1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * Shared functions for accessing and configuring the adapter
36 /* Local function prototypes */
38 static uint32_t ixgb_hash_mc_addr(struct ixgb_hw
*hw
, uint8_t * mc_addr
);
40 static void ixgb_mta_set(struct ixgb_hw
*hw
, uint32_t hash_value
);
42 static void ixgb_get_bus_info(struct ixgb_hw
*hw
);
44 static boolean_t
ixgb_link_reset(struct ixgb_hw
*hw
);
46 static void ixgb_optics_reset(struct ixgb_hw
*hw
);
48 static ixgb_phy_type
ixgb_identify_phy(struct ixgb_hw
*hw
);
50 static void ixgb_clear_hw_cntrs(struct ixgb_hw
*hw
);
52 static void ixgb_clear_vfta(struct ixgb_hw
*hw
);
54 static void ixgb_init_rx_addrs(struct ixgb_hw
*hw
);
56 static uint16_t ixgb_read_phy_reg(struct ixgb_hw
*hw
,
59 uint32_t device_type
);
61 static boolean_t
ixgb_setup_fc(struct ixgb_hw
*hw
);
63 static boolean_t
mac_addr_valid(uint8_t *mac_addr
);
65 static uint32_t ixgb_mac_reset(struct ixgb_hw
*hw
)
69 ctrl_reg
= IXGB_CTRL0_RST
|
70 IXGB_CTRL0_SDP3_DIR
| /* All pins are Output=1 */
74 IXGB_CTRL0_SDP3
| /* Initial value 1101 */
79 /* Workaround for 82597EX reset errata */
80 IXGB_WRITE_REG_IO(hw
, CTRL0
, ctrl_reg
);
82 IXGB_WRITE_REG(hw
, CTRL0
, ctrl_reg
);
85 /* Delay a few ms just to allow the reset to complete */
86 msec_delay(IXGB_DELAY_AFTER_RESET
);
87 ctrl_reg
= IXGB_READ_REG(hw
, CTRL0
);
89 /* Make sure the self-clearing global reset bit did self clear */
90 ASSERT(!(ctrl_reg
& IXGB_CTRL0_RST
));
93 if (hw
->phy_type
== ixgb_phy_type_txn17401
) {
94 ixgb_optics_reset(hw
);
100 /******************************************************************************
101 * Reset the transmit and receive units; mask and clear all interrupts.
103 * hw - Struct containing variables accessed by shared code
104 *****************************************************************************/
106 ixgb_adapter_stop(struct ixgb_hw
*hw
)
111 DEBUGFUNC("ixgb_adapter_stop");
113 /* If we are stopped or resetting exit gracefully and wait to be
114 * started again before accessing the hardware.
116 if(hw
->adapter_stopped
) {
117 DEBUGOUT("Exiting because the adapter is already stopped!!!\n");
121 /* Set the Adapter Stopped flag so other driver functions stop
122 * touching the Hardware.
124 hw
->adapter_stopped
= TRUE
;
126 /* Clear interrupt mask to stop board from generating interrupts */
127 DEBUGOUT("Masking off all interrupts\n");
128 IXGB_WRITE_REG(hw
, IMC
, 0xFFFFFFFF);
130 /* Disable the Transmit and Receive units. Then delay to allow
131 * any pending transactions to complete before we hit the MAC with
134 IXGB_WRITE_REG(hw
, RCTL
, IXGB_READ_REG(hw
, RCTL
) & ~IXGB_RCTL_RXEN
);
135 IXGB_WRITE_REG(hw
, TCTL
, IXGB_READ_REG(hw
, TCTL
) & ~IXGB_TCTL_TXEN
);
136 msec_delay(IXGB_DELAY_BEFORE_RESET
);
138 /* Issue a global reset to the MAC. This will reset the chip's
139 * transmit, receive, DMA, and link units. It will not effect
140 * the current PCI configuration. The global reset bit is self-
141 * clearing, and should clear within a microsecond.
143 DEBUGOUT("Issuing a global reset to MAC\n");
145 ctrl_reg
= ixgb_mac_reset(hw
);
147 /* Clear interrupt mask to stop board from generating interrupts */
148 DEBUGOUT("Masking off all interrupts\n");
149 IXGB_WRITE_REG(hw
, IMC
, 0xffffffff);
151 /* Clear any pending interrupt events. */
152 icr_reg
= IXGB_READ_REG(hw
, ICR
);
154 return (ctrl_reg
& IXGB_CTRL0_RST
);
158 /******************************************************************************
159 * Identifies the vendor of the optics module on the adapter. The SR adapters
160 * support two different types of XPAK optics, so it is necessary to determine
161 * which optics are present before applying any optics-specific workarounds.
163 * hw - Struct containing variables accessed by shared code.
165 * Returns: the vendor of the XPAK optics module.
