Linux 2.6.17.7
[linux/fpc-iii.git] / drivers / net / starfire.c
blob9b7805be21dab116f0dd205efbc7022f6a5feb25
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
26 -----------------------------------------------------------
28 Linux kernel-specific changes:
30 LK1.1.1 (jgarzik):
31 - Use PCI driver interface
32 - Fix MOD_xxx races
33 - softnet fixups
35 LK1.1.2 (jgarzik):
36 - Merge Becker version 0.15
38 LK1.1.3 (Andrew Morton)
39 - Timer cleanups
41 LK1.1.4 (jgarzik):
42 - Merge Becker version 1.03
44 LK1.2.1 (Ion Badulescu <ionut@cs.columbia.edu>)
45 - Support hardware Rx/Tx checksumming
46 - Use the GFP firmware taken from Adaptec's Netware driver
48 LK1.2.2 (Ion Badulescu)
49 - Backported to 2.2.x
51 LK1.2.3 (Ion Badulescu)
52 - Fix the flaky mdio interface
53 - More compat clean-ups
55 LK1.2.4 (Ion Badulescu)
56 - More 2.2.x initialization fixes
58 LK1.2.5 (Ion Badulescu)
59 - Several fixes from Manfred Spraul
61 LK1.2.6 (Ion Badulescu)
62 - Fixed ifup/ifdown/ifup problem in 2.4.x
64 LK1.2.7 (Ion Badulescu)
65 - Removed unused code
66 - Made more functions static and __init
68 LK1.2.8 (Ion Badulescu)
69 - Quell bogus error messages, inform about the Tx threshold
70 - Removed #ifdef CONFIG_PCI, this driver is PCI only
72 LK1.2.9 (Ion Badulescu)
73 - Merged Jeff Garzik's changes from 2.4.4-pre5
74 - Added 2.2.x compatibility stuff required by the above changes
76 LK1.2.9a (Ion Badulescu)
77 - More updates from Jeff Garzik
79 LK1.3.0 (Ion Badulescu)
80 - Merged zerocopy support
82 LK1.3.1 (Ion Badulescu)
83 - Added ethtool support
84 - Added GPIO (media change) interrupt support
86 LK1.3.2 (Ion Badulescu)
87 - Fixed 2.2.x compatibility issues introduced in 1.3.1
88 - Fixed ethtool ioctl returning uninitialized memory
90 LK1.3.3 (Ion Badulescu)
91 - Initialize the TxMode register properly
92 - Don't dereference dev->priv after freeing it
94 LK1.3.4 (Ion Badulescu)
95 - Fixed initialization timing problems
96 - Fixed interrupt mask definitions
98 LK1.3.5 (jgarzik)
99 - ethtool NWAY_RST, GLINK, [GS]MSGLVL support
101 LK1.3.6:
102 - Sparc64 support and fixes (Ion Badulescu)
103 - Better stats and error handling (Ion Badulescu)
104 - Use new pci_set_mwi() PCI API function (jgarzik)
106 LK1.3.7 (Ion Badulescu)
107 - minimal implementation of tx_timeout()
108 - correctly shutdown the Rx/Tx engines in netdev_close()
109 - added calls to netif_carrier_on/off
110 (patch from Stefan Rompf <srompf@isg.de>)
111 - VLAN support
113 LK1.3.8 (Ion Badulescu)
114 - adjust DMA burst size on sparc64
115 - 64-bit support
116 - reworked zerocopy support for 64-bit buffers
117 - working and usable interrupt mitigation/latency
118 - reduced Tx interrupt frequency for lower interrupt overhead
120 LK1.3.9 (Ion Badulescu)
121 - bugfix for mcast filter
122 - enable the right kind of Tx interrupts (TxDMADone, not TxDone)
124 LK1.4.0 (Ion Badulescu)
125 - NAPI support
127 LK1.4.1 (Ion Badulescu)
128 - flush PCI posting buffers after disabling Rx interrupts
129 - put the chip to a D3 slumber on driver unload
130 - added config option to enable/disable NAPI
132 LK1.4.2 (Ion Badulescu)
133 - finally added firmware (GPL'ed by Adaptec)
134 - removed compatibility code for 2.2.x
136 LK1.4.2.1 (Ion Badulescu)
137 - fixed 32/64 bit issues on i386 + CONFIG_HIGHMEM
138 - added 32-bit padding to outgoing skb's, removed previous workaround
140 TODO: - fix forced speed/duplexing code (broken a long time ago, when
141 somebody converted the driver to use the generic MII code)
142 - fix VLAN support
145 #define DRV_NAME "starfire"
146 #define DRV_VERSION "1.03+LK1.4.2.1"
147 #define DRV_RELDATE "October 3, 2005"
149 #include <linux/config.h>
150 #include <linux/module.h>
151 #include <linux/kernel.h>
152 #include <linux/pci.h>
153 #include <linux/netdevice.h>
154 #include <linux/etherdevice.h>
155 #include <linux/init.h>
156 #include <linux/delay.h>
157 #include <linux/crc32.h>
158 #include <linux/ethtool.h>
159 #include <linux/mii.h>
160 #include <linux/if_vlan.h>
161 #include <asm/processor.h> /* Processor type for cache alignment. */
162 #include <asm/uaccess.h>
163 #include <asm/io.h>
165 #include "starfire_firmware.h"
167 * The current frame processor firmware fails to checksum a fragment
168 * of length 1. If and when this is fixed, the #define below can be removed.
170 #define HAS_BROKEN_FIRMWARE
173 * If using the broken firmware, data must be padded to the next 32-bit boundary.
175 #ifdef HAS_BROKEN_FIRMWARE
176 #define PADDING_MASK 3
177 #endif
180 * Define this if using the driver with the zero-copy patch
182 #define ZEROCOPY
184 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
185 #define VLAN_SUPPORT
186 #endif
188 #ifndef CONFIG_ADAPTEC_STARFIRE_NAPI
189 #undef HAVE_NETDEV_POLL
190 #endif
192 /* The user-configurable values.
193 These may be modified when a driver module is loaded.*/
195 /* Used for tuning interrupt latency vs. overhead. */
196 static int intr_latency;
197 static int small_frames;
199 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
200 static int max_interrupt_work = 20;
201 static int mtu;
202 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
203 The Starfire has a 512 element hash table based on the Ethernet CRC. */
204 static const int multicast_filter_limit = 512;
205 /* Whether to do TCP/UDP checksums in hardware */
206 static int enable_hw_cksum = 1;
208 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
210 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
211 * Setting to > 1518 effectively disables this feature.
213 * NOTE:
214 * The ia64 doesn't allow for unaligned loads even of integers being
215 * misaligned on a 2 byte boundary. Thus always force copying of
216 * packets as the starfire doesn't allow for misaligned DMAs ;-(
217 * 23/10/2000 - Jes
219 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
220 * at least, having unaligned frames leads to a rather serious performance
221 * penalty. -Ion
223 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
224 static int rx_copybreak = PKT_BUF_SZ;
225 #else
226 static int rx_copybreak /* = 0 */;
227 #endif
229 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
230 #ifdef __sparc__
231 #define DMA_BURST_SIZE 64
232 #else
233 #define DMA_BURST_SIZE 128
234 #endif
236 /* Used to pass the media type, etc.
237 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
238 The media type is usually passed in 'options[]'.
239 These variables are deprecated, use ethtool instead. -Ion
241 #define MAX_UNITS 8 /* More are supported, limit only on options */
242 static int options[MAX_UNITS] = {0, };
243 static int full_duplex[MAX_UNITS] = {0, };
245 /* Operational parameters that are set at compile time. */
247 /* The "native" ring sizes are either 256 or 2048.
248 However in some modes a descriptor may be marked to wrap the ring earlier.
250 #define RX_RING_SIZE 256
251 #define TX_RING_SIZE 32
252 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
253 #define DONE_Q_SIZE 1024
254 /* All queues must be aligned on a 256-byte boundary */
255 #define QUEUE_ALIGN 256
257 #if RX_RING_SIZE > 256
258 #define RX_Q_ENTRIES Rx2048QEntries
259 #else
260 #define RX_Q_ENTRIES Rx256QEntries
261 #endif
263 /* Operational parameters that usually are not changed. */
264 /* Time in jiffies before concluding the transmitter is hung. */
265 #define TX_TIMEOUT (2 * HZ)
268 * This SUCKS.
