1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
66 * by default, the selective clear mask is set up to process rx packets.
69 #include <linux/config.h>
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/ioport.h>
79 #include <linux/pci.h>
81 #include <linux/highmem.h>
82 #include <linux/list.h>
83 #include <linux/dma-mapping.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/crc32.h>
90 #include <linux/random.h>
91 #include <linux/mii.h>
93 #include <linux/tcp.h>
94 #include <linux/mutex.h>
96 #include <net/checksum.h>
98 #include <asm/atomic.h>
99 #include <asm/system.h>
101 #include <asm/byteorder.h>
102 #include <asm/uaccess.h>
104 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
106 #define CAS_NCPUS num_online_cpus()
108 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
110 #define cas_skb_release(x) netif_receive_skb(x)
112 #define cas_skb_release(x) netif_rx(x)
115 /* select which firmware to use */
116 #define USE_HP_WORKAROUND
117 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
118 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
122 #define USE_TX_COMPWB /* use completion writeback registers */
123 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
124 #define USE_RX_BLANK /* hw interrupt mitigation */
125 #undef USE_ENTROPY_DEV /* don't test for entropy device */
127 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
128 * also, we need to make cp->lock finer-grained.
135 #undef USE_VPD_DEBUG /* debug vpd information if defined */
137 /* rx processing options */
138 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
139 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
140 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
141 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
142 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
144 #define DRV_MODULE_NAME "cassini"
145 #define PFX DRV_MODULE_NAME ": "
146 #define DRV_MODULE_VERSION "1.4"
147 #define DRV_MODULE_RELDATE "1 July 2004"
149 #define CAS_DEF_MSG_ENABLE \
159 /* length of time before we decide the hardware is borked,
160 * and dev->tx_timeout() should be called to fix the problem
162 #define CAS_TX_TIMEOUT (HZ)
163 #define CAS_LINK_TIMEOUT (22*HZ/10)
164 #define CAS_LINK_FAST_TIMEOUT (1)
166 /* timeout values for state changing. these specify the number
167 * of 10us delays to be used before giving up.
169 #define STOP_TRIES_PHY 1000
170 #define STOP_TRIES 5000
172 /* specify a minimum frame size to deal with some fifo issues
173 * max mtu == 2 * page size - ethernet header - 64 - swivel =
174 * 2 * page_size - 0x50
176 #define CAS_MIN_FRAME 97
177 #define CAS_1000MB_MIN_FRAME 255
178 #define CAS_MIN_MTU 60
179 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
183 * Eliminate these and use separate atomic counters for each, to
184 * avoid a race condition.
187 #define CAS_RESET_MTU 1
188 #define CAS_RESET_ALL 2
189 #define CAS_RESET_SPARE 3
192 static char version
[] __devinitdata
=
193 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
195 static int cassini_debug
= -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
196 static int link_mode
;
198 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
199 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
200 MODULE_LICENSE("GPL");
201 module_param(cassini_debug
, int, 0);
202 MODULE_PARM_DESC(cassini_debug
, "Cassini bitmapped debugging message enable value");
203 module_param(link_mode
, int, 0);
204 MODULE_PARM_DESC(link_mode
, "default link mode");
207 * Work around for a PCS bug in which the link goes down due to the chip
208 * being confused and never showing a link status of "up."
210 #define DEFAULT_LINKDOWN_TIMEOUT 5
212 * Value in seconds, for user input.
214 static int linkdown_timeout
= DEFAULT_LINKDOWN_TIMEOUT
;
215 module_param(linkdown_timeout
, int, 0);
216 MODULE_PARM_DESC(linkdown_timeout
,
217 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
220 * value in 'ticks' (units used by jiffies). Set when we init the
221 * module because 'HZ' in actually a function call on some flavors of
222 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
224 static int link_transition_timeout
;
228 static u16 link_modes
[] __devinitdata
= {
229 BMCR_ANENABLE
, /* 0 : autoneg */
230 0, /* 1 : 10bt half duplex */
231 BMCR_SPEED100
, /* 2 : 100bt half duplex */
232 BMCR_FULLDPLX
, /* 3 : 10bt full duplex */
233 BMCR_SPEED100
|BMCR_FULLDPLX
, /* 4 : 100bt full duplex */
234 CAS_BMCR_SPEED1000
|BMCR_FULLDPLX
/* 5 : 1000bt full duplex */
237 static struct pci_device_id cas_pci_tbl
[] __devinitdata
= {
238 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_CASSINI
,
239 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
240 { PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_SATURN
,
241 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
245 MODULE_DEVICE_TABLE(pci
, cas_pci_tbl
);
247 static void cas_set_link_modes(struct cas
*cp
);
249 static inline void cas_lock_tx(struct cas
*cp
)
253 for (i
= 0; i
< N_TX_RINGS
; i
++)
254 spin_lock(&cp
->tx_lock
[i
]);
257 static inline void cas_lock_all(struct cas
*cp
)
259 spin_lock_irq(&cp
->lock
);
263 /* WTZ: QA was finding deadlock problems with the previous
264 * versions after long test runs with multiple cards per machine.
265 * See if replacing cas_lock_all with safer versions helps. The
266 * symptoms QA is reporting match those we'd expect if interrupts
267 * aren't being properly restored, and we fixed a previous deadlock
268 * with similar symptoms by using save/restore versions in other
271 #define cas_lock_all_save(cp, flags) \
273 struct cas *xxxcp = (cp); \
274 spin_lock_irqsave(&xxxcp->lock, flags); \
275 cas_lock_tx(xxxcp); \
278 static inline void cas_unlock_tx(struct cas
*cp
)
282 for (i
= N_TX_RINGS
; i
> 0; i
--)
283 spin_unlock(&cp
->tx_lock
[i
- 1]);
286 static inline void cas_unlock_all(struct cas
*cp
)
289 spin_unlock_irq(&cp
->lock
);
292 #define cas_unlock_all_restore(cp, flags) \
294 struct cas *xxxcp = (cp); \
295 cas_unlock_tx(xxxcp); \
296 spin_unlock_irqrestore(&xxxcp->lock, flags); \
299 static void cas_disable_irq(struct cas
*cp
, const int ring
)
301 /* Make sure we won't get any more interrupts */
303 writel(0xFFFFFFFF, cp
->regs
+ REG_INTR_MASK
);
307 /* disable completion interrupts and selectively mask */
308 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
310 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
320 writel(INTRN_MASK_CLEAR_ALL
| INTRN_MASK_RX_EN
,
321 cp
->regs
+ REG_PLUS_INTRN_MASK(ring
));
325 writel(INTRN_MASK_CLEAR_ALL
, cp
->regs
+
326 REG_PLUS_INTRN_MASK(ring
));
332 static inline void cas_mask_intr(struct cas
*cp
)
336 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
337 cas_disable_irq(cp
, i
);
340 static inline void cas_buffer_init(cas_page_t
*cp
)
342 struct page
*page
= cp
->buffer
;
343 atomic_set((atomic_t
*)&page
->lru
.next
, 1);
346 static inline int cas_buffer_count(cas_page_t
*cp
)
348 struct page
*page
= cp
->buffer
;
349 return atomic_read((atomic_t
*)&page
->lru
.next
);
352 static inline void cas_buffer_inc(cas_page_t
*cp
)
354 struct page
*page
= cp
->buffer
;
355 atomic_inc((atomic_t
*)&page
->lru
.next
);
358 static inline void cas_buffer_dec(cas_page_t
*cp
)
360 struct page
*page
= cp
->buffer
;
361 atomic_dec((atomic_t
*)&page
->lru
.next
);
364 static void cas_enable_irq(struct cas
*cp
, const int ring
)
366 if (ring
== 0) { /* all but TX_DONE */
367 writel(INTR_TX_DONE
, cp
->regs
+ REG_INTR_MASK
);
371 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
373 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
383 writel(INTRN_MASK_RX_EN
, cp
->regs
+
384 REG_PLUS_INTRN_MASK(ring
));
393 static inline void cas_unmask_intr(struct cas
*cp
)
397 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
398 cas_enable_irq(cp
, i
);
401 static inline void cas_entropy_gather(struct cas
*cp
)
403 #ifdef USE_ENTROPY_DEV
404 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
407 batch_entropy_store(readl(cp
->regs
+ REG_ENTROPY_IV
),
408 readl(cp
->regs
+ REG_ENTROPY_IV
),
413 static inline void cas_entropy_reset(struct cas
*cp
)
415 #ifdef USE_ENTROPY_DEV
416 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
419 writel(BIM_LOCAL_DEV_PAD
| BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_EXT
,
420 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
421 writeb(ENTROPY_RESET_STC_MODE
, cp
->regs
+ REG_ENTROPY_RESET
);
422 writeb(0x55, cp
->regs
+ REG_ENTROPY_RAND_REG
);
424 /* if we read back 0x0, we don't have an entropy device */
425 if (readb(cp
->regs
+ REG_ENTROPY_RAND_REG
) == 0)
426 cp
->cas_flags
&= ~CAS_FLAG_ENTROPY_DEV
;
430 /* access to the phy. the following assumes that we've initialized the MIF to
431 * be in frame rather than bit-bang mode
433 static u16
cas_phy_read(struct cas
*cp
, int reg
)
436 int limit
= STOP_TRIES_PHY
;
438 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_READ
;
439 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
440 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
441 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
442 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
444 /* poll for completion */
445 while (limit
-- > 0) {
447 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
448 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
449 return (cmd
& MIF_FRAME_DATA_MASK
);
451 return 0xFFFF; /* -1 */
454 static int cas_phy_write(struct cas
*cp
, int reg
, u16 val
)
456 int limit
= STOP_TRIES_PHY
;
459 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_WRITE
;
460 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
461 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
462 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
463 cmd
|= val
& MIF_FRAME_DATA_MASK
;
464 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
466 /* poll for completion */
467 while (limit
-- > 0) {
469 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
470 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
476 static void cas_phy_powerup(struct cas
*cp
)
478 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
480 if ((ctl
& BMCR_PDOWN
) == 0)
483 cas_phy_write(cp
, MII_BMCR
, ctl
);
486 static void cas_phy_powerdown(struct cas
*cp
)
488 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
490 if (ctl
& BMCR_PDOWN
)
493 cas_phy_write(cp
, MII_BMCR
, ctl
);
496 /* cp->lock held. note: the last put_page will free the buffer */
497 static int cas_page_free(struct cas
*cp
, cas_page_t
*page
)
499 pci_unmap_page(cp
->pdev
, page
->dma_addr
, cp
->page_size
,
501 cas_buffer_dec(page
);
502 __free_pages(page
->buffer
, cp
->page_order
);
507 #ifdef RX_COUNT_BUFFERS
508 #define RX_USED_ADD(x, y) ((x)->used += (y))
509 #define RX_USED_SET(x, y) ((x)->used = (y))
511 #define RX_USED_ADD(x, y)
512 #define RX_USED_SET(x, y)
515 /* local page allocation routines for the receive buffers. jumbo pages
516 * require at least 8K contiguous and 8K aligned buffers.
518 static cas_page_t
*cas_page_alloc(struct cas
*cp
, const gfp_t flags
)
522 page
= kmalloc(sizeof(cas_page_t
), flags
);
526 INIT_LIST_HEAD(&page
->list
);
527 RX_USED_SET(page
, 0);
528 page
->buffer
= alloc_pages(flags
, cp
->page_order
);
531 cas_buffer_init(page
);
532 page
->dma_addr
= pci_map_page(cp
->pdev
, page
->buffer
, 0,
533 cp
->page_size
, PCI_DMA_FROMDEVICE
);
541 /* initialize spare pool of rx buffers, but allocate during the open */
542 static void cas_spare_init(struct cas
*cp
)
544 spin_lock(&cp
->rx_inuse_lock
);
545 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
546 spin_unlock(&cp
->rx_inuse_lock
);
548 spin_lock(&cp
->rx_spare_lock
);
549 INIT_LIST_HEAD(&cp
->rx_spare_list
);
550 cp
->rx_spares_needed
= RX_SPARE_COUNT
;
551 spin_unlock(&cp
->rx_spare_lock
);
554 /* used on close. free all the spare buffers. */
555 static void cas_spare_free(struct cas
*cp
)
557 struct list_head list
, *elem
, *tmp
;
559 /* free spare buffers */
560 INIT_LIST_HEAD(&list
);
561 spin_lock(&cp
->rx_spare_lock
);
562 list_splice(&cp
->rx_spare_list
, &list
);
563 INIT_LIST_HEAD(&cp
->rx_spare_list
);
564 spin_unlock(&cp
->rx_spare_lock
);
565 list_for_each_safe(elem
, tmp
, &list
) {
566 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
569 INIT_LIST_HEAD(&list
);
572 * Looks like Adrian had protected this with a different
573 * lock than used everywhere else to manipulate this list.
575 spin_lock(&cp
->rx_inuse_lock
);
576 list_splice(&cp
->rx_inuse_list
, &list
);
577 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
578 spin_unlock(&cp
->rx_inuse_lock
);
580 spin_lock(&cp
->rx_spare_lock
);
581 list_splice(&cp
->rx_inuse_list
, &list
);
582 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
583 spin_unlock(&cp
->rx_spare_lock
);
585 list_for_each_safe(elem
, tmp
, &list
) {
586 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
590 /* replenish spares if needed */
591 static void cas_spare_recover(struct cas
*cp
, const gfp_t flags
)
593 struct list_head list
, *elem
, *tmp
;
596 /* check inuse list. if we don't need any more free buffers,
600 /* make a local copy of the list */
601 INIT_LIST_HEAD(&list
);
602 spin_lock(&cp
->rx_inuse_lock
);
603 list_splice(&cp
->rx_inuse_list
, &list
);
604 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
605 spin_unlock(&cp
->rx_inuse_lock
);
607 list_for_each_safe(elem
, tmp
, &list
) {
608 cas_page_t
*page
= list_entry(elem
, cas_page_t
, list
);
610 if (cas_buffer_count(page
) > 1)
614 spin_lock(&cp
->rx_spare_lock
);
615 if (cp
->rx_spares_needed
> 0) {
616 list_add(elem
, &cp
->rx_spare_list
);
617 cp
->rx_spares_needed
--;
618 spin_unlock(&cp
->rx_spare_lock
);
620 spin_unlock(&cp
->rx_spare_lock
);
621 cas_page_free(cp
, page
);
625 /* put any inuse buffers back on the list */
626 if (!list_empty(&list
)) {
627 spin_lock(&cp
->rx_inuse_lock
);
628 list_splice(&list
, &cp
->rx_inuse_list
);
629 spin_unlock(&cp
->rx_inuse_lock
);
632 spin_lock(&cp
->rx_spare_lock
);
633 needed
= cp
->rx_spares_needed
;
634 spin_unlock(&cp
->rx_spare_lock
);
638 /* we still need spares, so try to allocate some */
639 INIT_LIST_HEAD(&list
);
642 cas_page_t
*spare
= cas_page_alloc(cp
, flags
);
645 list_add(&spare
->list
, &list
);
649 spin_lock(&cp
->rx_spare_lock
);
650 list_splice(&list
, &cp
->rx_spare_list
);
651 cp
->rx_spares_needed
-= i
;
652 spin_unlock(&cp
->rx_spare_lock
);
655 /* pull a page from the list. */
656 static cas_page_t
*cas_page_dequeue(struct cas
*cp
)
658 struct list_head
*entry
;
661 spin_lock(&cp
->rx_spare_lock
);
662 if (list_empty(&cp
->rx_spare_list
)) {
663 /* try to do a quick recovery */
664 spin_unlock(&cp
->rx_spare_lock
);
665 cas_spare_recover(cp
, GFP_ATOMIC
);
666 spin_lock(&cp
->rx_spare_lock
);
667 if (list_empty(&cp
->rx_spare_list
)) {
668 if (netif_msg_rx_err(cp
))
669 printk(KERN_ERR
"%s: no spare buffers "
670 "available.\n", cp
->dev
->name
);
671 spin_unlock(&cp
->rx_spare_lock
);
676 entry
= cp
->rx_spare_list
.next
;
678 recover
= ++cp
->rx_spares_needed
;
679 spin_unlock(&cp
->rx_spare_lock
);
681 /* trigger the timer to do the recovery */
682 if ((recover
& (RX_SPARE_RECOVER_VAL
- 1)) == 0) {
684 atomic_inc(&cp
->reset_task_pending
);
685 atomic_inc(&cp
->reset_task_pending_spare
);
686 schedule_work(&cp
->reset_task
);
688 atomic_set(&cp
->reset_task_pending
, CAS_RESET_SPARE
);
689 schedule_work(&cp
->reset_task
);
692 return list_entry(entry
, cas_page_t
, list
);
696 static void cas_mif_poll(struct cas
*cp
, const int enable
)
700 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
701 cfg
&= (MIF_CFG_MDIO_0
| MIF_CFG_MDIO_1
);
703 if (cp
->phy_type
& CAS_PHY_MII_MDIO1
)
704 cfg
|= MIF_CFG_PHY_SELECT
;
706 /* poll and interrupt on link status change. */
708 cfg
|= MIF_CFG_POLL_EN
;
709 cfg
|= CAS_BASE(MIF_CFG_POLL_REG
, MII_BMSR
);
710 cfg
|= CAS_BASE(MIF_CFG_POLL_PHY
, cp
->phy_addr
);
712 writel((enable
) ? ~(BMSR_LSTATUS
| BMSR_ANEGCOMPLETE
) : 0xFFFF,
713 cp
->regs
+ REG_MIF_MASK
);
714 writel(cfg
, cp
->regs
+ REG_MIF_CFG
);
717 /* Must be invoked under cp->lock */
718 static void cas_begin_auto_negotiation(struct cas
*cp
, struct ethtool_cmd
*ep
)
724 int oldstate
= cp
->lstate
;
725 int link_was_not_down
= !(oldstate
== link_down
);
727 /* Setup link parameters */
730 lcntl
= cp
->link_cntl
;
731 if (ep
->autoneg
== AUTONEG_ENABLE
)
732 cp
->link_cntl
= BMCR_ANENABLE
;
735 if (ep
->speed
== SPEED_100
)
736 cp
->link_cntl
|= BMCR_SPEED100
;
737 else if (ep
->speed
== SPEED_1000
)
738 cp
->link_cntl
|= CAS_BMCR_SPEED1000
;
739 if (ep
->duplex
== DUPLEX_FULL
)
740 cp
->link_cntl
|= BMCR_FULLDPLX
;
743 changed
= (lcntl
!= cp
->link_cntl
);
746 if (cp
->lstate
== link_up
) {
747 printk(KERN_INFO
"%s: PCS link down.\n",
751 printk(KERN_INFO
"%s: link configuration changed\n",
755 cp
->lstate
= link_down
;
756 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
761 * WTZ: If the old state was link_up, we turn off the carrier
762 * to replicate everything we do elsewhere on a link-down
763 * event when we were already in a link-up state..
765 if (oldstate
== link_up
)
766 netif_carrier_off(cp
->dev
);
767 if (changed
&& link_was_not_down
) {
769 * WTZ: This branch will simply schedule a full reset after
770 * we explicitly changed link modes in an ioctl. See if this
771 * fixes the link-problems we were having for forced mode.