166 *****************************************************************************/
167 static ixgb_xpak_vendor
168 ixgb_identify_xpak_vendor(struct ixgb_hw
*hw
)
171 uint16_t vendor_name
[5];
172 ixgb_xpak_vendor xpak_vendor
;
174 DEBUGFUNC("ixgb_identify_xpak_vendor");
176 /* Read the first few bytes of the vendor string from the XPAK NVR
177 * registers. These are standard XENPAK/XPAK registers, so all XPAK
178 * devices should implement them. */
179 for (i
= 0; i
< 5; i
++) {
180 vendor_name
[i
] = ixgb_read_phy_reg(hw
,
181 MDIO_PMA_PMD_XPAK_VENDOR_NAME
182 + i
, IXGB_PHY_ADDRESS
,
186 /* Determine the actual vendor */
187 if (vendor_name
[0] == 'I' &&
188 vendor_name
[1] == 'N' &&
189 vendor_name
[2] == 'T' &&
190 vendor_name
[3] == 'E' && vendor_name
[4] == 'L') {
191 xpak_vendor
= ixgb_xpak_vendor_intel
;
193 xpak_vendor
= ixgb_xpak_vendor_infineon
;
196 return (xpak_vendor
);
199 /******************************************************************************
200 * Determine the physical layer module on the adapter.
202 * hw - Struct containing variables accessed by shared code. The device_id
203 * field must be (correctly) populated before calling this routine.
205 * Returns: the phy type of the adapter.
206 *****************************************************************************/
208 ixgb_identify_phy(struct ixgb_hw
*hw
)
210 ixgb_phy_type phy_type
;
211 ixgb_xpak_vendor xpak_vendor
;
213 DEBUGFUNC("ixgb_identify_phy");
215 /* Infer the transceiver/phy type from the device id */
216 switch (hw
->device_id
) {
217 case IXGB_DEVICE_ID_82597EX
:
218 DEBUGOUT("Identified TXN17401 optics\n");
219 phy_type
= ixgb_phy_type_txn17401
;
222 case IXGB_DEVICE_ID_82597EX_SR
:
223 /* The SR adapters carry two different types of XPAK optics
224 * modules; read the vendor identifier to determine the exact
226 xpak_vendor
= ixgb_identify_xpak_vendor(hw
);
227 if (xpak_vendor
== ixgb_xpak_vendor_intel
) {
228 DEBUGOUT("Identified TXN17201 optics\n");
229 phy_type
= ixgb_phy_type_txn17201
;
231 DEBUGOUT("Identified G6005 optics\n");
232 phy_type
= ixgb_phy_type_g6005
;
235 case IXGB_DEVICE_ID_82597EX_LR
:
236 DEBUGOUT("Identified G6104 optics\n");
237 phy_type
= ixgb_phy_type_g6104
;
240 DEBUGOUT("Unknown physical layer module\n");
241 phy_type
= ixgb_phy_type_unknown
;
248 /******************************************************************************
249 * Performs basic configuration of the adapter.
251 * hw - Struct containing variables accessed by shared code
253 * Resets the controller.
254 * Reads and validates the EEPROM.
255 * Initializes the receive address registers.
256 * Initializes the multicast table.
257 * Clears all on-chip counters.
258 * Calls routine to setup flow control settings.
259 * Leaves the transmit and receive units disabled and uninitialized.
262 * TRUE if successful,
263 * FALSE if unrecoverable problems were encountered.
264 *****************************************************************************/
266 ixgb_init_hw(struct ixgb_hw
*hw
)
272 DEBUGFUNC("ixgb_init_hw");
274 /* Issue a global reset to the MAC. This will reset the chip's
275 * transmit, receive, DMA, and link units. It will not effect
276 * the current PCI configuration. The global reset bit is self-
277 * clearing, and should clear within a microsecond.
279 DEBUGOUT("Issuing a global reset to MAC\n");
281 ctrl_reg
= ixgb_mac_reset(hw
);
283 DEBUGOUT("Issuing an EE reset to MAC\n");
285 /* Workaround for 82597EX reset errata */
286 IXGB_WRITE_REG_IO(hw
, CTRL1
, IXGB_CTRL1_EE_RST
);
288 IXGB_WRITE_REG(hw
, CTRL1
, IXGB_CTRL1_EE_RST
);
291 /* Delay a few ms just to allow the reset to complete */
292 msec_delay(IXGB_DELAY_AFTER_EE_RESET
);
294 if (ixgb_get_eeprom_data(hw
) == FALSE
) {
298 /* Use the device id to determine the type of phy/transceiver. */
299 hw
->device_id
= ixgb_get_ee_device_id(hw
);
300 hw
->phy_type
= ixgb_identify_phy(hw
);
302 /* Setup the receive addresses.
303 * Receive Address Registers (RARs 0 - 15).
305 ixgb_init_rx_addrs(hw
);
308 * Check that a valid MAC address has been set.
309 * If it is not valid, we fail hardware init.
311 if (!mac_addr_valid(hw
->curr_mac_addr
)) {
312 DEBUGOUT("MAC address invalid after ixgb_init_rx_addrs\n");
316 /* tell the routines in this file they can access hardware again */
317 hw
->adapter_stopped
= FALSE
;
319 /* Fill in the bus_info structure */
320 ixgb_get_bus_info(hw
);
322 /* Zero out the Multicast HASH table */
323 DEBUGOUT("Zeroing the MTA\n");
324 for(i
= 0; i
< IXGB_MC_TBL_SIZE
; i
++)
325 IXGB_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
327 /* Zero out the VLAN Filter Table Array */
330 /* Zero all of the hardware counters */
331 ixgb_clear_hw_cntrs(hw
);
333 /* Call a subroutine to setup flow control. */
334 status
= ixgb_setup_fc(hw
);
336 /* 82597EX errata: Call check-for-link in case lane deskew is locked */
337 ixgb_check_for_link(hw
);
342 /******************************************************************************
343 * Initializes receive address filters.