269 * We need a much better method to determine if dma_addr_t is 64-bit.
271 #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
272 /* 64-bit dma_addr_t */
273 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
274 #define netdrv_addr_t u64
275 #define cpu_to_dma(x) cpu_to_le64(x)
276 #define dma_to_cpu(x) le64_to_cpu(x)
277 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
278 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
279 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
280 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
281 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
282 #else /* 32-bit dma_addr_t */
283 #define netdrv_addr_t u32
284 #define cpu_to_dma(x) cpu_to_le32(x)
285 #define dma_to_cpu(x) le32_to_cpu(x)
286 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
287 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
288 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
289 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
290 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
291 #endif
293 #define skb_first_frag_len(skb) skb_headlen(skb)
294 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
296 #ifdef HAVE_NETDEV_POLL
297 #define init_poll(dev) \
298 do { \
299 dev->poll = &netdev_poll; \
300 dev->weight = max_interrupt_work; \
301 } while (0)
302 #define netdev_rx(dev, ioaddr) \
303 do { \
304 u32 intr_enable; \
305 if (netif_rx_schedule_prep(dev)) { \
306 __netif_rx_schedule(dev); \
307 intr_enable = readl(ioaddr + IntrEnable); \
308 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
309 writel(intr_enable, ioaddr + IntrEnable); \
310 readl(ioaddr + IntrEnable); /* flush PCI posting buffers */ \
311 } else { \
312 /* Paranoia check */ \
313 intr_enable = readl(ioaddr + IntrEnable); \
314 if (intr_enable & (IntrRxDone | IntrRxEmpty)) { \
315 printk(KERN_INFO "%s: interrupt while in polling mode!\n", dev->name); \
316 intr_enable &= ~(IntrRxDone | IntrRxEmpty); \
317 writel(intr_enable, ioaddr + IntrEnable); \
320 } while (0)
321 #define netdev_receive_skb(skb) netif_receive_skb(skb)
322 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_receive_skb(skb, vlgrp, vlid)
323 static int netdev_poll(struct net_device *dev, int *budget);
324 #else /* not HAVE_NETDEV_POLL */
325 #define init_poll(dev)
326 #define netdev_receive_skb(skb) netif_rx(skb)
327 #define vlan_netdev_receive_skb(skb, vlgrp, vlid) vlan_hwaccel_rx(skb, vlgrp, vlid)
328 #define netdev_rx(dev, ioaddr) \
329 do { \
330 int quota = np->dirty_rx + RX_RING_SIZE - np->cur_rx; \
331 __netdev_rx(dev, &quota);\
332 } while (0)
333 #endif /* not HAVE_NETDEV_POLL */
334 /* end of compatibility code */
337 /* These identify the driver base version and may not be removed. */
338 static const char version[] __devinitdata =
339 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
340 KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
342 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
343 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
344 MODULE_LICENSE("GPL");
345 MODULE_VERSION(DRV_VERSION);
347 module_param(max_interrupt_work, int, 0);
348 module_param(mtu, int, 0);
349 module_param(debug, int, 0);
350 module_param(rx_copybreak, int, 0);
351 module_param(intr_latency, int, 0);
352 module_param(small_frames, int, 0);
353 module_param_array(options, int, NULL, 0);
354 module_param_array(full_duplex, int, NULL, 0);
355 module_param(enable_hw_cksum, int, 0);
356 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
357 MODULE_PARM_DESC(mtu, "MTU (all boards)");
358 MODULE_PARM_DESC(debug, "Debug level (0-6)");
359 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
360 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
361 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
362 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
363 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
364 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
367 Theory of Operation
369 I. Board Compatibility
371 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
373 II. Board-specific settings
375 III. Driver operation
377 IIIa. Ring buffers
379 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
380 ring sizes are set fixed by the hardware, but may optionally be wrapped
381 earlier by the END bit in the descriptor.
382 This driver uses that hardware queue size for the Rx ring, where a large
383 number of entries has no ill effect beyond increases the potential backlog.
384 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
385 disables the queue layer priority ordering and we have no mechanism to
386 utilize the hardware two-level priority queue. When modifying the
387 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
388 levels.
390 IIIb/c. Transmit/Receive Structure
392 See the Adaptec manual for the many possible structures, and options for
393 each structure. There are far too many to document all of them here.
395 For transmit this driver uses type 0/1 transmit descriptors (depending
396 on the 32/64 bitness of the architecture), and relies on automatic
397 minimum-length padding. It does not use the completion queue
398 consumer index, but instead checks for non-zero status entries.
400 For receive this driver uses type 2/3 receive descriptors. The driver
401 allocates full frame size skbuffs for the Rx ring buffers, so all frames
402 should fit in a single descriptor. The driver does not use the completion
403 queue consumer index, but instead checks for non-zero status entries.
405 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
406 is allocated and the frame is copied to the new skbuff. When the incoming
407 frame is larger, the skbuff is passed directly up the protocol stack.
408 Buffers consumed this way are replaced by newly allocated skbuffs in a later
409 phase of receive.
411 A notable aspect of operation is that unaligned buffers are not permitted by
412 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
413 isn't longword aligned, which may cause problems on some machine
414 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
415 the frame into a new skbuff unconditionally. Copied frames are put into the
416 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
418 IIId. Synchronization
420 The driver runs as two independent, single-threaded flows of control. One
421 is the send-packet routine, which enforces single-threaded use by the
422 dev->tbusy flag. The other thread is the interrupt handler, which is single
423 threaded by the hardware and interrupt handling software.
425 The send packet thread has partial control over the Tx ring and the netif_queue
426 status. If the number of free Tx slots in the ring falls below a certain number
427 (currently hardcoded to 4), it signals the upper layer to stop the queue.
429 The interrupt handler has exclusive control over the Rx ring and records stats
430 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
431 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
432 number of free Tx slow is above the threshold, it signals the upper layer to
433 restart the queue.
435 IV. Notes
437 IVb. References
439 The Adaptec Starfire manuals, available only from Adaptec.
440 http://www.scyld.com/expert/100mbps.html
441 http://www.scyld.com/expert/NWay.html
443 IVc. Errata
445 - StopOnPerr is broken, don't enable
446 - Hardware ethernet padding exposes random data, perform software padding
447 instead (unverified -- works correctly for all the hardware I have)
453 enum chip_capability_flags {CanHaveMII=1, };
455 enum chipset {
456 CH_6915 = 0,
459 static struct pci_device_id starfire_pci_tbl[] = {
460 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
461 { 0, }
463 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
465 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
466 static const struct chip_info {
467 const char *name;
468 int drv_flags;
469 } netdrv_tbl[] __devinitdata = {
470 { "Adaptec Starfire 6915", CanHaveMII },
474 /* Offsets to the device registers.
475 Unlike software-only systems, device drivers interact with complex hardware.
476 It's not useful to define symbolic names for every register bit in the
477 device. The name can only partially document the semantics and make
478 the driver longer and more difficult to read.
479 In general, only the important configuration values or bits changed
480 multiple times should be defined symbolically.
482 enum register_offsets {
483 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
484 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
485 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
486 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
487 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
488 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
489 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
490 TxThreshold=0x500B0,
491 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
492 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
493 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
494 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
495 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
496 TxMode=0x55000, VlanType=0x55064,
497 PerfFilterTable=0x56000, HashTable=0x56100,
498 TxGfpMem=0x58000, RxGfpMem=0x5a000,
502 * Bits in the interrupt status/mask registers.
503 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
504 * enables all the interrupt sources that are or'ed into those status bits.
