Linux 2.6.17.7
[linux/fpc-iii.git] / drivers / scsi / megaraid / megaraid_sas.c
blob39729460b00e243b8be2b9257d9f71e11b769895
1 /*
3 * Linux MegaRAID driver for SAS based RAID controllers
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 * FILE : megaraid_sas.c
13 * Version : v00.00.02.04
15 * Authors:
16 * Sreenivas Bagalkote <Sreenivas.Bagalkote@lsil.com>
17 * Sumant Patro <Sumant.Patro@lsil.com>
19 * List of supported controllers
21 * OEM Product Name VID DID SSVID SSID
22 * --- ------------ --- --- ---- ----
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/pci.h>
28 #include <linux/list.h>
29 #include <linux/moduleparam.h>
30 #include <linux/module.h>
31 #include <linux/spinlock.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/uio.h>
35 #include <asm/uaccess.h>
36 #include <linux/fs.h>
37 #include <linux/compat.h>
38 #include <linux/mutex.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_device.h>
43 #include <scsi/scsi_host.h>
44 #include "megaraid_sas.h"
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(MEGASAS_VERSION);
48 MODULE_AUTHOR("sreenivas.bagalkote@lsil.com");
49 MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
52 * PCI ID table for all supported controllers
54 static struct pci_device_id megasas_pci_table[] = {
57 PCI_VENDOR_ID_LSI_LOGIC,
58 PCI_DEVICE_ID_LSI_SAS1064R, // xscale IOP
59 PCI_ANY_ID,
60 PCI_ANY_ID,
63 PCI_VENDOR_ID_LSI_LOGIC,
64 PCI_DEVICE_ID_LSI_SAS1078R, // ppc IOP
65 PCI_ANY_ID,
66 PCI_ANY_ID,
69 PCI_VENDOR_ID_DELL,
70 PCI_DEVICE_ID_DELL_PERC5, // xscale IOP
71 PCI_ANY_ID,
72 PCI_ANY_ID,
74 {0} /* Terminating entry */
77 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
79 static int megasas_mgmt_majorno;
80 static struct megasas_mgmt_info megasas_mgmt_info;
81 static struct fasync_struct *megasas_async_queue;
82 static DEFINE_MUTEX(megasas_async_queue_mutex);
84 /**
85 * megasas_get_cmd - Get a command from the free pool
86 * @instance: Adapter soft state
88 * Returns a free command from the pool
90 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
91 *instance)
93 unsigned long flags;
94 struct megasas_cmd *cmd = NULL;
96 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
98 if (!list_empty(&instance->cmd_pool)) {
99 cmd = list_entry((&instance->cmd_pool)->next,
100 struct megasas_cmd, list);
101 list_del_init(&cmd->list);
102 } else {
103 printk(KERN_ERR "megasas: Command pool empty!\n");
106 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
107 return cmd;
111 * megasas_return_cmd - Return a cmd to free command pool
112 * @instance: Adapter soft state
113 * @cmd: Command packet to be returned to free command pool
115 static inline void
116 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
118 unsigned long flags;
120 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
122 cmd->scmd = NULL;
123 list_add_tail(&cmd->list, &instance->cmd_pool);
125 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
130 * The following functions are defined for xscale
131 * (deviceid : 1064R, PERC5) controllers
135 * megasas_enable_intr_xscale - Enables interrupts
136 * @regs: MFI register set
138 static inline void
139 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
141 writel(1, &(regs)->outbound_intr_mask);
143 /* Dummy readl to force pci flush */
144 readl(&regs->outbound_intr_mask);
148 * megasas_read_fw_status_reg_xscale - returns the current FW status value
149 * @regs: MFI register set
151 static u32
152 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
154 return readl(&(regs)->outbound_msg_0);
157 * megasas_clear_interrupt_xscale - Check & clear interrupt
158 * @regs: MFI register set
160 static int
161 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
163 u32 status;
165 * Check if it is our interrupt
167 status = readl(&regs->outbound_intr_status);
169 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
170 return 1;
174 * Clear the interrupt by writing back the same value
176 writel(status, &regs->outbound_intr_status);
178 return 0;
182 * megasas_fire_cmd_xscale - Sends command to the FW
183 * @frame_phys_addr : Physical address of cmd
184 * @frame_count : Number of frames for the command
185 * @regs : MFI register set
187 static inline void
188 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
190 writel((frame_phys_addr >> 3)|(frame_count),
191 &(regs)->inbound_queue_port);
194 static struct megasas_instance_template megasas_instance_template_xscale = {
196 .fire_cmd = megasas_fire_cmd_xscale,
197 .enable_intr = megasas_enable_intr_xscale,
198 .clear_intr = megasas_clear_intr_xscale,
199 .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
203 * This is the end of set of functions & definitions specific
204 * to xscale (deviceid : 1064R, PERC5) controllers
208 * The following functions are defined for ppc (deviceid : 0x60)
209 * controllers
213 * megasas_enable_intr_ppc - Enables interrupts
214 * @regs: MFI register set
216 static inline void
217 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
219 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
221 writel(~0x80000004, &(regs)->outbound_intr_mask);
223 /* Dummy readl to force pci flush */
224 readl(&regs->outbound_intr_mask);
228 * megasas_read_fw_status_reg_ppc - returns the current FW status value
229 * @regs: MFI register set
231 static u32
232 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
234 return readl(&(regs)->outbound_scratch_pad);
238 * megasas_clear_interrupt_ppc - Check & clear interrupt
239 * @regs: MFI register set
241 static int
242 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
244 u32 status;
246 * Check if it is our interrupt
248 status = readl(&regs->outbound_intr_status);
250 if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
251 return 1;
255 * Clear the interrupt by writing back the same value
257 writel(status, &regs->outbound_doorbell_clear);
259 return 0;
262 * megasas_fire_cmd_ppc - Sends command to the FW
263 * @frame_phys_addr : Physical address of cmd
264 * @frame_count : Number of frames for the command
265 * @regs : MFI register set
267 static inline void
268 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
270 writel((frame_phys_addr | (frame_count<<1))|1,
271 &(regs)->inbound_queue_port);
274 static struct megasas_instance_template megasas_instance_template_ppc = {
276 .fire_cmd = megasas_fire_cmd_ppc,
277 .enable_intr = megasas_enable_intr_ppc,
278 .clear_intr = megasas_clear_intr_ppc,
279 .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
283 * This is the end of set of functions & definitions
284 * specific to ppc (deviceid : 0x60) controllers
288 * megasas_disable_intr - Disables interrupts
289 * @regs: MFI register set
291 static inline void
292 megasas_disable_intr(struct megasas_register_set __iomem * regs)
294 u32 mask = 0x1f;
295 writel(mask, &regs->outbound_intr_mask);
297 /* Dummy readl to force pci flush */
298 readl(&regs->outbound_intr_mask);
302 * megasas_issue_polled - Issues a polling command
303 * @instance: Adapter soft state
304 * @cmd: Command packet to be issued
306 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
308 static int
309 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
311 int i;
312 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
314 struct megasas_header *frame_hdr = &cmd->frame->hdr;
316 frame_hdr->cmd_status = 0xFF;
317 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
320 * Issue the frame using inbound queue port
322 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
325 * Wait for cmd_status to change
327 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
328 rmb();
329 msleep(1);
332 if (frame_hdr->cmd_status == 0xff)
333 return -ETIME;
335 return 0;
339 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
340 * @instance: Adapter soft state
341 * @cmd: Command to be issued
343 * This function waits on an event for the command to be returned from ISR.
344 * Used to issue ioctl commands.
346 static int
347 megasas_issue_blocked_cmd(struct megasas_instance *instance,
348 struct megasas_cmd *cmd)
350 cmd->cmd_status = ENODATA;
352 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
354 wait_event(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA));
356 return 0;
360 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
361 * @instance: Adapter soft state
362 * @cmd_to_abort: Previously issued cmd to be aborted
364 * MFI firmware can abort previously issued AEN comamnd (automatic event
365 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
366 * cmd and blocks till it is completed.
368 static int
369 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
370 struct megasas_cmd *cmd_to_abort)
372 struct megasas_cmd *cmd;
373 struct megasas_abort_frame *abort_fr;
375 cmd = megasas_get_cmd(instance);
377 if (!cmd)
378 return -1;
380 abort_fr = &cmd->frame->abort;
383 * Prepare and issue the abort frame
385 abort_fr->cmd = MFI_CMD_ABORT;
386 abort_fr->cmd_status = 0xFF;
387 abort_fr->flags = 0;
388 abort_fr->abort_context = cmd_to_abort->index;
389 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
390 abort_fr->abort_mfi_phys_addr_hi = 0;
392 cmd->sync_cmd = 1;
393 cmd->cmd_status = 0xFF;
395 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
398 * Wait for this cmd to complete
400 wait_event(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF));
402 megasas_return_cmd(instance, cmd);
403 return 0;
407 * megasas_make_sgl32 - Prepares 32-bit SGL
408 * @instance: Adapter soft state
409 * @scp: SCSI command from the mid-layer
410 * @mfi_sgl: SGL to be filled in
412 * If successful, this function returns the number of SG elements. Otherwise,
413 * it returnes -1.