345 * hw - Struct containing variables accessed by shared code
347 * Places the MAC address in receive address register 0 and clears the rest
348 * of the receive addresss registers. Clears the multicast table. Assumes
349 * the receiver is in reset when the routine is called.
350 *****************************************************************************/
352 ixgb_init_rx_addrs(struct ixgb_hw
*hw
)
356 DEBUGFUNC("ixgb_init_rx_addrs");
359 * If the current mac address is valid, assume it is a software override
360 * to the permanent address.
361 * Otherwise, use the permanent address from the eeprom.
363 if (!mac_addr_valid(hw
->curr_mac_addr
)) {
365 /* Get the MAC address from the eeprom for later reference */
366 ixgb_get_ee_mac_addr(hw
, hw
->curr_mac_addr
);
368 DEBUGOUT3(" Keeping Permanent MAC Addr =%.2X %.2X %.2X ",
369 hw
->curr_mac_addr
[0],
370 hw
->curr_mac_addr
[1], hw
->curr_mac_addr
[2]);
371 DEBUGOUT3("%.2X %.2X %.2X\n",
372 hw
->curr_mac_addr
[3],
373 hw
->curr_mac_addr
[4], hw
->curr_mac_addr
[5]);
376 /* Setup the receive address. */
377 DEBUGOUT("Overriding MAC Address in RAR[0]\n");
378 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
379 hw
->curr_mac_addr
[0],
380 hw
->curr_mac_addr
[1], hw
->curr_mac_addr
[2]);
381 DEBUGOUT3("%.2X %.2X %.2X\n",
382 hw
->curr_mac_addr
[3],
383 hw
->curr_mac_addr
[4], hw
->curr_mac_addr
[5]);
385 ixgb_rar_set(hw
, hw
->curr_mac_addr
, 0);
388 /* Zero out the other 15 receive addresses. */
389 DEBUGOUT("Clearing RAR[1-15]\n");
390 for(i
= 1; i
< IXGB_RAR_ENTRIES
; i
++) {
391 IXGB_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1), 0);
392 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((i
<< 1) + 1), 0);
398 /******************************************************************************
399 * Updates the MAC's list of multicast addresses.
401 * hw - Struct containing variables accessed by shared code
402 * mc_addr_list - the list of new multicast addresses
403 * mc_addr_count - number of addresses
404 * pad - number of bytes between addresses in the list
406 * The given list replaces any existing list. Clears the last 15 receive
407 * address registers and the multicast table. Uses receive address registers
408 * for the first 15 multicast addresses, and hashes the rest into the
410 *****************************************************************************/
412 ixgb_mc_addr_list_update(struct ixgb_hw
*hw
,
413 uint8_t *mc_addr_list
,
414 uint32_t mc_addr_count
,
419 uint32_t rar_used_count
= 1; /* RAR[0] is used for our MAC address */
421 DEBUGFUNC("ixgb_mc_addr_list_update");
423 /* Set the new number of MC addresses that we are being requested to use. */
424 hw
->num_mc_addrs
= mc_addr_count
;
426 /* Clear RAR[1-15] */
427 DEBUGOUT(" Clearing RAR[1-15]\n");
428 for(i
= rar_used_count
; i
< IXGB_RAR_ENTRIES
; i
++) {
429 IXGB_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1), 0);
430 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((i
<< 1) + 1), 0);
434 DEBUGOUT(" Clearing MTA\n");
435 for(i
= 0; i
< IXGB_MC_TBL_SIZE
; i
++) {
436 IXGB_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
439 /* Add the new addresses */
440 for(i
= 0; i
< mc_addr_count
; i
++) {
441 DEBUGOUT(" Adding the multicast addresses:\n");
442 DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i
,
443 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
)],
444 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
446 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
448 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
450 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
452 mc_addr_list
[i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
) +
455 /* Place this multicast address in the RAR if there is room, *
456 * else put it in the MTA
458 if(rar_used_count
< IXGB_RAR_ENTRIES
) {
461 (i
* (IXGB_ETH_LENGTH_OF_ADDRESS
+ pad
)),
463 DEBUGOUT1("Added a multicast address to RAR[%d]\n", i
);
466 hash_value
= ixgb_hash_mc_addr(hw
,
469 (IXGB_ETH_LENGTH_OF_ADDRESS
472 DEBUGOUT1(" Hash value = 0x%03X\n", hash_value
);
474 ixgb_mta_set(hw
, hash_value
);
478 DEBUGOUT("MC Update Complete\n");
482 /******************************************************************************
483 * Hashes an address to determine its location in the multicast table
485 * hw - Struct containing variables accessed by shared code
486 * mc_addr - the multicast address to hash
490 *****************************************************************************/
492 ixgb_hash_mc_addr(struct ixgb_hw
*hw
,
495 uint32_t hash_value
= 0;
497 DEBUGFUNC("ixgb_hash_mc_addr");
499 /* The portion of the address that is used for the hash table is
500 * determined by the mc_filter_type setting.