506 enum intr_status_bits {
507 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
508 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
509 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
510 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
511 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
512 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
513 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
514 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
515 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
516 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
517 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
518 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
519 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
520 IntrTxGfp=0x02, IntrPCIPad=0x01,
521 /* not quite bits */
522 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
523 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
524 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
527 /* Bits in the RxFilterMode register. */
528 enum rx_mode_bits {
529 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
530 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
531 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
532 WakeupOnGFP=0x0800,
535 /* Bits in the TxMode register */
536 enum tx_mode_bits {
537 MiiSoftReset=0x8000, MIILoopback=0x4000,
538 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
539 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
542 /* Bits in the TxDescCtrl register. */
543 enum tx_ctrl_bits {
544 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
545 TxDescSpace128=0x30, TxDescSpace256=0x40,
546 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
547 TxDescType3=0x03, TxDescType4=0x04,
548 TxNoDMACompletion=0x08,
549 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
550 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
551 TxDMABurstSizeShift=8,
554 /* Bits in the RxDescQCtrl register. */
555 enum rx_ctrl_bits {
556 RxBufferLenShift=16, RxMinDescrThreshShift=0,
557 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
558 Rx2048QEntries=0x4000, Rx256QEntries=0,
559 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
560 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
561 RxDescSpace4=0x000, RxDescSpace8=0x100,
562 RxDescSpace16=0x200, RxDescSpace32=0x300,
563 RxDescSpace64=0x400, RxDescSpace128=0x500,
564 RxConsumerWrEn=0x80,
567 /* Bits in the RxDMACtrl register. */
568 enum rx_dmactrl_bits {
569 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
570 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
571 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
572 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
573 RxChecksumRejectTCPOnly=0x01000000,
574 RxCompletionQ2Enable=0x800000,
575 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
576 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
577 RxDMAQ2NonIP=0x400000,
578 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
579 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
580 RxBurstSizeShift=0,
583 /* Bits in the RxCompletionAddr register */
584 enum rx_compl_bits {
585 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
586 RxComplProducerWrEn=0x40,
587 RxComplType0=0x00, RxComplType1=0x10,
588 RxComplType2=0x20, RxComplType3=0x30,
589 RxComplThreshShift=0,
592 /* Bits in the TxCompletionAddr register */
593 enum tx_compl_bits {
594 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
595 TxComplProducerWrEn=0x40,
596 TxComplIntrStatus=0x20,
597 CommonQueueMode=0x10,
598 TxComplThreshShift=0,
601 /* Bits in the GenCtrl register */
602 enum gen_ctrl_bits {
603 RxEnable=0x05, TxEnable=0x0a,
604 RxGFPEnable=0x10, TxGFPEnable=0x20,
607 /* Bits in the IntrTimerCtrl register */
608 enum intr_ctrl_bits {
609 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
610 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
611 IntrLatencyMask=0x1f,
614 /* The Rx and Tx buffer descriptors. */
615 struct starfire_rx_desc {
616 dma_addr_t rxaddr;
618 enum rx_desc_bits {
619 RxDescValid=1, RxDescEndRing=2,
622 /* Completion queue entry. */
623 struct short_rx_done_desc {
624 u32 status; /* Low 16 bits is length. */
626 struct basic_rx_done_desc {
627 u32 status; /* Low 16 bits is length. */
628 u16 vlanid;
629 u16 status2;
631 struct csum_rx_done_desc {
632 u32 status; /* Low 16 bits is length. */
633 u16 csum; /* Partial checksum */
634 u16 status2;
636 struct full_rx_done_desc {
637 u32 status; /* Low 16 bits is length. */
638 u16 status3;
639 u16 status2;
640 u16 vlanid;
641 u16 csum; /* partial checksum */
642 u32 timestamp;
644 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
645 #ifdef VLAN_SUPPORT
646 typedef struct full_rx_done_desc rx_done_desc;
647 #define RxComplType RxComplType3
648 #else /* not VLAN_SUPPORT */
649 typedef struct csum_rx_done_desc rx_done_desc;
650 #define RxComplType RxComplType2
651 #endif /* not VLAN_SUPPORT */
653 enum rx_done_bits {
654 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
657 /* Type 1 Tx descriptor. */
658 struct starfire_tx_desc_1 {
659 u32 status; /* Upper bits are status, lower 16 length. */
660 u32 addr;
663 /* Type 2 Tx descriptor. */
664 struct starfire_tx_desc_2 {
665 u32 status; /* Upper bits are status, lower 16 length. */
666 u32 reserved;
667 u64 addr;
670 #ifdef ADDR_64BITS
671 typedef struct starfire_tx_desc_2 starfire_tx_desc;
672 #define TX_DESC_TYPE TxDescType2
673 #else /* not ADDR_64BITS */
674 typedef struct starfire_tx_desc_1 starfire_tx_desc;
675 #define TX_DESC_TYPE TxDescType1
676 #endif /* not ADDR_64BITS */
677 #define TX_DESC_SPACING TxDescSpaceUnlim
679 enum tx_desc_bits {
680 TxDescID=0xB0000000,
681 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
682 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
684 struct tx_done_desc {
685 u32 status; /* timestamp, index. */
686 #if 0
687 u32 intrstatus; /* interrupt status */
688 #endif
691 struct rx_ring_info {
692 struct sk_buff *skb;
693 dma_addr_t mapping;
695 struct tx_ring_info {
696 struct sk_buff *skb;
697 dma_addr_t mapping;
698 unsigned int used_slots;
701 #define PHY_CNT 2
702 struct netdev_private {
703 /* Descriptor rings first for alignment. */
704 struct starfire_rx_desc *rx_ring;
705 starfire_tx_desc *tx_ring;
706 dma_addr_t rx_ring_dma;
707 dma_addr_t tx_ring_dma;
708 /* The addresses of rx/tx-in-place skbuffs. */
709 struct rx_ring_info rx_info[RX_RING_SIZE];
710 struct tx_ring_info tx_info[TX_RING_SIZE];
711 /* Pointers to completion queues (full pages). */
712 rx_done_desc *rx_done_q;
713 dma_addr_t rx_done_q_dma;
714 unsigned int rx_done;
715 struct tx_done_desc *tx_done_q;
716 dma_addr_t tx_done_q_dma;
717 unsigned int tx_done;
718 struct net_device_stats stats;
719 struct pci_dev *pci_dev;
720 #ifdef VLAN_SUPPORT
721 struct vlan_group *vlgrp;
722 #endif
723 void *queue_mem;
724 dma_addr_t queue_mem_dma;
725 size_t queue_mem_size;
727 /* Frequently used values: keep some adjacent for cache effect. */
728 spinlock_t lock;
729 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
730 unsigned int cur_tx, dirty_tx, reap_tx;
731 unsigned int rx_buf_sz; /* Based on MTU+slack. */
732 /* These values keep track of the transceiver/media in use. */
733 int speed100; /* Set if speed == 100MBit. */
734 u32 tx_mode;
735 u32 intr_timer_ctrl;
736 u8 tx_threshold;
737 /* MII transceiver section. */
738 struct mii_if_info mii_if; /* MII lib hooks/info */
739 int phy_cnt; /* MII device addresses. */
740 unsigned char phys[PHY_CNT]; /* MII device addresses. */
741 void __iomem *base;
745 static int mdio_read(struct net_device *dev, int phy_id, int location);
746 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
747 static int netdev_open(struct net_device *dev);
748 static void check_duplex(struct net_device *dev);
749 static void tx_timeout(struct net_device *dev);
750 static void init_ring(struct net_device *dev);
751 static int start_tx(struct sk_buff *skb, struct net_device *dev);
752 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
753 static void netdev_error(struct net_device *dev, int intr_status);
754 static int __netdev_rx(struct net_device *dev, int *quota);
755 static void refill_rx_ring(struct net_device *dev);
756 static void netdev_error(struct net_device *dev, int intr_status);
757 static void set_rx_mode(struct net_device *dev);
758 static struct net_device_stats *get_stats(struct net_device *dev);
759 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
760 static int netdev_close(struct net_device *dev);