415 static int
416 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
417 union megasas_sgl *mfi_sgl)
419 int i;
420 int sge_count;
421 struct scatterlist *os_sgl;
424 * Return 0 if there is no data transfer
426 if (!scp->request_buffer || !scp->request_bufflen)
427 return 0;
429 if (!scp->use_sg) {
430 mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
431 scp->
432 request_buffer,
433 scp->
434 request_bufflen,
435 scp->
436 sc_data_direction);
437 mfi_sgl->sge32[0].length = scp->request_bufflen;
439 return 1;
442 os_sgl = (struct scatterlist *)scp->request_buffer;
443 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
444 scp->sc_data_direction);
446 for (i = 0; i < sge_count; i++, os_sgl++) {
447 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
448 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
451 return sge_count;
455 * megasas_make_sgl64 - Prepares 64-bit SGL
456 * @instance: Adapter soft state
457 * @scp: SCSI command from the mid-layer
458 * @mfi_sgl: SGL to be filled in
460 * If successful, this function returns the number of SG elements. Otherwise,
461 * it returnes -1.
463 static int
464 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
465 union megasas_sgl *mfi_sgl)
467 int i;
468 int sge_count;
469 struct scatterlist *os_sgl;
472 * Return 0 if there is no data transfer
474 if (!scp->request_buffer || !scp->request_bufflen)
475 return 0;
477 if (!scp->use_sg) {
478 mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
479 scp->
480 request_buffer,
481 scp->
482 request_bufflen,
483 scp->
484 sc_data_direction);
486 mfi_sgl->sge64[0].length = scp->request_bufflen;
488 return 1;
491 os_sgl = (struct scatterlist *)scp->request_buffer;
492 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
493 scp->sc_data_direction);
495 for (i = 0; i < sge_count; i++, os_sgl++) {
496 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
497 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
500 return sge_count;
504 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
505 * @instance: Adapter soft state
506 * @scp: SCSI command
507 * @cmd: Command to be prepared in
509 * This function prepares CDB commands. These are typcially pass-through
510 * commands to the devices.
512 static int
513 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
514 struct megasas_cmd *cmd)
516 u32 sge_sz;
517 int sge_bytes;
518 u32 is_logical;
519 u32 device_id;
520 u16 flags = 0;
521 struct megasas_pthru_frame *pthru;
523 is_logical = MEGASAS_IS_LOGICAL(scp);
524 device_id = MEGASAS_DEV_INDEX(instance, scp);
525 pthru = (struct megasas_pthru_frame *)cmd->frame;
527 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
528 flags = MFI_FRAME_DIR_WRITE;
529 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
530 flags = MFI_FRAME_DIR_READ;
531 else if (scp->sc_data_direction == PCI_DMA_NONE)
532 flags = MFI_FRAME_DIR_NONE;
535 * Prepare the DCDB frame
537 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
538 pthru->cmd_status = 0x0;
539 pthru->scsi_status = 0x0;
540 pthru->target_id = device_id;
541 pthru->lun = scp->device->lun;
542 pthru->cdb_len = scp->cmd_len;
543 pthru->timeout = 0;
544 pthru->flags = flags;
545 pthru->data_xfer_len = scp->request_bufflen;
547 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
550 * Construct SGL
552 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
553 sizeof(struct megasas_sge32);
555 if (IS_DMA64) {
556 pthru->flags |= MFI_FRAME_SGL64;
557 pthru->sge_count = megasas_make_sgl64(instance, scp,
558 &pthru->sgl);
559 } else
560 pthru->sge_count = megasas_make_sgl32(instance, scp,
561 &pthru->sgl);
564 * Sense info specific
566 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
567 pthru->sense_buf_phys_addr_hi = 0;
568 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
570 sge_bytes = sge_sz * pthru->sge_count;
573 * Compute the total number of frames this command consumes. FW uses
574 * this number to pull sufficient number of frames from host memory.
576 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
577 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
579 if (cmd->frame_count > 7)
580 cmd->frame_count = 8;
582 return cmd->frame_count;
586 * megasas_build_ldio - Prepares IOs to logical devices
587 * @instance: Adapter soft state
588 * @scp: SCSI command
589 * @cmd: Command to to be prepared
591 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
593 static int
594 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
595 struct megasas_cmd *cmd)
597 u32 sge_sz;
598 int sge_bytes;
599 u32 device_id;
600 u8 sc = scp->cmnd[0];
601 u16 flags = 0;
602 struct megasas_io_frame *ldio;
604 device_id = MEGASAS_DEV_INDEX(instance, scp);
605 ldio = (struct megasas_io_frame *)cmd->frame;
607 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
608 flags = MFI_FRAME_DIR_WRITE;
609 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
610 flags = MFI_FRAME_DIR_READ;
613 * Preare the Logical IO frame: 2nd bit is zero for all read cmds
615 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
616 ldio->cmd_status = 0x0;
617 ldio->scsi_status = 0x0;
618 ldio->target_id = device_id;
619 ldio->timeout = 0;
620 ldio->reserved_0 = 0;
621 ldio->pad_0 = 0;
622 ldio->flags = flags;
623 ldio->start_lba_hi = 0;
624 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
627 * 6-byte READ(0x08) or WRITE(0x0A) cdb
629 if (scp->cmd_len == 6) {
630 ldio->lba_count = (u32) scp->cmnd[4];
631 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
632 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
634 ldio->start_lba_lo &= 0x1FFFFF;
638 * 10-byte READ(0x28) or WRITE(0x2A) cdb
640 else if (scp->cmd_len == 10) {
641 ldio->lba_count = (u32) scp->cmnd[8] |
642 ((u32) scp->cmnd[7] << 8);
643 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
644 ((u32) scp->cmnd[3] << 16) |
645 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
649 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
651 else if (scp->cmd_len == 12) {
652 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
653 ((u32) scp->cmnd[7] << 16) |
654 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
656 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
657 ((u32) scp->cmnd[3] << 16) |
658 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
662 * 16-byte READ(0x88) or WRITE(0x8A) cdb
664 else if (scp->cmd_len == 16) {
665 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
666 ((u32) scp->cmnd[11] << 16) |
667 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
669 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
670 ((u32) scp->cmnd[7] << 16) |
671 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
673 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
674 ((u32) scp->cmnd[3] << 16) |
675 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
680 * Construct SGL
682 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
683 sizeof(struct megasas_sge32);
685 if (IS_DMA64) {
686 ldio->flags |= MFI_FRAME_SGL64;
687 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
688 } else
689 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
692 * Sense info specific
694 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
695 ldio->sense_buf_phys_addr_hi = 0;
696 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
698 sge_bytes = sge_sz * ldio->sge_count;
700 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
701 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
703 if (cmd->frame_count > 7)
704 cmd->frame_count = 8;
706 return cmd->frame_count;
710 * megasas_is_ldio - Checks if the cmd is for logical drive
711 * @scmd: SCSI command
713 * Called by megasas_queue_command to find out if the command to be queued
714 * is a logical drive command
716 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
718 if (!MEGASAS_IS_LOGICAL(cmd))
719 return 0;
720 switch (cmd->cmnd[0]) {
721 case READ_10:
722 case WRITE_10:
723 case READ_12:
724 case WRITE_12:
725 case READ_6:
726 case WRITE_6:
727 case READ_16:
728 case WRITE_16:
729 return 1;
730 default:
731 return 0;
736 * megasas_queue_command - Queue entry point
737 * @scmd: SCSI command to be queued
738 * @done: Callback entry point
740 static int
741 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
743 u32 frame_count;
744 unsigned long flags;
745 struct megasas_cmd *cmd;
746 struct megasas_instance *instance;
748 instance = (struct megasas_instance *)
749 scmd->device->host->hostdata;
750 scmd->scsi_done = done;
751 scmd->result = 0;
753 if (MEGASAS_IS_LOGICAL(scmd) &&
754 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
755 scmd->result = DID_BAD_TARGET << 16;
756 goto out_done;
759 cmd = megasas_get_cmd(instance);
760 if (!cmd)
761 return SCSI_MLQUEUE_HOST_BUSY;
764 * Logical drive command
766 if (megasas_is_ldio(scmd))
767 frame_count = megasas_build_ldio(instance, scmd, cmd);
768 else
769 frame_count = megasas_build_dcdb(instance, scmd, cmd);
771 if (!frame_count)
772 goto out_return_cmd;
774 cmd->scmd = scmd;
777 * Issue the command to the FW
779 spin_lock_irqsave(&instance->instance_lock, flags);
780 instance->fw_outstanding++;
781 spin_unlock_irqrestore(&instance->instance_lock, flags);
783 instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
785 return 0;
787 out_return_cmd:
788 megasas_return_cmd(instance, cmd);
789 out_done:
790 done(scmd);
791 return 0;
794 static int megasas_slave_configure(struct scsi_device *sdev)
797 * Don't export physical disk devices to the disk driver.
799 * FIXME: Currently we don't export them to the midlayer at all.
800 * That will be fixed once LSI engineers have audited the
801 * firmware for possible issues.
803 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
804 return -ENXIO;
807 * The RAID firmware may require extended timeouts.
809 if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
810 sdev->timeout = 90 * HZ;
811 return 0;
815 * megasas_wait_for_outstanding - Wait for all outstanding cmds
816 * @instance: Adapter soft state
818 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
819 * complete all its outstanding commands. Returns error if one or more IOs
820 * are pending after this time period. It also marks the controller dead.
822 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
824 int i;
825 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
827 for (i = 0; i < wait_time; i++) {
829 if (!instance->fw_outstanding)
830 break;
832 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
833 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
834 "commands to complete\n", i,
835 instance->fw_outstanding);
838 msleep(1000);
841 if (instance->fw_outstanding) {
842 instance->hw_crit_error = 1;
843 return FAILED;
846 return SUCCESS;
850 * megasas_generic_reset - Generic reset routine
851 * @scmd: Mid-layer SCSI command
853 * This routine implements a generic reset handler for device, bus and host
854 * reset requests. Device, bus and host specific reset handlers can use this
855 * function after they do their specific tasks.
857 static int megasas_generic_reset(struct scsi_cmnd *scmd)
859 int ret_val;
860 struct megasas_instance *instance;
862 instance = (struct megasas_instance *)scmd->device->host->hostdata;
864 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x\n",
865 scmd->serial_number, scmd->cmnd[0]);
867 if (instance->hw_crit_error) {
868 printk(KERN_ERR "megasas: cannot recover from previous reset "
869 "failures\n");
870 return FAILED;
873 ret_val = megasas_wait_for_outstanding(instance);
874 if (ret_val == SUCCESS)
875 printk(KERN_NOTICE "megasas: reset successful \n");
876 else
877 printk(KERN_ERR "megasas: failed to do reset\n");
879 return ret_val;
883 * megasas_reset_device - Device reset handler entry point
885 static int megasas_reset_device(struct scsi_cmnd *scmd)
887 int ret;
890 * First wait for all commands to complete
892 ret = megasas_generic_reset(scmd);
894 return ret;
898 * megasas_reset_bus_host - Bus & host reset handler entry point
900 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
902 int ret;
905 * First wait for all commands to complete
907 ret = megasas_generic_reset(scmd);
909 return ret;
913 * megasas_service_aen - Processes an event notification
914 * @instance: Adapter soft state
915 * @cmd: AEN command completed by the ISR
917 * For AEN, driver sends a command down to FW that is held by the FW till an
918 * event occurs. When an event of interest occurs, FW completes the command
919 * that it was previously holding.
921 * This routines sends SIGIO signal to processes that have registered with the
922 * driver for AEN.
924 static void
925 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
928 * Don't signal app if it is just an aborted previously registered aen
930 if (!cmd->abort_aen)
931 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
932 else
933 cmd->abort_aen = 0;
935 instance->aen_cmd = NULL;
936 megasas_return_cmd(instance, cmd);
940 * Scsi host template for megaraid_sas driver
942 static struct scsi_host_template megasas_template = {
944 .module = THIS_MODULE,
945 .name = "LSI Logic SAS based MegaRAID driver",
946 .proc_name = "megaraid_sas",
947 .slave_configure = megasas_slave_configure,
948 .queuecommand = megasas_queue_command,
949 .eh_device_reset_handler = megasas_reset_device,
950 .eh_bus_reset_handler = megasas_reset_bus_host,
951 .eh_host_reset_handler = megasas_reset_bus_host,
952 .use_clustering = ENABLE_CLUSTERING,
956 * megasas_complete_int_cmd - Completes an internal command
957 * @instance: Adapter soft state
958 * @cmd: Command to be completed
960 * The megasas_issue_blocked_cmd() function waits for a command to complete
961 * after it issues a command. This function wakes up that waiting routine by
962 * calling wake_up() on the wait queue.
964 static void
965 megasas_complete_int_cmd(struct megasas_instance *instance,
966 struct megasas_cmd *cmd)
968 cmd->cmd_status = cmd->frame->io.cmd_status;
970 if (cmd->cmd_status == ENODATA) {
971 cmd->cmd_status = 0;
973 wake_up(&instance->int_cmd_wait_q);
977 * megasas_complete_abort - Completes aborting a command
978 * @instance: Adapter soft state
979 * @cmd: Cmd that was issued to abort another cmd
981 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
982 * after it issues an abort on a previously issued command. This function
983 * wakes up all functions waiting on the same wait queue.
985 static void
986 megasas_complete_abort(struct megasas_instance *instance,
987 struct megasas_cmd *cmd)
989 if (cmd->sync_cmd) {
990 cmd->sync_cmd = 0;
991 cmd->cmd_status = 0;
992 wake_up(&instance->abort_cmd_wait_q);
995 return;
999 * megasas_unmap_sgbuf - Unmap SG buffers
1000 * @instance: Adapter soft state
1001 * @cmd: Completed command
1003 static void
1004 megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
1006 dma_addr_t buf_h;
1007 u8 opcode;
1009 if (cmd->scmd->use_sg) {
1010 pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
1011 cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
1012 return;
1015 if (!cmd->scmd->request_bufflen)
1016 return;
1018 opcode = cmd->frame->hdr.cmd;
1020 if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
1021 if (IS_DMA64)
1022 buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
1023 else
1024 buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
1025 } else {
1026 if (IS_DMA64)
1027 buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
1028 else
1029 buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
1032 pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
1033 cmd->scmd->sc_data_direction);
1034 return;
1038 * megasas_complete_cmd - Completes a command
1039 * @instance: Adapter soft state
1040 * @cmd: Command to be completed
1041 * @alt_status: If non-zero, use this value as status to
1042 * SCSI mid-layer instead of the value returned
1043 * by the FW. This should be used if caller wants
1044 * an alternate status (as in the case of aborted
1045 * commands)
1047 static void
1048 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1049 u8 alt_status)
1051 int exception = 0;
1052 struct megasas_header *hdr = &cmd->frame->hdr;
1053 unsigned long flags;
1055 if (cmd->scmd) {
1056 cmd->scmd->SCp.ptr = (char *)0;
1059 switch (hdr->cmd) {
1061 case MFI_CMD_PD_SCSI_IO:
1062 case MFI_CMD_LD_SCSI_IO:
1065 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1066 * issued either through an IO path or an IOCTL path. If it
1067 * was via IOCTL, we will send it to internal completion.
1069 if (cmd->sync_cmd) {
1070 cmd->sync_cmd = 0;
1071 megasas_complete_int_cmd(instance, cmd);
1072 break;
1075 case MFI_CMD_LD_READ:
1076 case MFI_CMD_LD_WRITE:
1078 if (alt_status) {
1079 cmd->scmd->result = alt_status << 16;
1080 exception = 1;
1083 if (exception) {
1085 spin_lock_irqsave(&instance->instance_lock, flags);
1086 instance->fw_outstanding--;
1087 spin_unlock_irqrestore(&instance->instance_lock, flags);
1089 megasas_unmap_sgbuf(instance, cmd);
1090 cmd->scmd->scsi_done(cmd->scmd);
1091 megasas_return_cmd(instance, cmd);
1093 break;
1096 switch (hdr->cmd_status) {
1098 case MFI_STAT_OK:
1099 cmd->scmd->result = DID_OK << 16;
1100 break;
1102 case MFI_STAT_SCSI_IO_FAILED:
1103 case MFI_STAT_LD_INIT_IN_PROGRESS:
1104 cmd->scmd->result =
1105 (DID_ERROR << 16) | hdr->scsi_status;
1106 break;
1108 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1110 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1112 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1113 memset(cmd->scmd->sense_buffer, 0,
1114 SCSI_SENSE_BUFFERSIZE);
1115 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1116 hdr->sense_len);
1118 cmd->scmd->result |= DRIVER_SENSE << 24;
1121 break;
1123 case MFI_STAT_LD_OFFLINE:
1124 case MFI_STAT_DEVICE_NOT_FOUND:
1125 cmd->scmd->result = DID_BAD_TARGET << 16;
1126 break;
1128 default:
1129 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1130 hdr->cmd_status);
1131 cmd->scmd->result = DID_ERROR << 16;
1132 break;
1135 spin_lock_irqsave(&instance->instance_lock, flags);
1136 instance->fw_outstanding--;
1137 spin_unlock_irqrestore(&instance->instance_lock, flags);
1139 megasas_unmap_sgbuf(instance, cmd);
1140 cmd->scmd->scsi_done(cmd->scmd);
1141 megasas_return_cmd(instance, cmd);
1143 break;
1145 case MFI_CMD_SMP:
1146 case MFI_CMD_STP:
1147 case MFI_CMD_DCMD:
1150 * See if got an event notification
1152 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1153 megasas_service_aen(instance, cmd);
1154 else
1155 megasas_complete_int_cmd(instance, cmd);
1157 break;
1159 case MFI_CMD_ABORT:
1161 * Cmd issued to abort another cmd returned
1163 megasas_complete_abort(instance, cmd);
1164 break;
1166 default:
1167 printk("megasas: Unknown command completed! [0x%X]\n",
1168 hdr->cmd);
1169 break;
1174 * megasas_deplete_reply_queue - Processes all completed commands
1175 * @instance: Adapter soft state
1176 * @alt_status: Alternate status to be returned to
1177 * SCSI mid-layer instead of the status
1178 * returned by the FW
1180 static int
1181 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1183 u32 producer;
1184 u32 consumer;
1185 u32 context;
1186 struct megasas_cmd *cmd;
1189 * Check if it is our interrupt
1190 * Clear the interrupt
1192 if(instance->instancet->clear_intr(instance->reg_set))
1193 return IRQ_NONE;
1195 producer = *instance->producer;
1196 consumer = *instance->consumer;
1198 while (consumer != producer) {
1199 context = instance->reply_queue[consumer];
1201 cmd = instance->cmd_list[context];
1203 megasas_complete_cmd(instance, cmd, alt_status);
1205 consumer++;
1206 if (consumer == (instance->max_fw_cmds + 1)) {
1207 consumer = 0;
1211 *instance->consumer = producer;
1213 return IRQ_HANDLED;
1217 * megasas_isr - isr entry point
1219 static irqreturn_t megasas_isr(int irq, void *devp, struct pt_regs *regs)
1221 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1222 DID_OK);
1226 * megasas_transition_to_ready - Move the FW to READY state
1227 * @instance: Adapter soft state
1229 * During the initialization, FW passes can potentially be in any one of
1230 * several possible states. If the FW in operational, waiting-for-handshake
1231 * states, driver must take steps to bring it to ready state. Otherwise, it
1232 * has to wait for the ready state.
1234 static int
1235 megasas_transition_to_ready(struct megasas_instance* instance)
1237 int i;
1238 u8 max_wait;
1239 u32 fw_state;
1240 u32 cur_state;
1242 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1244 while (fw_state != MFI_STATE_READY) {
1246 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1247 " state\n");
1248 switch (fw_state) {
1250 case MFI_STATE_FAULT:
1252 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1253 return -ENODEV;
1255 case MFI_STATE_WAIT_HANDSHAKE:
1257 * Set the CLR bit in inbound doorbell
1259 writel(MFI_INIT_CLEAR_HANDSHAKE,
1260 &instance->reg_set->inbound_doorbell);
1262 max_wait = 2;
1263 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1264 break;
1266 case MFI_STATE_OPERATIONAL:
1268 * Bring it to READY state; assuming max wait 2 secs
1270 megasas_disable_intr(instance->reg_set);
1271 writel(MFI_INIT_READY, &instance->reg_set->inbound_doorbell);
1273 max_wait = 10;
1274 cur_state = MFI_STATE_OPERATIONAL;
1275 break;
1277 case MFI_STATE_UNDEFINED:
1279 * This state should not last for more than 2 seconds
1281 max_wait = 2;
1282 cur_state = MFI_STATE_UNDEFINED;
1283 break;
1285 case MFI_STATE_BB_INIT:
1286 max_wait = 2;
1287 cur_state = MFI_STATE_BB_INIT;
1288 break;
1290 case MFI_STATE_FW_INIT:
1291 max_wait = 20;
1292 cur_state = MFI_STATE_FW_INIT;
1293 break;
1295 case MFI_STATE_FW_INIT_2:
1296 max_wait = 20;
1297 cur_state = MFI_STATE_FW_INIT_2;
1298 break;
1300 case MFI_STATE_DEVICE_SCAN:
1301 max_wait = 20;
1302 cur_state = MFI_STATE_DEVICE_SCAN;
1303 break;
1305 case MFI_STATE_FLUSH_CACHE:
1306 max_wait = 20;
1307 cur_state = MFI_STATE_FLUSH_CACHE;
1308 break;
1310 default:
1311 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1312 fw_state);
1313 return -ENODEV;
1317 * The cur_state should not last for more than max_wait secs
1319 for (i = 0; i < (max_wait * 1000); i++) {
1320 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
1321 MFI_STATE_MASK ;
1323 if (fw_state == cur_state) {
1324 msleep(1);
1325 } else
1326 break;
1330 * Return error if fw_state hasn't changed after max_wait
1332 if (fw_state == cur_state) {
1333 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1334 "in %d secs\n", fw_state, max_wait);
1335 return -ENODEV;
1339 return 0;
1343 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1344 * @instance: Adapter soft state
1346 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1348 int i;
1349 u32 max_cmd = instance->max_fw_cmds;
1350 struct megasas_cmd *cmd;
1352 if (!instance->frame_dma_pool)
1353 return;
1356 * Return all frames to pool
1358 for (i = 0; i < max_cmd; i++) {
1360 cmd = instance->cmd_list[i];
1362 if (cmd->frame)
1363 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1364 cmd->frame_phys_addr);
1366 if (cmd->sense)
1367 pci_pool_free(instance->sense_dma_pool, cmd->frame,
1368 cmd->sense_phys_addr);
1372 * Now destroy the pool itself
1374 pci_pool_destroy(instance->frame_dma_pool);
1375 pci_pool_destroy(instance->sense_dma_pool);
1377 instance->frame_dma_pool = NULL;
1378 instance->sense_dma_pool = NULL;
1382 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1383 * @instance: Adapter soft state
1385 * Each command packet has an embedded DMA memory buffer that is used for
1386 * filling MFI frame and the SG list that immediately follows the frame. This
1387 * function creates those DMA memory buffers for each command packet by using
1388 * PCI pool facility.
1390 static int megasas_create_frame_pool(struct megasas_instance *instance)
1392 int i;
1393 u32 max_cmd;
1394 u32 sge_sz;
1395 u32 sgl_sz;
1396 u32 total_sz;
1397 u32 frame_count;
1398 struct megasas_cmd *cmd;
1400 max_cmd = instance->max_fw_cmds;
1403 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1404 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1406 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1407 sizeof(struct megasas_sge32);
1410 * Calculated the number of 64byte frames required for SGL
1412 sgl_sz = sge_sz * instance->max_num_sge;
1413 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1416 * We need one extra frame for the MFI command
1418 frame_count++;
1420 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1422 * Use DMA pool facility provided by PCI layer
1424 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1425 instance->pdev, total_sz, 64,
1428 if (!instance->frame_dma_pool) {
1429 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1430 return -ENOMEM;
1433 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1434 instance->pdev, 128, 4, 0);
1436 if (!instance->sense_dma_pool) {
1437 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1439 pci_pool_destroy(instance->frame_dma_pool);
1440 instance->frame_dma_pool = NULL;
1442 return -ENOMEM;
1446 * Allocate and attach a frame to each of the commands in cmd_list.
1447 * By making cmd->index as the context instead of the &cmd, we can
1448 * always use 32bit context regardless of the architecture
1450 for (i = 0; i < max_cmd; i++) {
1452 cmd = instance->cmd_list[i];
1454 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1455 GFP_KERNEL, &cmd->frame_phys_addr);
1457 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1458 GFP_KERNEL, &cmd->sense_phys_addr);
1461 * megasas_teardown_frame_pool() takes care of freeing
1462 * whatever has been allocated
1464 if (!cmd->frame || !cmd->sense) {
1465 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1466 megasas_teardown_frame_pool(instance);
1467 return -ENOMEM;
1470 cmd->frame->io.context = cmd->index;
1473 return 0;
1477 * megasas_free_cmds - Free all the cmds in the free cmd pool
1478 * @instance: Adapter soft state
1480 static void megasas_free_cmds(struct megasas_instance *instance)
1482 int i;
1483 /* First free the MFI frame pool */
1484 megasas_teardown_frame_pool(instance);
1486 /* Free all the commands in the cmd_list */
1487 for (i = 0; i < instance->max_fw_cmds; i++)
1488 kfree(instance->cmd_list[i]);
1490 /* Free the cmd_list buffer itself */
1491 kfree(instance->cmd_list);
1492 instance->cmd_list = NULL;
1494 INIT_LIST_HEAD(&instance->cmd_pool);
1498 * megasas_alloc_cmds - Allocates the command packets
1499 * @instance: Adapter soft state
1501 * Each command that is issued to the FW, whether IO commands from the OS or
1502 * internal commands like IOCTLs, are wrapped in local data structure called
1503 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1504 * the FW.
1506 * Each frame has a 32-bit field called context (tag). This context is used
1507 * to get back the megasas_cmd from the frame when a frame gets completed in
1508 * the ISR. Typically the address of the megasas_cmd itself would be used as
1509 * the context. But we wanted to keep the differences between 32 and 64 bit
1510 * systems to the mininum. We always use 32 bit integers for the context. In
1511 * this driver, the 32 bit values are the indices into an array cmd_list.
1512 * This array is used only to look up the megasas_cmd given the context. The
1513 * free commands themselves are maintained in a linked list called cmd_pool.
1515 static int megasas_alloc_cmds(struct megasas_instance *instance)
1517 int i;
1518 int j;
1519 u32 max_cmd;
1520 struct megasas_cmd *cmd;
1522 max_cmd = instance->max_fw_cmds;
1525 * instance->cmd_list is an array of struct megasas_cmd pointers.
1526 * Allocate the dynamic array first and then allocate individual
1527 * commands.
1529 instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
1530 GFP_KERNEL);
1532 if (!instance->cmd_list) {
1533 printk(KERN_DEBUG "megasas: out of memory\n");
1534 return -ENOMEM;
1537 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
1539 for (i = 0; i < max_cmd; i++) {
1540 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1541 GFP_KERNEL);
1543 if (!instance->cmd_list[i]) {
1545 for (j = 0; j < i; j++)
1546 kfree(instance->cmd_list[j]);
1548 kfree(instance->cmd_list);
1549 instance->cmd_list = NULL;
1551 return -ENOMEM;
1556 * Add all the commands to command pool (instance->cmd_pool)
1558 for (i = 0; i < max_cmd; i++) {
1559 cmd = instance->cmd_list[i];
1560 memset(cmd, 0, sizeof(struct megasas_cmd));
1561 cmd->index = i;
1562 cmd->instance = instance;
1564 list_add_tail(&cmd->list, &instance->cmd_pool);
1568 * Create a frame pool and assign one frame to each cmd
1570 if (megasas_create_frame_pool(instance)) {
1571 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1572 megasas_free_cmds(instance);
1575 return 0;
1579 * megasas_get_controller_info - Returns FW's controller structure
1580 * @instance: Adapter soft state
1581 * @ctrl_info: Controller information structure
1583 * Issues an internal command (DCMD) to get the FW's controller structure.
1584 * This information is mainly used to find out the maximum IO transfer per
1585 * command supported by the FW.
1587 static int
1588 megasas_get_ctrl_info(struct megasas_instance *instance,
1589 struct megasas_ctrl_info *ctrl_info)
1591 int ret = 0;
1592 struct megasas_cmd *cmd;
1593 struct megasas_dcmd_frame *dcmd;
1594 struct megasas_ctrl_info *ci;
1595 dma_addr_t ci_h = 0;
1597 cmd = megasas_get_cmd(instance);
1599 if (!cmd) {
1600 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1601 return -ENOMEM;
1604 dcmd = &cmd->frame->dcmd;
1606 ci = pci_alloc_consistent(instance->pdev,
1607 sizeof(struct megasas_ctrl_info), &ci_h);
1609 if (!ci) {
1610 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1611 megasas_return_cmd(instance, cmd);
1612 return -ENOMEM;
1615 memset(ci, 0, sizeof(*ci));
1616 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1618 dcmd->cmd = MFI_CMD_DCMD;
1619 dcmd->cmd_status = 0xFF;
1620 dcmd->sge_count = 1;
1621 dcmd->flags = MFI_FRAME_DIR_READ;
1622 dcmd->timeout = 0;
1623 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1624 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1625 dcmd->sgl.sge32[0].phys_addr = ci_h;
1626 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1628 if (!megasas_issue_polled(instance, cmd)) {
1629 ret = 0;
1630 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1631 } else {
1632 ret = -1;
1635 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1636 ci, ci_h);
1638 megasas_return_cmd(instance, cmd);
1639 return ret;
1643 * megasas_init_mfi - Initializes the FW
1644 * @instance: Adapter soft state
1646 * This is the main function for initializing MFI firmware.
1648 static int megasas_init_mfi(struct megasas_instance *instance)
1650 u32 context_sz;
1651 u32 reply_q_sz;
1652 u32 max_sectors_1;
1653 u32 max_sectors_2;
1654 struct megasas_register_set __iomem *reg_set;
1656 struct megasas_cmd *cmd;
1657 struct megasas_ctrl_info *ctrl_info;
1659 struct megasas_init_frame *init_frame;
1660 struct megasas_init_queue_info *initq_info;
1661 dma_addr_t init_frame_h;
1662 dma_addr_t initq_info_h;
1665 * Map the message registers
1667 instance->base_addr = pci_resource_start(instance->pdev, 0);
1669 if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1670 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1671 return -EBUSY;
1674 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1676 if (!instance->reg_set) {
1677 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1678 goto fail_ioremap;
1681 reg_set = instance->reg_set;
1683 switch(instance->pdev->device)
1685 case PCI_DEVICE_ID_LSI_SAS1078R:
1686 instance->instancet = &megasas_instance_template_ppc;
1687 break;
1688 case PCI_DEVICE_ID_LSI_SAS1064R:
1689 case PCI_DEVICE_ID_DELL_PERC5:
1690 default:
1691 instance->instancet = &megasas_instance_template_xscale;
1692 break;
1696 * We expect the FW state to be READY
1698 if (megasas_transition_to_ready(instance))
1699 goto fail_ready_state;
1702 * Get various operational parameters from status register
1704 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
1705 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
1706 0x10;
1708 * Create a pool of commands
1710 if (megasas_alloc_cmds(instance))
1711 goto fail_alloc_cmds;
1714 * Allocate memory for reply queue. Length of reply queue should
1715 * be _one_ more than the maximum commands handled by the firmware.
1717 * Note: When FW completes commands, it places corresponding contex
1718 * values in this circular reply queue. This circular queue is a fairly
1719 * typical producer-consumer queue. FW is the producer (of completed
1720 * commands) and the driver is the consumer.
1722 context_sz = sizeof(u32);
1723 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1725 instance->reply_queue = pci_alloc_consistent(instance->pdev,
1726 reply_q_sz,
1727 &instance->reply_queue_h);
1729 if (!instance->reply_queue) {
1730 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1731 goto fail_reply_queue;
1735 * Prepare a init frame. Note the init frame points to queue info
1736 * structure. Each frame has SGL allocated after first 64 bytes. For
1737 * this frame - since we don't need any SGL - we use SGL's space as
1738 * queue info structure
1740 * We will not get a NULL command below. We just created the pool.
1742 cmd = megasas_get_cmd(instance);
1744 init_frame = (struct megasas_init_frame *)cmd->frame;
1745 initq_info = (struct megasas_init_queue_info *)
1746 ((unsigned long)init_frame + 64);
1748 init_frame_h = cmd->frame_phys_addr;
1749 initq_info_h = init_frame_h + 64;
1751 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1752 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1754 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1755 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1757 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1758 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1760 init_frame->cmd = MFI_CMD_INIT;
1761 init_frame->cmd_status = 0xFF;
1762 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1764 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1767 * Issue the init frame in polled mode
1769 if (megasas_issue_polled(instance, cmd)) {
1770 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
1771 goto fail_fw_init;
1774 megasas_return_cmd(instance, cmd);
1776 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1779 * Compute the max allowed sectors per IO: The controller info has two
1780 * limits on max sectors. Driver should use the minimum of these two.
1782 * 1 << stripe_sz_ops.min = max sectors per strip
1784 * Note that older firmwares ( < FW ver 30) didn't report information
1785 * to calculate max_sectors_1. So the number ended up as zero always.
1787 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1789 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1790 ctrl_info->max_strips_per_io;
1791 max_sectors_2 = ctrl_info->max_request_size;
1793 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
1794 ? max_sectors_1 : max_sectors_2;
1795 } else
1796 instance->max_sectors_per_req = instance->max_num_sge *
1797 PAGE_SIZE / 512;
1799 kfree(ctrl_info);
1801 return 0;
1803 fail_fw_init:
1804 megasas_return_cmd(instance, cmd);
1806 pci_free_consistent(instance->pdev, reply_q_sz,
1807 instance->reply_queue, instance->reply_queue_h);
1808 fail_reply_queue:
1809 megasas_free_cmds(instance);
1811 fail_alloc_cmds:
1812 fail_ready_state:
1813 iounmap(instance->reg_set);
1815 fail_ioremap:
1816 pci_release_regions(instance->pdev);
1818 return -EINVAL;
1822 * megasas_release_mfi - Reverses the FW initialization
1823 * @intance: Adapter soft state
1825 static void megasas_release_mfi(struct megasas_instance *instance)
1827 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
1829 pci_free_consistent(instance->pdev, reply_q_sz,
1830 instance->reply_queue, instance->reply_queue_h);
1832 megasas_free_cmds(instance);
1834 iounmap(instance->reg_set);
1836 pci_release_regions(instance->pdev);
1840 * megasas_get_seq_num - Gets latest event sequence numbers
1841 * @instance: Adapter soft state
1842 * @eli: FW event log sequence numbers information
1844 * FW maintains a log of all events in a non-volatile area. Upper layers would
1845 * usually find out the latest sequence number of the events, the seq number at
1846 * the boot etc. They would "read" all the events below the latest seq number
1847 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
1848 * number), they would subsribe to AEN (asynchronous event notification) and
1849 * wait for the events to happen.
1851 static int
1852 megasas_get_seq_num(struct megasas_instance *instance,
1853 struct megasas_evt_log_info *eli)
1855 struct megasas_cmd *cmd;
1856 struct megasas_dcmd_frame *dcmd;
1857 struct megasas_evt_log_info *el_info;
1858 dma_addr_t el_info_h = 0;
1860 cmd = megasas_get_cmd(instance);
1862 if (!cmd) {
1863 return -ENOMEM;
1866 dcmd = &cmd->frame->dcmd;
1867 el_info = pci_alloc_consistent(instance->pdev,
1868 sizeof(struct megasas_evt_log_info),
1869 &el_info_h);
1871 if (!el_info) {
1872 megasas_return_cmd(instance, cmd);
1873 return -ENOMEM;
1876 memset(el_info, 0, sizeof(*el_info));
1877 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1879 dcmd->cmd = MFI_CMD_DCMD;
1880 dcmd->cmd_status = 0x0;
1881 dcmd->sge_count = 1;
1882 dcmd->flags = MFI_FRAME_DIR_READ;
1883 dcmd->timeout = 0;
1884 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
1885 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
1886 dcmd->sgl.sge32[0].phys_addr = el_info_h;
1887 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
1889 megasas_issue_blocked_cmd(instance, cmd);
1892 * Copy the data back into callers buffer
1894 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
1896 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
1897 el_info, el_info_h);
1899 megasas_return_cmd(instance, cmd);
1901 return 0;
1905 * megasas_register_aen - Registers for asynchronous event notification
1906 * @instance: Adapter soft state
1907 * @seq_num: The starting sequence number
1908 * @class_locale: Class of the event
1910 * This function subscribes for AEN for events beyond the @seq_num. It requests
1911 * to be notified if and only if the event is of type @class_locale
1913 static int
1914 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
1915 u32 class_locale_word)
1917 int ret_val;
1918 struct megasas_cmd *cmd;
1919 struct megasas_dcmd_frame *dcmd;
1920 union megasas_evt_class_locale curr_aen;
1921 union megasas_evt_class_locale prev_aen;
1924 * If there an AEN pending already (aen_cmd), check if the
1925 * class_locale of that pending AEN is inclusive of the new
1926 * AEN request we currently have. If it is, then we don't have
1927 * to do anything. In other words, whichever events the current
1928 * AEN request is subscribing to, have already been subscribed
1929 * to.
1931 * If the old_cmd is _not_ inclusive, then we have to abort
1932 * that command, form a class_locale that is superset of both
1933 * old and current and re-issue to the FW
1936 curr_aen.word = class_locale_word;
1938 if (instance->aen_cmd) {
1940 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
1943 * A class whose enum value is smaller is inclusive of all
1944 * higher values. If a PROGRESS (= -1) was previously
1945 * registered, then a new registration requests for higher
1946 * classes need not be sent to FW. They are automatically
1947 * included.
1949 * Locale numbers don't have such hierarchy. They are bitmap
1950 * values
1952 if ((prev_aen.members.class <= curr_aen.members.class) &&
1953 !((prev_aen.members.locale & curr_aen.members.locale) ^
1954 curr_aen.members.locale)) {
1956 * Previously issued event registration includes
1957 * current request. Nothing to do.
1959 return 0;
1960 } else {
1961 curr_aen.members.locale |= prev_aen.members.locale;
1963 if (prev_aen.members.class < curr_aen.members.class)
1964 curr_aen.members.class = prev_aen.members.class;
1966 instance->aen_cmd->abort_aen = 1;
1967 ret_val = megasas_issue_blocked_abort_cmd(instance,
1968 instance->
1969 aen_cmd);
1971 if (ret_val) {
1972 printk(KERN_DEBUG "megasas: Failed to abort "
1973 "previous AEN command\n");
1974 return ret_val;
1979 cmd = megasas_get_cmd(instance);
1981 if (!cmd)
1982 return -ENOMEM;
1984 dcmd = &cmd->frame->dcmd;
1986 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
1989 * Prepare DCMD for aen registration
1991 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1993 dcmd->cmd = MFI_CMD_DCMD;
1994 dcmd->cmd_status = 0x0;
1995 dcmd->sge_count = 1;
1996 dcmd->flags = MFI_FRAME_DIR_READ;
1997 dcmd->timeout = 0;
1998 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
1999 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2000 dcmd->mbox.w[0] = seq_num;
2001 dcmd->mbox.w[1] = curr_aen.word;
2002 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2003 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2006 * Store reference to the cmd used to register for AEN. When an
2007 * application wants us to register for AEN, we have to abort this
2008 * cmd and re-register with a new EVENT LOCALE supplied by that app
2010 instance->aen_cmd = cmd;
2013 * Issue the aen registration frame
2015 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2017 return 0;
2021 * megasas_start_aen - Subscribes to AEN during driver load time
2022 * @instance: Adapter soft state
2024 static int megasas_start_aen(struct megasas_instance *instance)
2026 struct megasas_evt_log_info eli;
2027 union megasas_evt_class_locale class_locale;
2030 * Get the latest sequence number from FW
2032 memset(&eli, 0, sizeof(eli));
2034 if (megasas_get_seq_num(instance, &eli))
2035 return -1;
2038 * Register AEN with FW for latest sequence number plus 1
2040 class_locale.members.reserved = 0;
2041 class_locale.members.locale = MR_EVT_LOCALE_ALL;
2042 class_locale.members.class = MR_EVT_CLASS_DEBUG;
2044 return megasas_register_aen(instance, eli.newest_seq_num + 1,
2045 class_locale.word);
2049 * megasas_io_attach - Attaches this driver to SCSI mid-layer
2050 * @instance: Adapter soft state
2052 static int megasas_io_attach(struct megasas_instance *instance)
2054 struct Scsi_Host *host = instance->host;
2057 * Export parameters required by SCSI mid-layer
2059 host->irq = instance->pdev->irq;
2060 host->unique_id = instance->unique_id;
2061 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2062 host->this_id = instance->init_id;
2063 host->sg_tablesize = instance->max_num_sge;
2064 host->max_sectors = instance->max_sectors_per_req;
2065 host->cmd_per_lun = 128;
2066 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2067 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2068 host->max_lun = MEGASAS_MAX_LUN;
2069 host->max_cmd_len = 16;
2072 * Notify the mid-layer about the new controller
2074 if (scsi_add_host(host, &instance->pdev->dev)) {
2075 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2076 return -ENODEV;
2080 * Trigger SCSI to scan our drives
2082 scsi_scan_host(host);
2083 return 0;
2087 * megasas_probe_one - PCI hotplug entry point
2088 * @pdev: PCI device structure
2089 * @id: PCI ids of supported hotplugged adapter
2091 static int __devinit
2092 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2094 int rval;
2095 struct Scsi_Host *host;
2096 struct megasas_instance *instance;
2099 * Announce PCI information
2101 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2102 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2103 pdev->subsystem_device);
2105 printk("bus %d:slot %d:func %d\n",
2106 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2109 * PCI prepping: enable device set bus mastering and dma mask
2111 rval = pci_enable_device(pdev);
2113 if (rval) {
2114 return rval;
2117 pci_set_master(pdev);
2120 * All our contollers are capable of performing 64-bit DMA
2122 if (IS_DMA64) {
2123 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2125 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2126 goto fail_set_dma_mask;
2128 } else {
2129 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2130 goto fail_set_dma_mask;
2133 host = scsi_host_alloc(&megasas_template,
2134 sizeof(struct megasas_instance));
2136 if (!host) {
2137 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2138 goto fail_alloc_instance;
2141 instance = (struct megasas_instance *)host->hostdata;
2142 memset(instance, 0, sizeof(*instance));
2144 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2145 &instance->producer_h);
2146 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2147 &instance->consumer_h);
2149 if (!instance->producer || !instance->consumer) {
2150 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2151 "producer, consumer\n");
2152 goto fail_alloc_dma_buf;
2155 *instance->producer = 0;
2156 *instance->consumer = 0;
2158 instance->evt_detail = pci_alloc_consistent(pdev,
2159 sizeof(struct
2160 megasas_evt_detail),
2161 &instance->evt_detail_h);
2163 if (!instance->evt_detail) {
2164 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2165 "event detail structure\n");
2166 goto fail_alloc_dma_buf;
2170 * Initialize locks and queues
2172 INIT_LIST_HEAD(&instance->cmd_pool);
2174 init_waitqueue_head(&instance->int_cmd_wait_q);
2175 init_waitqueue_head(&instance->abort_cmd_wait_q);
2177 spin_lock_init(&instance->cmd_pool_lock);
2178 spin_lock_init(&instance->instance_lock);
2180 sema_init(&instance->aen_mutex, 1);
2181 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2184 * Initialize PCI related and misc parameters
2186 instance->pdev = pdev;
2187 instance->host = host;
2188 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2189 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2192 * Initialize MFI Firmware
2194 if (megasas_init_mfi(instance))
2195 goto fail_init_mfi;
2198 * Register IRQ
2200 if (request_irq(pdev->irq, megasas_isr, SA_SHIRQ, "megasas", instance)) {
2201 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2202 goto fail_irq;
2205 instance->instancet->enable_intr(instance->reg_set);
2208 * Store instance in PCI softstate
2210 pci_set_drvdata(pdev, instance);
2213 * Add this controller to megasas_mgmt_info structure so that it
2214 * can be exported to management applications
2216 megasas_mgmt_info.count++;
2217 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2218 megasas_mgmt_info.max_index++;
2221 * Initiate AEN (Asynchronous Event Notification)
2223 if (megasas_start_aen(instance)) {
2224 printk(KERN_DEBUG "megasas: start aen failed\n");
2225 goto fail_start_aen;
2229 * Register with SCSI mid-layer
2231 if (megasas_io_attach(instance))
2232 goto fail_io_attach;
2234 return 0;
2236 fail_start_aen:
2237 fail_io_attach:
2238 megasas_mgmt_info.count--;
2239 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2240 megasas_mgmt_info.max_index--;
2242 pci_set_drvdata(pdev, NULL);
2243 megasas_disable_intr(instance->reg_set);
2244 free_irq(instance->pdev->irq, instance);
2246 megasas_release_mfi(instance);
2248 fail_irq:
2249 fail_init_mfi:
2250 fail_alloc_dma_buf:
2251 if (instance->evt_detail)
2252 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2253 instance->evt_detail,
2254 instance->evt_detail_h);
2256 if (instance->producer)
2257 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2258 instance->producer_h);
2259 if (instance->consumer)
2260 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2261 instance->consumer_h);
2262 scsi_host_put(host);
2264 fail_alloc_instance:
2265 fail_set_dma_mask:
2266 pci_disable_device(pdev);
2268 return -ENODEV;
2272 * megasas_flush_cache - Requests FW to flush all its caches
2273 * @instance: Adapter soft state
2275 static void megasas_flush_cache(struct megasas_instance *instance)
2277 struct megasas_cmd *cmd;
2278 struct megasas_dcmd_frame *dcmd;
2280 cmd = megasas_get_cmd(instance);
2282 if (!cmd)
2283 return;
2285 dcmd = &cmd->frame->dcmd;
2287 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2289 dcmd->cmd = MFI_CMD_DCMD;
2290 dcmd->cmd_status = 0x0;
2291 dcmd->sge_count = 0;
2292 dcmd->flags = MFI_FRAME_DIR_NONE;
2293 dcmd->timeout = 0;
2294 dcmd->data_xfer_len = 0;
2295 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2296 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2298 megasas_issue_blocked_cmd(instance, cmd);
2300 megasas_return_cmd(instance, cmd);
2302 return;
2306 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2307 * @instance: Adapter soft state
2309 static void megasas_shutdown_controller(struct megasas_instance *instance)
2311 struct megasas_cmd *cmd;
2312 struct megasas_dcmd_frame *dcmd;
2314 cmd = megasas_get_cmd(instance);
2316 if (!cmd)
2317 return;
2319 if (instance->aen_cmd)
2320 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2322 dcmd = &cmd->frame->dcmd;
2324 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2326 dcmd->cmd = MFI_CMD_DCMD;
2327 dcmd->cmd_status = 0x0;
2328 dcmd->sge_count = 0;
2329 dcmd->flags = MFI_FRAME_DIR_NONE;
2330 dcmd->timeout = 0;
2331 dcmd->data_xfer_len = 0;
2332 dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2334 megasas_issue_blocked_cmd(instance, cmd);
2336 megasas_return_cmd(instance, cmd);
2338 return;
2342 * megasas_detach_one - PCI hot"un"plug entry point
2343 * @pdev: PCI device structure
2345 static void megasas_detach_one(struct pci_dev *pdev)
2347 int i;
2348 struct Scsi_Host *host;
2349 struct megasas_instance *instance;
2351 instance = pci_get_drvdata(pdev);
2352 host = instance->host;
2354 scsi_remove_host(instance->host);
2355 megasas_flush_cache(instance);
2356 megasas_shutdown_controller(instance);
2359 * Take the instance off the instance array. Note that we will not
2360 * decrement the max_index. We let this array be sparse array
2362 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2363 if (megasas_mgmt_info.instance[i] == instance) {
2364 megasas_mgmt_info.count--;
2365 megasas_mgmt_info.instance[i] = NULL;
2367 break;
2371 pci_set_drvdata(instance->pdev, NULL);
2373 megasas_disable_intr(instance->reg_set);
2375 free_irq(instance->pdev->irq, instance);
2377 megasas_release_mfi(instance);
2379 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2380 instance->evt_detail, instance->evt_detail_h);
2382 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2383 instance->producer_h);
2385 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2386 instance->consumer_h);
2388 scsi_host_put(host);
2390 pci_set_drvdata(pdev, NULL);
2392 pci_disable_device(pdev);
2394 return;
2398 * megasas_shutdown - Shutdown entry point
2399 * @device: Generic device structure
2401 static void megasas_shutdown(struct pci_dev *pdev)
2403 struct megasas_instance *instance = pci_get_drvdata(pdev);
2404 megasas_flush_cache(instance);
2408 * megasas_mgmt_open - char node "open" entry point
2410 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2413 * Allow only those users with admin rights
2415 if (!capable(CAP_SYS_ADMIN))
2416 return -EACCES;
2418 return 0;
2422 * megasas_mgmt_release - char node "release" entry point
2424 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2426 filep->private_data = NULL;
2427 fasync_helper(-1, filep, 0, &megasas_async_queue);
2429 return 0;
2433 * megasas_mgmt_fasync - Async notifier registration from applications
2435 * This function adds the calling process to a driver global queue. When an
2436 * event occurs, SIGIO will be sent to all processes in this queue.
2438 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2440 int rc;
2442 mutex_lock(&megasas_async_queue_mutex);
2444 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2446 mutex_unlock(&megasas_async_queue_mutex);
2448 if (rc >= 0) {
2449 /* For sanity check when we get ioctl */
2450 filep->private_data = filep;
2451 return 0;
2454 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2456 return rc;
2460 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2461 * @instance: Adapter soft state
2462 * @argp: User's ioctl packet
2464 static int
2465 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2466 struct megasas_iocpacket __user * user_ioc,
2467 struct megasas_iocpacket *ioc)
2469 struct megasas_sge32 *kern_sge32;
2470 struct megasas_cmd *cmd;
2471 void *kbuff_arr[MAX_IOCTL_SGE];
2472 dma_addr_t buf_handle = 0;
2473 int error = 0, i;
2474 void *sense = NULL;
2475 dma_addr_t sense_handle;
2476 u32 *sense_ptr;
2478 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2480 if (ioc->sge_count > MAX_IOCTL_SGE) {
2481 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2482 ioc->sge_count, MAX_IOCTL_SGE);
2483 return -EINVAL;
2486 cmd = megasas_get_cmd(instance);
2487 if (!cmd) {
2488 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2489 return -ENOMEM;
2493 * User's IOCTL packet has 2 frames (maximum). Copy those two
2494 * frames into our cmd's frames. cmd->frame's context will get
2495 * overwritten when we copy from user's frames. So set that value
2496 * alone separately
2498 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2499 cmd->frame->hdr.context = cmd->index;
2502 * The management interface between applications and the fw uses
2503 * MFI frames. E.g, RAID configuration changes, LD property changes
2504 * etc are accomplishes through different kinds of MFI frames. The
2505 * driver needs to care only about substituting user buffers with
2506 * kernel buffers in SGLs. The location of SGL is embedded in the
2507 * struct iocpacket itself.
2509 kern_sge32 = (struct megasas_sge32 *)
2510 ((unsigned long)cmd->frame + ioc->sgl_off);
2513 * For each user buffer, create a mirror buffer and copy in
2515 for (i = 0; i < ioc->sge_count; i++) {
2516 kbuff_arr[i] = pci_alloc_consistent(instance->pdev,
2517 ioc->sgl[i].iov_len,
2518 &buf_handle);
2519 if (!kbuff_arr[i]) {
2520 printk(KERN_DEBUG "megasas: Failed to alloc "
2521 "kernel SGL buffer for IOCTL \n");
2522 error = -ENOMEM;
2523 goto out;
2527 * We don't change the dma_coherent_mask, so
2528 * pci_alloc_consistent only returns 32bit addresses
2530 kern_sge32[i].phys_addr = (u32) buf_handle;
2531 kern_sge32[i].length = ioc->sgl[i].iov_len;
2534 * We created a kernel buffer corresponding to the
2535 * user buffer. Now copy in from the user buffer
2537 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2538 (u32) (ioc->sgl[i].iov_len))) {
2539 error = -EFAULT;
2540 goto out;
2544 if (ioc->sense_len) {
2545 sense = pci_alloc_consistent(instance->pdev, ioc->sense_len,
2546 &sense_handle);
2547 if (!sense) {
2548 error = -ENOMEM;
2549 goto out;
2552 sense_ptr =
2553 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2554 *sense_ptr = sense_handle;
2558 * Set the sync_cmd flag so that the ISR knows not to complete this
2559 * cmd to the SCSI mid-layer
2561 cmd->sync_cmd = 1;
2562 megasas_issue_blocked_cmd(instance, cmd);
2563 cmd->sync_cmd = 0;
2566 * copy out the kernel buffers to user buffers
2568 for (i = 0; i < ioc->sge_count; i++) {
2569 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2570 ioc->sgl[i].iov_len)) {
2571 error = -EFAULT;
2572 goto out;
2577 * copy out the sense
2579 if (ioc->sense_len) {
2581 * sense_ptr points to the location that has the user
2582 * sense buffer address
2584 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2585 ioc->sense_off);
2587 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2588 sense, ioc->sense_len)) {
2589 error = -EFAULT;
2590 goto out;
2595 * copy the status codes returned by the fw
2597 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2598 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2599 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2600 error = -EFAULT;
2603 out:
2604 if (sense) {
2605 pci_free_consistent(instance->pdev, ioc->sense_len,
2606 sense, sense_handle);
2609 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2610 pci_free_consistent(instance->pdev,
2611 kern_sge32[i].length,
2612 kbuff_arr[i], kern_sge32[i].phys_addr);
2615 megasas_return_cmd(instance, cmd);
2616 return error;
2619 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2621 int i;
2623 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2625 if ((megasas_mgmt_info.instance[i]) &&
2626 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2627 return megasas_mgmt_info.instance[i];
2630 return NULL;
2633 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2635 struct megasas_iocpacket __user *user_ioc =
2636 (struct megasas_iocpacket __user *)arg;
2637 struct megasas_iocpacket *ioc;
2638 struct megasas_instance *instance;
2639 int error;
2641 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2642 if (!ioc)
2643 return -ENOMEM;
2645 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2646 error = -EFAULT;
2647 goto out_kfree_ioc;
2650 instance = megasas_lookup_instance(ioc->host_no);
2651 if (!instance) {
2652 error = -ENODEV;
2653 goto out_kfree_ioc;
2657 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2659 if (down_interruptible(&instance->ioctl_sem)) {
2660 error = -ERESTARTSYS;
2661 goto out_kfree_ioc;
2663 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2664 up(&instance->ioctl_sem);
2666 out_kfree_ioc:
2667 kfree(ioc);
2668 return error;
2671 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2673 struct megasas_instance *instance;
2674 struct megasas_aen aen;
2675 int error;
2677 if (file->private_data != file) {
2678 printk(KERN_DEBUG "megasas: fasync_helper was not "
2679 "called first\n");
2680 return -EINVAL;
2683 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2684 return -EFAULT;
2686 instance = megasas_lookup_instance(aen.host_no);
2688 if (!instance)
2689 return -ENODEV;
2691 down(&instance->aen_mutex);
2692 error = megasas_register_aen(instance, aen.seq_num,
2693 aen.class_locale_word);
2694 up(&instance->aen_mutex);
2695 return error;
2699 * megasas_mgmt_ioctl - char node ioctl entry point
2701 static long
2702 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2704 switch (cmd) {
2705 case MEGASAS_IOC_FIRMWARE:
2706 return megasas_mgmt_ioctl_fw(file, arg);
2708 case MEGASAS_IOC_GET_AEN:
2709 return megasas_mgmt_ioctl_aen(file, arg);
2712 return -ENOTTY;
2715 #ifdef CONFIG_COMPAT
2716 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2718 struct compat_megasas_iocpacket __user *cioc =
2719 (struct compat_megasas_iocpacket __user *)arg;
2720 struct megasas_iocpacket __user *ioc =
2721 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2722 int i;
2723 int error = 0;
2725 clear_user(ioc, sizeof(*ioc));
2727 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2728 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2729 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2730 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2731 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2732 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2733 return -EFAULT;
2735 for (i = 0; i < MAX_IOCTL_SGE; i++) {
2736 compat_uptr_t ptr;
2738 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
2739 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
2740 copy_in_user(&ioc->sgl[i].iov_len,
2741 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
2742 return -EFAULT;
2745 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
2747 if (copy_in_user(&cioc->frame.hdr.cmd_status,
2748 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
2749 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
2750 return -EFAULT;
2752 return error;
2755 static long
2756 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
2757 unsigned long arg)
2759 switch (cmd) {
2760 case MEGASAS_IOC_FIRMWARE32:
2761 return megasas_mgmt_compat_ioctl_fw(file, arg);
2762 case MEGASAS_IOC_GET_AEN:
2763 return megasas_mgmt_ioctl_aen(file, arg);
2766 return -ENOTTY;
2768 #endif
2771 * File operations structure for management interface
2773 static struct file_operations megasas_mgmt_fops = {
2774 .owner = THIS_MODULE,
2775 .open = megasas_mgmt_open,
2776 .release = megasas_mgmt_release,
2777 .fasync = megasas_mgmt_fasync,
2778 .unlocked_ioctl = megasas_mgmt_ioctl,
2779 #ifdef CONFIG_COMPAT
2780 .compat_ioctl = megasas_mgmt_compat_ioctl,
2781 #endif
2785 * PCI hotplug support registration structure
2787 static struct pci_driver megasas_pci_driver = {
2789 .name = "megaraid_sas",
2790 .id_table = megasas_pci_table,
2791 .probe = megasas_probe_one,
2792 .remove = __devexit_p(megasas_detach_one),
2793 .shutdown = megasas_shutdown,
2797 * Sysfs driver attributes
2799 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
2801 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
2802 MEGASAS_VERSION);
2805 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
2807 static ssize_t
2808 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
2810 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
2811 MEGASAS_RELDATE);
2814 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
2815 NULL);
2818 * megasas_init - Driver load entry point
2820 static int __init megasas_init(void)
2822 int rval;
2825 * Announce driver version and other information
2827 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
2828 MEGASAS_EXT_VERSION);
2830 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
2833 * Register character device node
2835 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
2837 if (rval < 0) {
2838 printk(KERN_DEBUG "megasas: failed to open device node\n");
2839 return rval;
2842 megasas_mgmt_majorno = rval;
2845 * Register ourselves as PCI hotplug module
2847 rval = pci_module_init(&megasas_pci_driver);
2849 if (rval) {
2850 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
2851 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2854 driver_create_file(&megasas_pci_driver.driver, &driver_attr_version);
2855 driver_create_file(&megasas_pci_driver.driver,
2856 &driver_attr_release_date);
2858 return rval;
2862 * megasas_exit - Driver unload entry point
2864 static void __exit megasas_exit(void)
2866 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
2867 driver_remove_file(&megasas_pci_driver.driver,
2868 &driver_attr_release_date);
2870 pci_unregister_driver(&megasas_pci_driver);
2871 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2874 module_init(megasas_init);
2875 module_exit(megasas_exit);