502 switch (hw
->mc_filter_type
) {
503 /* [0] [1] [2] [3] [4] [5]
505 * LSB MSB - According to H/W docs */
507 /* [47:36] i.e. 0x563 for above example address */
509 ((mc_addr
[4] >> 4) | (((uint16_t) mc_addr
[5]) << 4));
511 case 1: /* [46:35] i.e. 0xAC6 for above example address */
513 ((mc_addr
[4] >> 3) | (((uint16_t) mc_addr
[5]) << 5));
515 case 2: /* [45:34] i.e. 0x5D8 for above example address */
517 ((mc_addr
[4] >> 2) | (((uint16_t) mc_addr
[5]) << 6));
519 case 3: /* [43:32] i.e. 0x634 for above example address */
520 hash_value
= ((mc_addr
[4]) | (((uint16_t) mc_addr
[5]) << 8));
523 /* Invalid mc_filter_type, what should we do? */
524 DEBUGOUT("MC filter type param set incorrectly\n");
533 /******************************************************************************
534 * Sets the bit in the multicast table corresponding to the hash value.
536 * hw - Struct containing variables accessed by shared code
537 * hash_value - Multicast address hash value
538 *****************************************************************************/
540 ixgb_mta_set(struct ixgb_hw
*hw
,
543 uint32_t hash_bit
, hash_reg
;
546 /* The MTA is a register array of 128 32-bit registers.
547 * It is treated like an array of 4096 bits. We want to set
548 * bit BitArray[hash_value]. So we figure out what register
549 * the bit is in, read it, OR in the new bit, then write
550 * back the new value. The register is determined by the
551 * upper 7 bits of the hash value and the bit within that
552 * register are determined by the lower 5 bits of the value.
554 hash_reg
= (hash_value
>> 5) & 0x7F;
555 hash_bit
= hash_value
& 0x1F;
557 mta_reg
= IXGB_READ_REG_ARRAY(hw
, MTA
, hash_reg
);
559 mta_reg
|= (1 << hash_bit
);
561 IXGB_WRITE_REG_ARRAY(hw
, MTA
, hash_reg
, mta_reg
);
566 /******************************************************************************
567 * Puts an ethernet address into a receive address register.
569 * hw - Struct containing variables accessed by shared code
570 * addr - Address to put into receive address register
571 * index - Receive address register to write
572 *****************************************************************************/
574 ixgb_rar_set(struct ixgb_hw
*hw
,
578 uint32_t rar_low
, rar_high
;
580 DEBUGFUNC("ixgb_rar_set");
582 /* HW expects these in little endian so we reverse the byte order
583 * from network order (big endian) to little endian
585 rar_low
= ((uint32_t) addr
[0] |
586 ((uint32_t)addr
[1] << 8) |
587 ((uint32_t)addr
[2] << 16) |
588 ((uint32_t)addr
[3] << 24));
590 rar_high
= ((uint32_t) addr
[4] |
591 ((uint32_t)addr
[5] << 8) |
594 IXGB_WRITE_REG_ARRAY(hw
, RA
, (index
<< 1), rar_low
);
595 IXGB_WRITE_REG_ARRAY(hw
, RA
, ((index
<< 1) + 1), rar_high
);
599 /******************************************************************************
600 * Writes a value to the specified offset in the VLAN filter table.
602 * hw - Struct containing variables accessed by shared code
603 * offset - Offset in VLAN filer table to write
604 * value - Value to write into VLAN filter table
605 *****************************************************************************/
607 ixgb_write_vfta(struct ixgb_hw
*hw
,
611 IXGB_WRITE_REG_ARRAY(hw
, VFTA
, offset
, value
);
615 /******************************************************************************
616 * Clears the VLAN filer table
618 * hw - Struct containing variables accessed by shared code
619 *****************************************************************************/
621 ixgb_clear_vfta(struct ixgb_hw
*hw
)
625 for(offset
= 0; offset
< IXGB_VLAN_FILTER_TBL_SIZE
; offset
++)
626 IXGB_WRITE_REG_ARRAY(hw
, VFTA
, offset
, 0);
630 /******************************************************************************
631 * Configures the flow control settings based on SW configuration.
633 * hw - Struct containing variables accessed by shared code
634 *****************************************************************************/
637 ixgb_setup_fc(struct ixgb_hw
*hw
)
640 uint32_t pap_reg
= 0; /* by default, assume no pause time */
641 boolean_t status
= TRUE
;
643 DEBUGFUNC("ixgb_setup_fc");
645 /* Get the current control reg 0 settings */
646 ctrl_reg
= IXGB_READ_REG(hw
, CTRL0
);
648 /* Clear the Receive Pause Enable and Transmit Pause Enable bits */
649 ctrl_reg
&= ~(IXGB_CTRL0_RPE
| IXGB_CTRL0_TPE
);
651 /* The possible values of the "flow_control" parameter are:
652 * 0: Flow control is completely disabled
653 * 1: Rx flow control is enabled (we can receive pause frames
654 * but not send pause frames).
655 * 2: Tx flow control is enabled (we can send pause frames
656 * but we do not support receiving pause frames).
657 * 3: Both Rx and TX flow control (symmetric) are enabled.