761 static void netdev_media_change(struct net_device *dev);
762 static struct ethtool_ops ethtool_ops;
765 #ifdef VLAN_SUPPORT
766 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
768 struct netdev_private *np = netdev_priv(dev);
770 spin_lock(&np->lock);
771 if (debug > 2)
772 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
773 np->vlgrp = grp;
774 set_rx_mode(dev);
775 spin_unlock(&np->lock);
778 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
780 struct netdev_private *np = netdev_priv(dev);
782 spin_lock(&np->lock);
783 if (debug > 1)
784 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
785 set_rx_mode(dev);
786 spin_unlock(&np->lock);
789 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
791 struct netdev_private *np = netdev_priv(dev);
793 spin_lock(&np->lock);
794 if (debug > 1)
795 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
796 if (np->vlgrp)
797 np->vlgrp->vlan_devices[vid] = NULL;
798 set_rx_mode(dev);
799 spin_unlock(&np->lock);
801 #endif /* VLAN_SUPPORT */
804 static int __devinit starfire_init_one(struct pci_dev *pdev,
805 const struct pci_device_id *ent)
807 struct netdev_private *np;
808 int i, irq, option, chip_idx = ent->driver_data;
809 struct net_device *dev;
810 static int card_idx = -1;
811 long ioaddr;
812 void __iomem *base;
813 int drv_flags, io_size;
814 int boguscnt;
816 /* when built into the kernel, we only print version if device is found */
817 #ifndef MODULE
818 static int printed_version;
819 if (!printed_version++)
820 printk(version);
821 #endif
823 card_idx++;
825 if (pci_enable_device (pdev))
826 return -EIO;
828 ioaddr = pci_resource_start(pdev, 0);
829 io_size = pci_resource_len(pdev, 0);
830 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
831 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
832 return -ENODEV;
835 dev = alloc_etherdev(sizeof(*np));
836 if (!dev) {
837 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
838 return -ENOMEM;
840 SET_MODULE_OWNER(dev);
841 SET_NETDEV_DEV(dev, &pdev->dev);
843 irq = pdev->irq;
845 if (pci_request_regions (pdev, DRV_NAME)) {
846 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
847 goto err_out_free_netdev;
850 /* ioremap is borken in Linux-2.2.x/sparc64 */
851 base = ioremap(ioaddr, io_size);
852 if (!base) {
853 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
854 card_idx, io_size, ioaddr);
855 goto err_out_free_res;
858 pci_set_master(pdev);
860 /* enable MWI -- it vastly improves Rx performance on sparc64 */
861 pci_set_mwi(pdev);
863 #ifdef ZEROCOPY
864 /* Starfire can do TCP/UDP checksumming */
865 if (enable_hw_cksum)
866 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
867 #endif /* ZEROCOPY */
868 #ifdef VLAN_SUPPORT
869 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
870 dev->vlan_rx_register = netdev_vlan_rx_register;
871 dev->vlan_rx_add_vid = netdev_vlan_rx_add_vid;
872 dev->vlan_rx_kill_vid = netdev_vlan_rx_kill_vid;
873 #endif /* VLAN_RX_KILL_VID */
874 #ifdef ADDR_64BITS
875 dev->features |= NETIF_F_HIGHDMA;
876 #endif /* ADDR_64BITS */
878 /* Serial EEPROM reads are hidden by the hardware. */
879 for (i = 0; i < 6; i++)
880 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
882 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
883 if (debug > 4)
884 for (i = 0; i < 0x20; i++)
885 printk("%2.2x%s",
886 (unsigned int)readb(base + EEPROMCtrl + i),
887 i % 16 != 15 ? " " : "\n");
888 #endif
890 /* Issue soft reset */
891 writel(MiiSoftReset, base + TxMode);
892 udelay(1000);
893 writel(0, base + TxMode);
895 /* Reset the chip to erase previous misconfiguration. */
896 writel(1, base + PCIDeviceConfig);
897 boguscnt = 1000;
898 while (--boguscnt > 0) {
899 udelay(10);
900 if ((readl(base + PCIDeviceConfig) & 1) == 0)
901 break;
903 if (boguscnt == 0)
904 printk("%s: chipset reset never completed!\n", dev->name);
905 /* wait a little longer */
906 udelay(1000);
908 dev->base_addr = (unsigned long)base;
909 dev->irq = irq;
911 np = netdev_priv(dev);
912 np->base = base;
913 spin_lock_init(&np->lock);
914 pci_set_drvdata(pdev, dev);
916 np->pci_dev = pdev;
918 np->mii_if.dev = dev;
919 np->mii_if.mdio_read = mdio_read;
920 np->mii_if.mdio_write = mdio_write;
921 np->mii_if.phy_id_mask = 0x1f;
922 np->mii_if.reg_num_mask = 0x1f;
924 drv_flags = netdrv_tbl[chip_idx].drv_flags;
926 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
927 if (dev->mem_start)
928 option = dev->mem_start;
930 /* The lower four bits are the media type. */
931 if (option & 0x200)
932 np->mii_if.full_duplex = 1;
934 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
935 np->mii_if.full_duplex = 1;
937 if (np->mii_if.full_duplex)
938 np->mii_if.force_media = 1;
939 else
940 np->mii_if.force_media = 0;
941 np->speed100 = 1;
943 /* timer resolution is 128 * 0.8us */
944 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
945 Timer10X | EnableIntrMasking;
947 if (small_frames > 0) {
948 np->intr_timer_ctrl |= SmallFrameBypass;
949 switch (small_frames) {
950 case 1 ... 64:
951 np->intr_timer_ctrl |= SmallFrame64;
952 break;
953 case 65 ... 128:
954 np->intr_timer_ctrl |= SmallFrame128;
955 break;
956 case 129 ... 256:
957 np->intr_timer_ctrl |= SmallFrame256;
958 break;
959 default:
960 np->intr_timer_ctrl |= SmallFrame512;
961 if (small_frames > 512)
962 printk("Adjusting small_frames down to 512\n");
963 break;
967 /* The chip-specific entries in the device structure. */
968 dev->open = &netdev_open;
969 dev->hard_start_xmit = &start_tx;
970 dev->tx_timeout = tx_timeout;
971 dev->watchdog_timeo = TX_TIMEOUT;
972 init_poll(dev);
973 dev->stop = &netdev_close;
974 dev->get_stats = &get_stats;
975 dev->set_multicast_list = &set_rx_mode;
976 dev->do_ioctl = &netdev_ioctl;
977 SET_ETHTOOL_OPS(dev, &ethtool_ops);
979 if (mtu)
980 dev->mtu = mtu;
982 if (register_netdev(dev))
983 goto err_out_cleardev;
985 printk(KERN_INFO "%s: %s at %p, ",
986 dev->name, netdrv_tbl[chip_idx].name, base);
987 for (i = 0; i < 5; i++)
988 printk("%2.2x:", dev->dev_addr[i]);
989 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
991 if (drv_flags & CanHaveMII) {
992 int phy, phy_idx = 0;
993 int mii_status;
994 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
995 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
996 mdelay(100);
997 boguscnt = 1000;
998 while (--boguscnt > 0)
999 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
1000 break;
1001 if (boguscnt == 0) {
1002 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
1003 continue;
1005 mii_status = mdio_read(dev, phy, MII_BMSR);
1006 if (mii_status != 0) {
1007 np->phys[phy_idx++] = phy;
1008 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
1009 printk(KERN_INFO "%s: MII PHY found at address %d, status "
1010 "%#4.4x advertising %#4.4x.\n",
1011 dev->name, phy, mii_status, np->mii_if.advertising);
1012 /* there can be only one PHY on-board */
1013 break;
1016 np->phy_cnt = phy_idx;
1017 if (np->phy_cnt > 0)
1018 np->mii_if.phy_id = np->phys[0];
1019 else
1020 memset(&np->mii_if, 0, sizeof(np->mii_if));
1023 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
1024 dev->name, enable_hw_cksum ? "enabled" : "disabled");
1025 return 0;
1027 err_out_cleardev:
1028 pci_set_drvdata(pdev, NULL);
1029 iounmap(base);
1030 err_out_free_res:
1031 pci_release_regions (pdev);
1032 err_out_free_netdev:
1033 free_netdev(dev);
1034 return -ENODEV;
1038 /* Read the MII Management Data I/O (MDIO) interfaces. */
1039 static int mdio_read(struct net_device *dev, int phy_id, int location)
1041 struct netdev_private *np = netdev_priv(dev);
1042 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
1043 int result, boguscnt=1000;
1044 /* ??? Should we add a busy-wait here? */
1046 result = readl(mdio_addr);
1047 while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
1048 if (boguscnt == 0)
1049 return 0;
1050 if ((result & 0xffff) == 0xffff)
1051 return 0;
1052 return result & 0xffff;
1056 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
1058 struct netdev_private *np = netdev_priv(dev);
1059 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
1060 writel(value, mdio_addr);
1061 /* The busy-wait will occur before a read. */
1065 static int netdev_open(struct net_device *dev)
1067 struct netdev_private *np = netdev_priv(dev);
1068 void __iomem *ioaddr = np->base;
1069 int i, retval;
1070 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
1072 /* Do we ever need to reset the chip??? */
1074 retval = request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev);
1075 if (retval)
1076 return retval;
1078 /* Disable the Rx and Tx, and reset the chip. */