773 atomic_inc(&cp
->reset_task_pending
);
774 atomic_inc(&cp
->reset_task_pending_all
);
775 schedule_work(&cp
->reset_task
);
777 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
781 if (cp
->phy_type
& CAS_PHY_SERDES
) {
782 u32 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
784 if (cp
->link_cntl
& BMCR_ANENABLE
) {
785 val
|= (PCS_MII_RESTART_AUTONEG
| PCS_MII_AUTONEG_EN
);
786 cp
->lstate
= link_aneg
;
788 if (cp
->link_cntl
& BMCR_FULLDPLX
)
789 val
|= PCS_MII_CTRL_DUPLEX
;
790 val
&= ~PCS_MII_AUTONEG_EN
;
791 cp
->lstate
= link_force_ok
;
793 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
794 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
798 ctl
= cas_phy_read(cp
, MII_BMCR
);
799 ctl
&= ~(BMCR_FULLDPLX
| BMCR_SPEED100
|
800 CAS_BMCR_SPEED1000
| BMCR_ANENABLE
);
801 ctl
|= cp
->link_cntl
;
802 if (ctl
& BMCR_ANENABLE
) {
803 ctl
|= BMCR_ANRESTART
;
804 cp
->lstate
= link_aneg
;
806 cp
->lstate
= link_force_ok
;
808 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
809 cas_phy_write(cp
, MII_BMCR
, ctl
);
814 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
817 /* Must be invoked under cp->lock. */
818 static int cas_reset_mii_phy(struct cas
*cp
)
820 int limit
= STOP_TRIES_PHY
;
823 cas_phy_write(cp
, MII_BMCR
, BMCR_RESET
);
826 val
= cas_phy_read(cp
, MII_BMCR
);
827 if ((val
& BMCR_RESET
) == 0)
834 static void cas_saturn_firmware_load(struct cas
*cp
)
836 cas_saturn_patch_t
*patch
= cas_saturn_patch
;
838 cas_phy_powerdown(cp
);
840 /* expanded memory access mode */
841 cas_phy_write(cp
, DP83065_MII_MEM
, 0x0);
843 /* pointer configuration for new firmware */
844 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff9);
845 cas_phy_write(cp
, DP83065_MII_REGD
, 0xbd);
846 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffa);
847 cas_phy_write(cp
, DP83065_MII_REGD
, 0x82);
848 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffb);
849 cas_phy_write(cp
, DP83065_MII_REGD
, 0x0);
850 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffc);
851 cas_phy_write(cp
, DP83065_MII_REGD
, 0x39);
853 /* download new firmware */
854 cas_phy_write(cp
, DP83065_MII_MEM
, 0x1);
855 cas_phy_write(cp
, DP83065_MII_REGE
, patch
->addr
);
856 while (patch
->addr
) {
857 cas_phy_write(cp
, DP83065_MII_REGD
, patch
->val
);
861 /* enable firmware */
862 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff8);
863 cas_phy_write(cp
, DP83065_MII_REGD
, 0x1);
867 /* phy initialization */
868 static void cas_phy_init(struct cas
*cp
)
872 /* if we're in MII/GMII mode, set up phy */
873 if (CAS_PHY_MII(cp
->phy_type
)) {
874 writel(PCS_DATAPATH_MODE_MII
,
875 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
878 cas_reset_mii_phy(cp
); /* take out of isolate mode */
880 if (PHY_LUCENT_B0
== cp
->phy_id
) {
881 /* workaround link up/down issue with lucent */
882 cas_phy_write(cp
, LUCENT_MII_REG
, 0x8000);
883 cas_phy_write(cp
, MII_BMCR
, 0x00f1);
884 cas_phy_write(cp
, LUCENT_MII_REG
, 0x0);
886 } else if (PHY_BROADCOM_B0
== (cp
->phy_id
& 0xFFFFFFFC)) {
887 /* workarounds for broadcom phy */
888 cas_phy_write(cp
, BROADCOM_MII_REG8
, 0x0C20);
889 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0012);
890 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1804);
891 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0013);
892 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1204);
893 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
894 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0132);
895 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
896 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0232);
897 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x201F);
898 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0A20);
900 } else if (PHY_BROADCOM_5411
== cp
->phy_id
) {
901 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
902 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
904 /* link workaround */
905 cas_phy_write(cp
, BROADCOM_MII_REG4
,
909 } else if (cp
->cas_flags
& CAS_FLAG_SATURN
) {
910 writel((cp
->phy_type
& CAS_PHY_MII_MDIO0
) ?
911 SATURN_PCFG_FSI
: 0x0,
912 cp
->regs
+ REG_SATURN_PCFG
);
914 /* load firmware to address 10Mbps auto-negotiation
915 * issue. NOTE: this will need to be changed if the
916 * default firmware gets fixed.
918 if (PHY_NS_DP83065
== cp
->phy_id
) {
919 cas_saturn_firmware_load(cp
);
924 /* advertise capabilities */
925 val
= cas_phy_read(cp
, MII_BMCR
);
926 val
&= ~BMCR_ANENABLE
;
927 cas_phy_write(cp
, MII_BMCR
, val
);
930 cas_phy_write(cp
, MII_ADVERTISE
,
931 cas_phy_read(cp
, MII_ADVERTISE
) |
932 (ADVERTISE_10HALF
| ADVERTISE_10FULL
|
933 ADVERTISE_100HALF
| ADVERTISE_100FULL
|
934 CAS_ADVERTISE_PAUSE
|
935 CAS_ADVERTISE_ASYM_PAUSE
));
937 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
938 /* make sure that we don't advertise half
939 * duplex to avoid a chip issue
941 val
= cas_phy_read(cp
, CAS_MII_1000_CTRL
);
942 val
&= ~CAS_ADVERTISE_1000HALF
;
943 val
|= CAS_ADVERTISE_1000FULL
;
944 cas_phy_write(cp
, CAS_MII_1000_CTRL
, val
);
948 /* reset pcs for serdes */
952 writel(PCS_DATAPATH_MODE_SERDES
,
953 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
955 /* enable serdes pins on saturn */
956 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
957 writel(0, cp
->regs
+ REG_SATURN_PCFG
);
959 /* Reset PCS unit. */
960 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
961 val
|= PCS_MII_RESET
;
962 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
965 while (limit
-- > 0) {
967 if ((readl(cp
->regs
+ REG_PCS_MII_CTRL
) &
972 printk(KERN_WARNING
"%s: PCS reset bit would not "
973 "clear [%08x].\n", cp
->dev
->name
,
974 readl(cp
->regs
+ REG_PCS_STATE_MACHINE
));
976 /* Make sure PCS is disabled while changing advertisement
979 writel(0x0, cp
->regs
+ REG_PCS_CFG
);
981 /* Advertise all capabilities except half-duplex. */
982 val
= readl(cp
->regs
+ REG_PCS_MII_ADVERT
);
983 val
&= ~PCS_MII_ADVERT_HD
;
984 val
|= (PCS_MII_ADVERT_FD
| PCS_MII_ADVERT_SYM_PAUSE
|
985 PCS_MII_ADVERT_ASYM_PAUSE
);
986 writel(val
, cp
->regs
+ REG_PCS_MII_ADVERT
);
989 writel(PCS_CFG_EN
, cp
->regs
+ REG_PCS_CFG
);
991 /* pcs workaround: enable sync detect */
992 writel(PCS_SERDES_CTRL_SYNCD_EN
,
993 cp
->regs
+ REG_PCS_SERDES_CTRL
);
998 static int cas_pcs_link_check(struct cas
*cp
)
1000 u32 stat
, state_machine
;
1003 /* The link status bit latches on zero, so you must
1004 * read it twice in such a case to see a transition
1005 * to the link being up.
1007 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1008 if ((stat
& PCS_MII_STATUS_LINK_STATUS
) == 0)
1009 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1011 /* The remote-fault indication is only valid
1012 * when autoneg has completed.
1014 if ((stat
& (PCS_MII_STATUS_AUTONEG_COMP
|
1015 PCS_MII_STATUS_REMOTE_FAULT
)) ==
1016 (PCS_MII_STATUS_AUTONEG_COMP
| PCS_MII_STATUS_REMOTE_FAULT
)) {
1017 if (netif_msg_link(cp
))
1018 printk(KERN_INFO
"%s: PCS RemoteFault\n",
1022 /* work around link detection issue by querying the PCS state
1025 state_machine
= readl(cp
->regs
+ REG_PCS_STATE_MACHINE
);
1026 if ((state_machine
& PCS_SM_LINK_STATE_MASK
) != SM_LINK_STATE_UP
) {
1027 stat
&= ~PCS_MII_STATUS_LINK_STATUS
;
1028 } else if (state_machine
& PCS_SM_WORD_SYNC_STATE_MASK
) {
1029 stat
|= PCS_MII_STATUS_LINK_STATUS
;
1032 if (stat
& PCS_MII_STATUS_LINK_STATUS
) {
1033 if (cp
->lstate
!= link_up
) {
1035 cp
->lstate
= link_up
;
1036 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1038 cas_set_link_modes(cp
);
1039 netif_carrier_on(cp
->dev
);
1042 } else if (cp
->lstate
== link_up
) {
1043 cp
->lstate
= link_down
;
1044 if (link_transition_timeout
!= 0 &&
1045 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1046 !cp
->link_transition_jiffies_valid
) {
1048 * force a reset, as a workaround for the
1049 * link-failure problem. May want to move this to a
1050 * point a bit earlier in the sequence. If we had
1051 * generated a reset a short time ago, we'll wait for
1052 * the link timer to check the status until a
1053 * timer expires (link_transistion_jiffies_valid is
1054 * true when the timer is running.) Instead of using
1055 * a system timer, we just do a check whenever the
1056 * link timer is running - this clears the flag after
1060 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1061 cp
->link_transition_jiffies
= jiffies
;
1062 cp
->link_transition_jiffies_valid
= 1;
1064 cp
->link_transition
= LINK_TRANSITION_ON_FAILURE
;
1066 netif_carrier_off(cp
->dev
);
1067 if (cp
->opened
&& netif_msg_link(cp
)) {
1068 printk(KERN_INFO
"%s: PCS link down.\n",
1072 /* Cassini only: if you force a mode, there can be
1073 * sync problems on link down. to fix that, the following
1074 * things need to be checked:
1075 * 1) read serialink state register
1076 * 2) read pcs status register to verify link down.
1077 * 3) if link down and serial link == 0x03, then you need
1078 * to global reset the chip.
1080 if ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0) {
1081 /* should check to see if we're in a forced mode */
1082 stat
= readl(cp
->regs
+ REG_PCS_SERDES_STATE
);
1086 } else if (cp
->lstate
== link_down
) {
1087 if (link_transition_timeout
!= 0 &&
1088 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1089 !cp
->link_transition_jiffies_valid
) {
1090 /* force a reset, as a workaround for the
1091 * link-failure problem. May want to move
1092 * this to a point a bit earlier in the
1096 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1097 cp
->link_transition_jiffies
= jiffies
;
1098 cp
->link_transition_jiffies_valid
= 1;
1100 cp
->link_transition
= LINK_TRANSITION_STILL_FAILED
;
1107 static int cas_pcs_interrupt(struct net_device
*dev
,
1108 struct cas
*cp
, u32 status
)
1110 u32 stat
= readl(cp
->regs
+ REG_PCS_INTR_STATUS
);
1112 if ((stat
& PCS_INTR_STATUS_LINK_CHANGE
) == 0)
1114 return cas_pcs_link_check(cp
);
1117 static int cas_txmac_interrupt(struct net_device
*dev
,
1118 struct cas
*cp
, u32 status
)
1120 u32 txmac_stat
= readl(cp
->regs
+ REG_MAC_TX_STATUS
);
1125 if (netif_msg_intr(cp
))
1126 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
1127 cp
->dev
->name
, txmac_stat
);
1129 /* Defer timer expiration is quite normal,
1130 * don't even log the event.
1132 if ((txmac_stat
& MAC_TX_DEFER_TIMER
) &&
1133 !(txmac_stat
& ~MAC_TX_DEFER_TIMER
))
1136 spin_lock(&cp
->stat_lock
[0]);
1137 if (txmac_stat
& MAC_TX_UNDERRUN
) {
1138 printk(KERN_ERR
"%s: TX MAC xmit underrun.\n",
1140 cp
->net_stats
[0].tx_fifo_errors
++;
1143 if (txmac_stat
& MAC_TX_MAX_PACKET_ERR
) {
1144 printk(KERN_ERR
"%s: TX MAC max packet size error.\n",
1146 cp
->net_stats
[0].tx_errors
++;
1149 /* The rest are all cases of one of the 16-bit TX
1150 * counters expiring.
1152 if (txmac_stat
& MAC_TX_COLL_NORMAL
)
1153 cp
->net_stats
[0].collisions
+= 0x10000;
1155 if (txmac_stat
& MAC_TX_COLL_EXCESS
) {
1156 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1157 cp
->net_stats
[0].collisions
+= 0x10000;
1160 if (txmac_stat
& MAC_TX_COLL_LATE
) {
1161 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1162 cp
->net_stats
[0].collisions
+= 0x10000;
1164 spin_unlock(&cp
->stat_lock
[0]);
1166 /* We do not keep track of MAC_TX_COLL_FIRST and
1167 * MAC_TX_PEAK_ATTEMPTS events.
1172 static void cas_load_firmware(struct cas
*cp
, cas_hp_inst_t
*firmware
)
1174 cas_hp_inst_t
*inst
;
1179 while ((inst
= firmware
) && inst
->note
) {
1180 writel(i
, cp
->regs
+ REG_HP_INSTR_RAM_ADDR
);
1182 val
= CAS_BASE(HP_INSTR_RAM_HI_VAL
, inst
->val
);
1183 val
|= CAS_BASE(HP_INSTR_RAM_HI_MASK
, inst
->mask
);
1184 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_HI
);
1186 val
= CAS_BASE(HP_INSTR_RAM_MID_OUTARG
, inst
->outarg
>> 10);
1187 val
|= CAS_BASE(HP_INSTR_RAM_MID_OUTOP
, inst
->outop
);
1188 val
|= CAS_BASE(HP_INSTR_RAM_MID_FNEXT
, inst
->fnext
);
1189 val
|= CAS_BASE(HP_INSTR_RAM_MID_FOFF
, inst
->foff
);
1190 val
|= CAS_BASE(HP_INSTR_RAM_MID_SNEXT
, inst
->snext
);
1191 val
|= CAS_BASE(HP_INSTR_RAM_MID_SOFF
, inst
->soff
);
1192 val
|= CAS_BASE(HP_INSTR_RAM_MID_OP
, inst
->op
);
1193 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_MID
);
1195 val
= CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK
, inst
->outmask
);
1196 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT
, inst
->outshift
);
1197 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN
, inst
->outenab
);
1198 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG
, inst
->outarg
);
1199 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_LOW
);
1205 static void cas_init_rx_dma(struct cas
*cp
)
1207 u64 desc_dma
= cp
->block_dvma
;
1211 /* rx free descriptors */
1212 val
= CAS_BASE(RX_CFG_SWIVEL
, RX_SWIVEL_OFF_VAL
);
1213 val
|= CAS_BASE(RX_CFG_DESC_RING
, RX_DESC_RINGN_INDEX(0));
1214 val
|= CAS_BASE(RX_CFG_COMP_RING
, RX_COMP_RINGN_INDEX(0));
1215 if ((N_RX_DESC_RINGS
> 1) &&
1216 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)) /* do desc 2 */
1217 val
|= CAS_BASE(RX_CFG_DESC_RING1
, RX_DESC_RINGN_INDEX(1));
1218 writel(val
, cp
->regs
+ REG_RX_CFG
);
1220 val
= (unsigned long) cp
->init_rxds
[0] -
1221 (unsigned long) cp
->init_block
;
1222 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_DB_HI
);
1223 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_DB_LOW
);
1224 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
1226 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1227 /* rx desc 2 is for IPSEC packets. however,
1228 * we don't it that for that purpose.
1230 val
= (unsigned long) cp
->init_rxds
[1] -
1231 (unsigned long) cp
->init_block
;
1232 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_PLUS_RX_DB1_HI
);
1233 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1234 REG_PLUS_RX_DB1_LOW
);
1235 writel(RX_DESC_RINGN_SIZE(1) - 4, cp
->regs
+
1239 /* rx completion registers */
1240 val
= (unsigned long) cp
->init_rxcs
[0] -
1241 (unsigned long) cp
->init_block
;
1242 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_CB_HI
);
1243 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_CB_LOW
);
1245 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1247 for (i
= 1; i
< MAX_RX_COMP_RINGS
; i
++) {
1248 val
= (unsigned long) cp
->init_rxcs
[i
] -
1249 (unsigned long) cp
->init_block
;
1250 writel((desc_dma
+ val
) >> 32, cp
->regs
+
1251 REG_PLUS_RX_CBN_HI(i
));
1252 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1253 REG_PLUS_RX_CBN_LOW(i
));
1257 /* read selective clear regs to prevent spurious interrupts
1258 * on reset because complete == kick.
1259 * selective clear set up to prevent interrupts on resets
1261 readl(cp
->regs
+ REG_INTR_STATUS_ALIAS
);
1262 writel(INTR_RX_DONE
| INTR_RX_BUF_UNAVAIL
, cp
->regs
+ REG_ALIAS_CLEAR
);
1263 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1264 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
1265 readl(cp
->regs
+ REG_PLUS_INTRN_STATUS_ALIAS(i
));
1267 /* 2 is different from 3 and 4 */
1268 if (N_RX_COMP_RINGS
> 1)
1269 writel(INTR_RX_DONE_ALT
| INTR_RX_BUF_UNAVAIL_1
,
1270 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(1));
1272 for (i
= 2; i
< N_RX_COMP_RINGS
; i
++)
1273 writel(INTR_RX_DONE_ALT
,
1274 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(i
));
1277 /* set up pause thresholds */
1278 val
= CAS_BASE(RX_PAUSE_THRESH_OFF
,
1279 cp
->rx_pause_off
/ RX_PAUSE_THRESH_QUANTUM
);
1280 val
|= CAS_BASE(RX_PAUSE_THRESH_ON
,
1281 cp
->rx_pause_on
/ RX_PAUSE_THRESH_QUANTUM
);
1282 writel(val
, cp
->regs
+ REG_RX_PAUSE_THRESH
);
1284 /* zero out dma reassembly buffers */
1285 for (i
= 0; i
< 64; i
++) {
1286 writel(i
, cp
->regs
+ REG_RX_TABLE_ADDR
);
1287 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_LOW
);
1288 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_MID
);
1289 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_HI
);
1292 /* make sure address register is 0 for normal operation */
1293 writel(0x0, cp
->regs
+ REG_RX_CTRL_FIFO_ADDR
);
1294 writel(0x0, cp
->regs
+ REG_RX_IPP_FIFO_ADDR
);
1296 /* interrupt mitigation */
1298 val
= CAS_BASE(RX_BLANK_INTR_TIME
, RX_BLANK_INTR_TIME_VAL
);
1299 val
|= CAS_BASE(RX_BLANK_INTR_PKT
, RX_BLANK_INTR_PKT_VAL
);
1300 writel(val
, cp
->regs
+ REG_RX_BLANK
);
1302 writel(0x0, cp
->regs
+ REG_RX_BLANK
);
1305 /* interrupt generation as a function of low water marks for
1306 * free desc and completion entries. these are used to trigger
1307 * housekeeping for rx descs. we don't use the free interrupt
1308 * as it's not very useful
1310 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1311 val
= CAS_BASE(RX_AE_THRESH_COMP
, RX_AE_COMP_VAL
);
1312 writel(val
, cp
->regs
+ REG_RX_AE_THRESH
);
1313 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1314 val
= CAS_BASE(RX_AE1_THRESH_FREE
, RX_AE_FREEN_VAL(1));
1315 writel(val
, cp
->regs
+ REG_PLUS_RX_AE1_THRESH
);
1318 /* Random early detect registers. useful for congestion avoidance.
1319 * this should be tunable.
1321 writel(0x0, cp
->regs
+ REG_RX_RED
);
1323 /* receive page sizes. default == 2K (0x800) */
1325 if (cp
->page_size
== 0x1000)
1327 else if (cp
->page_size
== 0x2000)
1329 else if (cp
->page_size
== 0x4000)
1332 /* round mtu + offset. constrain to page size. */
1333 size
= cp
->dev
->mtu
+ 64;
1334 if (size
> cp
->page_size
)
1335 size
= cp
->page_size
;
1339 else if (size
<= 0x800)
1341 else if (size
<= 0x1000)
1346 cp
->mtu_stride
= 1 << (i
+ 10);
1347 val
= CAS_BASE(RX_PAGE_SIZE
, val
);
1348 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE
, i
);
1349 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT
, cp
->page_size
>> (i
+ 10));
1350 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_OFF
, 0x1);
1351 writel(val
, cp
->regs
+ REG_RX_PAGE_SIZE
);
1353 /* enable the header parser if desired */
1354 if (CAS_HP_FIRMWARE
== cas_prog_null
)
1357 val
= CAS_BASE(HP_CFG_NUM_CPU
, CAS_NCPUS
> 63 ? 0 : CAS_NCPUS
);
1358 val
|= HP_CFG_PARSE_EN
| HP_CFG_SYN_INC_MASK
;
1359 val
|= CAS_BASE(HP_CFG_TCP_THRESH
, HP_TCP_THRESH_VAL
);
1360 writel(val
, cp
->regs
+ REG_HP_CFG
);
1363 static inline void cas_rxc_init(struct cas_rx_comp
*rxc
)
1365 memset(rxc
, 0, sizeof(*rxc
));
1366 rxc
->word4
= cpu_to_le64(RX_COMP4_ZERO
);
1369 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1370 * flipping is protected by the fact that the chip will not
1371 * hand back the same page index while it's being processed.
1373 static inline cas_page_t
*cas_page_spare(struct cas
*cp
, const int index
)
1375 cas_page_t
*page
= cp
->rx_pages
[1][index
];
1378 if (cas_buffer_count(page
) == 1)
1381 new = cas_page_dequeue(cp
);
1383 spin_lock(&cp
->rx_inuse_lock
);
1384 list_add(&page
->list
, &cp
->rx_inuse_list
);
1385 spin_unlock(&cp
->rx_inuse_lock
);
1390 /* this needs to be changed if we actually use the ENC RX DESC ring */
1391 static cas_page_t
*cas_page_swap(struct cas
*cp
, const int ring
,
1394 cas_page_t
**page0
= cp
->rx_pages
[0];
1395 cas_page_t
**page1
= cp
->rx_pages
[1];
1397 /* swap if buffer is in use */
1398 if (cas_buffer_count(page0
[index
]) > 1) {
1399 cas_page_t
*new = cas_page_spare(cp
, index
);
1401 page1
[index
] = page0
[index
];
1405 RX_USED_SET(page0
[index
], 0);
1406 return page0
[index
];
1409 static void cas_clean_rxds(struct cas
*cp
)
1411 /* only clean ring 0 as ring 1 is used for spare buffers */
1412 struct cas_rx_desc
*rxd
= cp
->init_rxds
[0];
1415 /* release all rx flows */
1416 for (i
= 0; i
< N_RX_FLOWS
; i
++) {
1417 struct sk_buff
*skb
;
1418 while ((skb
= __skb_dequeue(&cp
->rx_flows
[i
]))) {
1419 cas_skb_release(skb
);
1423 /* initialize descriptors */
1424 size
= RX_DESC_RINGN_SIZE(0);
1425 for (i
= 0; i
< size
; i
++) {
1426 cas_page_t
*page
= cas_page_swap(cp
, 0, i
);
1427 rxd
[i
].buffer
= cpu_to_le64(page
->dma_addr
);
1428 rxd
[i
].index
= cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, i
) |
1429 CAS_BASE(RX_INDEX_RING
, 0));
1432 cp
->rx_old
[0] = RX_DESC_RINGN_SIZE(0) - 4;
1434 cp
->cas_flags
&= ~CAS_FLAG_RXD_POST(0);
1437 static void cas_clean_rxcs(struct cas
*cp
)
1441 /* take ownership of rx comp descriptors */
1442 memset(cp
->rx_cur
, 0, sizeof(*cp
->rx_cur
)*N_RX_COMP_RINGS
);
1443 memset(cp
->rx_new
, 0, sizeof(*cp
->rx_new
)*N_RX_COMP_RINGS
);
1444 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
1445 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[i
];
1446 for (j
= 0; j
< RX_COMP_RINGN_SIZE(i
); j
++) {
1447 cas_rxc_init(rxc
+ j
);
1453 /* When we get a RX fifo overflow, the RX unit is probably hung
1454 * so we do the following.
1456 * If any part of the reset goes wrong, we return 1 and that causes the
1457 * whole chip to be reset.
1459 static int cas_rxmac_reset(struct cas
*cp
)
1461 struct net_device
*dev
= cp
->dev
;
1465 /* First, reset MAC RX. */
1466 writel(cp
->mac_rx_cfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1467 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1468 if (!(readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
))
1472 if (limit
== STOP_TRIES
) {
1473 printk(KERN_ERR
"%s: RX MAC will not disable, resetting whole "
1474 "chip.\n", dev
->name
);
1478 /* Second, disable RX DMA. */
1479 writel(0, cp
->regs
+ REG_RX_CFG
);
1480 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1481 if (!(readl(cp
->regs
+ REG_RX_CFG
) & RX_CFG_DMA_EN
))
1485 if (limit
== STOP_TRIES
) {
1486 printk(KERN_ERR
"%s: RX DMA will not disable, resetting whole "
1487 "chip.\n", dev
->name
);
1493 /* Execute RX reset command. */
1494 writel(SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
1495 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1496 if (!(readl(cp
->regs
+ REG_SW_RESET
) & SW_RESET_RX
))
1500 if (limit
== STOP_TRIES
) {
1501 printk(KERN_ERR
"%s: RX reset command will not execute, "
1502 "resetting whole chip.\n", dev
->name
);
1506 /* reset driver rx state */
1510 /* Now, reprogram the rest of RX unit. */
1511 cas_init_rx_dma(cp
);
1514 val
= readl(cp
->regs
+ REG_RX_CFG
);
1515 writel(val
| RX_CFG_DMA_EN
, cp
->regs
+ REG_RX_CFG
);
1516 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
1517 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
1518 writel(val
| MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1523 static int cas_rxmac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1526 u32 stat
= readl(cp
->regs
+ REG_MAC_RX_STATUS
);
1531 if (netif_msg_intr(cp
))
1532 printk(KERN_DEBUG
"%s: rxmac interrupt, stat: 0x%x\n",
1533 cp
->dev
->name
, stat
);
1535 /* these are all rollovers */
1536 spin_lock(&cp
->stat_lock
[0]);
1537 if (stat
& MAC_RX_ALIGN_ERR
)
1538 cp
->net_stats
[0].rx_frame_errors
+= 0x10000;
1540 if (stat
& MAC_RX_CRC_ERR
)
1541 cp
->net_stats
[0].rx_crc_errors
+= 0x10000;
1543 if (stat
& MAC_RX_LEN_ERR
)
1544 cp
->net_stats
[0].rx_length_errors
+= 0x10000;
1546 if (stat
& MAC_RX_OVERFLOW
) {
1547 cp
->net_stats
[0].rx_over_errors
++;
1548 cp
->net_stats
[0].rx_fifo_errors
++;
1551 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1554 spin_unlock(&cp
->stat_lock
[0]);
1558 static int cas_mac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1561 u32 stat
= readl(cp
->regs
+ REG_MAC_CTRL_STATUS
);
1566 if (netif_msg_intr(cp
))
1567 printk(KERN_DEBUG
"%s: mac interrupt, stat: 0x%x\n",
1568 cp
->dev
->name
, stat
);
1570 /* This interrupt is just for pause frame and pause
1571 * tracking. It is useful for diagnostics and debug
1572 * but probably by default we will mask these events.
1574 if (stat
& MAC_CTRL_PAUSE_STATE
)
1575 cp
->pause_entered
++;
1577 if (stat
& MAC_CTRL_PAUSE_RECEIVED
)
1578 cp
->pause_last_time_recvd
= (stat
>> 16);
1584 /* Must be invoked under cp->lock. */
1585 static inline int cas_mdio_link_not_up(struct cas
*cp
)
1589 switch (cp
->lstate
) {
1590 case link_force_ret
:
1591 if (netif_msg_link(cp
))
1592 printk(KERN_INFO
"%s: Autoneg failed again, keeping"
1593 " forced mode\n", cp
->dev
->name
);
1594 cas_phy_write(cp
, MII_BMCR
, cp
->link_fcntl
);
1595 cp
->timer_ticks
= 5;
1596 cp
->lstate
= link_force_ok
;
1597 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1601 val
= cas_phy_read(cp
, MII_BMCR
);
1603 /* Try forced modes. we try things in the following order:
1604 * 1000 full -> 100 full/half -> 10 half
1606 val
&= ~(BMCR_ANRESTART
| BMCR_ANENABLE
);
1607 val
|= BMCR_FULLDPLX
;
1608 val
|= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
1609 CAS_BMCR_SPEED1000
: BMCR_SPEED100
;
1610 cas_phy_write(cp
, MII_BMCR
, val
);
1611 cp
->timer_ticks
= 5;
1612 cp
->lstate
= link_force_try
;
1613 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1616 case link_force_try
:
1617 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1618 val
= cas_phy_read(cp
, MII_BMCR
);
1619 cp
->timer_ticks
= 5;
1620 if (val
& CAS_BMCR_SPEED1000
) { /* gigabit */
1621 val
&= ~CAS_BMCR_SPEED1000
;
1622 val
|= (BMCR_SPEED100
| BMCR_FULLDPLX
);
1623 cas_phy_write(cp
, MII_BMCR
, val
);
1627 if (val
& BMCR_SPEED100
) {
1628 if (val
& BMCR_FULLDPLX
) /* fd failed */
1629 val
&= ~BMCR_FULLDPLX
;
1630 else { /* 100Mbps failed */
1631 val
&= ~BMCR_SPEED100
;
1633 cas_phy_write(cp
, MII_BMCR
, val
);
1643 /* must be invoked with cp->lock held */
1644 static int cas_mii_link_check(struct cas
*cp
, const u16 bmsr
)
1648 if (bmsr
& BMSR_LSTATUS
) {
1649 /* Ok, here we got a link. If we had it due to a forced
1650 * fallback, and we were configured for autoneg, we
1651 * retry a short autoneg pass. If you know your hub is
1652 * broken, use ethtool ;)
1654 if ((cp
->lstate
== link_force_try
) &&
1655 (cp
->link_cntl
& BMCR_ANENABLE
)) {
1656 cp
->lstate
= link_force_ret
;
1657 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1658 cas_mif_poll(cp
, 0);
1659 cp
->link_fcntl
= cas_phy_read(cp
, MII_BMCR
);
1660 cp
->timer_ticks
= 5;
1661 if (cp
->opened
&& netif_msg_link(cp
))
1662 printk(KERN_INFO
"%s: Got link after fallback, retrying"
1663 " autoneg once...\n", cp
->dev
->name
);
1664 cas_phy_write(cp
, MII_BMCR
,
1665 cp
->link_fcntl
| BMCR_ANENABLE
|
1667 cas_mif_poll(cp
, 1);
1669 } else if (cp
->lstate
!= link_up
) {
1670 cp
->lstate
= link_up
;
1671 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1674 cas_set_link_modes(cp
);
1675 netif_carrier_on(cp
->dev
);
1681 /* link not up. if the link was previously up, we restart the
1685 if (cp
->lstate
== link_up
) {
1686 cp
->lstate
= link_down
;
1687 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
1689 netif_carrier_off(cp
->dev
);
1690 if (cp
->opened
&& netif_msg_link(cp
))
1691 printk(KERN_INFO
"%s: Link down\n",
1695 } else if (++cp
->timer_ticks
> 10)
1696 cas_mdio_link_not_up(cp
);
1701 static int cas_mif_interrupt(struct net_device
*dev
, struct cas
*cp
,
1704 u32 stat
= readl(cp
->regs
+ REG_MIF_STATUS
);
1707 /* check for a link change */
1708 if (CAS_VAL(MIF_STATUS_POLL_STATUS
, stat
) == 0)
1711 bmsr
= CAS_VAL(MIF_STATUS_POLL_DATA
, stat
);
1712 return cas_mii_link_check(cp
, bmsr
);
1715 static int cas_pci_interrupt(struct net_device
*dev
, struct cas
*cp
,
1718 u32 stat
= readl(cp
->regs
+ REG_PCI_ERR_STATUS
);
1723 printk(KERN_ERR
"%s: PCI error [%04x:%04x] ", dev
->name
, stat
,
1724 readl(cp
->regs
+ REG_BIM_DIAG
));
1726 /* cassini+ has this reserved */
1727 if ((stat
& PCI_ERR_BADACK
) &&
1728 ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0))
1729 printk("<No ACK64# during ABS64 cycle> ");
1731 if (stat
& PCI_ERR_DTRTO
)
1732 printk("<Delayed transaction timeout> ");
1733 if (stat
& PCI_ERR_OTHER
)
1735 if (stat
& PCI_ERR_BIM_DMA_WRITE
)
1736 printk("<BIM DMA 0 write req> ");
1737 if (stat
& PCI_ERR_BIM_DMA_READ
)
1738 printk("<BIM DMA 0 read req> ");
1741 if (stat
& PCI_ERR_OTHER
) {
1744 /* Interrogate PCI config space for the
1747 pci_read_config_word(cp
->pdev
, PCI_STATUS
, &cfg
);
1748 printk(KERN_ERR
"%s: Read PCI cfg space status [%04x]\n",
1750 if (cfg
& PCI_STATUS_PARITY
)
1751 printk(KERN_ERR
"%s: PCI parity error detected.\n",
1753 if (cfg
& PCI_STATUS_SIG_TARGET_ABORT
)
1754 printk(KERN_ERR
"%s: PCI target abort.\n",
1756 if (cfg
& PCI_STATUS_REC_TARGET_ABORT
)
1757 printk(KERN_ERR
"%s: PCI master acks target abort.\n",
1759 if (cfg
& PCI_STATUS_REC_MASTER_ABORT
)
1760 printk(KERN_ERR
"%s: PCI master abort.\n", dev
->name
);
1761 if (cfg
& PCI_STATUS_SIG_SYSTEM_ERROR
)
1762 printk(KERN_ERR
"%s: PCI system error SERR#.\n",
1764 if (cfg
& PCI_STATUS_DETECTED_PARITY
)
1765 printk(KERN_ERR
"%s: PCI parity error.\n",
1768 /* Write the error bits back to clear them. */
1769 cfg
&= (PCI_STATUS_PARITY
|
1770 PCI_STATUS_SIG_TARGET_ABORT
|
1771 PCI_STATUS_REC_TARGET_ABORT
|
1772 PCI_STATUS_REC_MASTER_ABORT
|
1773 PCI_STATUS_SIG_SYSTEM_ERROR
|
1774 PCI_STATUS_DETECTED_PARITY
);
1775 pci_write_config_word(cp
->pdev
, PCI_STATUS
, cfg
);
1778 /* For all PCI errors, we should reset the chip. */
1782 /* All non-normal interrupt conditions get serviced here.
1783 * Returns non-zero if we should just exit the interrupt
1784 * handler right now (ie. if we reset the card which invalidates
1785 * all of the other original irq status bits).
1787 static int cas_abnormal_irq(struct net_device
*dev
, struct cas
*cp
,
1790 if (status
& INTR_RX_TAG_ERROR
) {
1791 /* corrupt RX tag framing */
1792 if (netif_msg_rx_err(cp
))
1793 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
1795 spin_lock(&cp
->stat_lock
[0]);
1796 cp
->net_stats
[0].rx_errors
++;
1797 spin_unlock(&cp
->stat_lock
[0]);
1801 if (status
& INTR_RX_LEN_MISMATCH
) {
1802 /* length mismatch. */
1803 if (netif_msg_rx_err(cp
))
1804 printk(KERN_DEBUG
"%s: length mismatch for rx frame\n",
1806 spin_lock(&cp
->stat_lock
[0]);
1807 cp
->net_stats
[0].rx_errors
++;
1808 spin_unlock(&cp
->stat_lock
[0]);
1812 if (status
& INTR_PCS_STATUS
) {
1813 if (cas_pcs_interrupt(dev
, cp
, status
))
1817 if (status
& INTR_TX_MAC_STATUS
) {
1818 if (cas_txmac_interrupt(dev
, cp
, status
))
1822 if (status
& INTR_RX_MAC_STATUS
) {
1823 if (cas_rxmac_interrupt(dev
, cp
, status
))
1827 if (status
& INTR_MAC_CTRL_STATUS
) {
1828 if (cas_mac_interrupt(dev
, cp
, status
))
1832 if (status
& INTR_MIF_STATUS
) {
1833 if (cas_mif_interrupt(dev
, cp
, status
))
1837 if (status
& INTR_PCI_ERROR_STATUS
) {
1838 if (cas_pci_interrupt(dev
, cp
, status
))
1845 atomic_inc(&cp
->reset_task_pending
);
1846 atomic_inc(&cp
->reset_task_pending_all
);
1847 printk(KERN_ERR
"%s:reset called in cas_abnormal_irq [0x%x]\n",
1849 schedule_work(&cp
->reset_task
);
1851 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
1852 printk(KERN_ERR
"reset called in cas_abnormal_irq\n");
1853 schedule_work(&cp
->reset_task
);
1858 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1859 * determining whether to do a netif_stop/wakeup
1861 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1862 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1863 static inline int cas_calc_tabort(struct cas
*cp
, const unsigned long addr
,
1866 unsigned long off
= addr
+ len
;
1868 if (CAS_TABORT(cp
) == 1)
1870 if ((CAS_ROUND_PAGE(off
) - off
) > TX_TARGET_ABORT_LEN
)
1872 return TX_TARGET_ABORT_LEN
;
1875 static inline void cas_tx_ringN(struct cas
*cp
, int ring
, int limit
)
1877 struct cas_tx_desc
*txds
;
1878 struct sk_buff
**skbs
;
1879 struct net_device
*dev
= cp
->dev
;
1882 spin_lock(&cp
->tx_lock
[ring
]);
1883 txds
= cp
->init_txds
[ring
];
1884 skbs
= cp
->tx_skbs
[ring
];
1885 entry
= cp
->tx_old
[ring
];
1887 count
= TX_BUFF_COUNT(ring
, entry
, limit
);
1888 while (entry
!= limit
) {
1889 struct sk_buff
*skb
= skbs
[entry
];
1895 /* this should never occur */
1896 entry
= TX_DESC_NEXT(ring
, entry
);
1900 /* however, we might get only a partial skb release. */
1901 count
-= skb_shinfo(skb
)->nr_frags
+
1902 + cp
->tx_tiny_use
[ring
][entry
].nbufs
+ 1;
1906 if (netif_msg_tx_done(cp
))
1907 printk(KERN_DEBUG
"%s: tx[%d] done, slot %d\n",
1908 cp
->dev
->name
, ring
, entry
);
1911 cp
->tx_tiny_use
[ring
][entry
].nbufs
= 0;
1913 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1914 struct cas_tx_desc
*txd
= txds
+ entry
;
1916 daddr
= le64_to_cpu(txd
->buffer
);
1917 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
1918 le64_to_cpu(txd
->control
));
1919 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
1921 entry
= TX_DESC_NEXT(ring
, entry
);
1923 /* tiny buffer may follow */
1924 if (cp
->tx_tiny_use
[ring
][entry
].used
) {
1925 cp
->tx_tiny_use
[ring
][entry
].used
= 0;
1926 entry
= TX_DESC_NEXT(ring
, entry
);
1930 spin_lock(&cp
->stat_lock
[ring
]);
1931 cp
->net_stats
[ring
].tx_packets
++;
1932 cp
->net_stats
[ring
].tx_bytes
+= skb
->len
;
1933 spin_unlock(&cp
->stat_lock
[ring
]);
1934 dev_kfree_skb_irq(skb
);
1936 cp
->tx_old
[ring
] = entry
;
1938 /* this is wrong for multiple tx rings. the net device needs
1939 * multiple queues for this to do the right thing. we wait
1940 * for 2*packets to be available when using tiny buffers
1942 if (netif_queue_stopped(dev
) &&
1943 (TX_BUFFS_AVAIL(cp
, ring
) > CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1)))
1944 netif_wake_queue(dev
);
1945 spin_unlock(&cp
->tx_lock
[ring
]);
1948 static void cas_tx(struct net_device
*dev
, struct cas
*cp
,
1952 #ifdef USE_TX_COMPWB
1953 u64 compwb
= le64_to_cpu(cp
->init_block
->tx_compwb
);
1955 if (netif_msg_intr(cp
))
1956 printk(KERN_DEBUG
"%s: tx interrupt, status: 0x%x, %llx\n",
1957 cp
->dev
->name
, status
, (unsigned long long)compwb
);
1958 /* process all the rings */
1959 for (ring
= 0; ring
< N_TX_RINGS
; ring
++) {
1960 #ifdef USE_TX_COMPWB
1961 /* use the completion writeback registers */
1962 limit
= (CAS_VAL(TX_COMPWB_MSB
, compwb
) << 8) |
1963 CAS_VAL(TX_COMPWB_LSB
, compwb
);
1964 compwb
= TX_COMPWB_NEXT(compwb
);
1966 limit
= readl(cp
->regs
+ REG_TX_COMPN(ring
));
1968 if (cp
->tx_old
[ring
] != limit
)
1969 cas_tx_ringN(cp
, ring
, limit
);
1974 static int cas_rx_process_pkt(struct cas
*cp
, struct cas_rx_comp
*rxc
,
1975 int entry
, const u64
*words
,
1976 struct sk_buff
**skbref
)
1978 int dlen
, hlen
, len
, i
, alloclen
;
1979 int off
, swivel
= RX_SWIVEL_OFF_VAL
;
1980 struct cas_page
*page
;
1981 struct sk_buff
*skb
;
1982 void *addr
, *crcaddr
;
1985 hlen
= CAS_VAL(RX_COMP2_HDR_SIZE
, words
[1]);
1986 dlen
= CAS_VAL(RX_COMP1_DATA_SIZE
, words
[0]);
1989 if (RX_COPY_ALWAYS
|| (words
[2] & RX_COMP3_SMALL_PKT
))
1992 alloclen
= max(hlen
, RX_COPY_MIN
);
1994 skb
= dev_alloc_skb(alloclen
+ swivel
+ cp
->crc_size
);
2000 skb_reserve(skb
, swivel
);
2003 addr
= crcaddr
= NULL
;
2004 if (hlen
) { /* always copy header pages */
2005 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
2006 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2007 off
= CAS_VAL(RX_COMP2_HDR_OFF
, words
[1]) * 0x100 +
2011 if (!dlen
) /* attach FCS */
2013 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2014 PCI_DMA_FROMDEVICE
);
2015 addr
= cas_page_map(page
->buffer
);
2016 memcpy(p
, addr
+ off
, i
);
2017 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2018 PCI_DMA_FROMDEVICE
);
2019 cas_page_unmap(addr
);
2020 RX_USED_ADD(page
, 0x100);
2026 if (alloclen
< (hlen
+ dlen
)) {
2027 skb_frag_t
*frag
= skb_shinfo(skb
)->frags
;
2029 /* normal or jumbo packets. we use frags */
2030 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2031 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2032 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2034 hlen
= min(cp
->page_size
- off
, dlen
);
2036 if (netif_msg_rx_err(cp
)) {
2037 printk(KERN_DEBUG
"%s: rx page overflow: "
2038 "%d\n", cp
->dev
->name
, hlen
);
2040 dev_kfree_skb_irq(skb
);
2044 if (i
== dlen
) /* attach FCS */
2046 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2047 PCI_DMA_FROMDEVICE
);
2049 /* make sure we always copy a header */
2051 if (p
== (char *) skb
->data
) { /* not split */
2052 addr
= cas_page_map(page
->buffer
);
2053 memcpy(p
, addr
+ off
, RX_COPY_MIN
);
2054 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2055 PCI_DMA_FROMDEVICE
);
2056 cas_page_unmap(addr
);
2058 swivel
= RX_COPY_MIN
;
2059 RX_USED_ADD(page
, cp
->mtu_stride
);
2061 RX_USED_ADD(page
, hlen
);
2063 skb_put(skb
, alloclen
);
2065 skb_shinfo(skb
)->nr_frags
++;
2066 skb
->data_len
+= hlen
- swivel
;
2067 skb
->len
+= hlen
- swivel
;
2069 get_page(page
->buffer
);
2070 cas_buffer_inc(page
);
2071 frag
->page
= page
->buffer
;
2072 frag
->page_offset
= off
;
2073 frag
->size
= hlen
- swivel
;
2075 /* any more data? */
2076 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2080 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2081 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2082 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2083 hlen
+ cp
->crc_size
,
2084 PCI_DMA_FROMDEVICE
);
2085 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2086 hlen
+ cp
->crc_size
,
2087 PCI_DMA_FROMDEVICE
);
2089 skb_shinfo(skb
)->nr_frags
++;
2090 skb
->data_len
+= hlen
;
2094 get_page(page
->buffer
);
2095 cas_buffer_inc(page
);
2096 frag
->page
= page
->buffer
;
2097 frag
->page_offset
= 0;
2099 RX_USED_ADD(page
, hlen
+ cp
->crc_size
);
2103 addr
= cas_page_map(page
->buffer
);
2104 crcaddr
= addr
+ off
+ hlen
;
2108 /* copying packet */
2112 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2113 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2114 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2115 hlen
= min(cp
->page_size
- off
, dlen
);
2117 if (netif_msg_rx_err(cp
)) {
2118 printk(KERN_DEBUG
"%s: rx page overflow: "
2119 "%d\n", cp
->dev
->name
, hlen
);
2121 dev_kfree_skb_irq(skb
);
2125 if (i
== dlen
) /* attach FCS */
2127 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2128 PCI_DMA_FROMDEVICE
);
2129 addr
= cas_page_map(page
->buffer
);
2130 memcpy(p
, addr
+ off
, i
);
2131 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2132 PCI_DMA_FROMDEVICE
);
2133 cas_page_unmap(addr
);
2134 if (p
== (char *) skb
->data
) /* not split */
2135 RX_USED_ADD(page
, cp
->mtu_stride
);
2137 RX_USED_ADD(page
, i
);
2139 /* any more data? */
2140 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2142 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2143 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2144 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2145 dlen
+ cp
->crc_size
,
2146 PCI_DMA_FROMDEVICE
);
2147 addr
= cas_page_map(page
->buffer
);
2148 memcpy(p
, addr
, dlen
+ cp
->crc_size
);
2149 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2150 dlen
+ cp
->crc_size
,
2151 PCI_DMA_FROMDEVICE
);
2152 cas_page_unmap(addr
);
2153 RX_USED_ADD(page
, dlen
+ cp
->crc_size
);
2158 crcaddr
= skb
->data
+ alloclen
;
2160 skb_put(skb
, alloclen
);
2163 i
= CAS_VAL(RX_COMP4_TCP_CSUM
, words
[3]);
2165 /* checksum includes FCS. strip it out. */
2166 i
= csum_fold(csum_partial(crcaddr
, cp
->crc_size
, i
));
2168 cas_page_unmap(addr
);
2170 skb
->csum
= ntohs(i
^ 0xffff);
2171 skb
->ip_summed
= CHECKSUM_HW
;
2172 skb
->protocol
= eth_type_trans(skb
, cp
->dev
);
2177 /* we can handle up to 64 rx flows at a time. we do the same thing
2178 * as nonreassm except that we batch up the buffers.
2179 * NOTE: we currently just treat each flow as a bunch of packets that
2180 * we pass up. a better way would be to coalesce the packets
2181 * into a jumbo packet. to do that, we need to do the following:
2182 * 1) the first packet will have a clean split between header and
2184 * 2) each time the next flow packet comes in, extend the
2185 * data length and merge the checksums.
2186 * 3) on flow release, fix up the header.
2187 * 4) make sure the higher layer doesn't care.
2188 * because packets get coalesced, we shouldn't run into fragment count
2191 static inline void cas_rx_flow_pkt(struct cas
*cp
, const u64
*words
,
2192 struct sk_buff
*skb
)
2194 int flowid
= CAS_VAL(RX_COMP3_FLOWID
, words
[2]) & (N_RX_FLOWS
- 1);
2195 struct sk_buff_head
*flow
= &cp
->rx_flows
[flowid
];
2197 /* this is protected at a higher layer, so no need to
2198 * do any additional locking here. stick the buffer
2201 __skb_insert(skb
, flow
->prev
, (struct sk_buff
*) flow
, flow
);
2202 if (words
[0] & RX_COMP1_RELEASE_FLOW
) {
2203 while ((skb
= __skb_dequeue(flow
))) {
2204 cas_skb_release(skb
);
2209 /* put rx descriptor back on ring. if a buffer is in use by a higher
2210 * layer, this will need to put in a replacement.
2212 static void cas_post_page(struct cas
*cp
, const int ring
, const int index
)
2217 entry
= cp
->rx_old
[ring
];
2219 new = cas_page_swap(cp
, ring
, index
);
2220 cp
->init_rxds
[ring
][entry
].buffer
= cpu_to_le64(new->dma_addr
);
2221 cp
->init_rxds
[ring
][entry
].index
=
2222 cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, index
) |
2223 CAS_BASE(RX_INDEX_RING
, ring
));
2225 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2226 cp
->rx_old
[ring
] = entry
;
2232 writel(entry
, cp
->regs
+ REG_RX_KICK
);
2233 else if ((N_RX_DESC_RINGS
> 1) &&
2234 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2235 writel(entry
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2239 /* only when things are bad */
2240 static int cas_post_rxds_ringN(struct cas
*cp
, int ring
, int num
)
2242 unsigned int entry
, last
, count
, released
;
2244 cas_page_t
**page
= cp
->rx_pages
[ring
];
2246 entry
= cp
->rx_old
[ring
];
2248 if (netif_msg_intr(cp
))
2249 printk(KERN_DEBUG
"%s: rxd[%d] interrupt, done: %d\n",
2250 cp
->dev
->name
, ring
, entry
);
2253 count
= entry
& 0x3;
2254 last
= RX_DESC_ENTRY(ring
, num
? entry
+ num
- 4: entry
- 4);
2256 while (entry
!= last
) {
2257 /* make a new buffer if it's still in use */
2258 if (cas_buffer_count(page
[entry
]) > 1) {
2259 cas_page_t
*new = cas_page_dequeue(cp
);
2261 /* let the timer know that we need to
2264 cp
->cas_flags
|= CAS_FLAG_RXD_POST(ring
);
2265 if (!timer_pending(&cp
->link_timer
))
2266 mod_timer(&cp
->link_timer
, jiffies
+
2267 CAS_LINK_FAST_TIMEOUT
);
2268 cp
->rx_old
[ring
] = entry
;
2269 cp
->rx_last
[ring
] = num
? num
- released
: 0;
2272 spin_lock(&cp
->rx_inuse_lock
);
2273 list_add(&page
[entry
]->list
, &cp
->rx_inuse_list
);
2274 spin_unlock(&cp
->rx_inuse_lock
);
2275 cp
->init_rxds
[ring
][entry
].buffer
=
2276 cpu_to_le64(new->dma_addr
);
2286 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2288 cp
->rx_old
[ring
] = entry
;
2294 writel(cluster
, cp
->regs
+ REG_RX_KICK
);
2295 else if ((N_RX_DESC_RINGS
> 1) &&
2296 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2297 writel(cluster
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2302 /* process a completion ring. packets are set up in three basic ways:
2303 * small packets: should be copied header + data in single buffer.
2304 * large packets: header and data in a single buffer.
2305 * split packets: header in a separate buffer from data.
2306 * data may be in multiple pages. data may be > 256
2307 * bytes but in a single page.
2309 * NOTE: RX page posting is done in this routine as well. while there's
2310 * the capability of using multiple RX completion rings, it isn't
2311 * really worthwhile due to the fact that the page posting will
2312 * force serialization on the single descriptor ring.
2314 static int cas_rx_ringN(struct cas
*cp
, int ring
, int budget
)
2316 struct cas_rx_comp
*rxcs
= cp
->init_rxcs
[ring
];
2320 if (netif_msg_intr(cp
))
2321 printk(KERN_DEBUG
"%s: rx[%d] interrupt, done: %d/%d\n",
2322 cp
->dev
->name
, ring
,
2323 readl(cp
->regs
+ REG_RX_COMP_HEAD
),
2326 entry
= cp
->rx_new
[ring
];
2329 struct cas_rx_comp
*rxc
= rxcs
+ entry
;
2330 struct sk_buff
*skb
;
2335 words
[0] = le64_to_cpu(rxc
->word1
);
2336 words
[1] = le64_to_cpu(rxc
->word2
);
2337 words
[2] = le64_to_cpu(rxc
->word3
);
2338 words
[3] = le64_to_cpu(rxc
->word4
);
2340 /* don't touch if still owned by hw */
2341 type
= CAS_VAL(RX_COMP1_TYPE
, words
[0]);
2345 /* hw hasn't cleared the zero bit yet */
2346 if (words
[3] & RX_COMP4_ZERO
) {
2350 /* get info on the packet */
2351 if (words
[3] & (RX_COMP4_LEN_MISMATCH
| RX_COMP4_BAD
)) {
2352 spin_lock(&cp
->stat_lock
[ring
]);
2353 cp
->net_stats
[ring
].rx_errors
++;
2354 if (words
[3] & RX_COMP4_LEN_MISMATCH
)
2355 cp
->net_stats
[ring
].rx_length_errors
++;
2356 if (words
[3] & RX_COMP4_BAD
)
2357 cp
->net_stats
[ring
].rx_crc_errors
++;
2358 spin_unlock(&cp
->stat_lock
[ring
]);
2360 /* We'll just return it to Cassini. */
2362 spin_lock(&cp
->stat_lock
[ring
]);
2363 ++cp
->net_stats
[ring
].rx_dropped
;
2364 spin_unlock(&cp
->stat_lock
[ring
]);
2368 len
= cas_rx_process_pkt(cp
, rxc
, entry
, words
, &skb
);
2374 /* see if it's a flow re-assembly or not. the driver
2375 * itself handles release back up.
2377 if (RX_DONT_BATCH
|| (type
== 0x2)) {
2378 /* non-reassm: these always get released */
2379 cas_skb_release(skb
);
2381 cas_rx_flow_pkt(cp
, words
, skb
);
2384 spin_lock(&cp
->stat_lock
[ring
]);
2385 cp
->net_stats
[ring
].rx_packets
++;
2386 cp
->net_stats
[ring
].rx_bytes
+= len
;
2387 spin_unlock(&cp
->stat_lock
[ring
]);
2388 cp
->dev
->last_rx
= jiffies
;
2393 /* should it be released? */
2394 if (words
[0] & RX_COMP1_RELEASE_HDR
) {
2395 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
2396 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2397 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2398 cas_post_page(cp
, dring
, i
);
2401 if (words
[0] & RX_COMP1_RELEASE_DATA
) {
2402 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2403 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2404 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2405 cas_post_page(cp
, dring
, i
);
2408 if (words
[0] & RX_COMP1_RELEASE_NEXT
) {
2409 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2410 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2411 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2412 cas_post_page(cp
, dring
, i
);
2415 /* skip to the next entry */
2416 entry
= RX_COMP_ENTRY(ring
, entry
+ 1 +
2417 CAS_VAL(RX_COMP1_SKIP
, words
[0]));
2419 if (budget
&& (npackets
>= budget
))
2423 cp
->rx_new
[ring
] = entry
;
2426 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n",
2432 /* put completion entries back on the ring */
2433 static void cas_post_rxcs_ringN(struct net_device
*dev
,
2434 struct cas
*cp
, int ring
)
2436 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[ring
];
2439 last
= cp
->rx_cur
[ring
];
2440 entry
= cp
->rx_new
[ring
];
2441 if (netif_msg_intr(cp
))
2442 printk(KERN_DEBUG
"%s: rxc[%d] interrupt, done: %d/%d\n",
2443 dev
->name
, ring
, readl(cp
->regs
+ REG_RX_COMP_HEAD
),
2446 /* zero and re-mark descriptors */
2447 while (last
!= entry
) {
2448 cas_rxc_init(rxc
+ last
);
2449 last
= RX_COMP_ENTRY(ring
, last
+ 1);
2451 cp
->rx_cur
[ring
] = last
;
2454 writel(last
, cp
->regs
+ REG_RX_COMP_TAIL
);
2455 else if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)
2456 writel(last
, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(ring
));
2461 /* cassini can use all four PCI interrupts for the completion ring.
2462 * rings 3 and 4 are identical
2464 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2465 static inline void cas_handle_irqN(struct net_device
*dev
,
2466 struct cas
*cp
, const u32 status
,
2469 if (status
& (INTR_RX_COMP_FULL_ALT
| INTR_RX_COMP_AF_ALT
))
2470 cas_post_rxcs_ringN(dev
, cp
, ring
);
2473 static irqreturn_t
cas_interruptN(int irq
, void *dev_id
, struct pt_regs
*regs
)
2475 struct net_device
*dev
= dev_id
;
2476 struct cas
*cp
= netdev_priv(dev
);
2477 unsigned long flags
;
2479 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(ring
));
2481 /* check for shared irq */
2485 ring
= (irq
== cp
->pci_irq_INTC
) ? 2 : 3;
2486 spin_lock_irqsave(&cp
->lock
, flags
);
2487 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2490 netif_rx_schedule(dev
);
2492 cas_rx_ringN(cp
, ring
, 0);
2494 status
&= ~INTR_RX_DONE_ALT
;
2498 cas_handle_irqN(dev
, cp
, status
, ring
);
2499 spin_unlock_irqrestore(&cp
->lock
, flags
);
2505 /* everything but rx packets */
2506 static inline void cas_handle_irq1(struct cas
*cp
, const u32 status
)
2508 if (status
& INTR_RX_BUF_UNAVAIL_1
) {
2509 /* Frame arrived, no free RX buffers available.
2510 * NOTE: we can get this on a link transition. */
2511 cas_post_rxds_ringN(cp
, 1, 0);
2512 spin_lock(&cp
->stat_lock
[1]);
2513 cp
->net_stats
[1].rx_dropped
++;
2514 spin_unlock(&cp
->stat_lock
[1]);
2517 if (status
& INTR_RX_BUF_AE_1
)
2518 cas_post_rxds_ringN(cp
, 1, RX_DESC_RINGN_SIZE(1) -
2519 RX_AE_FREEN_VAL(1));
2521 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2522 cas_post_rxcs_ringN(cp
, 1);
2525 /* ring 2 handles a few more events than 3 and 4 */
2526 static irqreturn_t
cas_interrupt1(int irq
, void *dev_id
, struct pt_regs
*regs
)
2528 struct net_device
*dev
= dev_id
;
2529 struct cas
*cp
= netdev_priv(dev
);
2530 unsigned long flags
;
2531 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2533 /* check for shared interrupt */
2537 spin_lock_irqsave(&cp
->lock
, flags
);
2538 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2541 netif_rx_schedule(dev
);
2543 cas_rx_ringN(cp
, 1, 0);
2545 status
&= ~INTR_RX_DONE_ALT
;
2548 cas_handle_irq1(cp
, status
);
2549 spin_unlock_irqrestore(&cp
->lock
, flags
);
2554 static inline void cas_handle_irq(struct net_device
*dev
,
2555 struct cas
*cp
, const u32 status
)
2557 /* housekeeping interrupts */
2558 if (status
& INTR_ERROR_MASK
)
2559 cas_abnormal_irq(dev
, cp
, status
);
2561 if (status
& INTR_RX_BUF_UNAVAIL
) {
2562 /* Frame arrived, no free RX buffers available.
2563 * NOTE: we can get this on a link transition.
2565 cas_post_rxds_ringN(cp
, 0, 0);
2566 spin_lock(&cp
->stat_lock
[0]);
2567 cp
->net_stats
[0].rx_dropped
++;
2568 spin_unlock(&cp
->stat_lock
[0]);
2569 } else if (status
& INTR_RX_BUF_AE
) {
2570 cas_post_rxds_ringN(cp
, 0, RX_DESC_RINGN_SIZE(0) -
2571 RX_AE_FREEN_VAL(0));
2574 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2575 cas_post_rxcs_ringN(dev
, cp
, 0);
2578 static irqreturn_t
cas_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
2580 struct net_device
*dev
= dev_id
;
2581 struct cas
*cp
= netdev_priv(dev
);
2582 unsigned long flags
;
2583 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2588 spin_lock_irqsave(&cp
->lock
, flags
);
2589 if (status
& (INTR_TX_ALL
| INTR_TX_INTME
)) {
2590 cas_tx(dev
, cp
, status
);
2591 status
&= ~(INTR_TX_ALL
| INTR_TX_INTME
);
2594 if (status
& INTR_RX_DONE
) {
2597 netif_rx_schedule(dev
);
2599 cas_rx_ringN(cp
, 0, 0);
2601 status
&= ~INTR_RX_DONE
;
2605 cas_handle_irq(dev
, cp
, status
);
2606 spin_unlock_irqrestore(&cp
->lock
, flags
);
2612 static int cas_poll(struct net_device
*dev
, int *budget
)
2614 struct cas
*cp
= netdev_priv(dev
);
2615 int i
, enable_intr
, todo
, credits
;
2616 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2617 unsigned long flags
;
2619 spin_lock_irqsave(&cp
->lock
, flags
);
2620 cas_tx(dev
, cp
, status
);
2621 spin_unlock_irqrestore(&cp
->lock
, flags
);
2623 /* NAPI rx packets. we spread the credits across all of the
2626 todo
= min(*budget
, dev
->quota
);
2628 /* to make sure we're fair with the work we loop through each
2629 * ring N_RX_COMP_RING times with a request of
2630 * todo / N_RX_COMP_RINGS
2634 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
2636 for (j
= 0; j
< N_RX_COMP_RINGS
; j
++) {
2637 credits
+= cas_rx_ringN(cp
, j
, todo
/ N_RX_COMP_RINGS
);
2638 if (credits
>= todo
) {
2647 dev
->quota
-= credits
;
2649 /* final rx completion */
2650 spin_lock_irqsave(&cp
->lock
, flags
);
2652 cas_handle_irq(dev
, cp
, status
);
2655 if (N_RX_COMP_RINGS
> 1) {
2656 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2658 cas_handle_irq1(dev
, cp
, status
);
2663 if (N_RX_COMP_RINGS
> 2) {
2664 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(2));
2666 cas_handle_irqN(dev
, cp
, status
, 2);
2671 if (N_RX_COMP_RINGS
> 3) {
2672 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(3));
2674 cas_handle_irqN(dev
, cp
, status
, 3);
2677 spin_unlock_irqrestore(&cp
->lock
, flags
);
2679 netif_rx_complete(dev
);
2680 cas_unmask_intr(cp
);
2687 #ifdef CONFIG_NET_POLL_CONTROLLER
2688 static void cas_netpoll(struct net_device
*dev
)
2690 struct cas
*cp
= netdev_priv(dev
);
2692 cas_disable_irq(cp
, 0);
2693 cas_interrupt(cp
->pdev
->irq
, dev
, NULL
);
2694 cas_enable_irq(cp
, 0);
2697 if (N_RX_COMP_RINGS
> 1) {
2698 /* cas_interrupt1(); */
2702 if (N_RX_COMP_RINGS
> 2) {
2703 /* cas_interruptN(); */
2707 if (N_RX_COMP_RINGS
> 3) {
2708 /* cas_interruptN(); */
2714 static void cas_tx_timeout(struct net_device
*dev
)
2716 struct cas
*cp
= netdev_priv(dev
);
2718 printk(KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
2719 if (!cp
->hw_running
) {
2720 printk("%s: hrm.. hw not running!\n", dev
->name
);
2724 printk(KERN_ERR
"%s: MIF_STATE[%08x]\n",
2725 dev
->name
, readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
2727 printk(KERN_ERR
"%s: MAC_STATE[%08x]\n",
2728 dev
->name
, readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
2730 printk(KERN_ERR
"%s: TX_STATE[%08x:%08x:%08x] "
2731 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2733 readl(cp
->regs
+ REG_TX_CFG
),
2734 readl(cp
->regs
+ REG_MAC_TX_STATUS
),
2735 readl(cp
->regs
+ REG_MAC_TX_CFG
),
2736 readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
),
2737 readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
),
2738 readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
),
2739 readl(cp
->regs
+ REG_TX_SM_1
),
2740 readl(cp
->regs
+ REG_TX_SM_2
));
2742 printk(KERN_ERR
"%s: RX_STATE[%08x:%08x:%08x]\n",
2744 readl(cp
->regs
+ REG_RX_CFG
),
2745 readl(cp
->regs
+ REG_MAC_RX_STATUS
),
2746 readl(cp
->regs
+ REG_MAC_RX_CFG
));
2748 printk(KERN_ERR
"%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2750 readl(cp
->regs
+ REG_HP_STATE_MACHINE
),
2751 readl(cp
->regs
+ REG_HP_STATUS0
),
2752 readl(cp
->regs
+ REG_HP_STATUS1
),
2753 readl(cp
->regs
+ REG_HP_STATUS2
));
2756 atomic_inc(&cp
->reset_task_pending
);
2757 atomic_inc(&cp
->reset_task_pending_all
);
2758 schedule_work(&cp
->reset_task
);
2760 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
2761 schedule_work(&cp
->reset_task
);
2765 static inline int cas_intme(int ring
, int entry
)
2767 /* Algorithm: IRQ every 1/2 of descriptors. */
2768 if (!(entry
& ((TX_DESC_RINGN_SIZE(ring
) >> 1) - 1)))
2774 static void cas_write_txd(struct cas
*cp
, int ring
, int entry
,
2775 dma_addr_t mapping
, int len
, u64 ctrl
, int last
)
2777 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
] + entry
;
2779 ctrl
|= CAS_BASE(TX_DESC_BUFLEN
, len
);
2780 if (cas_intme(ring
, entry
))
2781 ctrl
|= TX_DESC_INTME
;
2783 ctrl
|= TX_DESC_EOF
;
2784 txd
->control
= cpu_to_le64(ctrl
);
2785 txd
->buffer
= cpu_to_le64(mapping
);
2788 static inline void *tx_tiny_buf(struct cas
*cp
, const int ring
,
2791 return cp
->tx_tiny_bufs
[ring
] + TX_TINY_BUF_LEN
*entry
;
2794 static inline dma_addr_t
tx_tiny_map(struct cas
*cp
, const int ring
,
2795 const int entry
, const int tentry
)
2797 cp
->tx_tiny_use
[ring
][tentry
].nbufs
++;
2798 cp
->tx_tiny_use
[ring
][entry
].used
= 1;
2799 return cp
->tx_tiny_dvma
[ring
] + TX_TINY_BUF_LEN
*entry
;
2802 static inline int cas_xmit_tx_ringN(struct cas
*cp
, int ring
,
2803 struct sk_buff
*skb
)
2805 struct net_device
*dev
= cp
->dev
;
2806 int entry
, nr_frags
, frag
, tabort
, tentry
;
2808 unsigned long flags
;
2812 spin_lock_irqsave(&cp
->tx_lock
[ring
], flags
);
2814 /* This is a hard error, log it. */
2815 if (TX_BUFFS_AVAIL(cp
, ring
) <=
2816 CAS_TABORT(cp
)*(skb_shinfo(skb
)->nr_frags
+ 1)) {
2817 netif_stop_queue(dev
);
2818 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2819 printk(KERN_ERR PFX
"%s: BUG! Tx Ring full when "
2820 "queue awake!\n", dev
->name
);
2825 if (skb
->ip_summed
== CHECKSUM_HW
) {
2826 u64 csum_start_off
, csum_stuff_off
;
2828 csum_start_off
= (u64
) (skb
->h
.raw
- skb
->data
);
2829 csum_stuff_off
= (u64
) ((skb
->h
.raw
+ skb
->csum
) - skb
->data
);
2831 ctrl
= TX_DESC_CSUM_EN
|
2832 CAS_BASE(TX_DESC_CSUM_START
, csum_start_off
) |
2833 CAS_BASE(TX_DESC_CSUM_STUFF
, csum_stuff_off
);
2836 entry
= cp
->tx_new
[ring
];
2837 cp
->tx_skbs
[ring
][entry
] = skb
;
2839 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2840 len
= skb_headlen(skb
);
2841 mapping
= pci_map_page(cp
->pdev
, virt_to_page(skb
->data
),
2842 offset_in_page(skb
->data
), len
,
2846 tabort
= cas_calc_tabort(cp
, (unsigned long) skb
->data
, len
);
2847 if (unlikely(tabort
)) {
2848 /* NOTE: len is always > tabort */
2849 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2850 ctrl
| TX_DESC_SOF
, 0);
2851 entry
= TX_DESC_NEXT(ring
, entry
);
2853 memcpy(tx_tiny_buf(cp
, ring
, entry
), skb
->data
+
2854 len
- tabort
, tabort
);
2855 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2856 cas_write_txd(cp
, ring
, entry
, mapping
, tabort
, ctrl
,
2859 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
|
2860 TX_DESC_SOF
, (nr_frags
== 0));
2862 entry
= TX_DESC_NEXT(ring
, entry
);
2864 for (frag
= 0; frag
< nr_frags
; frag
++) {
2865 skb_frag_t
*fragp
= &skb_shinfo(skb
)->frags
[frag
];
2868 mapping
= pci_map_page(cp
->pdev
, fragp
->page
,
2869 fragp
->page_offset
, len
,
2872 tabort
= cas_calc_tabort(cp
, fragp
->page_offset
, len
);
2873 if (unlikely(tabort
)) {
2876 /* NOTE: len is always > tabort */
2877 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2879 entry
= TX_DESC_NEXT(ring
, entry
);
2881 addr
= cas_page_map(fragp
->page
);
2882 memcpy(tx_tiny_buf(cp
, ring
, entry
),
2883 addr
+ fragp
->page_offset
+ len
- tabort
,
2885 cas_page_unmap(addr
);
2886 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2890 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
,
2891 (frag
+ 1 == nr_frags
));
2892 entry
= TX_DESC_NEXT(ring
, entry
);
2895 cp
->tx_new
[ring
] = entry
;
2896 if (TX_BUFFS_AVAIL(cp
, ring
) <= CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1))
2897 netif_stop_queue(dev
);
2899 if (netif_msg_tx_queued(cp
))
2900 printk(KERN_DEBUG
"%s: tx[%d] queued, slot %d, skblen %d, "
2902 dev
->name
, ring
, entry
, skb
->len
,
2903 TX_BUFFS_AVAIL(cp
, ring
));
2904 writel(entry
, cp
->regs
+ REG_TX_KICKN(ring
));
2905 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2909 static int cas_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2911 struct cas
*cp
= netdev_priv(dev
);
2913 /* this is only used as a load-balancing hint, so it doesn't
2914 * need to be SMP safe
2918 skb
= skb_padto(skb
, cp
->min_frame_size
);
2922 /* XXX: we need some higher-level QoS hooks to steer packets to
2923 * individual queues.
2925 if (cas_xmit_tx_ringN(cp
, ring
++ & N_TX_RINGS_MASK
, skb
))
2927 dev
->trans_start
= jiffies
;
2931 static void cas_init_tx_dma(struct cas
*cp
)
2933 u64 desc_dma
= cp
->block_dvma
;
2938 /* set up tx completion writeback registers. must be 8-byte aligned */
2939 #ifdef USE_TX_COMPWB
2940 off
= offsetof(struct cas_init_block
, tx_compwb
);
2941 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_COMPWB_DB_HI
);
2942 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+ REG_TX_COMPWB_DB_LOW
);
2945 /* enable completion writebacks, enable paced mode,
2946 * disable read pipe, and disable pre-interrupt compwbs
2948 val
= TX_CFG_COMPWB_Q1
| TX_CFG_COMPWB_Q2
|
2949 TX_CFG_COMPWB_Q3
| TX_CFG_COMPWB_Q4
|
2950 TX_CFG_DMA_RDPIPE_DIS
| TX_CFG_PACED_MODE
|
2951 TX_CFG_INTR_COMPWB_DIS
;
2953 /* write out tx ring info and tx desc bases */
2954 for (i
= 0; i
< MAX_TX_RINGS
; i
++) {
2955 off
= (unsigned long) cp
->init_txds
[i
] -
2956 (unsigned long) cp
->init_block
;
2958 val
|= CAS_TX_RINGN_BASE(i
);
2959 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_DBN_HI(i
));
2960 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+
2962 /* don't zero out the kick register here as the system
2966 writel(val
, cp
->regs
+ REG_TX_CFG
);
2968 /* program max burst sizes. these numbers should be different
2972 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2973 writel(0x1600, cp
->regs
+ REG_TX_MAXBURST_1
);
2974 writel(0x2400, cp
->regs
+ REG_TX_MAXBURST_2
);
2975 writel(0x4800, cp
->regs
+ REG_TX_MAXBURST_3
);
2977 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2978 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_1
);
2979 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_2
);
2980 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_3
);
2984 /* Must be invoked under cp->lock. */
2985 static inline void cas_init_dma(struct cas
*cp
)
2987 cas_init_tx_dma(cp
);
2988 cas_init_rx_dma(cp
);
2991 /* Must be invoked under cp->lock. */
2992 static u32
cas_setup_multicast(struct cas
*cp
)
2997 if (cp
->dev
->flags
& IFF_PROMISC
) {
2998 rxcfg
|= MAC_RX_CFG_PROMISC_EN
;
3000 } else if (cp
->dev
->flags
& IFF_ALLMULTI
) {
3001 for (i
=0; i
< 16; i
++)
3002 writel(0xFFFF, cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
3003 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3008 struct dev_mc_list
*dmi
= cp
->dev
->mc_list
;
3011 /* use the alternate mac address registers for the
3012 * first 15 multicast addresses
3014 for (i
= 1; i
<= CAS_MC_EXACT_MATCH_SIZE
; i
++) {
3016 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
3017 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
3018 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
3021 writel((dmi
->dmi_addr
[4] << 8) | dmi
->dmi_addr
[5],
3022 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
3023 writel((dmi
->dmi_addr
[2] << 8) | dmi
->dmi_addr
[3],
3024 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
3025 writel((dmi
->dmi_addr
[0] << 8) | dmi
->dmi_addr
[1],
3026 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
3030 /* use hw hash table for the next series of
3031 * multicast addresses
3033 memset(hash_table
, 0, sizeof(hash_table
));
3035 crc
= ether_crc_le(ETH_ALEN
, dmi
->dmi_addr
);
3037 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
3040 for (i
=0; i
< 16; i
++)
3041 writel(hash_table
[i
], cp
->regs
+
3042 REG_MAC_HASH_TABLEN(i
));
3043 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3049 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3050 static void cas_clear_mac_err(struct cas
*cp
)
3052 writel(0, cp
->regs
+ REG_MAC_COLL_NORMAL
);
3053 writel(0, cp
->regs
+ REG_MAC_COLL_FIRST
);
3054 writel(0, cp
->regs
+ REG_MAC_COLL_EXCESS
);
3055 writel(0, cp
->regs
+ REG_MAC_COLL_LATE
);
3056 writel(0, cp
->regs
+ REG_MAC_TIMER_DEFER
);
3057 writel(0, cp
->regs
+ REG_MAC_ATTEMPTS_PEAK
);
3058 writel(0, cp
->regs
+ REG_MAC_RECV_FRAME
);
3059 writel(0, cp
->regs
+ REG_MAC_LEN_ERR
);
3060 writel(0, cp
->regs
+ REG_MAC_ALIGN_ERR
);
3061 writel(0, cp
->regs
+ REG_MAC_FCS_ERR
);
3062 writel(0, cp
->regs
+ REG_MAC_RX_CODE_ERR
);
3066 static void cas_mac_reset(struct cas
*cp
)
3070 /* do both TX and RX reset */
3071 writel(0x1, cp
->regs
+ REG_MAC_TX_RESET
);
3072 writel(0x1, cp
->regs
+ REG_MAC_RX_RESET
);
3077 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) == 0)
3085 if (readl(cp
->regs
+ REG_MAC_RX_RESET
) == 0)
3090 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) |
3091 readl(cp
->regs
+ REG_MAC_RX_RESET
))
3092 printk(KERN_ERR
"%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3093 cp
->dev
->name
, readl(cp
->regs
+ REG_MAC_TX_RESET
),
3094 readl(cp
->regs
+ REG_MAC_RX_RESET
),
3095 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3099 /* Must be invoked under cp->lock. */
3100 static void cas_init_mac(struct cas
*cp
)
3102 unsigned char *e
= &cp
->dev
->dev_addr
[0];
3104 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3109 /* setup core arbitration weight register */
3110 writel(CAWR_RR_DIS
, cp
->regs
+ REG_CAWR
);
3112 /* XXX Use pci_dma_burst_advice() */
3113 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3114 /* set the infinite burst register for chips that don't have
3117 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) == 0)
3118 writel(INF_BURST_EN
, cp
->regs
+ REG_INF_BURST
);
3121 writel(0x1BF0, cp
->regs
+ REG_MAC_SEND_PAUSE
);
3123 writel(0x00, cp
->regs
+ REG_MAC_IPG0
);
3124 writel(0x08, cp
->regs
+ REG_MAC_IPG1
);
3125 writel(0x04, cp
->regs
+ REG_MAC_IPG2
);
3127 /* change later for 802.3z */
3128 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3130 /* min frame + FCS */
3131 writel(ETH_ZLEN
+ 4, cp
->regs
+ REG_MAC_FRAMESIZE_MIN
);
3133 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3134 * specify the maximum frame size to prevent RX tag errors on
3137 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST
, 0x2000) |
3138 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME
,
3139 (CAS_MAX_MTU
+ ETH_HLEN
+ 4 + 4)),
3140 cp
->regs
+ REG_MAC_FRAMESIZE_MAX
);
3142 /* NOTE: crc_size is used as a surrogate for half-duplex.
3143 * workaround saturn half-duplex issue by increasing preamble
3146 if ((cp
->cas_flags
& CAS_FLAG_SATURN
) && cp
->crc_size
)
3147 writel(0x41, cp
->regs
+ REG_MAC_PA_SIZE
);
3149 writel(0x07, cp
->regs
+ REG_MAC_PA_SIZE
);
3150 writel(0x04, cp
->regs
+ REG_MAC_JAM_SIZE
);
3151 writel(0x10, cp
->regs
+ REG_MAC_ATTEMPT_LIMIT
);
3152 writel(0x8808, cp
->regs
+ REG_MAC_CTRL_TYPE
);
3154 writel((e
[5] | (e
[4] << 8)) & 0x3ff, cp
->regs
+ REG_MAC_RANDOM_SEED
);
3156 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0
);
3157 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER1
);
3158 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2
);
3159 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2_1_MASK
);
3160 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0_MASK
);
3162 /* setup mac address in perfect filter array */
3163 for (i
= 0; i
< 45; i
++)
3164 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
));
3166 writel((e
[4] << 8) | e
[5], cp
->regs
+ REG_MAC_ADDRN(0));
3167 writel((e
[2] << 8) | e
[3], cp
->regs
+ REG_MAC_ADDRN(1));
3168 writel((e
[0] << 8) | e
[1], cp
->regs
+ REG_MAC_ADDRN(2));
3170 writel(0x0001, cp
->regs
+ REG_MAC_ADDRN(42));
3171 writel(0xc200, cp
->regs
+ REG_MAC_ADDRN(43));
3172 writel(0x0180, cp
->regs
+ REG_MAC_ADDRN(44));
3174 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3175 cp
->mac_rx_cfg
= cas_setup_multicast(cp
);
3177 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3178 * a writel does not seem to be necessary because Cassini
3179 * seems to preserve the configuration when we do the reset.
3180 * If the chip is in trouble, though, it is not clear if we
3181 * can really count on this behavior. cas_set_multicast uses
3182 * spin_lock_irqsave, but we are called only in cas_init_hw and
3183 * cas_init_hw is protected by cas_lock_all, which calls
3184 * spin_lock_irq (so it doesn't need to save the flags, and
3185 * we should be OK for the writel, as that is the only
3188 cp
->mac_rx_cfg
= rxcfg
= cas_setup_multicast(cp
);
3189 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
3191 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3192 cas_clear_mac_err(cp
);
3193 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3195 /* Setup MAC interrupts. We want to get all of the interesting
3196 * counter expiration events, but we do not want to hear about
3197 * normal rx/tx as the DMA engine tells us that.
3199 writel(MAC_TX_FRAME_XMIT
, cp
->regs
+ REG_MAC_TX_MASK
);
3200 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
3202 /* Don't enable even the PAUSE interrupts for now, we
3203 * make no use of those events other than to record them.
3205 writel(0xffffffff, cp
->regs
+ REG_MAC_CTRL_MASK
);
3208 /* Must be invoked under cp->lock. */
3209 static void cas_init_pause_thresholds(struct cas
*cp
)
3211 /* Calculate pause thresholds. Setting the OFF threshold to the
3212 * full RX fifo size effectively disables PAUSE generation
3214 if (cp
->rx_fifo_size
<= (2 * 1024)) {
3215 cp
->rx_pause_off
= cp
->rx_pause_on
= cp
->rx_fifo_size
;
3217 int max_frame
= (cp
->dev
->mtu
+ ETH_HLEN
+ 4 + 4 + 64) & ~63;
3218 if (max_frame
* 3 > cp
->rx_fifo_size
) {
3219 cp
->rx_pause_off
= 7104;
3220 cp
->rx_pause_on
= 960;
3222 int off
= (cp
->rx_fifo_size
- (max_frame
* 2));
3223 int on
= off
- max_frame
;
3224 cp
->rx_pause_off
= off
;
3225 cp
->rx_pause_on
= on
;
3230 static int cas_vpd_match(const void __iomem
*p
, const char *str
)
3232 int len
= strlen(str
) + 1;
3235 for (i
= 0; i
< len
; i
++) {
3236 if (readb(p
+ i
) != str
[i
])
3243 /* get the mac address by reading the vpd information in the rom.
3244 * also get the phy type and determine if there's an entropy generator.
3245 * NOTE: this is a bit convoluted for the following reasons:
3246 * 1) vpd info has order-dependent mac addresses for multinic cards
3247 * 2) the only way to determine the nic order is to use the slot
3249 * 3) fiber cards don't have bridges, so their slot numbers don't
3251 * 4) we don't actually know we have a fiber card until after
3252 * the mac addresses are parsed.
3254 static int cas_get_vpd_info(struct cas
*cp
, unsigned char *dev_addr
,
3257 void __iomem
*p
= cp
->regs
+ REG_EXPANSION_ROM_RUN_START
;
3258 void __iomem
*base
, *kstart
;
3261 #define VPD_FOUND_MAC 0x01
3262 #define VPD_FOUND_PHY 0x02
3264 int phy_type
= CAS_PHY_MII_MDIO0
; /* default phy type */
3267 /* give us access to the PROM */
3268 writel(BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_PAD
,
3269 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3271 /* check for an expansion rom */
3272 if (readb(p
) != 0x55 || readb(p
+ 1) != 0xaa)
3273 goto use_random_mac_addr
;
3275 /* search for beginning of vpd */
3277 for (i
= 2; i
< EXPANSION_ROM_SIZE
; i
++) {
3278 /* check for PCIR */
3279 if ((readb(p
+ i
+ 0) == 0x50) &&
3280 (readb(p
+ i
+ 1) == 0x43) &&
3281 (readb(p
+ i
+ 2) == 0x49) &&
3282 (readb(p
+ i
+ 3) == 0x52)) {
3283 base
= p
+ (readb(p
+ i
+ 8) |
3284 (readb(p
+ i
+ 9) << 8));
3289 if (!base
|| (readb(base
) != 0x82))
3290 goto use_random_mac_addr
;
3292 i
= (readb(base
+ 1) | (readb(base
+ 2) << 8)) + 3;
3293 while (i
< EXPANSION_ROM_SIZE
) {
3294 if (readb(base
+ i
) != 0x90) /* no vpd found */
3295 goto use_random_mac_addr
;
3297 /* found a vpd field */
3298 len
= readb(base
+ i
+ 1) | (readb(base
+ i
+ 2) << 8);
3300 /* extract keywords */
3301 kstart
= base
+ i
+ 3;
3303 while ((p
- kstart
) < len
) {
3304 int klen
= readb(p
+ 2);
3310 /* look for the following things:
3311 * -- correct length == 29
3312 * 3 (type) + 2 (size) +
3313 * 18 (strlen("local-mac-address") + 1) +
3315 * -- VPD Instance 'I'
3316 * -- VPD Type Bytes 'B'
3317 * -- VPD data length == 6
3318 * -- property string == local-mac-address
3320 * -- correct length == 24
3321 * 3 (type) + 2 (size) +
3322 * 12 (strlen("entropy-dev") + 1) +
3323 * 7 (strlen("vms110") + 1)
3324 * -- VPD Instance 'I'
3325 * -- VPD Type String 'B'
3326 * -- VPD data length == 7
3327 * -- property string == entropy-dev
3329 * -- correct length == 18
3330 * 3 (type) + 2 (size) +
3331 * 9 (strlen("phy-type") + 1) +
3332 * 4 (strlen("pcs") + 1)
3333 * -- VPD Instance 'I'
3334 * -- VPD Type String 'S'
3335 * -- VPD data length == 4
3336 * -- property string == phy-type
3338 * -- correct length == 23
3339 * 3 (type) + 2 (size) +
3340 * 14 (strlen("phy-interface") + 1) +
3341 * 4 (strlen("pcs") + 1)
3342 * -- VPD Instance 'I'
3343 * -- VPD Type String 'S'
3344 * -- VPD data length == 4
3345 * -- property string == phy-interface
3347 if (readb(p
) != 'I')
3350 /* finally, check string and length */
3351 type
= readb(p
+ 3);
3353 if ((klen
== 29) && readb(p
+ 4) == 6 &&
3354 cas_vpd_match(p
+ 5,
3355 "local-mac-address")) {
3356 if (mac_off
++ > offset
)
3359 /* set mac address */
3360 for (j
= 0; j
< 6; j
++)
3370 #ifdef USE_ENTROPY_DEV
3372 cas_vpd_match(p
+ 5, "entropy-dev") &&
3373 cas_vpd_match(p
+ 17, "vms110")) {
3374 cp
->cas_flags
|= CAS_FLAG_ENTROPY_DEV
;
3379 if (found
& VPD_FOUND_PHY
)
3382 if ((klen
== 18) && readb(p
+ 4) == 4 &&
3383 cas_vpd_match(p
+ 5, "phy-type")) {
3384 if (cas_vpd_match(p
+ 14, "pcs")) {
3385 phy_type
= CAS_PHY_SERDES
;
3390 if ((klen
== 23) && readb(p
+ 4) == 4 &&
3391 cas_vpd_match(p
+ 5, "phy-interface")) {
3392 if (cas_vpd_match(p
+ 19, "pcs")) {
3393 phy_type
= CAS_PHY_SERDES
;
3398 found
|= VPD_FOUND_MAC
;
3402 found
|= VPD_FOUND_PHY
;
3410 use_random_mac_addr
:
3411 if (found
& VPD_FOUND_MAC
)
3414 /* Sun MAC prefix then 3 random bytes. */
3415 printk(PFX
"MAC address not found in ROM VPD\n");
3419 get_random_bytes(dev_addr
+ 3, 3);
3422 writel(0, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3426 /* check pci invariants */
3427 static void cas_check_pci_invariants(struct cas
*cp
)
3429 struct pci_dev
*pdev
= cp
->pdev
;
3433 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &rev
);
3434 if ((pdev
->vendor
== PCI_VENDOR_ID_SUN
) &&
3435 (pdev
->device
== PCI_DEVICE_ID_SUN_CASSINI
)) {
3436 if (rev
>= CAS_ID_REVPLUS
)
3437 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3438 if (rev
< CAS_ID_REVPLUS02u
)
3439 cp
->cas_flags
|= CAS_FLAG_TARGET_ABORT
;
3441 /* Original Cassini supports HW CSUM, but it's not
3442 * enabled by default as it can trigger TX hangs.
3444 if (rev
< CAS_ID_REV2
)
3445 cp
->cas_flags
|= CAS_FLAG_NO_HW_CSUM
;
3447 /* Only sun has original cassini chips. */
3448 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3450 /* We use a flag because the same phy might be externally
3453 if ((pdev
->vendor
== PCI_VENDOR_ID_NS
) &&
3454 (pdev
->device
== PCI_DEVICE_ID_NS_SATURN
))
3455 cp
->cas_flags
|= CAS_FLAG_SATURN
;
3460 static int cas_check_invariants(struct cas
*cp
)
3462 struct pci_dev
*pdev
= cp
->pdev
;
3466 /* get page size for rx buffers. */
3468 #ifdef USE_PAGE_ORDER
3469 if (PAGE_SHIFT
< CAS_JUMBO_PAGE_SHIFT
) {
3470 /* see if we can allocate larger pages */
3471 struct page
*page
= alloc_pages(GFP_ATOMIC
,
3472 CAS_JUMBO_PAGE_SHIFT
-
3475 __free_pages(page
, CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
);
3476 cp
->page_order
= CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
;
3478 printk(PFX
"MTU limited to %d bytes\n", CAS_MAX_MTU
);
3482 cp
->page_size
= (PAGE_SIZE
<< cp
->page_order
);
3484 /* Fetch the FIFO configurations. */
3485 cp
->tx_fifo_size
= readl(cp
->regs
+ REG_TX_FIFO_SIZE
) * 64;
3486 cp
->rx_fifo_size
= RX_FIFO_SIZE
;
3488 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3489 * they're both connected.
3491 cp
->phy_type
= cas_get_vpd_info(cp
, cp
->dev
->dev_addr
,
3492 PCI_SLOT(pdev
->devfn
));
3493 if (cp
->phy_type
& CAS_PHY_SERDES
) {
3494 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3495 return 0; /* no more checking needed */
3499 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
3500 if (cfg
& MIF_CFG_MDIO_1
) {
3501 cp
->phy_type
= CAS_PHY_MII_MDIO1
;
3502 } else if (cfg
& MIF_CFG_MDIO_0
) {
3503 cp
->phy_type
= CAS_PHY_MII_MDIO0
;
3506 cas_mif_poll(cp
, 0);
3507 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3509 for (i
= 0; i
< 32; i
++) {
3513 for (j
= 0; j
< 3; j
++) {
3515 phy_id
= cas_phy_read(cp
, MII_PHYSID1
) << 16;
3516 phy_id
|= cas_phy_read(cp
, MII_PHYSID2
);
3517 if (phy_id
&& (phy_id
!= 0xFFFFFFFF)) {
3518 cp
->phy_id
= phy_id
;
3523 printk(KERN_ERR PFX
"MII phy did not respond [%08x]\n",
3524 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
3528 /* see if we can do gigabit */
3529 cfg
= cas_phy_read(cp
, MII_BMSR
);
3530 if ((cfg
& CAS_BMSR_1000_EXTEND
) &&
3531 cas_phy_read(cp
, CAS_MII_1000_EXTEND
))
3532 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3536 /* Must be invoked under cp->lock. */
3537 static inline void cas_start_dma(struct cas
*cp
)
3544 val
= readl(cp
->regs
+ REG_TX_CFG
) | TX_CFG_DMA_EN
;
3545 writel(val
, cp
->regs
+ REG_TX_CFG
);
3546 val
= readl(cp
->regs
+ REG_RX_CFG
) | RX_CFG_DMA_EN
;
3547 writel(val
, cp
->regs
+ REG_RX_CFG
);
3549 /* enable the mac */
3550 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
) | MAC_TX_CFG_EN
;
3551 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3552 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
) | MAC_RX_CFG_EN
;
3553 writel(val
, cp
->regs
+ REG_MAC_RX_CFG
);
3557 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
);
3558 if ((val
& MAC_TX_CFG_EN
))
3562 if (i
< 0) txfailed
= 1;
3565 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3566 if ((val
& MAC_RX_CFG_EN
)) {
3569 "%s: enabling mac failed [tx:%08x:%08x].\n",
3571 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3572 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3574 goto enable_rx_done
;
3578 printk(KERN_ERR
"%s: enabling mac failed [%s:%08x:%08x].\n",
3580 (txfailed
? "tx,rx":"rx"),
3581 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3582 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3585 cas_unmask_intr(cp
); /* enable interrupts */
3586 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
3587 writel(0, cp
->regs
+ REG_RX_COMP_TAIL
);
3589 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
3590 if (N_RX_DESC_RINGS
> 1)
3591 writel(RX_DESC_RINGN_SIZE(1) - 4,
3592 cp
->regs
+ REG_PLUS_RX_KICK1
);
3594 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
3595 writel(0, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(i
));
3599 /* Must be invoked under cp->lock. */
3600 static void cas_read_pcs_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3603 u32 val
= readl(cp
->regs
+ REG_PCS_MII_LPA
);
3604 *fd
= (val
& PCS_MII_LPA_FD
) ? 1 : 0;
3605 *pause
= (val
& PCS_MII_LPA_SYM_PAUSE
) ? 0x01 : 0x00;
3606 if (val
& PCS_MII_LPA_ASYM_PAUSE
)
3611 /* Must be invoked under cp->lock. */
3612 static void cas_read_mii_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3621 /* use GMII registers */
3622 val
= cas_phy_read(cp
, MII_LPA
);
3623 if (val
& CAS_LPA_PAUSE
)
3626 if (val
& CAS_LPA_ASYM_PAUSE
)
3629 if (val
& LPA_DUPLEX
)
3634 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
3635 val
= cas_phy_read(cp
, CAS_MII_1000_STATUS
);
3636 if (val
& (CAS_LPA_1000FULL
| CAS_LPA_1000HALF
))
3638 if (val
& CAS_LPA_1000FULL
)
3643 /* A link-up condition has occurred, initialize and enable the
3646 * Must be invoked under cp->lock.
3648 static void cas_set_link_modes(struct cas
*cp
)
3651 int full_duplex
, speed
, pause
;
3657 if (CAS_PHY_MII(cp
->phy_type
)) {
3658 cas_mif_poll(cp
, 0);
3659 val
= cas_phy_read(cp
, MII_BMCR
);
3660 if (val
& BMCR_ANENABLE
) {
3661 cas_read_mii_link_mode(cp
, &full_duplex
, &speed
,
3664 if (val
& BMCR_FULLDPLX
)
3667 if (val
& BMCR_SPEED100
)
3669 else if (val
& CAS_BMCR_SPEED1000
)
3670 speed
= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
3673 cas_mif_poll(cp
, 1);
3676 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
3677 cas_read_pcs_link_mode(cp
, &full_duplex
, &speed
, &pause
);
3678 if ((val
& PCS_MII_AUTONEG_EN
) == 0) {
3679 if (val
& PCS_MII_CTRL_DUPLEX
)
3684 if (netif_msg_link(cp
))
3685 printk(KERN_INFO
"%s: Link up at %d Mbps, %s-duplex.\n",
3686 cp
->dev
->name
, speed
, (full_duplex
? "full" : "half"));
3688 val
= MAC_XIF_TX_MII_OUTPUT_EN
| MAC_XIF_LINK_LED
;
3689 if (CAS_PHY_MII(cp
->phy_type
)) {
3690 val
|= MAC_XIF_MII_BUFFER_OUTPUT_EN
;
3692 val
|= MAC_XIF_DISABLE_ECHO
;
3695 val
|= MAC_XIF_FDPLX_LED
;
3697 val
|= MAC_XIF_GMII_MODE
;
3698 writel(val
, cp
->regs
+ REG_MAC_XIF_CFG
);
3700 /* deal with carrier and collision detect. */
3701 val
= MAC_TX_CFG_IPG_EN
;
3703 val
|= MAC_TX_CFG_IGNORE_CARRIER
;
3704 val
|= MAC_TX_CFG_IGNORE_COLL
;
3706 #ifndef USE_CSMA_CD_PROTO
3707 val
|= MAC_TX_CFG_NEVER_GIVE_UP_EN
;
3708 val
|= MAC_TX_CFG_NEVER_GIVE_UP_LIM
;
3711 /* val now set up for REG_MAC_TX_CFG */
3713 /* If gigabit and half-duplex, enable carrier extension
3714 * mode. increase slot time to 512 bytes as well.
3715 * else, disable it and make sure slot time is 64 bytes.
3716 * also activate checksum bug workaround
3718 if ((speed
== 1000) && !full_duplex
) {
3719 writel(val
| MAC_TX_CFG_CARRIER_EXTEND
,
3720 cp
->regs
+ REG_MAC_TX_CFG
);
3722 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3723 val
&= ~MAC_RX_CFG_STRIP_FCS
; /* checksum workaround */
3724 writel(val
| MAC_RX_CFG_CARRIER_EXTEND
,
3725 cp
->regs
+ REG_MAC_RX_CFG
);
3727 writel(0x200, cp
->regs
+ REG_MAC_SLOT_TIME
);
3730 /* minimum size gigabit frame at half duplex */
3731 cp
->min_frame_size
= CAS_1000MB_MIN_FRAME
;
3734 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3736 /* checksum bug workaround. don't strip FCS when in
3739 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3741 val
|= MAC_RX_CFG_STRIP_FCS
;
3743 cp
->min_frame_size
= CAS_MIN_MTU
;
3745 val
&= ~MAC_RX_CFG_STRIP_FCS
;
3747 cp
->min_frame_size
= CAS_MIN_FRAME
;
3749 writel(val
& ~MAC_RX_CFG_CARRIER_EXTEND
,
3750 cp
->regs
+ REG_MAC_RX_CFG
);
3751 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3754 if (netif_msg_link(cp
)) {
3756 printk(KERN_INFO
"%s: Pause is enabled "
3757 "(rxfifo: %d off: %d on: %d)\n",
3762 } else if (pause
& 0x10) {
3763 printk(KERN_INFO
"%s: TX pause enabled\n",
3766 printk(KERN_INFO
"%s: Pause is disabled\n",
3771 val
= readl(cp
->regs
+ REG_MAC_CTRL_CFG
);
3772 val
&= ~(MAC_CTRL_CFG_SEND_PAUSE_EN
| MAC_CTRL_CFG_RECV_PAUSE_EN
);
3773 if (pause
) { /* symmetric or asymmetric pause */
3774 val
|= MAC_CTRL_CFG_SEND_PAUSE_EN
;
3775 if (pause
& 0x01) { /* symmetric pause */
3776 val
|= MAC_CTRL_CFG_RECV_PAUSE_EN
;
3779 writel(val
, cp
->regs
+ REG_MAC_CTRL_CFG
);
3783 /* Must be invoked under cp->lock. */
3784 static void cas_init_hw(struct cas
*cp
, int restart_link
)
3789 cas_init_pause_thresholds(cp
);
3794 /* Default aneg parameters */
3795 cp
->timer_ticks
= 0;
3796 cas_begin_auto_negotiation(cp
, NULL
);
3797 } else if (cp
->lstate
== link_up
) {
3798 cas_set_link_modes(cp
);
3799 netif_carrier_on(cp
->dev
);
3803 /* Must be invoked under cp->lock. on earlier cassini boards,
3804 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3805 * let it settle out, and then restore pci state.
3807 static void cas_hard_reset(struct cas
*cp
)
3809 writel(BIM_LOCAL_DEV_SOFT_0
, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3811 pci_restore_state(cp
->pdev
);
3815 static void cas_global_reset(struct cas
*cp
, int blkflag
)
3819 /* issue a global reset. don't use RSTOUT. */
3820 if (blkflag
&& !CAS_PHY_MII(cp
->phy_type
)) {
3821 /* For PCS, when the blkflag is set, we should set the
3822 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3823 * the last autonegotiation from being cleared. We'll
3824 * need some special handling if the chip is set into a
3827 writel((SW_RESET_TX
| SW_RESET_RX
| SW_RESET_BLOCK_PCS_SLINK
),
3828 cp
->regs
+ REG_SW_RESET
);
3830 writel(SW_RESET_TX
| SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
3833 /* need to wait at least 3ms before polling register */
3837 while (limit
-- > 0) {
3838 u32 val
= readl(cp
->regs
+ REG_SW_RESET
);
3839 if ((val
& (SW_RESET_TX
| SW_RESET_RX
)) == 0)
3843 printk(KERN_ERR
"%s: sw reset failed.\n", cp
->dev
->name
);
3846 /* enable various BIM interrupts */
3847 writel(BIM_CFG_DPAR_INTR_ENABLE
| BIM_CFG_RMA_INTR_ENABLE
|
3848 BIM_CFG_RTA_INTR_ENABLE
, cp
->regs
+ REG_BIM_CFG
);
3850 /* clear out pci error status mask for handled errors.
3851 * we don't deal with DMA counter overflows as they happen
3854 writel(0xFFFFFFFFU
& ~(PCI_ERR_BADACK
| PCI_ERR_DTRTO
|
3855 PCI_ERR_OTHER
| PCI_ERR_BIM_DMA_WRITE
|
3856 PCI_ERR_BIM_DMA_READ
), cp
->regs
+
3857 REG_PCI_ERR_STATUS_MASK
);
3859 /* set up for MII by default to address mac rx reset timeout
3862 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3865 static void cas_reset(struct cas
*cp
, int blkflag
)
3870 cas_global_reset(cp
, blkflag
);
3872 cas_entropy_reset(cp
);
3874 /* disable dma engines. */
3875 val
= readl(cp
->regs
+ REG_TX_CFG
);
3876 val
&= ~TX_CFG_DMA_EN
;
3877 writel(val
, cp
->regs
+ REG_TX_CFG
);
3879 val
= readl(cp
->regs
+ REG_RX_CFG
);
3880 val
&= ~RX_CFG_DMA_EN
;
3881 writel(val
, cp
->regs
+ REG_RX_CFG
);
3883 /* program header parser */
3884 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) ||
3885 (CAS_HP_ALT_FIRMWARE
== cas_prog_null
)) {
3886 cas_load_firmware(cp
, CAS_HP_FIRMWARE
);
3888 cas_load_firmware(cp
, CAS_HP_ALT_FIRMWARE
);
3891 /* clear out error registers */
3892 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3893 cas_clear_mac_err(cp
);
3894 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3897 /* Shut down the chip, must be called with pm_mutex held. */
3898 static void cas_shutdown(struct cas
*cp
)
3900 unsigned long flags
;
3902 /* Make us not-running to avoid timers respawning */
3905 del_timer_sync(&cp
->link_timer
);
3907 /* Stop the reset task */
3909 while (atomic_read(&cp
->reset_task_pending_mtu
) ||
3910 atomic_read(&cp
->reset_task_pending_spare
) ||
3911 atomic_read(&cp
->reset_task_pending_all
))
3915 while (atomic_read(&cp
->reset_task_pending
))
3918 /* Actually stop the chip */
3919 cas_lock_all_save(cp
, flags
);
3921 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
3922 cas_phy_powerdown(cp
);
3923 cas_unlock_all_restore(cp
, flags
);
3926 static int cas_change_mtu(struct net_device
*dev
, int new_mtu
)
3928 struct cas
*cp
= netdev_priv(dev
);
3930 if (new_mtu
< CAS_MIN_MTU
|| new_mtu
> CAS_MAX_MTU
)
3934 if (!netif_running(dev
) || !netif_device_present(dev
))
3937 /* let the reset task handle it */
3939 atomic_inc(&cp
->reset_task_pending
);
3940 if ((cp
->phy_type
& CAS_PHY_SERDES
)) {
3941 atomic_inc(&cp
->reset_task_pending_all
);
3943 atomic_inc(&cp
->reset_task_pending_mtu
);
3945 schedule_work(&cp
->reset_task
);
3947 atomic_set(&cp
->reset_task_pending
, (cp
->phy_type
& CAS_PHY_SERDES
) ?
3948 CAS_RESET_ALL
: CAS_RESET_MTU
);
3949 printk(KERN_ERR
"reset called in cas_change_mtu\n");
3950 schedule_work(&cp
->reset_task
);
3953 flush_scheduled_work();
3957 static void cas_clean_txd(struct cas
*cp
, int ring
)
3959 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
];
3960 struct sk_buff
*skb
, **skbs
= cp
->tx_skbs
[ring
];
3964 size
= TX_DESC_RINGN_SIZE(ring
);
3965 for (i
= 0; i
< size
; i
++) {
3968 if (skbs
[i
] == NULL
)
3974 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
3975 int ent
= i
& (size
- 1);
3977 /* first buffer is never a tiny buffer and so
3978 * needs to be unmapped.
3980 daddr
= le64_to_cpu(txd
[ent
].buffer
);
3981 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
3982 le64_to_cpu(txd
[ent
].control
));
3983 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
3986 if (frag
!= skb_shinfo(skb
)->nr_frags
) {
3989 /* next buffer might by a tiny buffer.
3992 ent
= i
& (size
- 1);
3993 if (cp
->tx_tiny_use
[ring
][ent
].used
)
3997 dev_kfree_skb_any(skb
);
4000 /* zero out tiny buf usage */
4001 memset(cp
->tx_tiny_use
[ring
], 0, size
*sizeof(*cp
->tx_tiny_use
[ring
]));
4004 /* freed on close */
4005 static inline void cas_free_rx_desc(struct cas
*cp
, int ring
)
4007 cas_page_t
**page
= cp
->rx_pages
[ring
];
4010 size
= RX_DESC_RINGN_SIZE(ring
);
4011 for (i
= 0; i
< size
; i
++) {
4013 cas_page_free(cp
, page
[i
]);
4019 static void cas_free_rxds(struct cas
*cp
)
4023 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
4024 cas_free_rx_desc(cp
, i
);
4027 /* Must be invoked under cp->lock. */
4028 static void cas_clean_rings(struct cas
*cp
)
4032 /* need to clean all tx rings */
4033 memset(cp
->tx_old
, 0, sizeof(*cp
->tx_old
)*N_TX_RINGS
);
4034 memset(cp
->tx_new
, 0, sizeof(*cp
->tx_new
)*N_TX_RINGS
);
4035 for (i
= 0; i
< N_TX_RINGS
; i
++)
4036 cas_clean_txd(cp
, i
);
4038 /* zero out init block */
4039 memset(cp
->init_block
, 0, sizeof(struct cas_init_block
));
4044 /* allocated on open */
4045 static inline int cas_alloc_rx_desc(struct cas
*cp
, int ring
)
4047 cas_page_t
**page
= cp
->rx_pages
[ring
];
4050 size
= RX_DESC_RINGN_SIZE(ring
);
4051 for (i
= 0; i
< size
; i
++) {
4052 if ((page
[i
] = cas_page_alloc(cp
, GFP_KERNEL
)) == NULL
)
4058 static int cas_alloc_rxds(struct cas
*cp
)
4062 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++) {
4063 if (cas_alloc_rx_desc(cp
, i
) < 0) {
4071 static void cas_reset_task(void *data
)
4073 struct cas
*cp
= (struct cas
*) data
;
4075 int pending
= atomic_read(&cp
->reset_task_pending
);
4077 int pending_all
= atomic_read(&cp
->reset_task_pending_all
);
4078 int pending_spare
= atomic_read(&cp
->reset_task_pending_spare
);
4079 int pending_mtu
= atomic_read(&cp
->reset_task_pending_mtu
);
4081 if (pending_all
== 0 && pending_spare
== 0 && pending_mtu
== 0) {
4082 /* We can have more tasks scheduled than actually
4085 atomic_dec(&cp
->reset_task_pending
);
4089 /* The link went down, we reset the ring, but keep
4090 * DMA stopped. Use this function for reset
4093 if (cp
->hw_running
) {
4094 unsigned long flags
;
4096 /* Make sure we don't get interrupts or tx packets */
4097 netif_device_detach(cp
->dev
);
4098 cas_lock_all_save(cp
, flags
);
4101 /* We call cas_spare_recover when we call cas_open.
4102 * but we do not initialize the lists cas_spare_recover
4103 * uses until cas_open is called.
4105 cas_spare_recover(cp
, GFP_ATOMIC
);
4108 /* test => only pending_spare set */
4109 if (!pending_all
&& !pending_mtu
)
4112 if (pending
== CAS_RESET_SPARE
)
4115 /* when pending == CAS_RESET_ALL, the following
4116 * call to cas_init_hw will restart auto negotiation.
4117 * Setting the second argument of cas_reset to
4118 * !(pending == CAS_RESET_ALL) will set this argument
4119 * to 1 (avoiding reinitializing the PHY for the normal
4120 * PCS case) when auto negotiation is not restarted.
4123 cas_reset(cp
, !(pending_all
> 0));
4125 cas_clean_rings(cp
);
4126 cas_init_hw(cp
, (pending_all
> 0));
4128 cas_reset(cp
, !(pending
== CAS_RESET_ALL
));
4130 cas_clean_rings(cp
);
4131 cas_init_hw(cp
, pending
== CAS_RESET_ALL
);
4135 cas_unlock_all_restore(cp
, flags
);
4136 netif_device_attach(cp
->dev
);
4139 atomic_sub(pending_all
, &cp
->reset_task_pending_all
);
4140 atomic_sub(pending_spare
, &cp
->reset_task_pending_spare
);
4141 atomic_sub(pending_mtu
, &cp
->reset_task_pending_mtu
);
4142 atomic_dec(&cp
->reset_task_pending
);
4144 atomic_set(&cp
->reset_task_pending
, 0);
4148 static void cas_link_timer(unsigned long data
)
4150 struct cas
*cp
= (struct cas
*) data
;
4151 int mask
, pending
= 0, reset
= 0;
4152 unsigned long flags
;
4154 if (link_transition_timeout
!= 0 &&
4155 cp
->link_transition_jiffies_valid
&&
4156 ((jiffies
- cp
->link_transition_jiffies
) >
4157 (link_transition_timeout
))) {
4158 /* One-second counter so link-down workaround doesn't
4159 * cause resets to occur so fast as to fool the switch
4160 * into thinking the link is down.
4162 cp
->link_transition_jiffies_valid
= 0;
4165 if (!cp
->hw_running
)
4168 spin_lock_irqsave(&cp
->lock
, flags
);
4170 cas_entropy_gather(cp
);
4172 /* If the link task is still pending, we just
4173 * reschedule the link timer
4176 if (atomic_read(&cp
->reset_task_pending_all
) ||
4177 atomic_read(&cp
->reset_task_pending_spare
) ||
4178 atomic_read(&cp
->reset_task_pending_mtu
))
4181 if (atomic_read(&cp
->reset_task_pending
))
4185 /* check for rx cleaning */
4186 if ((mask
= (cp
->cas_flags
& CAS_FLAG_RXD_POST_MASK
))) {
4189 for (i
= 0; i
< MAX_RX_DESC_RINGS
; i
++) {
4190 rmask
= CAS_FLAG_RXD_POST(i
);
4191 if ((mask
& rmask
) == 0)
4194 /* post_rxds will do a mod_timer */
4195 if (cas_post_rxds_ringN(cp
, i
, cp
->rx_last
[i
]) < 0) {
4199 cp
->cas_flags
&= ~rmask
;
4203 if (CAS_PHY_MII(cp
->phy_type
)) {
4205 cas_mif_poll(cp
, 0);
4206 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4207 /* WTZ: Solaris driver reads this twice, but that
4208 * may be due to the PCS case and the use of a
4209 * common implementation. Read it twice here to be
4212 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4213 cas_mif_poll(cp
, 1);
4214 readl(cp
->regs
+ REG_MIF_STATUS
); /* avoid dups */
4215 reset
= cas_mii_link_check(cp
, bmsr
);
4217 reset
= cas_pcs_link_check(cp
);
4223 /* check for tx state machine confusion */
4224 if ((readl(cp
->regs
+ REG_MAC_TX_STATUS
) & MAC_TX_FRAME_XMIT
) == 0) {
4225 u32 val
= readl(cp
->regs
+ REG_MAC_STATE_MACHINE
);
4227 int tlm
= CAS_VAL(MAC_SM_TLM
, val
);
4229 if (((tlm
== 0x5) || (tlm
== 0x3)) &&
4230 (CAS_VAL(MAC_SM_ENCAP_SM
, val
) == 0)) {
4231 if (netif_msg_tx_err(cp
))
4232 printk(KERN_DEBUG
"%s: tx err: "
4233 "MAC_STATE[%08x]\n",
4234 cp
->dev
->name
, val
);
4239 val
= readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
);
4240 wptr
= readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
);
4241 rptr
= readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
);
4242 if ((val
== 0) && (wptr
!= rptr
)) {
4243 if (netif_msg_tx_err(cp
))
4244 printk(KERN_DEBUG
"%s: tx err: "
4245 "TX_FIFO[%08x:%08x:%08x]\n",
4246 cp
->dev
->name
, val
, wptr
, rptr
);
4257 atomic_inc(&cp
->reset_task_pending
);
4258 atomic_inc(&cp
->reset_task_pending_all
);
4259 schedule_work(&cp
->reset_task
);
4261 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
4262 printk(KERN_ERR
"reset called in cas_link_timer\n");
4263 schedule_work(&cp
->reset_task
);
4268 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
4270 spin_unlock_irqrestore(&cp
->lock
, flags
);
4273 /* tiny buffers are used to avoid target abort issues with
4276 static void cas_tx_tiny_free(struct cas
*cp
)
4278 struct pci_dev
*pdev
= cp
->pdev
;
4281 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4282 if (!cp
->tx_tiny_bufs
[i
])
4285 pci_free_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4286 cp
->tx_tiny_bufs
[i
],
4287 cp
->tx_tiny_dvma
[i
]);
4288 cp
->tx_tiny_bufs
[i
] = NULL
;
4292 static int cas_tx_tiny_alloc(struct cas
*cp
)
4294 struct pci_dev
*pdev
= cp
->pdev
;
4297 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4298 cp
->tx_tiny_bufs
[i
] =
4299 pci_alloc_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4300 &cp
->tx_tiny_dvma
[i
]);
4301 if (!cp
->tx_tiny_bufs
[i
]) {
4302 cas_tx_tiny_free(cp
);
4310 static int cas_open(struct net_device
*dev
)
4312 struct cas
*cp
= netdev_priv(dev
);
4314 unsigned long flags
;
4316 mutex_lock(&cp
->pm_mutex
);
4318 hw_was_up
= cp
->hw_running
;
4320 /* The power-management mutex protects the hw_running
4321 * etc. state so it is safe to do this bit without cp->lock
4323 if (!cp
->hw_running
) {
4324 /* Reset the chip */
4325 cas_lock_all_save(cp
, flags
);
4326 /* We set the second arg to cas_reset to zero
4327 * because cas_init_hw below will have its second
4328 * argument set to non-zero, which will force
4329 * autonegotiation to start.
4333 cas_unlock_all_restore(cp
, flags
);
4336 if (cas_tx_tiny_alloc(cp
) < 0)
4339 /* alloc rx descriptors */
4341 if (cas_alloc_rxds(cp
) < 0)
4344 /* allocate spares */
4346 cas_spare_recover(cp
, GFP_KERNEL
);
4348 /* We can now request the interrupt as we know it's masked
4349 * on the controller. cassini+ has up to 4 interrupts
4350 * that can be used, but you need to do explicit pci interrupt
4351 * mapping to expose them
4353 if (request_irq(cp
->pdev
->irq
, cas_interrupt
,
4354 SA_SHIRQ
, dev
->name
, (void *) dev
)) {
4355 printk(KERN_ERR
"%s: failed to request irq !\n",
4362 cas_lock_all_save(cp
, flags
);
4363 cas_clean_rings(cp
);
4364 cas_init_hw(cp
, !hw_was_up
);
4366 cas_unlock_all_restore(cp
, flags
);
4368 netif_start_queue(dev
);
4369 mutex_unlock(&cp
->pm_mutex
);
4376 cas_tx_tiny_free(cp
);
4377 mutex_unlock(&cp
->pm_mutex
);
4381 static int cas_close(struct net_device
*dev
)
4383 unsigned long flags
;
4384 struct cas
*cp
= netdev_priv(dev
);
4386 /* Make sure we don't get distracted by suspend/resume */
4387 mutex_lock(&cp
->pm_mutex
);
4389 netif_stop_queue(dev
);
4391 /* Stop traffic, mark us closed */
4392 cas_lock_all_save(cp
, flags
);
4396 cas_begin_auto_negotiation(cp
, NULL
);
4397 cas_clean_rings(cp
);
4398 cas_unlock_all_restore(cp
, flags
);
4400 free_irq(cp
->pdev
->irq
, (void *) dev
);
4403 cas_tx_tiny_free(cp
);
4404 mutex_unlock(&cp
->pm_mutex
);
4409 const char name
[ETH_GSTRING_LEN
];
4410 } ethtool_cassini_statnames
[] = {
4417 {"rx_frame_errors"},
4418 {"rx_length_errors"},
4421 {"tx_aborted_errors"},
4428 #define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN)
4431 const int offsets
; /* neg. values for 2nd arg to cas_read_phy */
4432 } ethtool_register_table
[] = {
4447 {REG_PCS_MII_STATUS
},
4448 {REG_PCS_STATE_MACHINE
},
4449 {REG_MAC_COLL_EXCESS
},
4452 #define CAS_REG_LEN (sizeof(ethtool_register_table)/sizeof(int))
4453 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4455 static void cas_read_regs(struct cas
*cp
, u8
*ptr
, int len
)
4459 unsigned long flags
;
4461 spin_lock_irqsave(&cp
->lock
, flags
);
4462 for (i
= 0, p
= ptr
; i
< len
; i
++, p
+= sizeof(u32
)) {
4465 if (ethtool_register_table
[i
].offsets
< 0) {
4466 hval
= cas_phy_read(cp
,
4467 -ethtool_register_table
[i
].offsets
);
4470 val
= readl(cp
->regs
+ethtool_register_table
[i
].offsets
);
4472 memcpy(p
, (u8
*)&val
, sizeof(u32
));
4474 spin_unlock_irqrestore(&cp
->lock
, flags
);
4477 static struct net_device_stats
*cas_get_stats(struct net_device
*dev
)
4479 struct cas
*cp
= netdev_priv(dev
);
4480 struct net_device_stats
*stats
= cp
->net_stats
;
4481 unsigned long flags
;
4485 /* we collate all of the stats into net_stats[N_TX_RING] */
4486 if (!cp
->hw_running
)
4487 return stats
+ N_TX_RINGS
;
4489 /* collect outstanding stats */
4490 /* WTZ: the Cassini spec gives these as 16 bit counters but
4491 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4492 * in case the chip somehow puts any garbage in the other bits.
4493 * Also, counter usage didn't seem to mach what Adrian did
4494 * in the parts of the code that set these quantities. Made
4497 spin_lock_irqsave(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4498 stats
[N_TX_RINGS
].rx_crc_errors
+=
4499 readl(cp
->regs
+ REG_MAC_FCS_ERR
) & 0xffff;
4500 stats
[N_TX_RINGS
].rx_frame_errors
+=
4501 readl(cp
->regs
+ REG_MAC_ALIGN_ERR
) &0xffff;
4502 stats
[N_TX_RINGS
].rx_length_errors
+=
4503 readl(cp
->regs
+ REG_MAC_LEN_ERR
) & 0xffff;
4505 tmp
= (readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) & 0xffff) +
4506 (readl(cp
->regs
+ REG_MAC_COLL_LATE
) & 0xffff);
4507 stats
[N_TX_RINGS
].tx_aborted_errors
+= tmp
;
4508 stats
[N_TX_RINGS
].collisions
+=
4509 tmp
+ (readl(cp
->regs
+ REG_MAC_COLL_NORMAL
) & 0xffff);
4511 stats
[N_TX_RINGS
].tx_aborted_errors
+=
4512 readl(cp
->regs
+ REG_MAC_COLL_EXCESS
);
4513 stats
[N_TX_RINGS
].collisions
+= readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) +
4514 readl(cp
->regs
+ REG_MAC_COLL_LATE
);
4516 cas_clear_mac_err(cp
);
4518 /* saved bits that are unique to ring 0 */
4519 spin_lock(&cp
->stat_lock
[0]);
4520 stats
[N_TX_RINGS
].collisions
+= stats
[0].collisions
;
4521 stats
[N_TX_RINGS
].rx_over_errors
+= stats
[0].rx_over_errors
;
4522 stats
[N_TX_RINGS
].rx_frame_errors
+= stats
[0].rx_frame_errors
;
4523 stats
[N_TX_RINGS
].rx_fifo_errors
+= stats
[0].rx_fifo_errors
;
4524 stats
[N_TX_RINGS
].tx_aborted_errors
+= stats
[0].tx_aborted_errors
;
4525 stats
[N_TX_RINGS
].tx_fifo_errors
+= stats
[0].tx_fifo_errors
;
4526 spin_unlock(&cp
->stat_lock
[0]);
4528 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4529 spin_lock(&cp
->stat_lock
[i
]);
4530 stats
[N_TX_RINGS
].rx_length_errors
+=
4531 stats
[i
].rx_length_errors
;
4532 stats
[N_TX_RINGS
].rx_crc_errors
+= stats
[i
].rx_crc_errors
;
4533 stats
[N_TX_RINGS
].rx_packets
+= stats
[i
].rx_packets
;
4534 stats
[N_TX_RINGS
].tx_packets
+= stats
[i
].tx_packets
;
4535 stats
[N_TX_RINGS
].rx_bytes
+= stats
[i
].rx_bytes
;
4536 stats
[N_TX_RINGS
].tx_bytes
+= stats
[i
].tx_bytes
;
4537 stats
[N_TX_RINGS
].rx_errors
+= stats
[i
].rx_errors
;
4538 stats
[N_TX_RINGS
].tx_errors
+= stats
[i
].tx_errors
;
4539 stats
[N_TX_RINGS
].rx_dropped
+= stats
[i
].rx_dropped
;
4540 stats
[N_TX_RINGS
].tx_dropped
+= stats
[i
].tx_dropped
;
4541 memset(stats
+ i
, 0, sizeof(struct net_device_stats
));
4542 spin_unlock(&cp
->stat_lock
[i
]);
4544 spin_unlock_irqrestore(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4545 return stats
+ N_TX_RINGS
;
4549 static void cas_set_multicast(struct net_device
*dev
)
4551 struct cas
*cp
= netdev_priv(dev
);
4552 u32 rxcfg
, rxcfg_new
;
4553 unsigned long flags
;
4554 int limit
= STOP_TRIES
;
4556 if (!cp
->hw_running
)
4559 spin_lock_irqsave(&cp
->lock
, flags
);
4560 rxcfg
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
4562 /* disable RX MAC and wait for completion */
4563 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4564 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
) {
4570 /* disable hash filter and wait for completion */
4572 rxcfg
&= ~(MAC_RX_CFG_PROMISC_EN
| MAC_RX_CFG_HASH_FILTER_EN
);
4573 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4574 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_HASH_FILTER_EN
) {
4580 /* program hash filters */
4581 cp
->mac_rx_cfg
= rxcfg_new
= cas_setup_multicast(cp
);
4583 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
4584 spin_unlock_irqrestore(&cp
->lock
, flags
);
4587 static void cas_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
4589 struct cas
*cp
= netdev_priv(dev
);
4590 strncpy(info
->driver
, DRV_MODULE_NAME
, ETHTOOL_BUSINFO_LEN
);
4591 strncpy(info
->version
, DRV_MODULE_VERSION
, ETHTOOL_BUSINFO_LEN
);
4592 info
->fw_version
[0] = '\0';
4593 strncpy(info
->bus_info
, pci_name(cp
->pdev
), ETHTOOL_BUSINFO_LEN
);
4594 info
->regdump_len
= cp
->casreg_len
< CAS_MAX_REGS
?
4595 cp
->casreg_len
: CAS_MAX_REGS
;
4596 info
->n_stats
= CAS_NUM_STAT_KEYS
;
4599 static int cas_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4601 struct cas
*cp
= netdev_priv(dev
);
4603 int full_duplex
, speed
, pause
;
4604 unsigned long flags
;
4605 enum link_state linkstate
= link_up
;
4607 cmd
->advertising
= 0;
4608 cmd
->supported
= SUPPORTED_Autoneg
;
4609 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
4610 cmd
->supported
|= SUPPORTED_1000baseT_Full
;
4611 cmd
->advertising
|= ADVERTISED_1000baseT_Full
;
4614 /* Record PHY settings if HW is on. */
4615 spin_lock_irqsave(&cp
->lock
, flags
);
4617 linkstate
= cp
->lstate
;
4618 if (CAS_PHY_MII(cp
->phy_type
)) {
4619 cmd
->port
= PORT_MII
;
4620 cmd
->transceiver
= (cp
->cas_flags
& CAS_FLAG_SATURN
) ?
4621 XCVR_INTERNAL
: XCVR_EXTERNAL
;
4622 cmd
->phy_address
= cp
->phy_addr
;
4623 cmd
->advertising
|= ADVERTISED_TP
| ADVERTISED_MII
|
4624 ADVERTISED_10baseT_Half
|
4625 ADVERTISED_10baseT_Full
|
4626 ADVERTISED_100baseT_Half
|
4627 ADVERTISED_100baseT_Full
;
4630 (SUPPORTED_10baseT_Half
|
4631 SUPPORTED_10baseT_Full
|
4632 SUPPORTED_100baseT_Half
|
4633 SUPPORTED_100baseT_Full
|
4634 SUPPORTED_TP
| SUPPORTED_MII
);
4636 if (cp
->hw_running
) {
4637 cas_mif_poll(cp
, 0);
4638 bmcr
= cas_phy_read(cp
, MII_BMCR
);
4639 cas_read_mii_link_mode(cp
, &full_duplex
,
4641 cas_mif_poll(cp
, 1);
4645 cmd
->port
= PORT_FIBRE
;
4646 cmd
->transceiver
= XCVR_INTERNAL
;
4647 cmd
->phy_address
= 0;
4648 cmd
->supported
|= SUPPORTED_FIBRE
;
4649 cmd
->advertising
|= ADVERTISED_FIBRE
;
4651 if (cp
->hw_running
) {
4652 /* pcs uses the same bits as mii */
4653 bmcr
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
4654 cas_read_pcs_link_mode(cp
, &full_duplex
,
4658 spin_unlock_irqrestore(&cp
->lock
, flags
);
4660 if (bmcr
& BMCR_ANENABLE
) {
4661 cmd
->advertising
|= ADVERTISED_Autoneg
;
4662 cmd
->autoneg
= AUTONEG_ENABLE
;
4663 cmd
->speed
= ((speed
== 10) ?
4666 SPEED_1000
: SPEED_100
));
4667 cmd
->duplex
= full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
4669 cmd
->autoneg
= AUTONEG_DISABLE
;
4671 (bmcr
& CAS_BMCR_SPEED1000
) ?
4673 ((bmcr
& BMCR_SPEED100
) ? SPEED_100
:
4676 (bmcr
& BMCR_FULLDPLX
) ?
4677 DUPLEX_FULL
: DUPLEX_HALF
;
4679 if (linkstate
!= link_up
) {
4680 /* Force these to "unknown" if the link is not up and
4681 * autonogotiation in enabled. We can set the link
4682 * speed to 0, but not cmd->duplex,
4683 * because its legal values are 0 and 1. Ethtool will
4684 * print the value reported in parentheses after the
4685 * word "Unknown" for unrecognized values.
4687 * If in forced mode, we report the speed and duplex
4688 * settings that we configured.
4690 if (cp
->link_cntl
& BMCR_ANENABLE
) {
4694 cmd
->speed
= SPEED_10
;
4695 if (cp
->link_cntl
& BMCR_SPEED100
) {
4696 cmd
->speed
= SPEED_100
;
4697 } else if (cp
->link_cntl
& CAS_BMCR_SPEED1000
) {
4698 cmd
->speed
= SPEED_1000
;
4700 cmd
->duplex
= (cp
->link_cntl
& BMCR_FULLDPLX
)?
4701 DUPLEX_FULL
: DUPLEX_HALF
;
4707 static int cas_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4709 struct cas
*cp
= netdev_priv(dev
);
4710 unsigned long flags
;
4712 /* Verify the settings we care about. */
4713 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
4714 cmd
->autoneg
!= AUTONEG_DISABLE
)
4717 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
4718 ((cmd
->speed
!= SPEED_1000
&&
4719 cmd
->speed
!= SPEED_100
&&
4720 cmd
->speed
!= SPEED_10
) ||
4721 (cmd
->duplex
!= DUPLEX_HALF
&&
4722 cmd
->duplex
!= DUPLEX_FULL
)))
4725 /* Apply settings and restart link process. */
4726 spin_lock_irqsave(&cp
->lock
, flags
);
4727 cas_begin_auto_negotiation(cp
, cmd
);
4728 spin_unlock_irqrestore(&cp
->lock
, flags
);
4732 static int cas_nway_reset(struct net_device
*dev
)
4734 struct cas
*cp
= netdev_priv(dev
);
4735 unsigned long flags
;
4737 if ((cp
->link_cntl
& BMCR_ANENABLE
) == 0)
4740 /* Restart link process. */
4741 spin_lock_irqsave(&cp
->lock
, flags
);
4742 cas_begin_auto_negotiation(cp
, NULL
);
4743 spin_unlock_irqrestore(&cp
->lock
, flags
);
4748 static u32
cas_get_link(struct net_device
*dev
)
4750 struct cas
*cp
= netdev_priv(dev
);
4751 return cp
->lstate
== link_up
;
4754 static u32
cas_get_msglevel(struct net_device
*dev
)
4756 struct cas
*cp
= netdev_priv(dev
);
4757 return cp
->msg_enable
;
4760 static void cas_set_msglevel(struct net_device
*dev
, u32 value
)
4762 struct cas
*cp
= netdev_priv(dev
);
4763 cp
->msg_enable
= value
;
4766 static int cas_get_regs_len(struct net_device
*dev
)
4768 struct cas
*cp
= netdev_priv(dev
);
4769 return cp
->casreg_len
< CAS_MAX_REGS
? cp
->casreg_len
: CAS_MAX_REGS
;
4772 static void cas_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
4775 struct cas
*cp
= netdev_priv(dev
);
4777 /* cas_read_regs handles locks (cp->lock). */
4778 cas_read_regs(cp
, p
, regs
->len
/ sizeof(u32
));
4781 static int cas_get_stats_count(struct net_device
*dev
)
4783 return CAS_NUM_STAT_KEYS
;
4786 static void cas_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
4788 memcpy(data
, ðtool_cassini_statnames
,
4789 CAS_NUM_STAT_KEYS
* ETH_GSTRING_LEN
);
4792 static void cas_get_ethtool_stats(struct net_device
*dev
,
4793 struct ethtool_stats
*estats
, u64
*data
)
4795 struct cas
*cp
= netdev_priv(dev
);
4796 struct net_device_stats
*stats
= cas_get_stats(cp
->dev
);
4798 data
[i
++] = stats
->collisions
;
4799 data
[i
++] = stats
->rx_bytes
;
4800 data
[i
++] = stats
->rx_crc_errors
;
4801 data
[i
++] = stats
->rx_dropped
;
4802 data
[i
++] = stats
->rx_errors
;
4803 data
[i
++] = stats
->rx_fifo_errors
;
4804 data
[i
++] = stats
->rx_frame_errors
;
4805 data
[i
++] = stats
->rx_length_errors
;
4806 data
[i
++] = stats
->rx_over_errors
;
4807 data
[i
++] = stats
->rx_packets
;
4808 data
[i
++] = stats
->tx_aborted_errors
;
4809 data
[i
++] = stats
->tx_bytes
;
4810 data
[i
++] = stats
->tx_dropped
;
4811 data
[i
++] = stats
->tx_errors
;
4812 data
[i
++] = stats
->tx_fifo_errors
;
4813 data
[i
++] = stats
->tx_packets
;
4814 BUG_ON(i
!= CAS_NUM_STAT_KEYS
);
4817 static struct ethtool_ops cas_ethtool_ops
= {
4818 .get_drvinfo
= cas_get_drvinfo
,
4819 .get_settings
= cas_get_settings
,
4820 .set_settings
= cas_set_settings
,
4821 .nway_reset
= cas_nway_reset
,
4822 .get_link
= cas_get_link
,
4823 .get_msglevel
= cas_get_msglevel
,
4824 .set_msglevel
= cas_set_msglevel
,
4825 .get_regs_len
= cas_get_regs_len
,
4826 .get_regs
= cas_get_regs
,
4827 .get_stats_count
= cas_get_stats_count
,
4828 .get_strings
= cas_get_strings
,
4829 .get_ethtool_stats
= cas_get_ethtool_stats
,
4832 static int cas_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
4834 struct cas
*cp
= netdev_priv(dev
);
4835 struct mii_ioctl_data
*data
= if_mii(ifr
);
4836 unsigned long flags
;
4837 int rc
= -EOPNOTSUPP
;
4839 /* Hold the PM mutex while doing ioctl's or we may collide
4840 * with open/close and power management and oops.
4842 mutex_lock(&cp
->pm_mutex
);
4844 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
4845 data
->phy_id
= cp
->phy_addr
;
4846 /* Fallthrough... */
4848 case SIOCGMIIREG
: /* Read MII PHY register. */
4849 spin_lock_irqsave(&cp
->lock
, flags
);
4850 cas_mif_poll(cp
, 0);
4851 data
->val_out
= cas_phy_read(cp
, data
->reg_num
& 0x1f);
4852 cas_mif_poll(cp
, 1);
4853 spin_unlock_irqrestore(&cp
->lock
, flags
);
4857 case SIOCSMIIREG
: /* Write MII PHY register. */
4858 if (!capable(CAP_NET_ADMIN
)) {
4862 spin_lock_irqsave(&cp
->lock
, flags
);
4863 cas_mif_poll(cp
, 0);
4864 rc
= cas_phy_write(cp
, data
->reg_num
& 0x1f, data
->val_in
);
4865 cas_mif_poll(cp
, 1);
4866 spin_unlock_irqrestore(&cp
->lock
, flags
);
4872 mutex_unlock(&cp
->pm_mutex
);
4876 static int __devinit
cas_init_one(struct pci_dev
*pdev
,
4877 const struct pci_device_id
*ent
)
4879 static int cas_version_printed
= 0;
4880 unsigned long casreg_base
, casreg_len
;
4881 struct net_device
*dev
;
4883 int i
, err
, pci_using_dac
;
4885 u8 orig_cacheline_size
= 0, cas_cacheline_size
= 0;
4887 if (cas_version_printed
++ == 0)
4888 printk(KERN_INFO
"%s", version
);
4890 err
= pci_enable_device(pdev
);
4892 printk(KERN_ERR PFX
"Cannot enable PCI device, "
4897 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
4898 printk(KERN_ERR PFX
"Cannot find proper PCI device "
4899 "base address, aborting.\n");
4901 goto err_out_disable_pdev
;
4904 dev
= alloc_etherdev(sizeof(*cp
));
4906 printk(KERN_ERR PFX
"Etherdev alloc failed, aborting.\n");
4908 goto err_out_disable_pdev
;
4910 SET_MODULE_OWNER(dev
);
4911 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4913 err
= pci_request_regions(pdev
, dev
->name
);
4915 printk(KERN_ERR PFX
"Cannot obtain PCI resources, "
4917 goto err_out_free_netdev
;
4919 pci_set_master(pdev
);
4921 /* we must always turn on parity response or else parity
4922 * doesn't get generated properly. disable SERR/PERR as well.
4923 * in addition, we want to turn MWI on.
4925 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
4926 pci_cmd
&= ~PCI_COMMAND_SERR
;
4927 pci_cmd
|= PCI_COMMAND_PARITY
;
4928 pci_write_config_word(pdev
, PCI_COMMAND
, pci_cmd
);
4931 * On some architectures, the default cache line size set
4932 * by pci_set_mwi reduces perforamnce. We have to increase
4933 * it for this case. To start, we'll print some configuration
4937 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
4938 &orig_cacheline_size
);
4939 if (orig_cacheline_size
< CAS_PREF_CACHELINE_SIZE
) {
4940 cas_cacheline_size
=
4941 (CAS_PREF_CACHELINE_SIZE
< SMP_CACHE_BYTES
) ?
4942 CAS_PREF_CACHELINE_SIZE
: SMP_CACHE_BYTES
;
4943 if (pci_write_config_byte(pdev
,
4944 PCI_CACHE_LINE_SIZE
,
4945 cas_cacheline_size
)) {
4946 printk(KERN_ERR PFX
"Could not set PCI cache "
4948 goto err_write_cacheline
;
4954 /* Configure DMA attributes. */
4955 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
4957 err
= pci_set_consistent_dma_mask(pdev
,
4960 printk(KERN_ERR PFX
"Unable to obtain 64-bit DMA "
4961 "for consistent allocations\n");
4962 goto err_out_free_res
;
4966 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
4968 printk(KERN_ERR PFX
"No usable DMA configuration, "
4970 goto err_out_free_res
;
4975 casreg_base
= pci_resource_start(pdev
, 0);
4976 casreg_len
= pci_resource_len(pdev
, 0);
4978 cp
= netdev_priv(dev
);
4981 /* A value of 0 indicates we never explicitly set it */
4982 cp
->orig_cacheline_size
= cas_cacheline_size
? orig_cacheline_size
: 0;
4985 cp
->msg_enable
= (cassini_debug
< 0) ? CAS_DEF_MSG_ENABLE
:
4988 cp
->link_transition
= LINK_TRANSITION_UNKNOWN
;
4989 cp
->link_transition_jiffies_valid
= 0;
4991 spin_lock_init(&cp
->lock
);
4992 spin_lock_init(&cp
->rx_inuse_lock
);
4993 spin_lock_init(&cp
->rx_spare_lock
);
4994 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4995 spin_lock_init(&cp
->stat_lock
[i
]);
4996 spin_lock_init(&cp
->tx_lock
[i
]);
4998 spin_lock_init(&cp
->stat_lock
[N_TX_RINGS
]);
4999 mutex_init(&cp
->pm_mutex
);
5001 init_timer(&cp
->link_timer
);
5002 cp
->link_timer
.function
= cas_link_timer
;
5003 cp
->link_timer
.data
= (unsigned long) cp
;
5006 /* Just in case the implementation of atomic operations
5007 * change so that an explicit initialization is necessary.
5009 atomic_set(&cp
->reset_task_pending
, 0);
5010 atomic_set(&cp
->reset_task_pending_all
, 0);
5011 atomic_set(&cp
->reset_task_pending_spare
, 0);
5012 atomic_set(&cp
->reset_task_pending_mtu
, 0);
5014 INIT_WORK(&cp
->reset_task
, cas_reset_task
, cp
);
5016 /* Default link parameters */
5017 if (link_mode
>= 0 && link_mode
<= 6)
5018 cp
->link_cntl
= link_modes
[link_mode
];
5020 cp
->link_cntl
= BMCR_ANENABLE
;
5021 cp
->lstate
= link_down
;
5022 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
5023 netif_carrier_off(cp
->dev
);
5024 cp
->timer_ticks
= 0;
5026 /* give us access to cassini registers */
5027 cp
->regs
= ioremap(casreg_base
, casreg_len
);
5028 if (cp
->regs
== 0UL) {
5029 printk(KERN_ERR PFX
"Cannot map device registers, "
5031 goto err_out_free_res
;
5033 cp
->casreg_len
= casreg_len
;
5035 pci_save_state(pdev
);
5036 cas_check_pci_invariants(cp
);
5039 if (cas_check_invariants(cp
))
5040 goto err_out_iounmap
;
5042 cp
->init_block
= (struct cas_init_block
*)
5043 pci_alloc_consistent(pdev
, sizeof(struct cas_init_block
),
5045 if (!cp
->init_block
) {
5046 printk(KERN_ERR PFX
"Cannot allocate init block, "
5048 goto err_out_iounmap
;
5051 for (i
= 0; i
< N_TX_RINGS
; i
++)
5052 cp
->init_txds
[i
] = cp
->init_block
->txds
[i
];
5054 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
5055 cp
->init_rxds
[i
] = cp
->init_block
->rxds
[i
];
5057 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
5058 cp
->init_rxcs
[i
] = cp
->init_block
->rxcs
[i
];
5060 for (i
= 0; i
< N_RX_FLOWS
; i
++)
5061 skb_queue_head_init(&cp
->rx_flows
[i
]);
5063 dev
->open
= cas_open
;
5064 dev
->stop
= cas_close
;
5065 dev
->hard_start_xmit
= cas_start_xmit
;
5066 dev
->get_stats
= cas_get_stats
;
5067 dev
->set_multicast_list
= cas_set_multicast
;
5068 dev
->do_ioctl
= cas_ioctl
;
5069 dev
->ethtool_ops
= &cas_ethtool_ops
;
5070 dev
->tx_timeout
= cas_tx_timeout
;
5071 dev
->watchdog_timeo
= CAS_TX_TIMEOUT
;
5072 dev
->change_mtu
= cas_change_mtu
;
5074 dev
->poll
= cas_poll
;
5077 #ifdef CONFIG_NET_POLL_CONTROLLER
5078 dev
->poll_controller
= cas_netpoll
;
5080 dev
->irq
= pdev
->irq
;
5083 /* Cassini features. */
5084 if ((cp
->cas_flags
& CAS_FLAG_NO_HW_CSUM
) == 0)
5085 dev
->features
|= NETIF_F_HW_CSUM
| NETIF_F_SG
;
5088 dev
->features
|= NETIF_F_HIGHDMA
;
5090 if (register_netdev(dev
)) {
5091 printk(KERN_ERR PFX
"Cannot register net device, "
5093 goto err_out_free_consistent
;
5096 i
= readl(cp
->regs
+ REG_BIM_CFG
);
5097 printk(KERN_INFO
"%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5098 "Ethernet[%d] ", dev
->name
,
5099 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) ? "+" : "",
5100 (i
& BIM_CFG_32BIT
) ? "32" : "64",
5101 (i
& BIM_CFG_66MHZ
) ? "66" : "33",
5102 (cp
->phy_type
== CAS_PHY_SERDES
) ? "Fi" : "Cu", pdev
->irq
);
5104 for (i
= 0; i
< 6; i
++)
5105 printk("%2.2x%c", dev
->dev_addr
[i
],
5106 i
== 5 ? ' ' : ':');
5109 pci_set_drvdata(pdev
, dev
);
5111 cas_entropy_reset(cp
);
5113 cas_begin_auto_negotiation(cp
, NULL
);
5116 err_out_free_consistent
:
5117 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5118 cp
->init_block
, cp
->block_dvma
);
5121 mutex_lock(&cp
->pm_mutex
);
5124 mutex_unlock(&cp
->pm_mutex
);
5130 pci_release_regions(pdev
);
5132 err_write_cacheline
:
5133 /* Try to restore it in case the error occured after we
5136 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, orig_cacheline_size
);
5138 err_out_free_netdev
:
5141 err_out_disable_pdev
:
5142 pci_disable_device(pdev
);
5143 pci_set_drvdata(pdev
, NULL
);
5147 static void __devexit
cas_remove_one(struct pci_dev
*pdev
)
5149 struct net_device
*dev
= pci_get_drvdata(pdev
);
5154 cp
= netdev_priv(dev
);
5155 unregister_netdev(dev
);
5157 mutex_lock(&cp
->pm_mutex
);
5158 flush_scheduled_work();
5161 mutex_unlock(&cp
->pm_mutex
);
5164 if (cp
->orig_cacheline_size
) {
5165 /* Restore the cache line size if we had modified
5168 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
5169 cp
->orig_cacheline_size
);
5172 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5173 cp
->init_block
, cp
->block_dvma
);
5176 pci_release_regions(pdev
);
5177 pci_disable_device(pdev
);
5178 pci_set_drvdata(pdev
, NULL
);
5182 static int cas_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5184 struct net_device
*dev
= pci_get_drvdata(pdev
);
5185 struct cas
*cp
= netdev_priv(dev
);
5186 unsigned long flags
;
5188 mutex_lock(&cp
->pm_mutex
);
5190 /* If the driver is opened, we stop the DMA */
5192 netif_device_detach(dev
);
5194 cas_lock_all_save(cp
, flags
);
5196 /* We can set the second arg of cas_reset to 0
5197 * because on resume, we'll call cas_init_hw with
5198 * its second arg set so that autonegotiation is
5202 cas_clean_rings(cp
);
5203 cas_unlock_all_restore(cp
, flags
);
5208 mutex_unlock(&cp
->pm_mutex
);
5213 static int cas_resume(struct pci_dev
*pdev
)
5215 struct net_device
*dev
= pci_get_drvdata(pdev
);
5216 struct cas
*cp
= netdev_priv(dev
);
5218 printk(KERN_INFO
"%s: resuming\n", dev
->name
);
5220 mutex_lock(&cp
->pm_mutex
);
5223 unsigned long flags
;
5224 cas_lock_all_save(cp
, flags
);
5227 cas_clean_rings(cp
);
5229 cas_unlock_all_restore(cp
, flags
);
5231 netif_device_attach(dev
);
5233 mutex_unlock(&cp
->pm_mutex
);
5236 #endif /* CONFIG_PM */
5238 static struct pci_driver cas_driver
= {
5239 .name
= DRV_MODULE_NAME
,
5240 .id_table
= cas_pci_tbl
,
5241 .probe
= cas_init_one
,
5242 .remove
= __devexit_p(cas_remove_one
),
5244 .suspend
= cas_suspend
,
5245 .resume
= cas_resume
5249 static int __init
cas_init(void)
5251 if (linkdown_timeout
> 0)
5252 link_transition_timeout
= linkdown_timeout
* HZ
;
5254 link_transition_timeout
= 0;
5256 return pci_module_init(&cas_driver
);
5259 static void __exit
cas_cleanup(void)
5261 pci_unregister_driver(&cas_driver
);
5264 module_init(cas_init
);
5265 module_exit(cas_cleanup
);