660 switch (hw
->fc
.type
) {
661 case ixgb_fc_none
: /* 0 */
662 /* Set CMDC bit to disable Rx Flow control */
663 ctrl_reg
|= (IXGB_CTRL0_CMDC
);
665 case ixgb_fc_rx_pause
: /* 1 */
666 /* RX Flow control is enabled, and TX Flow control is
669 ctrl_reg
|= (IXGB_CTRL0_RPE
);
671 case ixgb_fc_tx_pause
: /* 2 */
672 /* TX Flow control is enabled, and RX Flow control is
673 * disabled, by a software over-ride.
675 ctrl_reg
|= (IXGB_CTRL0_TPE
);
676 pap_reg
= hw
->fc
.pause_time
;
678 case ixgb_fc_full
: /* 3 */
679 /* Flow control (both RX and TX) is enabled by a software
682 ctrl_reg
|= (IXGB_CTRL0_RPE
| IXGB_CTRL0_TPE
);
683 pap_reg
= hw
->fc
.pause_time
;
686 /* We should never get here. The value should be 0-3. */
687 DEBUGOUT("Flow control param set incorrectly\n");
692 /* Write the new settings */
693 IXGB_WRITE_REG(hw
, CTRL0
, ctrl_reg
);
696 IXGB_WRITE_REG(hw
, PAP
, pap_reg
);
699 /* Set the flow control receive threshold registers. Normally,
700 * these registers will be set to a default threshold that may be
701 * adjusted later by the driver's runtime code. However, if the
702 * ability to transmit pause frames in not enabled, then these
703 * registers will be set to 0.
705 if(!(hw
->fc
.type
& ixgb_fc_tx_pause
)) {
706 IXGB_WRITE_REG(hw
, FCRTL
, 0);
707 IXGB_WRITE_REG(hw
, FCRTH
, 0);
709 /* We need to set up the Receive Threshold high and low water
710 * marks as well as (optionally) enabling the transmission of XON
712 if(hw
->fc
.send_xon
) {
713 IXGB_WRITE_REG(hw
, FCRTL
,
714 (hw
->fc
.low_water
| IXGB_FCRTL_XONE
));
716 IXGB_WRITE_REG(hw
, FCRTL
, hw
->fc
.low_water
);
718 IXGB_WRITE_REG(hw
, FCRTH
, hw
->fc
.high_water
);
723 /******************************************************************************
724 * Reads a word from a device over the Management Data Interface (MDI) bus.
725 * This interface is used to manage Physical layer devices.
727 * hw - Struct containing variables accessed by hw code
728 * reg_address - Offset of device register being read.
729 * phy_address - Address of device on MDI.
731 * Returns: Data word (16 bits) from MDI device.
733 * The 82597EX has support for several MDI access methods. This routine
734 * uses the new protocol MDI Single Command and Address Operation.
735 * This requires that first an address cycle command is sent, followed by a
737 *****************************************************************************/
739 ixgb_read_phy_reg(struct ixgb_hw
*hw
,
740 uint32_t reg_address
,
741 uint32_t phy_address
,
742 uint32_t device_type
)
746 uint32_t command
= 0;
748 ASSERT(reg_address
<= IXGB_MAX_PHY_REG_ADDRESS
);
749 ASSERT(phy_address
<= IXGB_MAX_PHY_ADDRESS
);
750 ASSERT(device_type
<= IXGB_MAX_PHY_DEV_TYPE
);
752 /* Setup and write the address cycle command */
753 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
754 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
755 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
756 (IXGB_MSCA_ADDR_CYCLE
| IXGB_MSCA_MDI_COMMAND
));
758 IXGB_WRITE_REG(hw
, MSCA
, command
);
760 /**************************************************************
761 ** Check every 10 usec to see if the address cycle completed
762 ** The COMMAND bit will clear when the operation is complete.
763 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
764 ** from the CPU Write to the Ready bit assertion.
765 **************************************************************/
767 for(i
= 0; i
< 10; i
++)
771 command
= IXGB_READ_REG(hw
, MSCA
);
773 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
777 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
779 /* Address cycle complete, setup and write the read command */
780 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
781 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
782 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
783 (IXGB_MSCA_READ
| IXGB_MSCA_MDI_COMMAND
));
785 IXGB_WRITE_REG(hw
, MSCA
, command
);
787 /**************************************************************
788 ** Check every 10 usec to see if the read command completed
789 ** The COMMAND bit will clear when the operation is complete.
790 ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
791 ** from the CPU Write to the Ready bit assertion.
792 **************************************************************/
794 for(i
= 0; i
< 10; i
++)
798 command
= IXGB_READ_REG(hw
, MSCA
);
800 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
804 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
806 /* Operation is complete, get the data from the MDIO Read/Write Data
807 * register and return.
809 data
= IXGB_READ_REG(hw
, MSRWD
);
810 data
>>= IXGB_MSRWD_READ_DATA_SHIFT
;
811 return((uint16_t) data
);
814 /******************************************************************************
815 * Writes a word to a device over the Management Data Interface (MDI) bus.
816 * This interface is used to manage Physical layer devices.
818 * hw - Struct containing variables accessed by hw code
819 * reg_address - Offset of device register being read.
820 * phy_address - Address of device on MDI.
821 * device_type - Also known as the Device ID or DID.