1079 writel(0, ioaddr + GenCtrl);
1080 writel(1, ioaddr + PCIDeviceConfig);
1081 if (debug > 1)
1082 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1083 dev->name, dev->irq);
1085 /* Allocate the various queues. */
1086 if (np->queue_mem == 0) {
1087 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1088 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1089 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
1090 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
1091 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
1092 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
1093 if (np->queue_mem == NULL) {
1094 free_irq(dev->irq, dev);
1095 return -ENOMEM;
1098 np->tx_done_q = np->queue_mem;
1099 np->tx_done_q_dma = np->queue_mem_dma;
1100 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
1101 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
1102 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
1103 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
1104 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
1105 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
1108 /* Start with no carrier, it gets adjusted later */
1109 netif_carrier_off(dev);
1110 init_ring(dev);
1111 /* Set the size of the Rx buffers. */
1112 writel((np->rx_buf_sz << RxBufferLenShift) |
1113 (0 << RxMinDescrThreshShift) |
1114 RxPrefetchMode | RxVariableQ |
1115 RX_Q_ENTRIES |
1116 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
1117 RxDescSpace4,
1118 ioaddr + RxDescQCtrl);
1120 /* Set up the Rx DMA controller. */
1121 writel(RxChecksumIgnore |
1122 (0 << RxEarlyIntThreshShift) |
1123 (6 << RxHighPrioThreshShift) |
1124 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
1125 ioaddr + RxDMACtrl);
1127 /* Set Tx descriptor */
1128 writel((2 << TxHiPriFIFOThreshShift) |
1129 (0 << TxPadLenShift) |
1130 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
1131 TX_DESC_Q_ADDR_SIZE |
1132 TX_DESC_SPACING | TX_DESC_TYPE,
1133 ioaddr + TxDescCtrl);
1135 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
1136 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
1137 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
1138 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
1139 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
1141 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
1142 writel(np->rx_done_q_dma |
1143 RxComplType |
1144 (0 << RxComplThreshShift),
1145 ioaddr + RxCompletionAddr);
1147 if (debug > 1)
1148 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
1150 /* Fill both the Tx SA register and the Rx perfect filter. */
1151 for (i = 0; i < 6; i++)
1152 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1153 /* The first entry is special because it bypasses the VLAN filter.
1154 Don't use it. */
1155 writew(0, ioaddr + PerfFilterTable);
1156 writew(0, ioaddr + PerfFilterTable + 4);
1157 writew(0, ioaddr + PerfFilterTable + 8);
1158 for (i = 1; i < 16; i++) {
1159 u16 *eaddrs = (u16 *)dev->dev_addr;
1160 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1161 writew(cpu_to_be16(eaddrs[2]), setup_frm); setup_frm += 4;
1162 writew(cpu_to_be16(eaddrs[1]), setup_frm); setup_frm += 4;
1163 writew(cpu_to_be16(eaddrs[0]), setup_frm); setup_frm += 8;
1166 /* Initialize other registers. */
1167 /* Configure the PCI bus bursts and FIFO thresholds. */
1168 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1169 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1170 udelay(1000);
1171 writel(np->tx_mode, ioaddr + TxMode);
1172 np->tx_threshold = 4;
1173 writel(np->tx_threshold, ioaddr + TxThreshold);
1175 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1177 netif_start_queue(dev);
1179 if (debug > 1)
1180 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1181 set_rx_mode(dev);
1183 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1184 check_duplex(dev);
1186 /* Enable GPIO interrupts on link change */
1187 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1189 /* Set the interrupt mask */
1190 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1191 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1192 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1193 ioaddr + IntrEnable);
1194 /* Enable PCI interrupts. */
1195 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1196 ioaddr + PCIDeviceConfig);
1198 #ifdef VLAN_SUPPORT
1199 /* Set VLAN type to 802.1q */
1200 writel(ETH_P_8021Q, ioaddr + VlanType);
1201 #endif /* VLAN_SUPPORT */
1203 /* Load Rx/Tx firmware into the frame processors */
1204 for (i = 0; i < FIRMWARE_RX_SIZE * 2; i++)
1205 writel(firmware_rx[i], ioaddr + RxGfpMem + i * 4);
1206 for (i = 0; i < FIRMWARE_TX_SIZE * 2; i++)
1207 writel(firmware_tx[i], ioaddr + TxGfpMem + i * 4);
1208 if (enable_hw_cksum)
1209 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1210 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1211 else
1212 /* Enable the Rx and Tx units only. */
1213 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1215 if (debug > 1)
1216 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1217 dev->name);
1219 return 0;
1223 static void check_duplex(struct net_device *dev)
1225 struct netdev_private *np = netdev_priv(dev);
1226 u16 reg0;
1227 int silly_count = 1000;
1229 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1230 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1231 udelay(500);
1232 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1233 /* do nothing */;
1234 if (!silly_count) {
1235 printk("%s: MII reset failed!\n", dev->name);
1236 return;
1239 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1241 if (!np->mii_if.force_media) {
1242 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1243 } else {
1244 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1245 if (np->speed100)
1246 reg0 |= BMCR_SPEED100;
1247 if (np->mii_if.full_duplex)
1248 reg0 |= BMCR_FULLDPLX;
1249 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1250 dev->name,
1251 np->speed100 ? "100" : "10",
1252 np->mii_if.full_duplex ? "full" : "half");
1254 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1258 static void tx_timeout(struct net_device *dev)
1260 struct netdev_private *np = netdev_priv(dev);
1261 void __iomem *ioaddr = np->base;
1262 int old_debug;
1264 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1265 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1267 /* Perhaps we should reinitialize the hardware here. */
1270 * Stop and restart the interface.
1271 * Cheat and increase the debug level temporarily.
1273 old_debug = debug;
1274 debug = 2;
1275 netdev_close(dev);
1276 netdev_open(dev);
1277 debug = old_debug;
1279 /* Trigger an immediate transmit demand. */
1281 dev->trans_start = jiffies;
1282 np->stats.tx_errors++;
1283 netif_wake_queue(dev);
1287 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1288 static void init_ring(struct net_device *dev)
1290 struct netdev_private *np = netdev_priv(dev);
1291 int i;
1293 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1294 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1296 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1298 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1299 for (i = 0; i < RX_RING_SIZE; i++) {
1300 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1301 np->rx_info[i].skb = skb;
1302 if (skb == NULL)
1303 break;
1304 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1305 skb->dev = dev; /* Mark as being used by this device. */
1306 /* Grrr, we cannot offset to correctly align the IP header. */
1307 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1309 writew(i - 1, np->base + RxDescQIdx);
1310 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1312 /* Clear the remainder of the Rx buffer ring. */
1313 for ( ; i < RX_RING_SIZE; i++) {
1314 np->rx_ring[i].rxaddr = 0;
1315 np->rx_info[i].skb = NULL;
1316 np->rx_info[i].mapping = 0;
1318 /* Mark the last entry as wrapping the ring. */
1319 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1321 /* Clear the completion rings. */
1322 for (i = 0; i < DONE_Q_SIZE; i++) {
1323 np->rx_done_q[i].status = 0;
1324 np->tx_done_q[i].status = 0;
1327 for (i = 0; i < TX_RING_SIZE; i++)
1328 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1330 return;
1334 static int start_tx(struct sk_buff *skb, struct net_device *dev)
1336 struct netdev_private *np = netdev_priv(dev);
1337 unsigned int entry;
1338 u32 status;
1339 int i;
1342 * be cautious here, wrapping the queue has weird semantics
1343 * and we may not have enough slots even when it seems we do.
