) (addr >> this->erase_shift);
479 page = (int) (addr >> this->page_shift);
480 page &= this->page_mask;
482 /* Invalidate BufferRAM */
483 for (i = 0; i < MAX_BUFFERRAM; i++) {
484 if (this->bufferram[i].block == block &&
485 this->bufferram[i].page == page)
486 this->bufferram[i].valid = 0;
489 /* Update BufferRAM */
490 i = ONENAND_CURRENT_BUFFERRAM(this);
491 this->bufferram[i].block = block;
492 this->bufferram[i].page = page;
493 this->bufferram[i].valid = valid;
495 return 0;
499 * onenand_get_device - [GENERIC] Get chip for selected access
500 * @param mtd MTD device structure
501 * @param new_state the state which is requested
503 * Get the device and lock it for exclusive access
505 static int onenand_get_device(struct mtd_info *mtd, int new_state)
507 struct onenand_chip *this = mtd->priv;
508 DECLARE_WAITQUEUE(wait, current);
511 * Grab the lock and see if the device is available
513 while (1) {
514 spin_lock(&this->chip_lock);
515 if (this->state == FL_READY) {
516 this->state = new_state;
517 spin_unlock(&this->chip_lock);
518 break;
520 if (new_state == FL_PM_SUSPENDED) {
521 spin_unlock(&this->chip_lock);
522 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
524 set_current_state(TASK_UNINTERRUPTIBLE);
525 add_wait_queue(&this->wq, &wait);
526 spin_unlock(&this->chip_lock);
527 schedule();
528 remove_wait_queue(&this->wq, &wait);
531 return 0;
535 * onenand_release_device - [GENERIC] release chip
536 * @param mtd MTD device structure
538 * Deselect, release chip lock and wake up anyone waiting on the device
540 static void onenand_release_device(struct mtd_info *mtd)
542 struct onenand_chip *this = mtd->priv;
544 /* Release the chip */
545 spin_lock(&this->chip_lock);
546 this->state = FL_READY;
547 wake_up(&this->wq);
548 spin_unlock(&this->chip_lock);
552 * onenand_read_ecc - [MTD Interface] Read data with ECC
553 * @param mtd MTD device structure
554 * @param from offset to read from
555 * @param len number of bytes to read
556 * @param retlen pointer to variable to store the number of read bytes
557 * @param buf the databuffer to put data
558 * @param oob_buf filesystem supplied oob data buffer
559 * @param oobsel oob selection structure
561 * OneNAND read with ECC
563 static int onenand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
564 size_t *retlen, u_char *buf,
565 u_char *oob_buf, struct nand_oobinfo *oobsel)
567 struct onenand_chip *this = mtd->priv;
568 int read = 0, column;
569 int thislen;
570 int ret = 0;
572 DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
574 /* Do not allow reads past end of device */
575 if ((from + len) > mtd->size) {
576 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_ecc: Attempt read beyond end of device\n");
577 *retlen = 0;
578 return -EINVAL;
581 /* Grab the lock and see if the device is available */
582 onenand_get_device(mtd, FL_READING);
584 /* TODO handling oob */
586 while (read < len) {
587 thislen = min_t(int, mtd->oobblock, len - read);
589 column = from & (mtd->oobblock - 1);
590 if (column + thislen > mtd->oobblock)
591 thislen = mtd->oobblock - column;
593 if (!onenand_check_bufferram(mtd, from)) {
594 this->command(mtd, ONENAND_CMD_READ, from, mtd->oobblock);
596 ret = this->wait(mtd, FL_READING);
597 /* First copy data and check return value for ECC handling */
598 onenand_update_bufferram(mtd, from, 1);
601 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
603 read += thislen;
605 if (read == len)
606 break;
608 if (ret) {
609 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_ecc: read failed = %d\n", ret);
610 goto out;
613 from += thislen;
614 buf += thislen;
617 out:
618 /* Deselect and wake up anyone waiting on the device */
619 onenand_release_device(mtd);
622 * Return success, if no ECC failures, else -EBADMSG
623 * fs driver will take care of that, because
624 * retlen == desired len and result == -EBADMSG
626 *retlen = read;
627 return ret;
631 * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
632 * @param mtd MTD device structure
633 * @param from offset to read from
634 * @param len number of bytes to read
635 * @param retlen pointer to variable to store the number of read bytes
636 * @param buf the databuffer to put data
638 * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
640 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
641 size_t *retlen, u_char *buf)
643 return onenand_read_ecc(mtd, from, len, retlen, buf, NULL, NULL);
647 * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
648 * @param mtd MTD device structure
649 * @param from offset to read from
650 * @param len number of bytes to read
651 * @param retlen pointer to variable to store the number of read bytes
652 * @param buf the databuffer to put data
654 * OneNAND read out-of-band data from the spare area
656 static int onenand_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
657 size_t *retlen, u_char *buf)
659 struct onenand_chip *this = mtd->priv;
660 int read = 0, thislen, column;
661 int ret = 0;
663 DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
665 /* Initialize return length value */
666 *retlen = 0;
668 /* Do not allow reads past end of device */
669 if (unlikely((from + len) > mtd->size)) {
670 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: Attempt read beyond end of device\n");
671 return -EINVAL;
674 /* Grab the lock and see if the device is available */
675 onenand_get_device(mtd, FL_READING);
677 column = from & (mtd->oobsize - 1);
679 while (read < len) {
680 thislen = mtd->oobsize - column;
681 thislen = min_t(int, thislen, len);
683 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
685 onenand_update_bufferram(mtd, from, 0);
687 ret = this->wait(mtd, FL_READING);
688 /* First copy data and check return value for ECC handling */
690 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
692 read += thislen;
694 if (read == len)
695 break;
697 if (ret) {
698 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: read failed = %d\n", ret);
699 goto out;
702 buf += thislen;
704 /* Read more? */
705 if (read < len) {
706 /* Page size */
707 from += mtd->oobblock;
708 column = 0;
712 out:
713 /* Deselect and wake up anyone waiting on the device */
714 onenand_release_device(mtd);
716 *retlen = read;
717 return ret;
720 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
722 * onenand_verify_page - [GENERIC] verify the chip contents after a write
723 * @param mtd MTD device structure
724 * @param buf the databuffer to verify
726 * Check DataRAM area directly
728 static int onenand_verify_page(struct mtd_info *mtd, u_char *buf, loff_t addr)
730 struct onenand_chip *this = mtd->priv;
731 void __iomem *dataram0, *dataram1;
732 int ret = 0;
734 this->command(mtd, ONENAND_CMD_READ, addr, mtd->oobblock);
736 ret = this->wait(mtd, FL_READING);
737 if (ret)
738 return ret;
740 onenand_update_bufferram(mtd, addr, 1);
742 /* Check, if the two dataram areas are same */
743 dataram0 = this->base + ONENAND_DATARAM;
744 dataram1 = dataram0 + mtd->oobblock;
746 if (memcmp(dataram0, dataram1, mtd->oobblock))
747 return -EBADMSG;
749 return 0;
751 #else
752 #define onenand_verify_page(...) (0)
753 #endif
755 #define NOTALIGNED(x) ((x & (mtd->oobblock - 1)) != 0)
758 * onenand_write_ecc - [MTD Interface] OneNAND write with ECC
759 * @param mtd MTD device structure
760 * @param to offset to write to
761 * @param len number of bytes to write
762 * @param retlen pointer to variable to store the number of written bytes
763 * @param buf the data to write
764 * @param eccbuf filesystem supplied oob data buffer
765 * @param oobsel oob selection structure
767 * OneNAND write with ECC
769 static int onenand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
770 size_t *retlen, const u_char *buf,
771 u_char *eccbuf, struct nand_oobinfo *oobsel)
773 struct onenand_chip *this = mtd->priv;
774 int written = 0;
775 int ret = 0;
777 DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
779 /* Initialize retlen, in case of early exit */
780 *retlen = 0;
782 /* Do not allow writes past end of device */
783 if (unlikely((to + len) > mtd->size)) {
784 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: Attempt write to past end of device\n");
785 return -EINVAL;
788 /* Reject writes, which are not page aligned */
789 if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
790 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: Attempt to write not page aligned data\n");
791 return -EINVAL;
794 /* Grab the lock and see if the device is available */
795 onenand_get_device(mtd, FL_WRITING);
797 /* Loop until all data write */
798 while (written < len) {
799 int thislen = min_t(int, mtd->oobblock, len - written);
801 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobblock);
803 this->write_bufferram(mtd, ONENAND_DATARAM, buf, 0, thislen);
804 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
806 this->command(mtd, ONENAND_CMD_PROG, to, mtd->oobblock);
808 onenand_update_bufferram(mtd, to, 1);
810 ret = this->wait(mtd, FL_WRITING);
811 if (ret) {
812 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: write filaed %d\n", ret);
813 goto out;
816 written += thislen;
818 /* Only check verify write turn on */
819 ret = onenand_verify_page(mtd, (u_char *) buf, to);
820 if (ret) {
821 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: verify failed %d\n", ret);
822 goto out;
825 if (written == len)
826 break;
828 to += thislen;
829 buf += thislen;
832 out:
833 /* Deselect and wake up anyone waiting on the device */
834 onenand_release_device(mtd);
836 *retlen = written;
838 return ret;
842 * onenand_write - [MTD Interface] compability function for onenand_write_ecc
843 * @param mtd MTD device structure
844 * @param to offset to write to
845 * @param len number of bytes to write
846 * @param retlen pointer to variable to store the number of written bytes
847 * @param buf the data to write
849 * This function simply calls onenand_write_ecc
850 * with oob buffer and oobsel = NULL
852 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
853 size_t *retlen, const u_char *buf)
855 return onenand_write_ecc(mtd, to, len, retlen, buf, NULL, NULL);
859 * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
860 * @param mtd MTD device structure
861 * @param to offset to write to
862 * @param len number of bytes to write
863 * @param retlen pointer to variable to store the number of written bytes
864 * @param buf the data to write
866 * OneNAND write out-of-band
868 static int onenand_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
869 size_t *retlen, const u_char *buf)
871 struct onenand_chip *this = mtd->priv;
872 int column, status;
873 int written = 0;
875 DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
877 /* Initialize retlen, in case of early exit */
878 *retlen = 0;
880 /* Do not allow writes past end of device */
881 if (unlikely((to + len) > mtd->size)) {
882 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: Attempt write to past end of device\n");
883 return -EINVAL;
886 /* Grab the lock and see if the device is available */
887 onenand_get_device(mtd, FL_WRITING);
889 /* Loop until all data write */
890 while (written < len) {
891 int thislen = min_t(int, mtd->oobsize, len - written);
893 column = to & (mtd->oobsize - 1);
895 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
897 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
898 this->write_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
900 this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
902 onenand_update_bufferram(mtd, to, 0);
904 status = this->wait(mtd, FL_WRITING);
905 if (status)
906 goto out;
908 written += thislen;
910 if (written == len)
911 break;
913 to += thislen;
914 buf += thislen;
917 out:
918 /* Deselect and wake up anyone waiting on the device */
919 onenand_release_device(mtd);
921 *retlen = written;
923 return 0;
927 * onenand_writev_ecc - [MTD Interface] write with iovec with ecc
928 * @param mtd MTD device structure
929 * @param vecs the iovectors to write
930 * @param count number of vectors
931 * @param to offset to write to
932 * @param retlen pointer to variable to store the number of written bytes
933 * @param eccbuf filesystem supplied oob data buffer
934 * @param oobsel oob selection structure
936 * OneNAND write with iovec with ecc
938 static int onenand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs,
939 unsigned long count, loff_t to, size_t *retlen,
940 u_char *eccbuf, struct nand_oobinfo *oobsel)
942 struct onenand_chip *this = mtd->priv;
943 unsigned char *pbuf;
944 size_t total_len, len;
945 int i, written = 0;
946 int ret = 0;
948 /* Preset written len for early exit */
949 *retlen = 0;
951 /* Calculate total length of data */
952 total_len = 0;
953 for (i = 0; i < count; i++)
954 total_len += vecs[i].iov_len;
956 DEBUG(MTD_DEBUG_LEVEL3, "onenand_writev_ecc: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
958 /* Do not allow write past end of the device */
959 if (unlikely((to + total_len) > mtd->size)) {
960 DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: Attempted write past end of device\n");
961 return -EINVAL;
964 /* Reject writes, which are not page aligned */
965 if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(total_len))) {
966 DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: Attempt to write not page aligned data\n");
967 return -EINVAL;
970 /* Grab the lock and see if the device is available */
971 onenand_get_device(mtd, FL_WRITING);
973 /* TODO handling oob */
975 /* Loop until all keve's data has been written */
976 len = 0;
977 while (count) {
978 pbuf = this->page_buf;
980 * If the given tuple is >= pagesize then
981 * write it out from the iov
983 if ((vecs->iov_len - len) >= mtd->oobblock) {
984 pbuf = vecs->iov_base + len;
986 len += mtd->oobblock;
988 /* Check, if we have to switch to the next tuple */
989 if (len >= (int) vecs->iov_len) {
990 vecs++;
991 len = 0;
992 count--;
994 } else {
995 int cnt = 0, thislen;
996 while (cnt < mtd->oobblock) {
997 thislen = min_t(int, mtd->oobblock - cnt, vecs->iov_len - len);
998 memcpy(this->page_buf + cnt, vecs->iov_base + len, thislen);
999 cnt += thislen;
1000 len += thislen;
1002 /* Check, if we have to switch to the next tuple */
1003 if (len >= (int) vecs->iov_len) {
1004 vecs++;
1005 len = 0;
1006 count--;
1011 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobblock);
1013 this->write_bufferram(mtd, ONENAND_DATARAM, pbuf, 0, mtd->oobblock);
1014 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1016 this->command(mtd, ONENAND_CMD_PROG, to, mtd->oobblock);
1018 onenand_update_bufferram(mtd, to, 1);
1020 ret = this->wait(mtd, FL_WRITING);
1021 if (ret) {
1022 DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: write failed %d\n", ret);
1023 goto out;
1027 /* Only check verify write turn on */
1028 ret = onenand_verify_page(mtd, (u_char *) pbuf, to);
1029 if (ret) {
1030 DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: verify failed %d\n", ret);
1031 goto out;
1034 written += mtd->oobblock;
1036 to += mtd->oobblock;
1039 out:
1040 /* Deselect and wakt up anyone waiting on the device */
1041 onenand_release_device(mtd);
1043 *retlen = written;
1045 return 0;
1049 * onenand_writev - [MTD Interface] compabilty function for onenand_writev_ecc
1050 * @param mtd MTD device structure
1051 * @param vecs the iovectors to write
1052 * @param count number of vectors
1053 * @param to offset to write to
1054 * @param retlen pointer to variable to store the number of written bytes
1056 * OneNAND write with kvec. This just calls the ecc function
1058 static int onenand_writev(struct mtd_info *mtd, const struct kvec *vecs,
1059 unsigned long count, loff_t to, size_t *retlen)
1061 return onenand_writev_ecc(mtd, vecs, count, to, retlen, NULL, NULL);
1065 * onenand_block_checkbad - [GENERIC] Check if a block is marked bad
1066 * @param mtd MTD device structure
1067 * @param ofs offset from device start
1068 * @param getchip 0, if the chip is already selected
1069 * @param allowbbt 1, if its allowed to access the bbt area
1071 * Check, if the block is bad. Either by reading the bad block table or
1072 * calling of the scan function.
1074 static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
1076 struct onenand_chip *this = mtd->priv;
1077 struct bbm_info *bbm = this->bbm;
1079 /* Return info from the table */
1080 return bbm->isbad_bbt(mtd, ofs, allowbbt);
1084 * onenand_erase - [MTD Interface] erase block(s)
1085 * @param mtd MTD device structure
1086 * @param instr erase instruction
1088 * Erase one ore more blocks
1090 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1092 struct onenand_chip *this = mtd->priv;
1093 unsigned int block_size;
1094 loff_t addr;
1095 int len;
1096 int ret = 0;
1098 DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1100 block_size = (1 << this->erase_shift);
1102 /* Start address must align on block boundary */
1103 if (unlikely(instr->addr & (block_size - 1))) {
1104 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Unaligned address\n");
1105 return -EINVAL;
1108 /* Length must align on block boundary */
1109 if (unlikely(instr->len & (block_size - 1))) {
1110 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Length not block aligned\n");
1111 return -EINVAL;
1114 /* Do not allow erase past end of device */
1115 if (unlikely((instr->len + instr->addr) > mtd->size)) {
1116 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Erase past end of device\n");
1117 return -EINVAL;
1120 instr->fail_addr = 0xffffffff;
1122 /* Grab the lock and see if the device is available */
1123 onenand_get_device(mtd, FL_ERASING);
1125 /* Loop throught the pages */
1126 len = instr->len;
1127 addr = instr->addr;
1129 instr->state = MTD_ERASING;
1131 while (len) {
1133 /* Check if we have a bad block, we do not erase bad blocks */
1134 if (onenand_block_checkbad(mtd, addr, 0, 0)) {
1135 printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1136 instr->state = MTD_ERASE_FAILED;
1137 goto erase_exit;
1140 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1142 ret = this->wait(mtd, FL_ERASING);
1143 /* Check, if it is write protected */
1144 if (ret) {
1145 if (ret == -EPERM)
1146 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Device is write protected!!!\n");
1147 else
1148 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1149 instr->state = MTD_ERASE_FAILED;
1150 instr->fail_addr = addr;
1151 goto erase_exit;
1154 len -= block_size;
1155 addr += block_size;
1158 instr->state = MTD_ERASE_DONE;
1160 erase_exit:
1162 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1163 /* Do call back function */
1164 if (!ret)
1165 mtd_erase_callback(instr);
1167 /* Deselect and wake up anyone waiting on the device */
1168 onenand_release_device(mtd);
1170 return ret;
1174 * onenand_sync - [MTD Interface] sync
1175 * @param mtd MTD device structure
1177 * Sync is actually a wait for chip ready function
1179 static void onenand_sync(struct mtd_info *mtd)
1181 DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1183 /* Grab the lock and see if the device is available */
1184 onenand_get_device(mtd, FL_SYNCING);
1186 /* Release it and go back */
1187 onenand_release_device(mtd);
1192 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1193 * @param mtd MTD device structure
1194 * @param ofs offset relative to mtd start
1196 * Check whether the block is bad
1198 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1200 /* Check for invalid offset */
1201 if (ofs > mtd->size)
1202 return -EINVAL;
1204 return onenand_block_checkbad(mtd, ofs, 1, 0);
1208 * onenand_default_block_markbad - [DEFAULT] mark a block bad
1209 * @param mtd MTD device structure
1210 * @param ofs offset from device start
1212 * This is the default implementation, which can be overridden by
1213 * a hardware specific driver.
1215 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1217 struct onenand_chip *this = mtd->priv;
1218 struct bbm_info *bbm = this->bbm;
1219 u_char buf[2] = {0, 0};
1220 size_t retlen;
1221 int block;
1223 /* Get block number */
1224 block = ((int) ofs) >> bbm->bbt_erase_shift;
1225 if (bbm->bbt)
1226 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1228 /* We write two bytes, so we dont have to mess with 16 bit access */
1229 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1230 return mtd->write_oob(mtd, ofs , 2, &retlen, buf);
1234 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1235 * @param mtd MTD device structure
1236 * @param ofs offset relative to mtd start
1238 * Mark the block as bad
1240 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1242 struct onenand_chip *this = mtd->priv;
1243 int ret;
1245 ret = onenand_block_isbad(mtd, ofs);
1246 if (ret) {
1247 /* If it was bad already, return success and do nothing */
1248 if (ret > 0)
1249 return 0;
1250 return ret;
1253 return this->block_markbad(mtd, ofs);
1257 * onenand_unlock - [MTD Interface] Unlock block(s)
1258 * @param mtd MTD device structure
1259 * @param ofs offset relative to mtd start
1260 * @param len number of bytes to unlock
1262 * Unlock one or more blocks
1264 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1266 struct onenand_chip *this = mtd->priv;
1267 int start, end, block, value, status;
1269 start = ofs >> this->erase_shift;
1270 end = len >> this->erase_shift;
1272 /* Continuous lock scheme */
1273 if (this->options & ONENAND_CONT_LOCK) {
1274 /* Set start block address */
1275 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1276 /* Set end block address */
1277 this->write_word(end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1278 /* Write unlock command */
1279 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1281 /* There's no return value */
1282 this->wait(mtd, FL_UNLOCKING);
1284 /* Sanity check */
1285 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1286 & ONENAND_CTRL_ONGO)
1287 continue;
1289 /* Check lock status */
1290 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1291 if (!(status & ONENAND_WP_US))
1292 printk(KERN_ERR "wp status = 0x%x\n", status);
1294 return 0;
1297 /* Block lock scheme */
1298 for (block = start; block < end; block++) {
1299 /* Set block address */
1300 value = onenand_block_address(this, block);
1301 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1302 /* Select DataRAM for DDP */
1303 value = onenand_bufferram_address(this, block);
1304 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1305 /* Set start block address */
1306 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1307 /* Write unlock command */
1308 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1310 /* There's no return value */
1311 this->wait(mtd, FL_UNLOCKING);
1313 /* Sanity check */
1314 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1315 & ONENAND_CTRL_ONGO)
1316 continue;
1318 /* Check lock status */
1319 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1320 if (!(status & ONENAND_WP_US))
1321 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1324 return 0;
1328 * onenand_print_device_info - Print device ID
1329 * @param device device ID
1331 * Print device ID
1333 static void onenand_print_device_info(int device)
1335 int vcc, demuxed, ddp, density;
1337 vcc = device & ONENAND_DEVICE_VCC_MASK;
1338 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
1339 ddp = device & ONENAND_DEVICE_IS_DDP;
1340 density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
1341 printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
1342 demuxed ? "" : "Muxed ",
1343 ddp ? "(DDP)" : "",
1344 (16 << density),
1345 vcc ? "2.65/3.3" : "1.8",
1346 device);
1349 static const struct onenand_manufacturers onenand_manuf_ids[] = {
1350 {ONENAND_MFR_SAMSUNG, "Samsung"},
1354 * onenand_check_maf - Check manufacturer ID
1355 * @param manuf manufacturer ID
1357 * Check manufacturer ID
1359 static int onenand_check_maf(int manuf)
1361 int size = ARRAY_SIZE(onenand_manuf_ids);
1362 char *name;
1363 int i;
1365 for (i = 0; i < size; i++)
1366 if (manuf == onenand_manuf_ids[i].id)
1367 break;
1369 if (i < size)
1370 name = onenand_manuf_ids[i].name;
1371 else
1372 name = "Unknown";
1374 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
1376 return (i == size);
1380 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
1381 * @param mtd MTD device structure
1383 * OneNAND detection method:
1384 * Compare the the values from command with ones from register
1386 static int onenand_probe(struct mtd_info *mtd)
1388 struct onenand_chip *this = mtd->priv;
1389 int bram_maf_id, bram_dev_id, maf_id, dev_id;
1390 int version_id;
1391 int density;
1393 /* Send the command for reading device ID from BootRAM */
1394 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
1396 /* Read manufacturer and device IDs from BootRAM */
1397 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
1398 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
1400 /* Check manufacturer ID */
1401 if (onenand_check_maf(bram_maf_id))
1402 return -ENXIO;
1404 /* Reset OneNAND to read default register values */
1405 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
1407 /* Read manufacturer and device IDs from Register */
1408 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
1409 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
1411 /* Check OneNAND device */
1412 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
1413 return -ENXIO;
1415 /* Flash device information */
1416 onenand_print_device_info(dev_id);
1417 this->device_id = dev_id;
1419 density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1420 this->chipsize = (16 << density) << 20;
1421 /* Set density mask. it is used for DDP */
1422 this->density_mask = (1 << (density + 6));
1424 /* OneNAND page size & block size */
1425 /* The data buffer size is equal to page size */
1426 mtd->oobblock = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
1427 mtd->oobsize = mtd->oobblock >> 5;
1428 /* Pagers per block is always 64 in OneNAND */
1429 mtd->erasesize = mtd->oobblock << 6;
1431 this->erase_shift = ffs(mtd->erasesize) - 1;
1432 this->page_shift = ffs(mtd->oobblock) - 1;
1433 this->ppb_shift = (this->erase_shift - this->page_shift);
1434 this->page_mask = (mtd->erasesize / mtd->oobblock) - 1;
1436 /* REVIST: Multichip handling */
1438 mtd->size = this->chipsize;
1440 /* Version ID */
1441 version_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
1442 printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version_id);
1444 /* Lock scheme */
1445 if (density <= ONENAND_DEVICE_DENSITY_512Mb &&
1446 !(version_id >> ONENAND_VERSION_PROCESS_SHIFT)) {
1447 printk(KERN_INFO "Lock scheme is Continues Lock\n");
1448 this->options |= ONENAND_CONT_LOCK;
1451 return 0;
1455 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
1456 * @param mtd MTD device structure
1458 static int onenand_suspend(struct mtd_info *mtd)
1460 return onenand_get_device(mtd, FL_PM_SUSPENDED);
1464 * onenand_resume - [MTD Interface] Resume the OneNAND flash
1465 * @param mtd MTD device structure
1467 static void onenand_resume(struct mtd_info *mtd)
1469 struct onenand_chip *this = mtd->priv;
1471 if (this->state == FL_PM_SUSPENDED)
1472 onenand_release_device(mtd);
1473 else
1474 printk(KERN_ERR "resume() called for the chip which is not"
1475 "in suspended state\n");
1480 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
1481 * @param mtd MTD device structure
1482 * @param maxchips Number of chips to scan for
1484 * This fills out all the not initialized function pointers
1485 * with the defaults.
1486 * The flash ID is read and the mtd/chip structures are
1487 * filled with the appropriate values.
1489 int onenand_scan(struct mtd_info *mtd, int maxchips)
1491 struct onenand_chip *this = mtd->priv;
1493 if (!this->read_word)
1494 this->read_word = onenand_readw;
1495 if (!this->write_word)
1496 this->write_word = onenand_writew;
1498 if (!this->command)
1499 this->command = onenand_command;
1500 if (!this->wait)
1501 this->wait = onenand_wait;
1503 if (!this->read_bufferram)
1504 this->read_bufferram = onenand_read_bufferram;
1505 if (!this->write_bufferram)
1506 this->write_bufferram = onenand_write_bufferram;
1508 if (!this->block_markbad)
1509 this->block_markbad = onenand_default_block_markbad;
1510 if (!this->scan_bbt)
1511 this->scan_bbt = onenand_default_bbt;
1513 if (onenand_probe(mtd))
1514 return -ENXIO;
1516 /* Set Sync. Burst Read after probing */
1517 if (this->mmcontrol) {
1518 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
1519 this->read_bufferram = onenand_sync_read_bufferram;
1522 /* Allocate buffers, if necessary */
1523 if (!this->page_buf) {
1524 size_t len;
1525 len = mtd->oobblock + mtd->oobsize;
1526 this->page_buf = kmalloc(len, GFP_KERNEL);
1527 if (!this->page_buf) {
1528 printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
1529 return -ENOMEM;
1531 this->options |= ONENAND_PAGEBUF_ALLOC;
1534 this->state = FL_READY;
1535 init_waitqueue_head(&this->wq);
1536 spin_lock_init(&this->chip_lock);
1538 switch (mtd->oobsize) {
1539 case 64:
1540 this->autooob = &onenand_oob_64;
1541 break;
1543 case 32:
1544 this->autooob = &onenand_oob_32;
1545 break;
1547 default:
1548 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
1549 mtd->oobsize);
1550 /* To prevent kernel oops */
1551 this->autooob = &onenand_oob_32;
1552 break;
1555 memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
1557 /* Fill in remaining MTD driver data */
1558 mtd->type = MTD_NANDFLASH;
1559 mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
1560 mtd->ecctype = MTD_ECC_SW;
1561 mtd->erase = onenand_erase;
1562 mtd->point = NULL;
1563 mtd->unpoint = NULL;
1564 mtd->read = onenand_read;
1565 mtd->write = onenand_write;
1566 mtd->read_ecc = onenand_read_ecc;
1567 mtd->write_ecc = onenand_write_ecc;
1568 mtd->read_oob = onenand_read_oob;
1569 mtd->write_oob = onenand_write_oob;
1570 mtd->readv = NULL;
1571 mtd->readv_ecc = NULL;
1572 mtd->writev = onenand_writev;
1573 mtd->writev_ecc = onenand_writev_ecc;
1574 mtd->sync = onenand_sync;
1575 mtd->lock = NULL;
1576 mtd->unlock = onenand_unlock;
1577 mtd->suspend = onenand_suspend;
1578 mtd->resume = onenand_resume;
1579 mtd->block_isbad = onenand_block_isbad;
1580 mtd->block_markbad = onenand_block_markbad;
1581 mtd->owner = THIS_MODULE;
1583 /* Unlock whole block */
1584 mtd->unlock(mtd, 0x0, this->chipsize);
1586 return this->scan_bbt(mtd);
1590 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
1591 * @param mtd MTD device structure
1593 void onenand_release(struct mtd_info *mtd)
1595 struct onenand_chip *this = mtd->priv;
1597 #ifdef CONFIG_MTD_PARTITIONS
1598 /* Deregister partitions */
1599 del_mtd_partitions (mtd);
1600 #endif
1601 /* Deregister the device */
1602 del_mtd_device (mtd);
1604 /* Free bad block table memory, if allocated */
1605 if (this->bbm)
1606 kfree(this->bbm);
1607 /* Buffer allocated by onenand_scan */
1608 if (this->options & ONENAND_PAGEBUF_ALLOC)
1609 kfree(this->page_buf);
1612 EXPORT_SYMBOL_GPL(onenand_scan);
1613 EXPORT_SYMBOL_GPL(onenand_release);
1615 MODULE_LICENSE("GPL");
1616 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
1617 MODULE_DESCRIPTION("Generic OneNAND flash driver code");