822 * data - 16-bit value to be written
826 * The 82597EX has support for several MDI access methods. This routine
827 * uses the new protocol MDI Single Command and Address Operation.
828 * This requires that first an address cycle command is sent, followed by a
830 *****************************************************************************/
832 ixgb_write_phy_reg(struct ixgb_hw
*hw
,
833 uint32_t reg_address
,
834 uint32_t phy_address
,
835 uint32_t device_type
,
839 uint32_t command
= 0;
841 ASSERT(reg_address
<= IXGB_MAX_PHY_REG_ADDRESS
);
842 ASSERT(phy_address
<= IXGB_MAX_PHY_ADDRESS
);
843 ASSERT(device_type
<= IXGB_MAX_PHY_DEV_TYPE
);
845 /* Put the data in the MDIO Read/Write Data register */
846 IXGB_WRITE_REG(hw
, MSRWD
, (uint32_t)data
);
848 /* Setup and write the address cycle command */
849 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
850 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
851 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
852 (IXGB_MSCA_ADDR_CYCLE
| IXGB_MSCA_MDI_COMMAND
));
854 IXGB_WRITE_REG(hw
, MSCA
, command
);
856 /**************************************************************
857 ** Check every 10 usec to see if the address cycle completed
858 ** The COMMAND bit will clear when the operation is complete.
859 ** This may take as long as 64 usecs (we'll wait 100 usecs max)
860 ** from the CPU Write to the Ready bit assertion.
861 **************************************************************/
863 for(i
= 0; i
< 10; i
++)
867 command
= IXGB_READ_REG(hw
, MSCA
);
869 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
873 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
875 /* Address cycle complete, setup and write the write command */
876 command
= ((reg_address
<< IXGB_MSCA_NP_ADDR_SHIFT
) |
877 (device_type
<< IXGB_MSCA_DEV_TYPE_SHIFT
) |
878 (phy_address
<< IXGB_MSCA_PHY_ADDR_SHIFT
) |
879 (IXGB_MSCA_WRITE
| IXGB_MSCA_MDI_COMMAND
));
881 IXGB_WRITE_REG(hw
, MSCA
, command
);
883 /**************************************************************
884 ** Check every 10 usec to see if the read command completed
885 ** The COMMAND bit will clear when the operation is complete.
886 ** The write may take as long as 64 usecs (we'll wait 100 usecs max)
887 ** from the CPU Write to the Ready bit assertion.
888 **************************************************************/
890 for(i
= 0; i
< 10; i
++)
894 command
= IXGB_READ_REG(hw
, MSCA
);
896 if ((command
& IXGB_MSCA_MDI_COMMAND
) == 0)
900 ASSERT((command
& IXGB_MSCA_MDI_COMMAND
) == 0);
902 /* Operation is complete, return. */
905 /******************************************************************************
906 * Checks to see if the link status of the hardware has changed.
908 * hw - Struct containing variables accessed by hw code
910 * Called by any function that needs to check the link status of the adapter.
911 *****************************************************************************/
913 ixgb_check_for_link(struct ixgb_hw
*hw
)
918 DEBUGFUNC("ixgb_check_for_link");
920 xpcss_reg
= IXGB_READ_REG(hw
, XPCSS
);
921 status_reg
= IXGB_READ_REG(hw
, STATUS
);
923 if ((xpcss_reg
& IXGB_XPCSS_ALIGN_STATUS
) &&
924 (status_reg
& IXGB_STATUS_LU
)) {
926 } else if (!(xpcss_reg
& IXGB_XPCSS_ALIGN_STATUS
) &&
927 (status_reg
& IXGB_STATUS_LU
)) {
928 DEBUGOUT("XPCSS Not Aligned while Status:LU is set.\n");
929 hw
->link_up
= ixgb_link_reset(hw
);
932 * 82597EX errata. Since the lane deskew problem may prevent
933 * link, reset the link before reporting link down.
935 hw
->link_up
= ixgb_link_reset(hw
);
937 /* Anything else for 10 Gig?? */
940 /******************************************************************************
941 * Check for a bad link condition that may have occured.
942 * The indication is that the RFC / LFC registers may be incrementing
943 * continually. A full adapter reset is required to recover.
945 * hw - Struct containing variables accessed by hw code
947 * Called by any function that needs to check the link status of the adapter.
948 *****************************************************************************/
949 boolean_t
ixgb_check_for_bad_link(struct ixgb_hw
*hw
)
951 uint32_t newLFC
, newRFC
;
952 boolean_t bad_link_returncode
= FALSE
;
954 if (hw
->phy_type
== ixgb_phy_type_txn17401
) {
955 newLFC
= IXGB_READ_REG(hw
, LFC
);
956 newRFC
= IXGB_READ_REG(hw
, RFC
);
957 if ((hw
->lastLFC
+ 250 < newLFC
)
958 || (hw
->lastRFC
+ 250 < newRFC
)) {
960 ("BAD LINK! too many LFC/RFC since last check\n");
961 bad_link_returncode
= TRUE
;
963 hw
->lastLFC
= newLFC
;
964 hw
->lastRFC
= newRFC
;
967 return bad_link_returncode
;
970 /******************************************************************************
971 * Clears all hardware statistics counters.
973 * hw - Struct containing variables accessed by shared code
974 *****************************************************************************/
976 ixgb_clear_hw_cntrs(struct ixgb_hw
*hw
)
978 volatile uint32_t temp_reg
;
980 DEBUGFUNC("ixgb_clear_hw_cntrs");
982 /* if we are stopped or resetting exit gracefully */
983 if(hw
->adapter_stopped
) {
984 DEBUGOUT("Exiting because the adapter is stopped!!!\n");
988 temp_reg
= IXGB_READ_REG(hw
, TPRL
);
989 temp_reg
= IXGB_READ_REG(hw
, TPRH
);
990 temp_reg
= IXGB_READ_REG(hw
, GPRCL
);
991 temp_reg
= IXGB_READ_REG(hw
, GPRCH
);
992 temp_reg
= IXGB_READ_REG(hw
, BPRCL
);
993 temp_reg
= IXGB_READ_REG(hw
, BPRCH
);
994 temp_reg
= IXGB_READ_REG(hw
, MPRCL
);
995 temp_reg
= IXGB_READ_REG(hw
, MPRCH
);
996 temp_reg
= IXGB_READ_REG(hw
, UPRCL
);
997 temp_reg
= IXGB_READ_REG(hw
, UPRCH
);
998 temp_reg
= IXGB_READ_REG(hw
, VPRCL
);
999 temp_reg
= IXGB_READ_REG(hw
, VPRCH
);
1000 temp_reg
= IXGB_READ_REG(hw
, JPRCL
);
1001 temp_reg
= IXGB_READ_REG(hw
, JPRCH
);
1002 temp_reg
= IXGB_READ_REG(hw
, GORCL
);
1003 temp_reg
= IXGB_READ_REG(hw
, GORCH
);
1004 temp_reg
= IXGB_READ_REG(hw
, TORL
);
1005 temp_reg
= IXGB_READ_REG(hw
, TORH
);
1006 temp_reg
= IXGB_READ_REG(hw
, RNBC
);
1007 temp_reg
= IXGB_READ_REG(hw
, RUC
);
1008 temp_reg
= IXGB_READ_REG(hw
, ROC
);
1009 temp_reg
= IXGB_READ_REG(hw
, RLEC
);
1010 temp_reg
= IXGB_READ_REG(hw
, CRCERRS
);
1011 temp_reg
= IXGB_READ_REG(hw
, ICBC
);
1012 temp_reg
= IXGB_READ_REG(hw
, ECBC
);
1013 temp_reg
= IXGB_READ_REG(hw
, MPC
);
1014 temp_reg
= IXGB_READ_REG(hw
, TPTL
);
1015 temp_reg
= IXGB_READ_REG(hw
, TPTH
);
1016 temp_reg
= IXGB_READ_REG(hw
, GPTCL
);
1017 temp_reg
= IXGB_READ_REG(hw
, GPTCH
);
1018 temp_reg
= IXGB_READ_REG(hw
, BPTCL
);
1019 temp_reg
= IXGB_READ_REG(hw
, BPTCH
);
1020 temp_reg
= IXGB_READ_REG(hw
, MPTCL
);
1021 temp_reg
= IXGB_READ_REG(hw
, MPTCH
);
1022 temp_reg
= IXGB_READ_REG(hw
, UPTCL
);
1023 temp_reg
= IXGB_READ_REG(hw
, UPTCH
);
1024 temp_reg
= IXGB_READ_REG(hw
, VPTCL
);
1025 temp_reg
= IXGB_READ_REG(hw
, VPTCH
);
1026 temp_reg
= IXGB_READ_REG(hw
, JPTCL
);
1027 temp_reg
= IXGB_READ_REG(hw
, JPTCH
);
1028 temp_reg
= IXGB_READ_REG(hw
, GOTCL
);
1029 temp_reg
= IXGB_READ_REG(hw
, GOTCH
);
1030 temp_reg
= IXGB_READ_REG(hw
, TOTL
);
1031 temp_reg
= IXGB_READ_REG(hw
, TOTH
);
1032 temp_reg
= IXGB_READ_REG(hw
, DC
);
1033 temp_reg
= IXGB_READ_REG(hw
, PLT64C
);
1034 temp_reg
= IXGB_READ_REG(hw
, TSCTC
);
1035 temp_reg
= IXGB_READ_REG(hw
, TSCTFC
);
1036 temp_reg
= IXGB_READ_REG(hw
, IBIC
);
1037 temp_reg
= IXGB_READ_REG(hw
, RFC
);
1038 temp_reg
= IXGB_READ_REG(hw
, LFC
);
1039 temp_reg
= IXGB_READ_REG(hw
, PFRC
);
1040 temp_reg
= IXGB_READ_REG(hw
, PFTC
);
1041 temp_reg
= IXGB_READ_REG(hw
, MCFRC
);
1042 temp_reg
= IXGB_READ_REG(hw
, MCFTC
);
1043 temp_reg
= IXGB_READ_REG(hw
, XONRXC
);
1044 temp_reg
= IXGB_READ_REG(hw
, XONTXC
);
1045 temp_reg
= IXGB_READ_REG(hw
, XOFFRXC
);
1046 temp_reg
= IXGB_READ_REG(hw
, XOFFTXC
);
1047 temp_reg
= IXGB_READ_REG(hw
, RJC
);
1051 /******************************************************************************
1052 * Turns on the software controllable LED
1054 * hw - Struct containing variables accessed by shared code
1055 *****************************************************************************/
1057 ixgb_led_on(struct ixgb_hw
*hw
)
1059 uint32_t ctrl0_reg
= IXGB_READ_REG(hw
, CTRL0
);
1061 /* To turn on the LED, clear software-definable pin 0 (SDP0). */
1062 ctrl0_reg
&= ~IXGB_CTRL0_SDP0
;
1063 IXGB_WRITE_REG(hw
, CTRL0
, ctrl0_reg
);
1067 /******************************************************************************
1068 * Turns off the software controllable LED
1070 * hw - Struct containing variables accessed by shared code
1071 *****************************************************************************/
1073 ixgb_led_off(struct ixgb_hw
*hw
)
1075 uint32_t ctrl0_reg
= IXGB_READ_REG(hw
, CTRL0
);
1077 /* To turn off the LED, set software-definable pin 0 (SDP0). */
1078 ctrl0_reg
|= IXGB_CTRL0_SDP0
;
1079 IXGB_WRITE_REG(hw
, CTRL0
, ctrl0_reg
);
1083 /******************************************************************************
1084 * Gets the current PCI bus type, speed, and width of the hardware
1086 * hw - Struct containing variables accessed by shared code
1087 *****************************************************************************/
1089 ixgb_get_bus_info(struct ixgb_hw
*hw
)
1091 uint32_t status_reg
;
1093 status_reg
= IXGB_READ_REG(hw
, STATUS
);
1095 hw
->bus
.type
= (status_reg
& IXGB_STATUS_PCIX_MODE
) ?
1096 ixgb_bus_type_pcix
: ixgb_bus_type_pci
;
1098 if (hw
->bus
.type
== ixgb_bus_type_pci
) {
1099 hw
->bus
.speed
= (status_reg
& IXGB_STATUS_PCI_SPD
) ?
1100 ixgb_bus_speed_66
: ixgb_bus_speed_33
;
1102 switch (status_reg
& IXGB_STATUS_PCIX_SPD_MASK
) {
1103 case IXGB_STATUS_PCIX_SPD_66
:
1104 hw
->bus
.speed
= ixgb_bus_speed_66
;
1106 case IXGB_STATUS_PCIX_SPD_100
:
1107 hw
->bus
.speed
= ixgb_bus_speed_100
;
1109 case IXGB_STATUS_PCIX_SPD_133
:
1110 hw
->bus
.speed
= ixgb_bus_speed_133
;
1113 hw
->bus
.speed
= ixgb_bus_speed_reserved
;
1118 hw
->bus
.width
= (status_reg
& IXGB_STATUS_BUS64
) ?
1119 ixgb_bus_width_64
: ixgb_bus_width_32
;
1124 /******************************************************************************
1125 * Tests a MAC address to ensure it is a valid Individual Address
1127 * mac_addr - pointer to MAC address.
1129 *****************************************************************************/
1131 mac_addr_valid(uint8_t *mac_addr
)
1133 boolean_t is_valid
= TRUE
;
1134 DEBUGFUNC("mac_addr_valid");
1136 /* Make sure it is not a multicast address */
1137 if (IS_MULTICAST(mac_addr
)) {
1138 DEBUGOUT("MAC address is multicast\n");
1141 /* Not a broadcast address */
1142 else if (IS_BROADCAST(mac_addr
)) {
1143 DEBUGOUT("MAC address is broadcast\n");
1146 /* Reject the zero address */
1147 else if (mac_addr
[0] == 0 &&
1153 DEBUGOUT("MAC address is all zeros\n");
1159 /******************************************************************************
1160 * Resets the 10GbE link. Waits the settle time and returns the state of
1163 * hw - Struct containing variables accessed by shared code
1164 *****************************************************************************/
1166 ixgb_link_reset(struct ixgb_hw
*hw
)
1168 boolean_t link_status
= FALSE
;
1169 uint8_t wait_retries
= MAX_RESET_ITERATIONS
;
1170 uint8_t lrst_retries
= MAX_RESET_ITERATIONS
;
1173 /* Reset the link */
1174 IXGB_WRITE_REG(hw
, CTRL0
,
1175 IXGB_READ_REG(hw
, CTRL0
) | IXGB_CTRL0_LRST
);
1177 /* Wait for link-up and lane re-alignment */
1179 udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET
);
1181 ((IXGB_READ_REG(hw
, STATUS
) & IXGB_STATUS_LU
)
1182 && (IXGB_READ_REG(hw
, XPCSS
) &
1183 IXGB_XPCSS_ALIGN_STATUS
)) ? TRUE
: FALSE
;
1184 } while (!link_status
&& --wait_retries
);
1186 } while (!link_status
&& --lrst_retries
);
1191 /******************************************************************************
1192 * Resets the 10GbE optics module.
1194 * hw - Struct containing variables accessed by shared code
1195 *****************************************************************************/
1197 ixgb_optics_reset(struct ixgb_hw
*hw
)
1199 if (hw
->phy_type
== ixgb_phy_type_txn17401
) {
1202 ixgb_write_phy_reg(hw
,
1206 MDIO_PMA_PMD_CR1_RESET
);
1208 mdio_reg
= ixgb_read_phy_reg( hw
,