1345 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1346 netif_stop_queue(dev);
1347 return 1;
1350 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1351 if (skb->ip_summed == CHECKSUM_HW) {
1352 skb = skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK);
1353 if (skb == NULL)
1354 return NETDEV_TX_OK;
1356 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1358 entry = np->cur_tx % TX_RING_SIZE;
1359 for (i = 0; i < skb_num_frags(skb); i++) {
1360 int wrap_ring = 0;
1361 status = TxDescID;
1363 if (i == 0) {
1364 np->tx_info[entry].skb = skb;
1365 status |= TxCRCEn;
1366 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1367 status |= TxRingWrap;
1368 wrap_ring = 1;
1370 if (np->reap_tx) {
1371 status |= TxDescIntr;
1372 np->reap_tx = 0;
1374 if (skb->ip_summed == CHECKSUM_HW) {
1375 status |= TxCalTCP;
1376 np->stats.tx_compressed++;
1378 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1380 np->tx_info[entry].mapping =
1381 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1382 } else {
1383 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1384 status |= this_frag->size;
1385 np->tx_info[entry].mapping =
1386 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1389 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1390 np->tx_ring[entry].status = cpu_to_le32(status);
1391 if (debug > 3)
1392 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1393 dev->name, np->cur_tx, np->dirty_tx,
1394 entry, status);
1395 if (wrap_ring) {
1396 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1397 np->cur_tx += np->tx_info[entry].used_slots;
1398 entry = 0;
1399 } else {
1400 np->tx_info[entry].used_slots = 1;
1401 np->cur_tx += np->tx_info[entry].used_slots;
1402 entry++;
1404 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1405 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1406 np->reap_tx = 1;
1409 /* Non-x86: explicitly flush descriptor cache lines here. */
1410 /* Ensure all descriptors are written back before the transmit is
1411 initiated. - Jes */
1412 wmb();
1414 /* Update the producer index. */
1415 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1417 /* 4 is arbitrary, but should be ok */
1418 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1419 netif_stop_queue(dev);
1421 dev->trans_start = jiffies;
1423 return 0;
1427 /* The interrupt handler does all of the Rx thread work and cleans up
1428 after the Tx thread. */
1429 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
1431 struct net_device *dev = dev_instance;
1432 struct netdev_private *np = netdev_priv(dev);
1433 void __iomem *ioaddr = np->base;
1434 int boguscnt = max_interrupt_work;
1435 int consumer;
1436 int tx_status;
1437 int handled = 0;
1439 do {
1440 u32 intr_status = readl(ioaddr + IntrClear);
1442 if (debug > 4)
1443 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1444 dev->name, intr_status);
1446 if (intr_status == 0 || intr_status == (u32) -1)
1447 break;
1449 handled = 1;
1451 if (intr_status & (IntrRxDone | IntrRxEmpty))
1452 netdev_rx(dev, ioaddr);
1454 /* Scavenge the skbuff list based on the Tx-done queue.
1455 There are redundant checks here that may be cleaned up
1456 after the driver has proven to be reliable. */
1457 consumer = readl(ioaddr + TxConsumerIdx);
1458 if (debug > 3)
1459 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1460 dev->name, consumer);
1462 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1463 if (debug > 3)
1464 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1465 dev->name, np->dirty_tx, np->tx_done, tx_status);
1466 if ((tx_status & 0xe0000000) == 0xa0000000) {
1467 np->stats.tx_packets++;
1468 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1469 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1470 struct sk_buff *skb = np->tx_info[entry].skb;
1471 np->tx_info[entry].skb = NULL;
1472 pci_unmap_single(np->pci_dev,
1473 np->tx_info[entry].mapping,
1474 skb_first_frag_len(skb),
1475 PCI_DMA_TODEVICE);
1476 np->tx_info[entry].mapping = 0;
1477 np->dirty_tx += np->tx_info[entry].used_slots;
1478 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1480 int i;
1481 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1482 pci_unmap_single(np->pci_dev,
1483 np->tx_info[entry].mapping,
1484 skb_shinfo(skb)->frags[i].size,
1485 PCI_DMA_TODEVICE);
1486 np->dirty_tx++;
1487 entry++;
1491 dev_kfree_skb_irq(skb);
1493 np->tx_done_q[np->tx_done].status = 0;
1494 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1496 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1498 if (netif_queue_stopped(dev) &&
1499 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1500 /* The ring is no longer full, wake the queue. */
1501 netif_wake_queue(dev);
1504 /* Stats overflow */
1505 if (intr_status & IntrStatsMax)
1506 get_stats(dev);
1508 /* Media change interrupt. */
1509 if (intr_status & IntrLinkChange)
1510 netdev_media_change(dev);
1512 /* Abnormal error summary/uncommon events handlers. */
1513 if (intr_status & IntrAbnormalSummary)
1514 netdev_error(dev, intr_status);
1516 if (--boguscnt < 0) {
1517 if (debug > 1)
1518 printk(KERN_WARNING "%s: Too much work at interrupt, "
1519 "status=%#8.8x.\n",
1520 dev->name, intr_status);
1521 break;
1523 } while (1);
1525 if (debug > 4)
1526 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1527 dev->name, (int) readl(ioaddr + IntrStatus));
1528 return IRQ_RETVAL(handled);
1532 /* This routine is logically part of the interrupt/poll handler, but separated
1533 for clarity, code sharing between NAPI/non-NAPI, and better register allocation. */
1534 static int __netdev_rx(struct net_device *dev, int *quota)
1536 struct netdev_private *np = netdev_priv(dev);
1537 u32 desc_status;
1538 int retcode = 0;
1540 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1541 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1542 struct sk_buff *skb;
1543 u16 pkt_len;
1544 int entry;
1545 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1547 if (debug > 4)
1548 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1549 if (!(desc_status & RxOK)) {
1550 /* There was an error. */
1551 if (debug > 2)
1552 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1553 np->stats.rx_errors++;
1554 if (desc_status & RxFIFOErr)
1555 np->stats.rx_fifo_errors++;
1556 goto next_rx;
1559 if (*quota <= 0) { /* out of rx quota */
1560 retcode = 1;
1561 goto out;
1563 (*quota)--;
1565 pkt_len = desc_status; /* Implicitly Truncate */
1566 entry = (desc_status >> 16) & 0x7ff;
1568 if (debug > 4)
1569 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1570 /* Check if the packet is long enough to accept without copying
1571 to a minimally-sized skbuff. */
1572 if (pkt_len < rx_copybreak
1573 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1574 skb->dev = dev;
1575 skb_reserve(skb, 2); /* 16 byte align the IP header */
1576 pci_dma_sync_single_for_cpu(np->pci_dev,
1577 np->rx_info[entry].mapping,
1578 pkt_len, PCI_DMA_FROMDEVICE);
1579 eth_copy_and_sum(skb, np->rx_info[entry].skb->data, pkt_len, 0);
1580 pci_dma_sync_single_for_device(np->pci_dev,
1581 np->rx_info[entry].mapping,
1582 pkt_len, PCI_DMA_FROMDEVICE);
1583 skb_put(skb, pkt_len);
1584 } else {
1585 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1586 skb = np->rx_info[entry].skb;
1587 skb_put(skb, pkt_len);
1588 np->rx_info[entry].skb = NULL;
1589 np->rx_info[entry].mapping = 0;
1591 #ifndef final_version /* Remove after testing. */
1592 /* You will want this info for the initial debug. */
1593 if (debug > 5)
1594 printk(KERN_DEBUG " Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:"
1595 "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x.\n",
1596 skb->data[0], skb->data[1], skb->data[2], skb->data[3],
1597 skb->data[4], skb->data[5], skb->data[6], skb->data[7],
1598 skb->data[8], skb->data[9], skb->data[10],
1599 skb->data[11], skb->data[12], skb->data[13]);
1600 #endif
1602 skb->protocol = eth_type_trans(skb, dev);
1603 #ifdef VLAN_SUPPORT
1604 if (debug > 4)
1605 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1606 #endif
1607 if (le16_to_cpu(desc->status2) & 0x0100) {
1608 skb->ip_summed = CHECKSUM_UNNECESSARY;
1609 np->stats.rx_compressed++;
1612 * This feature doesn't seem to be working, at least
1613 * with the two firmware versions I have. If the GFP sees
1614 * an IP fragment, it either ignores it completely, or reports
1615 * "bad checksum" on it.
1617 * Maybe I missed something -- corrections are welcome.
1618 * Until then, the printk stays. :-) -Ion
1620 else if (le16_to_cpu(desc->status2) & 0x0040) {
1621 skb->ip_summed = CHECKSUM_HW;
1622 skb->csum = le16_to_cpu(desc->csum);
1623 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1625 #ifdef VLAN_SUPPORT
1626 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1627 if (debug > 4)
1628 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n", le16_to_cpu(desc->vlanid));
1629 /* vlan_netdev_receive_skb() expects a packet with the VLAN tag stripped out */
1630 vlan_netdev_receive_skb(skb, np->vlgrp, le16_to_cpu(desc->vlanid) & VLAN_VID_MASK);
1631 } else
1632 #endif /* VLAN_SUPPORT */
1633 netdev_receive_skb(skb);
1634 dev->last_rx = jiffies;
1635 np->stats.rx_packets++;
1637 next_rx:
1638 np->cur_rx++;
1639 desc->status = 0;
1640 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1642 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1644 out:
1645 refill_rx_ring(dev);
1646 if (debug > 5)
1647 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1648 retcode, np->rx_done, desc_status);
1649 return retcode;
1653 #ifdef HAVE_NETDEV_POLL
1654 static int netdev_poll(struct net_device *dev, int *budget)
1656 u32 intr_status;
1657 struct netdev_private *np = netdev_priv(dev);
1658 void __iomem *ioaddr = np->base;
1659 int retcode = 0, quota = dev->quota;
1661 do {
1662 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1664 retcode = __netdev_rx(dev, &quota);
1665 *budget -= (dev->quota - quota);
1666 dev->quota = quota;
1667 if (retcode)
1668 goto out;
1670 intr_status = readl(ioaddr + IntrStatus);
1671 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1673 netif_rx_complete(dev);
1674 intr_status = readl(ioaddr + IntrEnable);
1675 intr_status |= IntrRxDone | IntrRxEmpty;
1676 writel(intr_status, ioaddr + IntrEnable);
1678 out:
1679 if (debug > 5)
1680 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n", retcode);
1682 /* Restart Rx engine if stopped. */
1683 return retcode;
1685 #endif /* HAVE_NETDEV_POLL */
1688 static void refill_rx_ring(struct net_device *dev)
1690 struct netdev_private *np = netdev_priv(dev);
1691 struct sk_buff *skb;
1692 int entry = -1;
1694 /* Refill the Rx ring buffers. */
1695 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1696 entry = np->dirty_rx % RX_RING_SIZE;
1697 if (np->rx_info[entry].skb == NULL) {
1698 skb = dev_alloc_skb(np->rx_buf_sz);
1699 np->rx_info[entry].skb = skb;
1700 if (skb == NULL)
1701 break; /* Better luck next round. */
1702 np->rx_info[entry].mapping =
1703 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1704 skb->dev = dev; /* Mark as being used by this device. */
1705 np->rx_ring[entry].rxaddr =
1706 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1708 if (entry == RX_RING_SIZE - 1)
1709 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1711 if (entry >= 0)
1712 writew(entry, np->base + RxDescQIdx);
1716 static void netdev_media_change(struct net_device *dev)
1718 struct netdev_private *np = netdev_priv(dev);
1719 void __iomem *ioaddr = np->base;
1720 u16 reg0, reg1, reg4, reg5;
1721 u32 new_tx_mode;
1722 u32 new_intr_timer_ctrl;
1724 /* reset status first */
1725 mdio_read(dev, np->phys[0], MII_BMCR);
1726 mdio_read(dev, np->phys[0], MII_BMSR);
1728 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1729 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1731 if (reg1 & BMSR_LSTATUS) {
1732 /* link is up */
1733 if (reg0 & BMCR_ANENABLE) {
1734 /* autonegotiation is enabled */
1735 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1736 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1737 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1738 np->speed100 = 1;
1739 np->mii_if.full_duplex = 1;
1740 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1741 np->speed100 = 1;
1742 np->mii_if.full_duplex = 0;
1743 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1744 np->speed100 = 0;
1745 np->mii_if.full_duplex = 1;
1746 } else {
1747 np->speed100 = 0;
1748 np->mii_if.full_duplex = 0;
1750 } else {
1751 /* autonegotiation is disabled */
1752 if (reg0 & BMCR_SPEED100)
1753 np->speed100 = 1;
1754 else
1755 np->speed100 = 0;
1756 if (reg0 & BMCR_FULLDPLX)
1757 np->mii_if.full_duplex = 1;
1758 else
1759 np->mii_if.full_duplex = 0;
1761 netif_carrier_on(dev);
1762 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1763 dev->name,
1764 np->speed100 ? "100" : "10",
1765 np->mii_if.full_duplex ? "full" : "half");
1767 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1768 if (np->mii_if.full_duplex)
1769 new_tx_mode |= FullDuplex;
1770 if (np->tx_mode != new_tx_mode) {
1771 np->tx_mode = new_tx_mode;
1772 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1773 udelay(1000);
1774 writel(np->tx_mode, ioaddr + TxMode);
1777 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1778 if (np->speed100)
1779 new_intr_timer_ctrl |= Timer10X;
1780 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1781 np->intr_timer_ctrl = new_intr_timer_ctrl;
1782 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1784 } else {
1785 netif_carrier_off(dev);
1786 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1791 static void netdev_error(struct net_device *dev, int intr_status)
1793 struct netdev_private *np = netdev_priv(dev);
1795 /* Came close to underrunning the Tx FIFO, increase threshold. */
1796 if (intr_status & IntrTxDataLow) {
1797 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1798 writel(++np->tx_threshold, np->base + TxThreshold);
1799 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1800 dev->name, np->tx_threshold * 16);
1801 } else
1802 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1804 if (intr_status & IntrRxGFPDead) {
1805 np->stats.rx_fifo_errors++;
1806 np->stats.rx_errors++;
1808 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1809 np->stats.tx_fifo_errors++;
1810 np->stats.tx_errors++;
1812 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1813 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1814 dev->name, intr_status);
1818 static struct net_device_stats *get_stats(struct net_device *dev)
1820 struct netdev_private *np = netdev_priv(dev);
1821 void __iomem *ioaddr = np->base;
1823 /* This adapter architecture needs no SMP locks. */
1824 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1825 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1826 np->stats.tx_packets = readl(ioaddr + 0x57000);
1827 np->stats.tx_aborted_errors =
1828 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1829 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1830 np->stats.collisions =
1831 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1833 /* The chip only need report frame silently dropped. */
1834 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1835 writew(0, ioaddr + RxDMAStatus);
1836 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1837 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1838 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1839 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1841 return &np->stats;
1845 static void set_rx_mode(struct net_device *dev)
1847 struct netdev_private *np = netdev_priv(dev);
1848 void __iomem *ioaddr = np->base;
1849 u32 rx_mode = MinVLANPrio;
1850 struct dev_mc_list *mclist;
1851 int i;
1852 #ifdef VLAN_SUPPORT
1854 rx_mode |= VlanMode;
1855 if (np->vlgrp) {
1856 int vlan_count = 0;
1857 void __iomem *filter_addr = ioaddr + HashTable + 8;
1858 for (i = 0; i < VLAN_VID_MASK; i++) {
1859 if (np->vlgrp->vlan_devices[i]) {
1860 if (vlan_count >= 32)
1861 break;
1862 writew(cpu_to_be16(i), filter_addr);
1863 filter_addr += 16;
1864 vlan_count++;
1867 if (i == VLAN_VID_MASK) {
1868 rx_mode |= PerfectFilterVlan;
1869 while (vlan_count < 32) {
1870 writew(0, filter_addr);
1871 filter_addr += 16;
1872 vlan_count++;
1876 #endif /* VLAN_SUPPORT */
1878 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1879 rx_mode |= AcceptAll;
1880 } else if ((dev->mc_count > multicast_filter_limit)
1881 || (dev->flags & IFF_ALLMULTI)) {
1882 /* Too many to match, or accept all multicasts. */
1883 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1884 } else if (dev->mc_count <= 14) {
1885 /* Use the 16 element perfect filter, skip first two entries. */
1886 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1887 u16 *eaddrs;
1888 for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2;
1889 i++, mclist = mclist->next) {
1890 eaddrs = (u16 *)mclist->dmi_addr;
1891 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 4;
1892 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1893 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 8;
1895 eaddrs = (u16 *)dev->dev_addr;
1896 while (i++ < 16) {
1897 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1898 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1899 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1901 rx_mode |= AcceptBroadcast|PerfectFilter;
1902 } else {
1903 /* Must use a multicast hash table. */
1904 void __iomem *filter_addr;
1905 u16 *eaddrs;
1906 u16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1908 memset(mc_filter, 0, sizeof(mc_filter));
1909 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1910 i++, mclist = mclist->next) {
1911 /* The chip uses the upper 9 CRC bits
1912 as index into the hash table */
1913 int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
1914 __u32 *fptr = (__u32 *) &mc_filter[(bit_nr >> 4) & ~1];
1916 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1918 /* Clear the perfect filter list, skip first two entries. */
1919 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1920 eaddrs = (u16 *)dev->dev_addr;
1921 for (i = 2; i < 16; i++) {
1922 writew(cpu_to_be16(eaddrs[0]), filter_addr); filter_addr += 4;
1923 writew(cpu_to_be16(eaddrs[1]), filter_addr); filter_addr += 4;
1924 writew(cpu_to_be16(eaddrs[2]), filter_addr); filter_addr += 8;
1926 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1927 writew(mc_filter[i], filter_addr);
1928 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1930 writel(rx_mode, ioaddr + RxFilterMode);
1933 static int check_if_running(struct net_device *dev)
1935 if (!netif_running(dev))
1936 return -EINVAL;
1937 return 0;
1940 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1942 struct netdev_private *np = netdev_priv(dev);
1943 strcpy(info->driver, DRV_NAME);
1944 strcpy(info->version, DRV_VERSION);
1945 strcpy(info->bus_info, pci_name(np->pci_dev));
1948 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1950 struct netdev_private *np = netdev_priv(dev);
1951 spin_lock_irq(&np->lock);
1952 mii_ethtool_gset(&np->mii_if, ecmd);
1953 spin_unlock_irq(&np->lock);
1954 return 0;
1957 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1959 struct netdev_private *np = netdev_priv(dev);
1960 int res;
1961 spin_lock_irq(&np->lock);
1962 res = mii_ethtool_sset(&np->mii_if, ecmd);
1963 spin_unlock_irq(&np->lock);
1964 check_duplex(dev);
1965 return res;
1968 static int nway_reset(struct net_device *dev)
1970 struct netdev_private *np = netdev_priv(dev);
1971 return mii_nway_restart(&np->mii_if);
1974 static u32 get_link(struct net_device *dev)
1976 struct netdev_private *np = netdev_priv(dev);
1977 return mii_link_ok(&np->mii_if);
1980 static u32 get_msglevel(struct net_device *dev)
1982 return debug;
1985 static void set_msglevel(struct net_device *dev, u32 val)
1987 debug = val;
1990 static struct ethtool_ops ethtool_ops = {
1991 .begin = check_if_running,
1992 .get_drvinfo = get_drvinfo,
1993 .get_settings = get_settings,
1994 .set_settings = set_settings,
1995 .nway_reset = nway_reset,
1996 .get_link = get_link,
1997 .get_msglevel = get_msglevel,
1998 .set_msglevel = set_msglevel,
2001 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2003 struct netdev_private *np = netdev_priv(dev);
2004 struct mii_ioctl_data *data = if_mii(rq);
2005 int rc;
2007 if (!netif_running(dev))
2008 return -EINVAL;
2010 spin_lock_irq(&np->lock);
2011 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
2012 spin_unlock_irq(&np->lock);
2014 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
2015 check_duplex(dev);
2017 return rc;
2020 static int netdev_close(struct net_device *dev)
2022 struct netdev_private *np = netdev_priv(dev);
2023 void __iomem *ioaddr = np->base;
2024 int i;
2026 netif_stop_queue(dev);
2028 if (debug > 1) {
2029 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
2030 dev->name, (int) readl(ioaddr + IntrStatus));
2031 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
2032 dev->name, np->cur_tx, np->dirty_tx,
2033 np->cur_rx, np->dirty_rx);
2036 /* Disable interrupts by clearing the interrupt mask. */
2037 writel(0, ioaddr + IntrEnable);
2039 /* Stop the chip's Tx and Rx processes. */
2040 writel(0, ioaddr + GenCtrl);
2041 readl(ioaddr + GenCtrl);
2043 if (debug > 5) {
2044 printk(KERN_DEBUG" Tx ring at %#llx:\n",
2045 (long long) np->tx_ring_dma);
2046 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
2047 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
2048 i, le32_to_cpu(np->tx_ring[i].status),
2049 (long long) dma_to_cpu(np->tx_ring[i].addr),
2050 le32_to_cpu(np->tx_done_q[i].status));
2051 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
2052 (long long) np->rx_ring_dma, np->rx_done_q);
2053 if (np->rx_done_q)
2054 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
2055 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
2056 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
2060 free_irq(dev->irq, dev);
2062 /* Free all the skbuffs in the Rx queue. */
2063 for (i = 0; i < RX_RING_SIZE; i++) {
2064 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
2065 if (np->rx_info[i].skb != NULL) {
2066 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
2067 dev_kfree_skb(np->rx_info[i].skb);
2069 np->rx_info[i].skb = NULL;
2070 np->rx_info[i].mapping = 0;
2072 for (i = 0; i < TX_RING_SIZE; i++) {
2073 struct sk_buff *skb = np->tx_info[i].skb;
2074 if (skb == NULL)
2075 continue;
2076 pci_unmap_single(np->pci_dev,
2077 np->tx_info[i].mapping,
2078 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
2079 np->tx_info[i].mapping = 0;
2080 dev_kfree_skb(skb);
2081 np->tx_info[i].skb = NULL;
2084 return 0;
2087 #ifdef CONFIG_PM
2088 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
2090 struct net_device *dev = pci_get_drvdata(pdev);
2092 if (netif_running(dev)) {
2093 netif_device_detach(dev);
2094 netdev_close(dev);
2097 pci_save_state(pdev);
2098 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2100 return 0;
2103 static int starfire_resume(struct pci_dev *pdev)
2105 struct net_device *dev = pci_get_drvdata(pdev);
2107 pci_set_power_state(pdev, PCI_D0);
2108 pci_restore_state(pdev);
2110 if (netif_running(dev)) {
2111 netdev_open(dev);
2112 netif_device_attach(dev);
2115 return 0;
2117 #endif /* CONFIG_PM */
2120 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2122 struct net_device *dev = pci_get_drvdata(pdev);
2123 struct netdev_private *np = netdev_priv(dev);
2125 BUG_ON(!dev);
2127 unregister_netdev(dev);
2129 if (np->queue_mem)
2130 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2133 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2134 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2135 pci_disable_device(pdev);
2137 iounmap(np->base);
2138 pci_release_regions(pdev);
2140 pci_set_drvdata(pdev, NULL);
2141 free_netdev(dev); /* Will also free np!! */
2145 static struct pci_driver starfire_driver = {
2146 .name = DRV_NAME,
2147 .probe = starfire_init_one,
2148 .remove = __devexit_p(starfire_remove_one),
2149 #ifdef CONFIG_PM
2150 .suspend = starfire_suspend,
2151 .resume = starfire_resume,
2152 #endif /* CONFIG_PM */
2153 .id_table = starfire_pci_tbl,
2157 static int __init starfire_init (void)
2159 /* when a module, this is printed whether or not devices are found in probe */
2160 #ifdef MODULE
2161 printk(version);
2162 #ifdef HAVE_NETDEV_POLL
2163 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2164 #else
2165 printk(KERN_INFO DRV_NAME ": polling (NAPI) disabled\n");
2166 #endif
2167 #endif
2169 /* we can do this test only at run-time... sigh */
2170 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2171 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
2172 return -ENODEV;
2175 return pci_module_init (&starfire_driver);
2179 static void __exit starfire_cleanup (void)
2181 pci_unregister_driver (&starfire_driver);
2185 module_init(starfire_init);
2186 module_exit(starfire_cleanup);
2190 * Local variables:
2191 * c-basic-offset: 8
2192 * tab-width: 8
2193 * End: