Linux 2.6.17.7
[linux/fpc-iii.git] / kernel / sched.c
blobc13f1bd2df7d3cd483c47fd76a8163d90ed3cd44
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
52 #include <linux/kprobes.h>
53 #include <asm/tlb.h>
55 #include <asm/unistd.h>
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
60 * and back.
62 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
71 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76 * Some helpers for converting nanosecond timing to jiffy resolution
78 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82 * These are the 'tuning knobs' of the scheduler:
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
88 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89 #define DEF_TIMESLICE (100 * HZ / 1000)
90 #define ON_RUNQUEUE_WEIGHT 30
91 #define CHILD_PENALTY 95
92 #define PARENT_PENALTY 100
93 #define EXIT_WEIGHT 3
94 #define PRIO_BONUS_RATIO 25
95 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96 #define INTERACTIVE_DELTA 2
97 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
99 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
107 * This part scales the interactivity limit depending on niceness.
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
126 * too hard.
129 #define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
131 MAX_SLEEP_AVG)
133 #define GRANULARITY (10 * HZ / 1000 ? : 1)
135 #ifdef CONFIG_SMP
136 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
138 num_online_cpus())
139 #else
140 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
142 #endif
144 #define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
147 #define DELTA(p) \
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
149 INTERACTIVE_DELTA)
151 #define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
154 #define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
158 #define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
170 #define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
173 static unsigned int task_timeslice(task_t *p)
175 if (p->static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
177 else
178 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
180 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time)
184 * These are the runqueue data structures:
187 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
189 typedef struct runqueue runqueue_t;
191 struct prio_array {
192 unsigned int nr_active;
193 unsigned long bitmap[BITMAP_SIZE];
194 struct list_head queue[MAX_PRIO];
198 * This is the main, per-CPU runqueue data structure.
200 * Locking rule: those places that want to lock multiple runqueues
201 * (such as the load balancing or the thread migration code), lock
202 * acquire operations must be ordered by ascending &runqueue.
204 struct runqueue {
205 spinlock_t lock;
208 * nr_running and cpu_load should be in the same cacheline because
209 * remote CPUs use both these fields when doing load calculation.
211 unsigned long nr_running;
212 #ifdef CONFIG_SMP
213 unsigned long cpu_load[3];
214 #endif
215 unsigned long long nr_switches;
218 * This is part of a global counter where only the total sum
219 * over all CPUs matters. A task can increase this counter on
220 * one CPU and if it got migrated afterwards it may decrease
221 * it on another CPU. Always updated under the runqueue lock:
223 unsigned long nr_uninterruptible;
225 unsigned long expired_timestamp;
226 unsigned long long timestamp_last_tick;
227 task_t *curr, *idle;
228 struct mm_struct *prev_mm;
229 prio_array_t *active, *expired, arrays[2];
230 int best_expired_prio;
231 atomic_t nr_iowait;
233 #ifdef CONFIG_SMP
234 struct sched_domain *sd;
236 /* For active balancing */
237 int active_balance;
238 int push_cpu;
240 task_t *migration_thread;
241 struct list_head migration_queue;
242 int cpu;
243 #endif
245 #ifdef CONFIG_SCHEDSTATS
246 /* latency stats */
247 struct sched_info rq_sched_info;
249 /* sys_sched_yield() stats */
250 unsigned long yld_exp_empty;
251 unsigned long yld_act_empty;
252 unsigned long yld_both_empty;
253 unsigned long yld_cnt;
255 /* schedule() stats */
256 unsigned long sched_switch;
257 unsigned long sched_cnt;
258 unsigned long sched_goidle;
260 /* try_to_wake_up() stats */
261 unsigned long ttwu_cnt;
262 unsigned long ttwu_local;
263 #endif
266 static DEFINE_PER_CPU(struct runqueue, runqueues);
269 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
270 * See detach_destroy_domains: synchronize_sched for details.
272 * The domain tree of any CPU may only be accessed from within
273 * preempt-disabled sections.
275 #define for_each_domain(cpu, domain) \
276 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
278 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
279 #define this_rq() (&__get_cpu_var(runqueues))
280 #define task_rq(p) cpu_rq(task_cpu(p))
281 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
283 #ifndef prepare_arch_switch
284 # define prepare_arch_switch(next) do { } while (0)
285 #endif
286 #ifndef finish_arch_switch
287 # define finish_arch_switch(prev) do { } while (0)
288 #endif
290 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
291 static inline int task_running(runqueue_t *rq, task_t *p)
293 return rq->curr == p;
296 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
300 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
302 #ifdef CONFIG_DEBUG_SPINLOCK
303 /* this is a valid case when another task releases the spinlock */
304 rq->lock.owner = current;
305 #endif
306 spin_unlock_irq(&rq->lock);
309 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
310 static inline int task_running(runqueue_t *rq, task_t *p)
312 #ifdef CONFIG_SMP
313 return p->oncpu;
314 #else
315 return rq->curr == p;
316 #endif
319 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
321 #ifdef CONFIG_SMP
323 * We can optimise this out completely for !SMP, because the
324 * SMP rebalancing from interrupt is the only thing that cares
325 * here.
327 next->oncpu = 1;
328 #endif
329 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
330 spin_unlock_irq(&rq->lock);
331 #else
332 spin_unlock(&rq->lock);
333 #endif
336 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
338 #ifdef CONFIG_SMP
340 * After ->oncpu is cleared, the task can be moved to a different CPU.
341 * We must ensure this doesn't happen until the switch is completely
342 * finished.
344 smp_wmb();
345 prev->oncpu = 0;
346 #endif
347 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
348 local_irq_enable();
349 #endif
351 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
354 * task_rq_lock - lock the runqueue a given task resides on and disable
355 * interrupts. Note the ordering: we can safely lookup the task_rq without
356 * explicitly disabling preemption.
358 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
359 __acquires(rq->lock)
361 struct runqueue *rq;
363 repeat_lock_task:
364 local_irq_save(*flags);
365 rq = task_rq(p);
366 spin_lock(&rq->lock);
367 if (unlikely(rq != task_rq(p))) {
368 spin_unlock_irqrestore(&rq->lock, *flags);
369 goto repeat_lock_task;
371 return rq;
374 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
375 __releases(rq->lock)
377 spin_unlock_irqrestore(&rq->lock, *flags);
380 #ifdef CONFIG_SCHEDSTATS
382 * bump this up when changing the output format or the meaning of an existing
383 * format, so that tools can adapt (or abort)
385 #define SCHEDSTAT_VERSION 12
387 static int show_schedstat(struct seq_file *seq, void *v)
389 int cpu;
391 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
392 seq_printf(seq, "timestamp %lu\n", jiffies);
393 for_each_online_cpu(cpu) {
394 runqueue_t *rq = cpu_rq(cpu);
395 #ifdef CONFIG_SMP
396 struct sched_domain *sd;
397 int dcnt = 0;
398 #endif
400 /* runqueue-specific stats */
401 seq_printf(seq,
402 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
403 cpu, rq->yld_both_empty,
404 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
405 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
406 rq->ttwu_cnt, rq->ttwu_local,
407 rq->rq_sched_info.cpu_time,
408 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
410 seq_printf(seq, "\n");
412 #ifdef CONFIG_SMP
413 /* domain-specific stats */
414 preempt_disable();
415 for_each_domain(cpu, sd) {
416 enum idle_type itype;
417 char mask_str[NR_CPUS];
419 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
420 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
421 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
422 itype++) {
423 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
424 sd->lb_cnt[itype],
425 sd->lb_balanced[itype],
426 sd->lb_failed[itype],
427 sd->lb_imbalance[itype],
428 sd->lb_gained[itype],
429 sd->lb_hot_gained[itype],
430 sd->lb_nobusyq[itype],
431 sd->lb_nobusyg[itype]);
433 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
434 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
435 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
436 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
437 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
439 preempt_enable();
440 #endif
442 return 0;
445 static int schedstat_open(struct inode *inode, struct file *file)
447 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
448 char *buf = kmalloc(size, GFP_KERNEL);
449 struct seq_file *m;
450 int res;
452 if (!buf)
453 return -ENOMEM;
454 res = single_open(file, show_schedstat, NULL);
455 if (!res) {
456 m = file->private_data;
457 m->buf = buf;
458 m->size = size;
459 } else
460 kfree(buf);
461 return res;
464 struct file_operations proc_schedstat_operations = {
465 .open = schedstat_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = single_release,
471 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
472 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
473 #else /* !CONFIG_SCHEDSTATS */
474 # define schedstat_inc(rq, field) do { } while (0)
475 # define schedstat_add(rq, field, amt) do { } while (0)
476 #endif
479 * rq_lock - lock a given runqueue and disable interrupts.
481 static inline runqueue_t *this_rq_lock(void)
482 __acquires(rq->lock)
484 runqueue_t *rq;
486 local_irq_disable();
487 rq = this_rq();
488 spin_lock(&rq->lock);
490 return rq;
493 #ifdef CONFIG_SCHEDSTATS
495 * Called when a process is dequeued from the active array and given
496 * the cpu. We should note that with the exception of interactive
497 * tasks, the expired queue will become the active queue after the active
498 * queue is empty, without explicitly dequeuing and requeuing tasks in the
499 * expired queue. (Interactive tasks may be requeued directly to the
500 * active queue, thus delaying tasks in the expired queue from running;
501 * see scheduler_tick()).
503 * This function is only called from sched_info_arrive(), rather than
504 * dequeue_task(). Even though a task may be queued and dequeued multiple
505 * times as it is shuffled about, we're really interested in knowing how
506 * long it was from the *first* time it was queued to the time that it
507 * finally hit a cpu.
509 static inline void sched_info_dequeued(task_t *t)
511 t->sched_info.last_queued = 0;
515 * Called when a task finally hits the cpu. We can now calculate how
516 * long it was waiting to run. We also note when it began so that we
517 * can keep stats on how long its timeslice is.
519 static void sched_info_arrive(task_t *t)
521 unsigned long now = jiffies, diff = 0;
522 struct runqueue *rq = task_rq(t);
524 if (t->sched_info.last_queued)
525 diff = now - t->sched_info.last_queued;
526 sched_info_dequeued(t);
527 t->sched_info.run_delay += diff;
528 t->sched_info.last_arrival = now;
529 t->sched_info.pcnt++;
531 if (!rq)
532 return;
534 rq->rq_sched_info.run_delay += diff;
535 rq->rq_sched_info.pcnt++;
539 * Called when a process is queued into either the active or expired
540 * array. The time is noted and later used to determine how long we
541 * had to wait for us to reach the cpu. Since the expired queue will
542 * become the active queue after active queue is empty, without dequeuing
543 * and requeuing any tasks, we are interested in queuing to either. It
544 * is unusual but not impossible for tasks to be dequeued and immediately
545 * requeued in the same or another array: this can happen in sched_yield(),
546 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
547 * to runqueue.
549 * This function is only called from enqueue_task(), but also only updates
550 * the timestamp if it is already not set. It's assumed that
551 * sched_info_dequeued() will clear that stamp when appropriate.
553 static inline void sched_info_queued(task_t *t)
555 if (!t->sched_info.last_queued)
556 t->sched_info.last_queued = jiffies;
560 * Called when a process ceases being the active-running process, either
561 * voluntarily or involuntarily. Now we can calculate how long we ran.
563 static inline void sched_info_depart(task_t *t)
565 struct runqueue *rq = task_rq(t);
566 unsigned long diff = jiffies - t->sched_info.last_arrival;
568 t->sched_info.cpu_time += diff;
570 if (rq)
571 rq->rq_sched_info.cpu_time += diff;
575 * Called when tasks are switched involuntarily due, typically, to expiring
576 * their time slice. (This may also be called when switching to or from
577 * the idle task.) We are only called when prev != next.
579 static inline void sched_info_switch(task_t *prev, task_t *next)
581 struct runqueue *rq = task_rq(prev);
584 * prev now departs the cpu. It's not interesting to record
585 * stats about how efficient we were at scheduling the idle
586 * process, however.
588 if (prev != rq->idle)
589 sched_info_depart(prev);
591 if (next != rq->idle)
592 sched_info_arrive(next);
594 #else
595 #define sched_info_queued(t) do { } while (0)
596 #define sched_info_switch(t, next) do { } while (0)
597 #endif /* CONFIG_SCHEDSTATS */
600 * Adding/removing a task to/from a priority array:
602 static void dequeue_task(struct task_struct *p, prio_array_t *array)
604 array->nr_active--;
605 list_del(&p->run_list);
606 if (list_empty(array->queue + p->prio))
607 __clear_bit(p->prio, array->bitmap);
610 static void enqueue_task(struct task_struct *p, prio_array_t *array)
612 sched_info_queued(p);
613 list_add_tail(&p->run_list, array->queue + p->prio);
614 __set_bit(p->prio, array->bitmap);
615 array->nr_active++;
616 p->array = array;
620 * Put task to the end of the run list without the overhead of dequeue
621 * followed by enqueue.
623 static void requeue_task(struct task_struct *p, prio_array_t *array)
625 list_move_tail(&p->run_list, array->queue + p->prio);
628 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
630 list_add(&p->run_list, array->queue + p->prio);
631 __set_bit(p->prio, array->bitmap);
632 array->nr_active++;
633 p->array = array;
637 * effective_prio - return the priority that is based on the static
638 * priority but is modified by bonuses/penalties.
640 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
641 * into the -5 ... 0 ... +5 bonus/penalty range.
643 * We use 25% of the full 0...39 priority range so that:
645 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
646 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
648 * Both properties are important to certain workloads.
650 static int effective_prio(task_t *p)
652 int bonus, prio;
654 if (rt_task(p))
655 return p->prio;
657 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
659 prio = p->static_prio - bonus;
660 if (prio < MAX_RT_PRIO)
661 prio = MAX_RT_PRIO;
662 if (prio > MAX_PRIO-1)
663 prio = MAX_PRIO-1;
664 return prio;
668 * __activate_task - move a task to the runqueue.
670 static void __activate_task(task_t *p, runqueue_t *rq)
672 prio_array_t *target = rq->active;
674 if (batch_task(p))
675 target = rq->expired;
676 enqueue_task(p, target);
677 rq->nr_running++;
681 * __activate_idle_task - move idle task to the _front_ of runqueue.
683 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
685 enqueue_task_head(p, rq->active);
686 rq->nr_running++;
689 static int recalc_task_prio(task_t *p, unsigned long long now)
691 /* Caller must always ensure 'now >= p->timestamp' */
692 unsigned long long __sleep_time = now - p->timestamp;
693 unsigned long sleep_time;
695 if (batch_task(p))
696 sleep_time = 0;
697 else {
698 if (__sleep_time > NS_MAX_SLEEP_AVG)
699 sleep_time = NS_MAX_SLEEP_AVG;
700 else
701 sleep_time = (unsigned long)__sleep_time;
704 if (likely(sleep_time > 0)) {
706 * User tasks that sleep a long time are categorised as
707 * idle. They will only have their sleep_avg increased to a
708 * level that makes them just interactive priority to stay
709 * active yet prevent them suddenly becoming cpu hogs and
710 * starving other processes.
712 if (p->mm && sleep_time > INTERACTIVE_SLEEP(p)) {
713 unsigned long ceiling;
715 ceiling = JIFFIES_TO_NS(MAX_SLEEP_AVG -
716 DEF_TIMESLICE);
717 if (p->sleep_avg < ceiling)
718 p->sleep_avg = ceiling;
719 } else {
721 * Tasks waking from uninterruptible sleep are
722 * limited in their sleep_avg rise as they
723 * are likely to be waiting on I/O
725 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
726 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
727 sleep_time = 0;
728 else if (p->sleep_avg + sleep_time >=
729 INTERACTIVE_SLEEP(p)) {
730 p->sleep_avg = INTERACTIVE_SLEEP(p);
731 sleep_time = 0;
736 * This code gives a bonus to interactive tasks.
738 * The boost works by updating the 'average sleep time'
739 * value here, based on ->timestamp. The more time a
740 * task spends sleeping, the higher the average gets -
741 * and the higher the priority boost gets as well.
743 p->sleep_avg += sleep_time;
745 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
746 p->sleep_avg = NS_MAX_SLEEP_AVG;
750 return effective_prio(p);
754 * activate_task - move a task to the runqueue and do priority recalculation
756 * Update all the scheduling statistics stuff. (sleep average
757 * calculation, priority modifiers, etc.)
759 static void activate_task(task_t *p, runqueue_t *rq, int local)
761 unsigned long long now;
763 now = sched_clock();
764 #ifdef CONFIG_SMP
765 if (!local) {
766 /* Compensate for drifting sched_clock */
767 runqueue_t *this_rq = this_rq();
768 now = (now - this_rq->timestamp_last_tick)
769 + rq->timestamp_last_tick;
771 #endif
773 if (!rt_task(p))
774 p->prio = recalc_task_prio(p, now);
777 * This checks to make sure it's not an uninterruptible task
778 * that is now waking up.
780 if (p->sleep_type == SLEEP_NORMAL) {
782 * Tasks which were woken up by interrupts (ie. hw events)
783 * are most likely of interactive nature. So we give them
784 * the credit of extending their sleep time to the period
785 * of time they spend on the runqueue, waiting for execution
786 * on a CPU, first time around:
788 if (in_interrupt())
789 p->sleep_type = SLEEP_INTERRUPTED;
790 else {
792 * Normal first-time wakeups get a credit too for
793 * on-runqueue time, but it will be weighted down:
795 p->sleep_type = SLEEP_INTERACTIVE;
798 p->timestamp = now;
800 __activate_task(p, rq);
804 * deactivate_task - remove a task from the runqueue.
806 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
808 rq->nr_running--;
809 dequeue_task(p, p->array);
810 p->array = NULL;
814 * resched_task - mark a task 'to be rescheduled now'.
816 * On UP this means the setting of the need_resched flag, on SMP it
817 * might also involve a cross-CPU call to trigger the scheduler on
818 * the target CPU.
820 #ifdef CONFIG_SMP
821 static void resched_task(task_t *p)
823 int cpu;
825 assert_spin_locked(&task_rq(p)->lock);
827 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
828 return;
830 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
832 cpu = task_cpu(p);
833 if (cpu == smp_processor_id())
834 return;
836 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
837 smp_mb();
838 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
839 smp_send_reschedule(cpu);
841 #else
842 static inline void resched_task(task_t *p)
844 assert_spin_locked(&task_rq(p)->lock);
845 set_tsk_need_resched(p);
847 #endif
850 * task_curr - is this task currently executing on a CPU?
851 * @p: the task in question.
853 inline int task_curr(const task_t *p)
855 return cpu_curr(task_cpu(p)) == p;
858 #ifdef CONFIG_SMP
859 typedef struct {
860 struct list_head list;
862 task_t *task;
863 int dest_cpu;
865 struct completion done;
866 } migration_req_t;
869 * The task's runqueue lock must be held.
870 * Returns true if you have to wait for migration thread.
872 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
874 runqueue_t *rq = task_rq(p);
877 * If the task is not on a runqueue (and not running), then
878 * it is sufficient to simply update the task's cpu field.
880 if (!p->array && !task_running(rq, p)) {
881 set_task_cpu(p, dest_cpu);
882 return 0;
885 init_completion(&req->done);
886 req->task = p;
887 req->dest_cpu = dest_cpu;
888 list_add(&req->list, &rq->migration_queue);
889 return 1;
893 * wait_task_inactive - wait for a thread to unschedule.
895 * The caller must ensure that the task *will* unschedule sometime soon,
896 * else this function might spin for a *long* time. This function can't
897 * be called with interrupts off, or it may introduce deadlock with
898 * smp_call_function() if an IPI is sent by the same process we are
899 * waiting to become inactive.
901 void wait_task_inactive(task_t *p)
903 unsigned long flags;
904 runqueue_t *rq;
905 int preempted;
907 repeat:
908 rq = task_rq_lock(p, &flags);
909 /* Must be off runqueue entirely, not preempted. */
910 if (unlikely(p->array || task_running(rq, p))) {
911 /* If it's preempted, we yield. It could be a while. */
912 preempted = !task_running(rq, p);
913 task_rq_unlock(rq, &flags);
914 cpu_relax();
915 if (preempted)
916 yield();
917 goto repeat;
919 task_rq_unlock(rq, &flags);
922 /***
923 * kick_process - kick a running thread to enter/exit the kernel
924 * @p: the to-be-kicked thread
926 * Cause a process which is running on another CPU to enter
927 * kernel-mode, without any delay. (to get signals handled.)
929 * NOTE: this function doesnt have to take the runqueue lock,
930 * because all it wants to ensure is that the remote task enters
931 * the kernel. If the IPI races and the task has been migrated
932 * to another CPU then no harm is done and the purpose has been
933 * achieved as well.
935 void kick_process(task_t *p)
937 int cpu;
939 preempt_disable();
940 cpu = task_cpu(p);
941 if ((cpu != smp_processor_id()) && task_curr(p))
942 smp_send_reschedule(cpu);
943 preempt_enable();
947 * Return a low guess at the load of a migration-source cpu.
949 * We want to under-estimate the load of migration sources, to
950 * balance conservatively.
952 static inline unsigned long source_load(int cpu, int type)
954 runqueue_t *rq = cpu_rq(cpu);
955 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
956 if (type == 0)
957 return load_now;
959 return min(rq->cpu_load[type-1], load_now);
963 * Return a high guess at the load of a migration-target cpu
965 static inline unsigned long target_load(int cpu, int type)
967 runqueue_t *rq = cpu_rq(cpu);
968 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
969 if (type == 0)
970 return load_now;
972 return max(rq->cpu_load[type-1], load_now);
976 * find_idlest_group finds and returns the least busy CPU group within the
977 * domain.
979 static struct sched_group *
980 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
982 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
983 unsigned long min_load = ULONG_MAX, this_load = 0;
984 int load_idx = sd->forkexec_idx;
985 int imbalance = 100 + (sd->imbalance_pct-100)/2;
987 do {
988 unsigned long load, avg_load;
989 int local_group;
990 int i;
992 /* Skip over this group if it has no CPUs allowed */
993 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
994 goto nextgroup;
996 local_group = cpu_isset(this_cpu, group->cpumask);
998 /* Tally up the load of all CPUs in the group */
999 avg_load = 0;
1001 for_each_cpu_mask(i, group->cpumask) {
1002 /* Bias balancing toward cpus of our domain */
1003 if (local_group)
1004 load = source_load(i, load_idx);
1005 else
1006 load = target_load(i, load_idx);
1008 avg_load += load;
1011 /* Adjust by relative CPU power of the group */
1012 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1014 if (local_group) {
1015 this_load = avg_load;
1016 this = group;
1017 } else if (avg_load < min_load) {
1018 min_load = avg_load;
1019 idlest = group;
1021 nextgroup:
1022 group = group->next;
1023 } while (group != sd->groups);
1025 if (!idlest || 100*this_load < imbalance*min_load)
1026 return NULL;
1027 return idlest;
1031 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1033 static int
1034 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1036 cpumask_t tmp;
1037 unsigned long load, min_load = ULONG_MAX;
1038 int idlest = -1;
1039 int i;
1041 /* Traverse only the allowed CPUs */
1042 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1044 for_each_cpu_mask(i, tmp) {
1045 load = source_load(i, 0);
1047 if (load < min_load || (load == min_load && i == this_cpu)) {
1048 min_load = load;
1049 idlest = i;
1053 return idlest;
1057 * sched_balance_self: balance the current task (running on cpu) in domains
1058 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1059 * SD_BALANCE_EXEC.
1061 * Balance, ie. select the least loaded group.
1063 * Returns the target CPU number, or the same CPU if no balancing is needed.
1065 * preempt must be disabled.
1067 static int sched_balance_self(int cpu, int flag)
1069 struct task_struct *t = current;
1070 struct sched_domain *tmp, *sd = NULL;
1072 for_each_domain(cpu, tmp)
1073 if (tmp->flags & flag)
1074 sd = tmp;
1076 while (sd) {
1077 cpumask_t span;
1078 struct sched_group *group;
1079 int new_cpu;
1080 int weight;
1082 span = sd->span;
1083 group = find_idlest_group(sd, t, cpu);
1084 if (!group)
1085 goto nextlevel;
1087 new_cpu = find_idlest_cpu(group, t, cpu);
1088 if (new_cpu == -1 || new_cpu == cpu)
1089 goto nextlevel;
1091 /* Now try balancing at a lower domain level */
1092 cpu = new_cpu;
1093 nextlevel:
1094 sd = NULL;
1095 weight = cpus_weight(span);
1096 for_each_domain(cpu, tmp) {
1097 if (weight <= cpus_weight(tmp->span))
1098 break;
1099 if (tmp->flags & flag)
1100 sd = tmp;
1102 /* while loop will break here if sd == NULL */
1105 return cpu;
1108 #endif /* CONFIG_SMP */
1111 * wake_idle() will wake a task on an idle cpu if task->cpu is
1112 * not idle and an idle cpu is available. The span of cpus to
1113 * search starts with cpus closest then further out as needed,
1114 * so we always favor a closer, idle cpu.
1116 * Returns the CPU we should wake onto.
1118 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1119 static int wake_idle(int cpu, task_t *p)
1121 cpumask_t tmp;
1122 struct sched_domain *sd;
1123 int i;
1125 if (idle_cpu(cpu))
1126 return cpu;
1128 for_each_domain(cpu, sd) {
1129 if (sd->flags & SD_WAKE_IDLE) {
1130 cpus_and(tmp, sd->span, p->cpus_allowed);
1131 for_each_cpu_mask(i, tmp) {
1132 if (idle_cpu(i))
1133 return i;
1136 else
1137 break;
1139 return cpu;
1141 #else
1142 static inline int wake_idle(int cpu, task_t *p)
1144 return cpu;
1146 #endif
1148 /***
1149 * try_to_wake_up - wake up a thread
1150 * @p: the to-be-woken-up thread
1151 * @state: the mask of task states that can be woken
1152 * @sync: do a synchronous wakeup?
1154 * Put it on the run-queue if it's not already there. The "current"
1155 * thread is always on the run-queue (except when the actual
1156 * re-schedule is in progress), and as such you're allowed to do
1157 * the simpler "current->state = TASK_RUNNING" to mark yourself
1158 * runnable without the overhead of this.
1160 * returns failure only if the task is already active.
1162 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1164 int cpu, this_cpu, success = 0;
1165 unsigned long flags;
1166 long old_state;
1167 runqueue_t *rq;
1168 #ifdef CONFIG_SMP
1169 unsigned long load, this_load;
1170 struct sched_domain *sd, *this_sd = NULL;
1171 int new_cpu;
1172 #endif
1174 rq = task_rq_lock(p, &flags);
1175 old_state = p->state;
1176 if (!(old_state & state))
1177 goto out;
1179 if (p->array)
1180 goto out_running;
1182 cpu = task_cpu(p);
1183 this_cpu = smp_processor_id();
1185 #ifdef CONFIG_SMP
1186 if (unlikely(task_running(rq, p)))
1187 goto out_activate;
1189 new_cpu = cpu;
1191 schedstat_inc(rq, ttwu_cnt);
1192 if (cpu == this_cpu) {
1193 schedstat_inc(rq, ttwu_local);
1194 goto out_set_cpu;
1197 for_each_domain(this_cpu, sd) {
1198 if (cpu_isset(cpu, sd->span)) {
1199 schedstat_inc(sd, ttwu_wake_remote);
1200 this_sd = sd;
1201 break;
1205 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1206 goto out_set_cpu;
1209 * Check for affine wakeup and passive balancing possibilities.
1211 if (this_sd) {
1212 int idx = this_sd->wake_idx;
1213 unsigned int imbalance;
1215 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1217 load = source_load(cpu, idx);
1218 this_load = target_load(this_cpu, idx);
1220 new_cpu = this_cpu; /* Wake to this CPU if we can */
1222 if (this_sd->flags & SD_WAKE_AFFINE) {
1223 unsigned long tl = this_load;
1225 * If sync wakeup then subtract the (maximum possible)
1226 * effect of the currently running task from the load
1227 * of the current CPU:
1229 if (sync)
1230 tl -= SCHED_LOAD_SCALE;
1232 if ((tl <= load &&
1233 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1234 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1236 * This domain has SD_WAKE_AFFINE and
1237 * p is cache cold in this domain, and
1238 * there is no bad imbalance.
1240 schedstat_inc(this_sd, ttwu_move_affine);
1241 goto out_set_cpu;
1246 * Start passive balancing when half the imbalance_pct
1247 * limit is reached.
1249 if (this_sd->flags & SD_WAKE_BALANCE) {
1250 if (imbalance*this_load <= 100*load) {
1251 schedstat_inc(this_sd, ttwu_move_balance);
1252 goto out_set_cpu;
1257 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1258 out_set_cpu:
1259 new_cpu = wake_idle(new_cpu, p);
1260 if (new_cpu != cpu) {
1261 set_task_cpu(p, new_cpu);
1262 task_rq_unlock(rq, &flags);
1263 /* might preempt at this point */
1264 rq = task_rq_lock(p, &flags);
1265 old_state = p->state;
1266 if (!(old_state & state))
1267 goto out;
1268 if (p->array)
1269 goto out_running;
1271 this_cpu = smp_processor_id();
1272 cpu = task_cpu(p);
1275 out_activate:
1276 #endif /* CONFIG_SMP */
1277 if (old_state == TASK_UNINTERRUPTIBLE) {
1278 rq->nr_uninterruptible--;
1280 * Tasks on involuntary sleep don't earn
1281 * sleep_avg beyond just interactive state.
1283 p->sleep_type = SLEEP_NONINTERACTIVE;
1284 } else
1287 * Tasks that have marked their sleep as noninteractive get
1288 * woken up with their sleep average not weighted in an
1289 * interactive way.
1291 if (old_state & TASK_NONINTERACTIVE)
1292 p->sleep_type = SLEEP_NONINTERACTIVE;
1295 activate_task(p, rq, cpu == this_cpu);
1297 * Sync wakeups (i.e. those types of wakeups where the waker
1298 * has indicated that it will leave the CPU in short order)
1299 * don't trigger a preemption, if the woken up task will run on
1300 * this cpu. (in this case the 'I will reschedule' promise of
1301 * the waker guarantees that the freshly woken up task is going
1302 * to be considered on this CPU.)
1304 if (!sync || cpu != this_cpu) {
1305 if (TASK_PREEMPTS_CURR(p, rq))
1306 resched_task(rq->curr);
1308 success = 1;
1310 out_running:
1311 p->state = TASK_RUNNING;
1312 out:
1313 task_rq_unlock(rq, &flags);
1315 return success;
1318 int fastcall wake_up_process(task_t *p)
1320 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1321 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1324 EXPORT_SYMBOL(wake_up_process);
1326 int fastcall wake_up_state(task_t *p, unsigned int state)
1328 return try_to_wake_up(p, state, 0);
1332 * Perform scheduler related setup for a newly forked process p.
1333 * p is forked by current.
1335 void fastcall sched_fork(task_t *p, int clone_flags)
1337 int cpu = get_cpu();
1339 #ifdef CONFIG_SMP
1340 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1341 #endif
1342 set_task_cpu(p, cpu);
1345 * We mark the process as running here, but have not actually
1346 * inserted it onto the runqueue yet. This guarantees that
1347 * nobody will actually run it, and a signal or other external
1348 * event cannot wake it up and insert it on the runqueue either.
1350 p->state = TASK_RUNNING;
1351 INIT_LIST_HEAD(&p->run_list);
1352 p->array = NULL;
1353 #ifdef CONFIG_SCHEDSTATS
1354 memset(&p->sched_info, 0, sizeof(p->sched_info));
1355 #endif
1356 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1357 p->oncpu = 0;
1358 #endif
1359 #ifdef CONFIG_PREEMPT
1360 /* Want to start with kernel preemption disabled. */
1361 task_thread_info(p)->preempt_count = 1;
1362 #endif
1364 * Share the timeslice between parent and child, thus the
1365 * total amount of pending timeslices in the system doesn't change,
1366 * resulting in more scheduling fairness.
1368 local_irq_disable();
1369 p->time_slice = (current->time_slice + 1) >> 1;
1371 * The remainder of the first timeslice might be recovered by
1372 * the parent if the child exits early enough.
1374 p->first_time_slice = 1;
1375 current->time_slice >>= 1;
1376 p->timestamp = sched_clock();
1377 if (unlikely(!current->time_slice)) {
1379 * This case is rare, it happens when the parent has only
1380 * a single jiffy left from its timeslice. Taking the
1381 * runqueue lock is not a problem.
1383 current->time_slice = 1;
1384 scheduler_tick();
1386 local_irq_enable();
1387 put_cpu();
1391 * wake_up_new_task - wake up a newly created task for the first time.
1393 * This function will do some initial scheduler statistics housekeeping
1394 * that must be done for every newly created context, then puts the task
1395 * on the runqueue and wakes it.
1397 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1399 unsigned long flags;
1400 int this_cpu, cpu;
1401 runqueue_t *rq, *this_rq;
1403 rq = task_rq_lock(p, &flags);
1404 BUG_ON(p->state != TASK_RUNNING);
1405 this_cpu = smp_processor_id();
1406 cpu = task_cpu(p);
1409 * We decrease the sleep average of forking parents
1410 * and children as well, to keep max-interactive tasks
1411 * from forking tasks that are max-interactive. The parent
1412 * (current) is done further down, under its lock.
1414 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1415 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1417 p->prio = effective_prio(p);
1419 if (likely(cpu == this_cpu)) {
1420 if (!(clone_flags & CLONE_VM)) {
1422 * The VM isn't cloned, so we're in a good position to
1423 * do child-runs-first in anticipation of an exec. This
1424 * usually avoids a lot of COW overhead.
1426 if (unlikely(!current->array))
1427 __activate_task(p, rq);
1428 else {
1429 p->prio = current->prio;
1430 list_add_tail(&p->run_list, &current->run_list);
1431 p->array = current->array;
1432 p->array->nr_active++;
1433 rq->nr_running++;
1435 set_need_resched();
1436 } else
1437 /* Run child last */
1438 __activate_task(p, rq);
1440 * We skip the following code due to cpu == this_cpu
1442 * task_rq_unlock(rq, &flags);
1443 * this_rq = task_rq_lock(current, &flags);
1445 this_rq = rq;
1446 } else {
1447 this_rq = cpu_rq(this_cpu);
1450 * Not the local CPU - must adjust timestamp. This should
1451 * get optimised away in the !CONFIG_SMP case.
1453 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1454 + rq->timestamp_last_tick;
1455 __activate_task(p, rq);
1456 if (TASK_PREEMPTS_CURR(p, rq))
1457 resched_task(rq->curr);
1460 * Parent and child are on different CPUs, now get the
1461 * parent runqueue to update the parent's ->sleep_avg:
1463 task_rq_unlock(rq, &flags);
1464 this_rq = task_rq_lock(current, &flags);
1466 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1467 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1468 task_rq_unlock(this_rq, &flags);
1472 * Potentially available exiting-child timeslices are
1473 * retrieved here - this way the parent does not get
1474 * penalized for creating too many threads.
1476 * (this cannot be used to 'generate' timeslices
1477 * artificially, because any timeslice recovered here
1478 * was given away by the parent in the first place.)
1480 void fastcall sched_exit(task_t *p)
1482 unsigned long flags;
1483 runqueue_t *rq;
1486 * If the child was a (relative-) CPU hog then decrease
1487 * the sleep_avg of the parent as well.
1489 rq = task_rq_lock(p->parent, &flags);
1490 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1491 p->parent->time_slice += p->time_slice;
1492 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1493 p->parent->time_slice = task_timeslice(p);
1495 if (p->sleep_avg < p->parent->sleep_avg)
1496 p->parent->sleep_avg = p->parent->sleep_avg /
1497 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1498 (EXIT_WEIGHT + 1);
1499 task_rq_unlock(rq, &flags);
1503 * prepare_task_switch - prepare to switch tasks
1504 * @rq: the runqueue preparing to switch
1505 * @next: the task we are going to switch to.
1507 * This is called with the rq lock held and interrupts off. It must
1508 * be paired with a subsequent finish_task_switch after the context
1509 * switch.
1511 * prepare_task_switch sets up locking and calls architecture specific
1512 * hooks.
1514 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1516 prepare_lock_switch(rq, next);
1517 prepare_arch_switch(next);
1521 * finish_task_switch - clean up after a task-switch
1522 * @rq: runqueue associated with task-switch
1523 * @prev: the thread we just switched away from.
1525 * finish_task_switch must be called after the context switch, paired
1526 * with a prepare_task_switch call before the context switch.
1527 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1528 * and do any other architecture-specific cleanup actions.
1530 * Note that we may have delayed dropping an mm in context_switch(). If
1531 * so, we finish that here outside of the runqueue lock. (Doing it
1532 * with the lock held can cause deadlocks; see schedule() for
1533 * details.)
1535 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1536 __releases(rq->lock)
1538 struct mm_struct *mm = rq->prev_mm;
1539 unsigned long prev_task_flags;
1541 rq->prev_mm = NULL;
1544 * A task struct has one reference for the use as "current".
1545 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1546 * calls schedule one last time. The schedule call will never return,
1547 * and the scheduled task must drop that reference.
1548 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1549 * still held, otherwise prev could be scheduled on another cpu, die
1550 * there before we look at prev->state, and then the reference would
1551 * be dropped twice.
1552 * Manfred Spraul <manfred@colorfullife.com>
1554 prev_task_flags = prev->flags;
1555 finish_arch_switch(prev);
1556 finish_lock_switch(rq, prev);
1557 if (mm)
1558 mmdrop(mm);
1559 if (unlikely(prev_task_flags & PF_DEAD)) {
1561 * Remove function-return probe instances associated with this
1562 * task and put them back on the free list.
1564 kprobe_flush_task(prev);
1565 put_task_struct(prev);
1570 * schedule_tail - first thing a freshly forked thread must call.
1571 * @prev: the thread we just switched away from.
1573 asmlinkage void schedule_tail(task_t *prev)
1574 __releases(rq->lock)
1576 runqueue_t *rq = this_rq();
1577 finish_task_switch(rq, prev);
1578 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1579 /* In this case, finish_task_switch does not reenable preemption */
1580 preempt_enable();
1581 #endif
1582 if (current->set_child_tid)
1583 put_user(current->pid, current->set_child_tid);
1587 * context_switch - switch to the new MM and the new
1588 * thread's register state.
1590 static inline
1591 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1593 struct mm_struct *mm = next->mm;
1594 struct mm_struct *oldmm = prev->active_mm;
1596 if (unlikely(!mm)) {
1597 next->active_mm = oldmm;
1598 atomic_inc(&oldmm->mm_count);
1599 enter_lazy_tlb(oldmm, next);
1600 } else
1601 switch_mm(oldmm, mm, next);
1603 if (unlikely(!prev->mm)) {
1604 prev->active_mm = NULL;
1605 WARN_ON(rq->prev_mm);
1606 rq->prev_mm = oldmm;
1609 /* Here we just switch the register state and the stack. */
1610 switch_to(prev, next, prev);
1612 return prev;
1616 * nr_running, nr_uninterruptible and nr_context_switches:
1618 * externally visible scheduler statistics: current number of runnable
1619 * threads, current number of uninterruptible-sleeping threads, total
1620 * number of context switches performed since bootup.
1622 unsigned long nr_running(void)
1624 unsigned long i, sum = 0;
1626 for_each_online_cpu(i)
1627 sum += cpu_rq(i)->nr_running;
1629 return sum;
1632 unsigned long nr_uninterruptible(void)
1634 unsigned long i, sum = 0;
1636 for_each_possible_cpu(i)
1637 sum += cpu_rq(i)->nr_uninterruptible;
1640 * Since we read the counters lockless, it might be slightly
1641 * inaccurate. Do not allow it to go below zero though:
1643 if (unlikely((long)sum < 0))
1644 sum = 0;
1646 return sum;
1649 unsigned long long nr_context_switches(void)
1651 unsigned long long i, sum = 0;
1653 for_each_possible_cpu(i)
1654 sum += cpu_rq(i)->nr_switches;
1656 return sum;
1659 unsigned long nr_iowait(void)
1661 unsigned long i, sum = 0;
1663 for_each_possible_cpu(i)
1664 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1666 return sum;
1669 unsigned long nr_active(void)
1671 unsigned long i, running = 0, uninterruptible = 0;
1673 for_each_online_cpu(i) {
1674 running += cpu_rq(i)->nr_running;
1675 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1678 if (unlikely((long)uninterruptible < 0))
1679 uninterruptible = 0;
1681 return running + uninterruptible;
1684 #ifdef CONFIG_SMP
1687 * double_rq_lock - safely lock two runqueues
1689 * We must take them in cpu order to match code in
1690 * dependent_sleeper and wake_dependent_sleeper.
1692 * Note this does not disable interrupts like task_rq_lock,
1693 * you need to do so manually before calling.
1695 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1696 __acquires(rq1->lock)
1697 __acquires(rq2->lock)
1699 if (rq1 == rq2) {
1700 spin_lock(&rq1->lock);
1701 __acquire(rq2->lock); /* Fake it out ;) */
1702 } else {
1703 if (rq1->cpu < rq2->cpu) {
1704 spin_lock(&rq1->lock);
1705 spin_lock(&rq2->lock);
1706 } else {
1707 spin_lock(&rq2->lock);
1708 spin_lock(&rq1->lock);
1714 * double_rq_unlock - safely unlock two runqueues
1716 * Note this does not restore interrupts like task_rq_unlock,
1717 * you need to do so manually after calling.
1719 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1720 __releases(rq1->lock)
1721 __releases(rq2->lock)
1723 spin_unlock(&rq1->lock);
1724 if (rq1 != rq2)
1725 spin_unlock(&rq2->lock);
1726 else
1727 __release(rq2->lock);
1731 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1733 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1734 __releases(this_rq->lock)
1735 __acquires(busiest->lock)
1736 __acquires(this_rq->lock)
1738 if (unlikely(!spin_trylock(&busiest->lock))) {
1739 if (busiest->cpu < this_rq->cpu) {
1740 spin_unlock(&this_rq->lock);
1741 spin_lock(&busiest->lock);
1742 spin_lock(&this_rq->lock);
1743 } else
1744 spin_lock(&busiest->lock);
1749 * If dest_cpu is allowed for this process, migrate the task to it.
1750 * This is accomplished by forcing the cpu_allowed mask to only
1751 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1752 * the cpu_allowed mask is restored.
1754 static void sched_migrate_task(task_t *p, int dest_cpu)
1756 migration_req_t req;
1757 runqueue_t *rq;
1758 unsigned long flags;
1760 rq = task_rq_lock(p, &flags);
1761 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1762 || unlikely(cpu_is_offline(dest_cpu)))
1763 goto out;
1765 /* force the process onto the specified CPU */
1766 if (migrate_task(p, dest_cpu, &req)) {
1767 /* Need to wait for migration thread (might exit: take ref). */
1768 struct task_struct *mt = rq->migration_thread;
1769 get_task_struct(mt);
1770 task_rq_unlock(rq, &flags);
1771 wake_up_process(mt);
1772 put_task_struct(mt);
1773 wait_for_completion(&req.done);
1774 return;
1776 out:
1777 task_rq_unlock(rq, &flags);
1781 * sched_exec - execve() is a valuable balancing opportunity, because at
1782 * this point the task has the smallest effective memory and cache footprint.
1784 void sched_exec(void)
1786 int new_cpu, this_cpu = get_cpu();
1787 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1788 put_cpu();
1789 if (new_cpu != this_cpu)
1790 sched_migrate_task(current, new_cpu);
1794 * pull_task - move a task from a remote runqueue to the local runqueue.
1795 * Both runqueues must be locked.
1797 static
1798 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1799 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1801 dequeue_task(p, src_array);
1802 src_rq->nr_running--;
1803 set_task_cpu(p, this_cpu);
1804 this_rq->nr_running++;
1805 enqueue_task(p, this_array);
1806 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1807 + this_rq->timestamp_last_tick;
1809 * Note that idle threads have a prio of MAX_PRIO, for this test
1810 * to be always true for them.
1812 if (TASK_PREEMPTS_CURR(p, this_rq))
1813 resched_task(this_rq->curr);
1817 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1819 static
1820 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1821 struct sched_domain *sd, enum idle_type idle,
1822 int *all_pinned)
1825 * We do not migrate tasks that are:
1826 * 1) running (obviously), or
1827 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1828 * 3) are cache-hot on their current CPU.
1830 if (!cpu_isset(this_cpu, p->cpus_allowed))
1831 return 0;
1832 *all_pinned = 0;
1834 if (task_running(rq, p))
1835 return 0;
1838 * Aggressive migration if:
1839 * 1) task is cache cold, or
1840 * 2) too many balance attempts have failed.
1843 if (sd->nr_balance_failed > sd->cache_nice_tries)
1844 return 1;
1846 if (task_hot(p, rq->timestamp_last_tick, sd))
1847 return 0;
1848 return 1;
1852 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1853 * as part of a balancing operation within "domain". Returns the number of
1854 * tasks moved.
1856 * Called with both runqueues locked.
1858 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1859 unsigned long max_nr_move, struct sched_domain *sd,
1860 enum idle_type idle, int *all_pinned)
1862 prio_array_t *array, *dst_array;
1863 struct list_head *head, *curr;
1864 int idx, pulled = 0, pinned = 0;
1865 task_t *tmp;
1867 if (max_nr_move == 0)
1868 goto out;
1870 pinned = 1;
1873 * We first consider expired tasks. Those will likely not be
1874 * executed in the near future, and they are most likely to
1875 * be cache-cold, thus switching CPUs has the least effect
1876 * on them.
1878 if (busiest->expired->nr_active) {
1879 array = busiest->expired;
1880 dst_array = this_rq->expired;
1881 } else {
1882 array = busiest->active;
1883 dst_array = this_rq->active;
1886 new_array:
1887 /* Start searching at priority 0: */
1888 idx = 0;
1889 skip_bitmap:
1890 if (!idx)
1891 idx = sched_find_first_bit(array->bitmap);
1892 else
1893 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1894 if (idx >= MAX_PRIO) {
1895 if (array == busiest->expired && busiest->active->nr_active) {
1896 array = busiest->active;
1897 dst_array = this_rq->active;
1898 goto new_array;
1900 goto out;
1903 head = array->queue + idx;
1904 curr = head->prev;
1905 skip_queue:
1906 tmp = list_entry(curr, task_t, run_list);
1908 curr = curr->prev;
1910 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1911 if (curr != head)
1912 goto skip_queue;
1913 idx++;
1914 goto skip_bitmap;
1917 #ifdef CONFIG_SCHEDSTATS
1918 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1919 schedstat_inc(sd, lb_hot_gained[idle]);
1920 #endif
1922 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1923 pulled++;
1925 /* We only want to steal up to the prescribed number of tasks. */
1926 if (pulled < max_nr_move) {
1927 if (curr != head)
1928 goto skip_queue;
1929 idx++;
1930 goto skip_bitmap;
1932 out:
1934 * Right now, this is the only place pull_task() is called,
1935 * so we can safely collect pull_task() stats here rather than
1936 * inside pull_task().
1938 schedstat_add(sd, lb_gained[idle], pulled);
1940 if (all_pinned)
1941 *all_pinned = pinned;
1942 return pulled;
1946 * find_busiest_group finds and returns the busiest CPU group within the
1947 * domain. It calculates and returns the number of tasks which should be
1948 * moved to restore balance via the imbalance parameter.
1950 static struct sched_group *
1951 find_busiest_group(struct sched_domain *sd, int this_cpu,
1952 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1954 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1955 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1956 unsigned long max_pull;
1957 int load_idx;
1959 max_load = this_load = total_load = total_pwr = 0;
1960 if (idle == NOT_IDLE)
1961 load_idx = sd->busy_idx;
1962 else if (idle == NEWLY_IDLE)
1963 load_idx = sd->newidle_idx;
1964 else
1965 load_idx = sd->idle_idx;
1967 do {
1968 unsigned long load;
1969 int local_group;
1970 int i;
1972 local_group = cpu_isset(this_cpu, group->cpumask);
1974 /* Tally up the load of all CPUs in the group */
1975 avg_load = 0;
1977 for_each_cpu_mask(i, group->cpumask) {
1978 if (*sd_idle && !idle_cpu(i))
1979 *sd_idle = 0;
1981 /* Bias balancing toward cpus of our domain */
1982 if (local_group)
1983 load = target_load(i, load_idx);
1984 else
1985 load = source_load(i, load_idx);
1987 avg_load += load;
1990 total_load += avg_load;
1991 total_pwr += group->cpu_power;
1993 /* Adjust by relative CPU power of the group */
1994 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1996 if (local_group) {
1997 this_load = avg_load;
1998 this = group;
1999 } else if (avg_load > max_load) {
2000 max_load = avg_load;
2001 busiest = group;
2003 group = group->next;
2004 } while (group != sd->groups);
2006 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2007 goto out_balanced;
2009 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2011 if (this_load >= avg_load ||
2012 100*max_load <= sd->imbalance_pct*this_load)
2013 goto out_balanced;
2016 * We're trying to get all the cpus to the average_load, so we don't
2017 * want to push ourselves above the average load, nor do we wish to
2018 * reduce the max loaded cpu below the average load, as either of these
2019 * actions would just result in more rebalancing later, and ping-pong
2020 * tasks around. Thus we look for the minimum possible imbalance.
2021 * Negative imbalances (*we* are more loaded than anyone else) will
2022 * be counted as no imbalance for these purposes -- we can't fix that
2023 * by pulling tasks to us. Be careful of negative numbers as they'll
2024 * appear as very large values with unsigned longs.
2027 /* Don't want to pull so many tasks that a group would go idle */
2028 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2030 /* How much load to actually move to equalise the imbalance */
2031 *imbalance = min(max_pull * busiest->cpu_power,
2032 (avg_load - this_load) * this->cpu_power)
2033 / SCHED_LOAD_SCALE;
2035 if (*imbalance < SCHED_LOAD_SCALE) {
2036 unsigned long pwr_now = 0, pwr_move = 0;
2037 unsigned long tmp;
2039 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2040 *imbalance = 1;
2041 return busiest;
2045 * OK, we don't have enough imbalance to justify moving tasks,
2046 * however we may be able to increase total CPU power used by
2047 * moving them.
2050 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2051 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2052 pwr_now /= SCHED_LOAD_SCALE;
2054 /* Amount of load we'd subtract */
2055 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2056 if (max_load > tmp)
2057 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2058 max_load - tmp);
2060 /* Amount of load we'd add */
2061 if (max_load*busiest->cpu_power <
2062 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2063 tmp = max_load*busiest->cpu_power/this->cpu_power;
2064 else
2065 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2066 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2067 pwr_move /= SCHED_LOAD_SCALE;
2069 /* Move if we gain throughput */
2070 if (pwr_move <= pwr_now)
2071 goto out_balanced;
2073 *imbalance = 1;
2074 return busiest;
2077 /* Get rid of the scaling factor, rounding down as we divide */
2078 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2079 return busiest;
2081 out_balanced:
2083 *imbalance = 0;
2084 return NULL;
2088 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2090 static runqueue_t *find_busiest_queue(struct sched_group *group,
2091 enum idle_type idle)
2093 unsigned long load, max_load = 0;
2094 runqueue_t *busiest = NULL;
2095 int i;
2097 for_each_cpu_mask(i, group->cpumask) {
2098 load = source_load(i, 0);
2100 if (load > max_load) {
2101 max_load = load;
2102 busiest = cpu_rq(i);
2106 return busiest;
2110 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2111 * so long as it is large enough.
2113 #define MAX_PINNED_INTERVAL 512
2116 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2117 * tasks if there is an imbalance.
2119 * Called with this_rq unlocked.
2121 static int load_balance(int this_cpu, runqueue_t *this_rq,
2122 struct sched_domain *sd, enum idle_type idle)
2124 struct sched_group *group;
2125 runqueue_t *busiest;
2126 unsigned long imbalance;
2127 int nr_moved, all_pinned = 0;
2128 int active_balance = 0;
2129 int sd_idle = 0;
2131 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2132 sd_idle = 1;
2134 schedstat_inc(sd, lb_cnt[idle]);
2136 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2137 if (!group) {
2138 schedstat_inc(sd, lb_nobusyg[idle]);
2139 goto out_balanced;
2142 busiest = find_busiest_queue(group, idle);
2143 if (!busiest) {
2144 schedstat_inc(sd, lb_nobusyq[idle]);
2145 goto out_balanced;
2148 BUG_ON(busiest == this_rq);
2150 schedstat_add(sd, lb_imbalance[idle], imbalance);
2152 nr_moved = 0;
2153 if (busiest->nr_running > 1) {
2155 * Attempt to move tasks. If find_busiest_group has found
2156 * an imbalance but busiest->nr_running <= 1, the group is
2157 * still unbalanced. nr_moved simply stays zero, so it is
2158 * correctly treated as an imbalance.
2160 double_rq_lock(this_rq, busiest);
2161 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2162 imbalance, sd, idle, &all_pinned);
2163 double_rq_unlock(this_rq, busiest);
2165 /* All tasks on this runqueue were pinned by CPU affinity */
2166 if (unlikely(all_pinned))
2167 goto out_balanced;
2170 if (!nr_moved) {
2171 schedstat_inc(sd, lb_failed[idle]);
2172 sd->nr_balance_failed++;
2174 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2176 spin_lock(&busiest->lock);
2178 /* don't kick the migration_thread, if the curr
2179 * task on busiest cpu can't be moved to this_cpu
2181 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2182 spin_unlock(&busiest->lock);
2183 all_pinned = 1;
2184 goto out_one_pinned;
2187 if (!busiest->active_balance) {
2188 busiest->active_balance = 1;
2189 busiest->push_cpu = this_cpu;
2190 active_balance = 1;
2192 spin_unlock(&busiest->lock);
2193 if (active_balance)
2194 wake_up_process(busiest->migration_thread);
2197 * We've kicked active balancing, reset the failure
2198 * counter.
2200 sd->nr_balance_failed = sd->cache_nice_tries+1;
2202 } else
2203 sd->nr_balance_failed = 0;
2205 if (likely(!active_balance)) {
2206 /* We were unbalanced, so reset the balancing interval */
2207 sd->balance_interval = sd->min_interval;
2208 } else {
2210 * If we've begun active balancing, start to back off. This
2211 * case may not be covered by the all_pinned logic if there
2212 * is only 1 task on the busy runqueue (because we don't call
2213 * move_tasks).
2215 if (sd->balance_interval < sd->max_interval)
2216 sd->balance_interval *= 2;
2219 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2220 return -1;
2221 return nr_moved;
2223 out_balanced:
2224 schedstat_inc(sd, lb_balanced[idle]);
2226 sd->nr_balance_failed = 0;
2228 out_one_pinned:
2229 /* tune up the balancing interval */
2230 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2231 (sd->balance_interval < sd->max_interval))
2232 sd->balance_interval *= 2;
2234 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2235 return -1;
2236 return 0;
2240 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2241 * tasks if there is an imbalance.
2243 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2244 * this_rq is locked.
2246 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2247 struct sched_domain *sd)
2249 struct sched_group *group;
2250 runqueue_t *busiest = NULL;
2251 unsigned long imbalance;
2252 int nr_moved = 0;
2253 int sd_idle = 0;
2255 if (sd->flags & SD_SHARE_CPUPOWER)
2256 sd_idle = 1;
2258 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2259 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2260 if (!group) {
2261 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2262 goto out_balanced;
2265 busiest = find_busiest_queue(group, NEWLY_IDLE);
2266 if (!busiest) {
2267 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2268 goto out_balanced;
2271 BUG_ON(busiest == this_rq);
2273 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2275 nr_moved = 0;
2276 if (busiest->nr_running > 1) {
2277 /* Attempt to move tasks */
2278 double_lock_balance(this_rq, busiest);
2279 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2280 imbalance, sd, NEWLY_IDLE, NULL);
2281 spin_unlock(&busiest->lock);
2284 if (!nr_moved) {
2285 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2286 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2287 return -1;
2288 } else
2289 sd->nr_balance_failed = 0;
2291 return nr_moved;
2293 out_balanced:
2294 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2295 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2296 return -1;
2297 sd->nr_balance_failed = 0;
2298 return 0;
2302 * idle_balance is called by schedule() if this_cpu is about to become
2303 * idle. Attempts to pull tasks from other CPUs.
2305 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2307 struct sched_domain *sd;
2309 for_each_domain(this_cpu, sd) {
2310 if (sd->flags & SD_BALANCE_NEWIDLE) {
2311 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2312 /* We've pulled tasks over so stop searching */
2313 break;
2320 * active_load_balance is run by migration threads. It pushes running tasks
2321 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2322 * running on each physical CPU where possible, and avoids physical /
2323 * logical imbalances.
2325 * Called with busiest_rq locked.
2327 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2329 struct sched_domain *sd;
2330 runqueue_t *target_rq;
2331 int target_cpu = busiest_rq->push_cpu;
2333 if (busiest_rq->nr_running <= 1)
2334 /* no task to move */
2335 return;
2337 target_rq = cpu_rq(target_cpu);
2340 * This condition is "impossible", if it occurs
2341 * we need to fix it. Originally reported by
2342 * Bjorn Helgaas on a 128-cpu setup.
2344 BUG_ON(busiest_rq == target_rq);
2346 /* move a task from busiest_rq to target_rq */
2347 double_lock_balance(busiest_rq, target_rq);
2349 /* Search for an sd spanning us and the target CPU. */
2350 for_each_domain(target_cpu, sd)
2351 if ((sd->flags & SD_LOAD_BALANCE) &&
2352 cpu_isset(busiest_cpu, sd->span))
2353 break;
2355 if (unlikely(sd == NULL))
2356 goto out;
2358 schedstat_inc(sd, alb_cnt);
2360 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2361 schedstat_inc(sd, alb_pushed);
2362 else
2363 schedstat_inc(sd, alb_failed);
2364 out:
2365 spin_unlock(&target_rq->lock);
2369 * rebalance_tick will get called every timer tick, on every CPU.
2371 * It checks each scheduling domain to see if it is due to be balanced,
2372 * and initiates a balancing operation if so.
2374 * Balancing parameters are set up in arch_init_sched_domains.
2377 /* Don't have all balancing operations going off at once */
2378 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2380 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2381 enum idle_type idle)
2383 unsigned long old_load, this_load;
2384 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2385 struct sched_domain *sd;
2386 int i;
2388 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2389 /* Update our load */
2390 for (i = 0; i < 3; i++) {
2391 unsigned long new_load = this_load;
2392 int scale = 1 << i;
2393 old_load = this_rq->cpu_load[i];
2395 * Round up the averaging division if load is increasing. This
2396 * prevents us from getting stuck on 9 if the load is 10, for
2397 * example.
2399 if (new_load > old_load)
2400 new_load += scale-1;
2401 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2404 for_each_domain(this_cpu, sd) {
2405 unsigned long interval;
2407 if (!(sd->flags & SD_LOAD_BALANCE))
2408 continue;
2410 interval = sd->balance_interval;
2411 if (idle != SCHED_IDLE)
2412 interval *= sd->busy_factor;
2414 /* scale ms to jiffies */
2415 interval = msecs_to_jiffies(interval);
2416 if (unlikely(!interval))
2417 interval = 1;
2419 if (j - sd->last_balance >= interval) {
2420 if (load_balance(this_cpu, this_rq, sd, idle)) {
2422 * We've pulled tasks over so either we're no
2423 * longer idle, or one of our SMT siblings is
2424 * not idle.
2426 idle = NOT_IDLE;
2428 sd->last_balance += interval;
2432 #else
2434 * on UP we do not need to balance between CPUs:
2436 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2439 static inline void idle_balance(int cpu, runqueue_t *rq)
2442 #endif
2444 static inline int wake_priority_sleeper(runqueue_t *rq)
2446 int ret = 0;
2447 #ifdef CONFIG_SCHED_SMT
2448 spin_lock(&rq->lock);
2450 * If an SMT sibling task has been put to sleep for priority
2451 * reasons reschedule the idle task to see if it can now run.
2453 if (rq->nr_running) {
2454 resched_task(rq->idle);
2455 ret = 1;
2457 spin_unlock(&rq->lock);
2458 #endif
2459 return ret;
2462 DEFINE_PER_CPU(struct kernel_stat, kstat);
2464 EXPORT_PER_CPU_SYMBOL(kstat);
2467 * This is called on clock ticks and on context switches.
2468 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2470 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2471 unsigned long long now)
2473 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2474 p->sched_time += now - last;
2478 * Return current->sched_time plus any more ns on the sched_clock
2479 * that have not yet been banked.
2481 unsigned long long current_sched_time(const task_t *tsk)
2483 unsigned long long ns;
2484 unsigned long flags;
2485 local_irq_save(flags);
2486 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2487 ns = tsk->sched_time + (sched_clock() - ns);
2488 local_irq_restore(flags);
2489 return ns;
2493 * We place interactive tasks back into the active array, if possible.
2495 * To guarantee that this does not starve expired tasks we ignore the
2496 * interactivity of a task if the first expired task had to wait more
2497 * than a 'reasonable' amount of time. This deadline timeout is
2498 * load-dependent, as the frequency of array switched decreases with
2499 * increasing number of running tasks. We also ignore the interactivity
2500 * if a better static_prio task has expired:
2502 #define EXPIRED_STARVING(rq) \
2503 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2504 (jiffies - (rq)->expired_timestamp >= \
2505 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2506 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2509 * Account user cpu time to a process.
2510 * @p: the process that the cpu time gets accounted to
2511 * @hardirq_offset: the offset to subtract from hardirq_count()
2512 * @cputime: the cpu time spent in user space since the last update
2514 void account_user_time(struct task_struct *p, cputime_t cputime)
2516 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2517 cputime64_t tmp;
2519 p->utime = cputime_add(p->utime, cputime);
2521 /* Add user time to cpustat. */
2522 tmp = cputime_to_cputime64(cputime);
2523 if (TASK_NICE(p) > 0)
2524 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2525 else
2526 cpustat->user = cputime64_add(cpustat->user, tmp);
2530 * Account system cpu time to a process.
2531 * @p: the process that the cpu time gets accounted to
2532 * @hardirq_offset: the offset to subtract from hardirq_count()
2533 * @cputime: the cpu time spent in kernel space since the last update
2535 void account_system_time(struct task_struct *p, int hardirq_offset,
2536 cputime_t cputime)
2538 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2539 runqueue_t *rq = this_rq();
2540 cputime64_t tmp;
2542 p->stime = cputime_add(p->stime, cputime);
2544 /* Add system time to cpustat. */
2545 tmp = cputime_to_cputime64(cputime);
2546 if (hardirq_count() - hardirq_offset)
2547 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2548 else if (softirq_count())
2549 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2550 else if (p != rq->idle)
2551 cpustat->system = cputime64_add(cpustat->system, tmp);
2552 else if (atomic_read(&rq->nr_iowait) > 0)
2553 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2554 else
2555 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2556 /* Account for system time used */
2557 acct_update_integrals(p);
2561 * Account for involuntary wait time.
2562 * @p: the process from which the cpu time has been stolen
2563 * @steal: the cpu time spent in involuntary wait
2565 void account_steal_time(struct task_struct *p, cputime_t steal)
2567 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2568 cputime64_t tmp = cputime_to_cputime64(steal);
2569 runqueue_t *rq = this_rq();
2571 if (p == rq->idle) {
2572 p->stime = cputime_add(p->stime, steal);
2573 if (atomic_read(&rq->nr_iowait) > 0)
2574 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2575 else
2576 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2577 } else
2578 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2582 * This function gets called by the timer code, with HZ frequency.
2583 * We call it with interrupts disabled.
2585 * It also gets called by the fork code, when changing the parent's
2586 * timeslices.
2588 void scheduler_tick(void)
2590 int cpu = smp_processor_id();
2591 runqueue_t *rq = this_rq();
2592 task_t *p = current;
2593 unsigned long long now = sched_clock();
2595 update_cpu_clock(p, rq, now);
2597 rq->timestamp_last_tick = now;
2599 if (p == rq->idle) {
2600 if (wake_priority_sleeper(rq))
2601 goto out;
2602 rebalance_tick(cpu, rq, SCHED_IDLE);
2603 return;
2606 /* Task might have expired already, but not scheduled off yet */
2607 if (p->array != rq->active) {
2608 set_tsk_need_resched(p);
2609 goto out;
2611 spin_lock(&rq->lock);
2613 * The task was running during this tick - update the
2614 * time slice counter. Note: we do not update a thread's
2615 * priority until it either goes to sleep or uses up its
2616 * timeslice. This makes it possible for interactive tasks
2617 * to use up their timeslices at their highest priority levels.
2619 if (rt_task(p)) {
2621 * RR tasks need a special form of timeslice management.
2622 * FIFO tasks have no timeslices.
2624 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2625 p->time_slice = task_timeslice(p);
2626 p->first_time_slice = 0;
2627 set_tsk_need_resched(p);
2629 /* put it at the end of the queue: */
2630 requeue_task(p, rq->active);
2632 goto out_unlock;
2634 if (!--p->time_slice) {
2635 dequeue_task(p, rq->active);
2636 set_tsk_need_resched(p);
2637 p->prio = effective_prio(p);
2638 p->time_slice = task_timeslice(p);
2639 p->first_time_slice = 0;
2641 if (!rq->expired_timestamp)
2642 rq->expired_timestamp = jiffies;
2643 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2644 enqueue_task(p, rq->expired);
2645 if (p->static_prio < rq->best_expired_prio)
2646 rq->best_expired_prio = p->static_prio;
2647 } else
2648 enqueue_task(p, rq->active);
2649 } else {
2651 * Prevent a too long timeslice allowing a task to monopolize
2652 * the CPU. We do this by splitting up the timeslice into
2653 * smaller pieces.
2655 * Note: this does not mean the task's timeslices expire or
2656 * get lost in any way, they just might be preempted by
2657 * another task of equal priority. (one with higher
2658 * priority would have preempted this task already.) We
2659 * requeue this task to the end of the list on this priority
2660 * level, which is in essence a round-robin of tasks with
2661 * equal priority.
2663 * This only applies to tasks in the interactive
2664 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2666 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2667 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2668 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2669 (p->array == rq->active)) {
2671 requeue_task(p, rq->active);
2672 set_tsk_need_resched(p);
2675 out_unlock:
2676 spin_unlock(&rq->lock);
2677 out:
2678 rebalance_tick(cpu, rq, NOT_IDLE);
2681 #ifdef CONFIG_SCHED_SMT
2682 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2684 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2685 if (rq->curr == rq->idle && rq->nr_running)
2686 resched_task(rq->idle);
2689 static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2691 struct sched_domain *tmp, *sd = NULL;
2692 cpumask_t sibling_map;
2693 int i;
2695 for_each_domain(this_cpu, tmp)
2696 if (tmp->flags & SD_SHARE_CPUPOWER)
2697 sd = tmp;
2699 if (!sd)
2700 return;
2703 * Unlock the current runqueue because we have to lock in
2704 * CPU order to avoid deadlocks. Caller knows that we might
2705 * unlock. We keep IRQs disabled.
2707 spin_unlock(&this_rq->lock);
2709 sibling_map = sd->span;
2711 for_each_cpu_mask(i, sibling_map)
2712 spin_lock(&cpu_rq(i)->lock);
2714 * We clear this CPU from the mask. This both simplifies the
2715 * inner loop and keps this_rq locked when we exit:
2717 cpu_clear(this_cpu, sibling_map);
2719 for_each_cpu_mask(i, sibling_map) {
2720 runqueue_t *smt_rq = cpu_rq(i);
2722 wakeup_busy_runqueue(smt_rq);
2725 for_each_cpu_mask(i, sibling_map)
2726 spin_unlock(&cpu_rq(i)->lock);
2728 * We exit with this_cpu's rq still held and IRQs
2729 * still disabled:
2734 * number of 'lost' timeslices this task wont be able to fully
2735 * utilize, if another task runs on a sibling. This models the
2736 * slowdown effect of other tasks running on siblings:
2738 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2740 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2743 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2745 struct sched_domain *tmp, *sd = NULL;
2746 cpumask_t sibling_map;
2747 prio_array_t *array;
2748 int ret = 0, i;
2749 task_t *p;
2751 for_each_domain(this_cpu, tmp)
2752 if (tmp->flags & SD_SHARE_CPUPOWER)
2753 sd = tmp;
2755 if (!sd)
2756 return 0;
2759 * The same locking rules and details apply as for
2760 * wake_sleeping_dependent():
2762 spin_unlock(&this_rq->lock);
2763 sibling_map = sd->span;
2764 for_each_cpu_mask(i, sibling_map)
2765 spin_lock(&cpu_rq(i)->lock);
2766 cpu_clear(this_cpu, sibling_map);
2769 * Establish next task to be run - it might have gone away because
2770 * we released the runqueue lock above:
2772 if (!this_rq->nr_running)
2773 goto out_unlock;
2774 array = this_rq->active;
2775 if (!array->nr_active)
2776 array = this_rq->expired;
2777 BUG_ON(!array->nr_active);
2779 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2780 task_t, run_list);
2782 for_each_cpu_mask(i, sibling_map) {
2783 runqueue_t *smt_rq = cpu_rq(i);
2784 task_t *smt_curr = smt_rq->curr;
2786 /* Kernel threads do not participate in dependent sleeping */
2787 if (!p->mm || !smt_curr->mm || rt_task(p))
2788 goto check_smt_task;
2791 * If a user task with lower static priority than the
2792 * running task on the SMT sibling is trying to schedule,
2793 * delay it till there is proportionately less timeslice
2794 * left of the sibling task to prevent a lower priority
2795 * task from using an unfair proportion of the
2796 * physical cpu's resources. -ck
2798 if (rt_task(smt_curr)) {
2800 * With real time tasks we run non-rt tasks only
2801 * per_cpu_gain% of the time.
2803 if ((jiffies % DEF_TIMESLICE) >
2804 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2805 ret = 1;
2806 } else
2807 if (smt_curr->static_prio < p->static_prio &&
2808 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2809 smt_slice(smt_curr, sd) > task_timeslice(p))
2810 ret = 1;
2812 check_smt_task:
2813 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2814 rt_task(smt_curr))
2815 continue;
2816 if (!p->mm) {
2817 wakeup_busy_runqueue(smt_rq);
2818 continue;
2822 * Reschedule a lower priority task on the SMT sibling for
2823 * it to be put to sleep, or wake it up if it has been put to
2824 * sleep for priority reasons to see if it should run now.
2826 if (rt_task(p)) {
2827 if ((jiffies % DEF_TIMESLICE) >
2828 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2829 resched_task(smt_curr);
2830 } else {
2831 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2832 smt_slice(p, sd) > task_timeslice(smt_curr))
2833 resched_task(smt_curr);
2834 else
2835 wakeup_busy_runqueue(smt_rq);
2838 out_unlock:
2839 for_each_cpu_mask(i, sibling_map)
2840 spin_unlock(&cpu_rq(i)->lock);
2841 return ret;
2843 #else
2844 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2848 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2850 return 0;
2852 #endif
2854 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2856 void fastcall add_preempt_count(int val)
2859 * Underflow?
2861 BUG_ON((preempt_count() < 0));
2862 preempt_count() += val;
2864 * Spinlock count overflowing soon?
2866 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2868 EXPORT_SYMBOL(add_preempt_count);
2870 void fastcall sub_preempt_count(int val)
2873 * Underflow?
2875 BUG_ON(val > preempt_count());
2877 * Is the spinlock portion underflowing?
2879 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2880 preempt_count() -= val;
2882 EXPORT_SYMBOL(sub_preempt_count);
2884 #endif
2886 static inline int interactive_sleep(enum sleep_type sleep_type)
2888 return (sleep_type == SLEEP_INTERACTIVE ||
2889 sleep_type == SLEEP_INTERRUPTED);
2893 * schedule() is the main scheduler function.
2895 asmlinkage void __sched schedule(void)
2897 long *switch_count;
2898 task_t *prev, *next;
2899 runqueue_t *rq;
2900 prio_array_t *array;
2901 struct list_head *queue;
2902 unsigned long long now;
2903 unsigned long run_time;
2904 int cpu, idx, new_prio;
2907 * Test if we are atomic. Since do_exit() needs to call into
2908 * schedule() atomically, we ignore that path for now.
2909 * Otherwise, whine if we are scheduling when we should not be.
2911 if (unlikely(in_atomic() && !current->exit_state)) {
2912 printk(KERN_ERR "BUG: scheduling while atomic: "
2913 "%s/0x%08x/%d\n",
2914 current->comm, preempt_count(), current->pid);
2915 dump_stack();
2917 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2919 need_resched:
2920 preempt_disable();
2921 prev = current;
2922 release_kernel_lock(prev);
2923 need_resched_nonpreemptible:
2924 rq = this_rq();
2927 * The idle thread is not allowed to schedule!
2928 * Remove this check after it has been exercised a bit.
2930 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2931 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2932 dump_stack();
2935 schedstat_inc(rq, sched_cnt);
2936 now = sched_clock();
2937 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2938 run_time = now - prev->timestamp;
2939 if (unlikely((long long)(now - prev->timestamp) < 0))
2940 run_time = 0;
2941 } else
2942 run_time = NS_MAX_SLEEP_AVG;
2945 * Tasks charged proportionately less run_time at high sleep_avg to
2946 * delay them losing their interactive status
2948 run_time /= (CURRENT_BONUS(prev) ? : 1);
2950 spin_lock_irq(&rq->lock);
2952 if (unlikely(prev->flags & PF_DEAD))
2953 prev->state = EXIT_DEAD;
2955 switch_count = &prev->nivcsw;
2956 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2957 switch_count = &prev->nvcsw;
2958 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2959 unlikely(signal_pending(prev))))
2960 prev->state = TASK_RUNNING;
2961 else {
2962 if (prev->state == TASK_UNINTERRUPTIBLE)
2963 rq->nr_uninterruptible++;
2964 deactivate_task(prev, rq);
2968 cpu = smp_processor_id();
2969 if (unlikely(!rq->nr_running)) {
2970 go_idle:
2971 idle_balance(cpu, rq);
2972 if (!rq->nr_running) {
2973 next = rq->idle;
2974 rq->expired_timestamp = 0;
2975 wake_sleeping_dependent(cpu, rq);
2977 * wake_sleeping_dependent() might have released
2978 * the runqueue, so break out if we got new
2979 * tasks meanwhile:
2981 if (!rq->nr_running)
2982 goto switch_tasks;
2984 } else {
2985 if (dependent_sleeper(cpu, rq)) {
2986 next = rq->idle;
2987 goto switch_tasks;
2990 * dependent_sleeper() releases and reacquires the runqueue
2991 * lock, hence go into the idle loop if the rq went
2992 * empty meanwhile:
2994 if (unlikely(!rq->nr_running))
2995 goto go_idle;
2998 array = rq->active;
2999 if (unlikely(!array->nr_active)) {
3001 * Switch the active and expired arrays.
3003 schedstat_inc(rq, sched_switch);
3004 rq->active = rq->expired;
3005 rq->expired = array;
3006 array = rq->active;
3007 rq->expired_timestamp = 0;
3008 rq->best_expired_prio = MAX_PRIO;
3011 idx = sched_find_first_bit(array->bitmap);
3012 queue = array->queue + idx;
3013 next = list_entry(queue->next, task_t, run_list);
3015 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3016 unsigned long long delta = now - next->timestamp;
3017 if (unlikely((long long)(now - next->timestamp) < 0))
3018 delta = 0;
3020 if (next->sleep_type == SLEEP_INTERACTIVE)
3021 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3023 array = next->array;
3024 new_prio = recalc_task_prio(next, next->timestamp + delta);
3026 if (unlikely(next->prio != new_prio)) {
3027 dequeue_task(next, array);
3028 next->prio = new_prio;
3029 enqueue_task(next, array);
3032 next->sleep_type = SLEEP_NORMAL;
3033 switch_tasks:
3034 if (next == rq->idle)
3035 schedstat_inc(rq, sched_goidle);
3036 prefetch(next);
3037 prefetch_stack(next);
3038 clear_tsk_need_resched(prev);
3039 rcu_qsctr_inc(task_cpu(prev));
3041 update_cpu_clock(prev, rq, now);
3043 prev->sleep_avg -= run_time;
3044 if ((long)prev->sleep_avg <= 0)
3045 prev->sleep_avg = 0;
3046 prev->timestamp = prev->last_ran = now;
3048 sched_info_switch(prev, next);
3049 if (likely(prev != next)) {
3050 next->timestamp = now;
3051 rq->nr_switches++;
3052 rq->curr = next;
3053 ++*switch_count;
3055 prepare_task_switch(rq, next);
3056 prev = context_switch(rq, prev, next);
3057 barrier();
3059 * this_rq must be evaluated again because prev may have moved
3060 * CPUs since it called schedule(), thus the 'rq' on its stack
3061 * frame will be invalid.
3063 finish_task_switch(this_rq(), prev);
3064 } else
3065 spin_unlock_irq(&rq->lock);
3067 prev = current;
3068 if (unlikely(reacquire_kernel_lock(prev) < 0))
3069 goto need_resched_nonpreemptible;
3070 preempt_enable_no_resched();
3071 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3072 goto need_resched;
3075 EXPORT_SYMBOL(schedule);
3077 #ifdef CONFIG_PREEMPT
3079 * this is is the entry point to schedule() from in-kernel preemption
3080 * off of preempt_enable. Kernel preemptions off return from interrupt
3081 * occur there and call schedule directly.
3083 asmlinkage void __sched preempt_schedule(void)
3085 struct thread_info *ti = current_thread_info();
3086 #ifdef CONFIG_PREEMPT_BKL
3087 struct task_struct *task = current;
3088 int saved_lock_depth;
3089 #endif
3091 * If there is a non-zero preempt_count or interrupts are disabled,
3092 * we do not want to preempt the current task. Just return..
3094 if (unlikely(ti->preempt_count || irqs_disabled()))
3095 return;
3097 need_resched:
3098 add_preempt_count(PREEMPT_ACTIVE);
3100 * We keep the big kernel semaphore locked, but we
3101 * clear ->lock_depth so that schedule() doesnt
3102 * auto-release the semaphore:
3104 #ifdef CONFIG_PREEMPT_BKL
3105 saved_lock_depth = task->lock_depth;
3106 task->lock_depth = -1;
3107 #endif
3108 schedule();
3109 #ifdef CONFIG_PREEMPT_BKL
3110 task->lock_depth = saved_lock_depth;
3111 #endif
3112 sub_preempt_count(PREEMPT_ACTIVE);
3114 /* we could miss a preemption opportunity between schedule and now */
3115 barrier();
3116 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3117 goto need_resched;
3120 EXPORT_SYMBOL(preempt_schedule);
3123 * this is is the entry point to schedule() from kernel preemption
3124 * off of irq context.
3125 * Note, that this is called and return with irqs disabled. This will
3126 * protect us against recursive calling from irq.
3128 asmlinkage void __sched preempt_schedule_irq(void)
3130 struct thread_info *ti = current_thread_info();
3131 #ifdef CONFIG_PREEMPT_BKL
3132 struct task_struct *task = current;
3133 int saved_lock_depth;
3134 #endif
3135 /* Catch callers which need to be fixed*/
3136 BUG_ON(ti->preempt_count || !irqs_disabled());
3138 need_resched:
3139 add_preempt_count(PREEMPT_ACTIVE);
3141 * We keep the big kernel semaphore locked, but we
3142 * clear ->lock_depth so that schedule() doesnt
3143 * auto-release the semaphore:
3145 #ifdef CONFIG_PREEMPT_BKL
3146 saved_lock_depth = task->lock_depth;
3147 task->lock_depth = -1;
3148 #endif
3149 local_irq_enable();
3150 schedule();
3151 local_irq_disable();
3152 #ifdef CONFIG_PREEMPT_BKL
3153 task->lock_depth = saved_lock_depth;
3154 #endif
3155 sub_preempt_count(PREEMPT_ACTIVE);
3157 /* we could miss a preemption opportunity between schedule and now */
3158 barrier();
3159 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3160 goto need_resched;
3163 #endif /* CONFIG_PREEMPT */
3165 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3166 void *key)
3168 task_t *p = curr->private;
3169 return try_to_wake_up(p, mode, sync);
3172 EXPORT_SYMBOL(default_wake_function);
3175 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3176 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3177 * number) then we wake all the non-exclusive tasks and one exclusive task.
3179 * There are circumstances in which we can try to wake a task which has already
3180 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3181 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3183 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3184 int nr_exclusive, int sync, void *key)
3186 struct list_head *tmp, *next;
3188 list_for_each_safe(tmp, next, &q->task_list) {
3189 wait_queue_t *curr;
3190 unsigned flags;
3191 curr = list_entry(tmp, wait_queue_t, task_list);
3192 flags = curr->flags;
3193 if (curr->func(curr, mode, sync, key) &&
3194 (flags & WQ_FLAG_EXCLUSIVE) &&
3195 !--nr_exclusive)
3196 break;
3201 * __wake_up - wake up threads blocked on a waitqueue.
3202 * @q: the waitqueue
3203 * @mode: which threads
3204 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3205 * @key: is directly passed to the wakeup function
3207 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3208 int nr_exclusive, void *key)
3210 unsigned long flags;
3212 spin_lock_irqsave(&q->lock, flags);
3213 __wake_up_common(q, mode, nr_exclusive, 0, key);
3214 spin_unlock_irqrestore(&q->lock, flags);
3217 EXPORT_SYMBOL(__wake_up);
3220 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3222 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3224 __wake_up_common(q, mode, 1, 0, NULL);
3228 * __wake_up_sync - wake up threads blocked on a waitqueue.
3229 * @q: the waitqueue
3230 * @mode: which threads
3231 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3233 * The sync wakeup differs that the waker knows that it will schedule
3234 * away soon, so while the target thread will be woken up, it will not
3235 * be migrated to another CPU - ie. the two threads are 'synchronized'
3236 * with each other. This can prevent needless bouncing between CPUs.
3238 * On UP it can prevent extra preemption.
3240 void fastcall
3241 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3243 unsigned long flags;
3244 int sync = 1;
3246 if (unlikely(!q))
3247 return;
3249 if (unlikely(!nr_exclusive))
3250 sync = 0;
3252 spin_lock_irqsave(&q->lock, flags);
3253 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3254 spin_unlock_irqrestore(&q->lock, flags);
3256 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3258 void fastcall complete(struct completion *x)
3260 unsigned long flags;
3262 spin_lock_irqsave(&x->wait.lock, flags);
3263 x->done++;
3264 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3265 1, 0, NULL);
3266 spin_unlock_irqrestore(&x->wait.lock, flags);
3268 EXPORT_SYMBOL(complete);
3270 void fastcall complete_all(struct completion *x)
3272 unsigned long flags;
3274 spin_lock_irqsave(&x->wait.lock, flags);
3275 x->done += UINT_MAX/2;
3276 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3277 0, 0, NULL);
3278 spin_unlock_irqrestore(&x->wait.lock, flags);
3280 EXPORT_SYMBOL(complete_all);
3282 void fastcall __sched wait_for_completion(struct completion *x)
3284 might_sleep();
3285 spin_lock_irq(&x->wait.lock);
3286 if (!x->done) {
3287 DECLARE_WAITQUEUE(wait, current);
3289 wait.flags |= WQ_FLAG_EXCLUSIVE;
3290 __add_wait_queue_tail(&x->wait, &wait);
3291 do {
3292 __set_current_state(TASK_UNINTERRUPTIBLE);
3293 spin_unlock_irq(&x->wait.lock);
3294 schedule();
3295 spin_lock_irq(&x->wait.lock);
3296 } while (!x->done);
3297 __remove_wait_queue(&x->wait, &wait);
3299 x->done--;
3300 spin_unlock_irq(&x->wait.lock);
3302 EXPORT_SYMBOL(wait_for_completion);
3304 unsigned long fastcall __sched
3305 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3307 might_sleep();
3309 spin_lock_irq(&x->wait.lock);
3310 if (!x->done) {
3311 DECLARE_WAITQUEUE(wait, current);
3313 wait.flags |= WQ_FLAG_EXCLUSIVE;
3314 __add_wait_queue_tail(&x->wait, &wait);
3315 do {
3316 __set_current_state(TASK_UNINTERRUPTIBLE);
3317 spin_unlock_irq(&x->wait.lock);
3318 timeout = schedule_timeout(timeout);
3319 spin_lock_irq(&x->wait.lock);
3320 if (!timeout) {
3321 __remove_wait_queue(&x->wait, &wait);
3322 goto out;
3324 } while (!x->done);
3325 __remove_wait_queue(&x->wait, &wait);
3327 x->done--;
3328 out:
3329 spin_unlock_irq(&x->wait.lock);
3330 return timeout;
3332 EXPORT_SYMBOL(wait_for_completion_timeout);
3334 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3336 int ret = 0;
3338 might_sleep();
3340 spin_lock_irq(&x->wait.lock);
3341 if (!x->done) {
3342 DECLARE_WAITQUEUE(wait, current);
3344 wait.flags |= WQ_FLAG_EXCLUSIVE;
3345 __add_wait_queue_tail(&x->wait, &wait);
3346 do {
3347 if (signal_pending(current)) {
3348 ret = -ERESTARTSYS;
3349 __remove_wait_queue(&x->wait, &wait);
3350 goto out;
3352 __set_current_state(TASK_INTERRUPTIBLE);
3353 spin_unlock_irq(&x->wait.lock);
3354 schedule();
3355 spin_lock_irq(&x->wait.lock);
3356 } while (!x->done);
3357 __remove_wait_queue(&x->wait, &wait);
3359 x->done--;
3360 out:
3361 spin_unlock_irq(&x->wait.lock);
3363 return ret;
3365 EXPORT_SYMBOL(wait_for_completion_interruptible);
3367 unsigned long fastcall __sched
3368 wait_for_completion_interruptible_timeout(struct completion *x,
3369 unsigned long timeout)
3371 might_sleep();
3373 spin_lock_irq(&x->wait.lock);
3374 if (!x->done) {
3375 DECLARE_WAITQUEUE(wait, current);
3377 wait.flags |= WQ_FLAG_EXCLUSIVE;
3378 __add_wait_queue_tail(&x->wait, &wait);
3379 do {
3380 if (signal_pending(current)) {
3381 timeout = -ERESTARTSYS;
3382 __remove_wait_queue(&x->wait, &wait);
3383 goto out;
3385 __set_current_state(TASK_INTERRUPTIBLE);
3386 spin_unlock_irq(&x->wait.lock);
3387 timeout = schedule_timeout(timeout);
3388 spin_lock_irq(&x->wait.lock);
3389 if (!timeout) {
3390 __remove_wait_queue(&x->wait, &wait);
3391 goto out;
3393 } while (!x->done);
3394 __remove_wait_queue(&x->wait, &wait);
3396 x->done--;
3397 out:
3398 spin_unlock_irq(&x->wait.lock);
3399 return timeout;
3401 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3404 #define SLEEP_ON_VAR \
3405 unsigned long flags; \
3406 wait_queue_t wait; \
3407 init_waitqueue_entry(&wait, current);
3409 #define SLEEP_ON_HEAD \
3410 spin_lock_irqsave(&q->lock,flags); \
3411 __add_wait_queue(q, &wait); \
3412 spin_unlock(&q->lock);
3414 #define SLEEP_ON_TAIL \
3415 spin_lock_irq(&q->lock); \
3416 __remove_wait_queue(q, &wait); \
3417 spin_unlock_irqrestore(&q->lock, flags);
3419 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3421 SLEEP_ON_VAR
3423 current->state = TASK_INTERRUPTIBLE;
3425 SLEEP_ON_HEAD
3426 schedule();
3427 SLEEP_ON_TAIL
3430 EXPORT_SYMBOL(interruptible_sleep_on);
3432 long fastcall __sched
3433 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3435 SLEEP_ON_VAR
3437 current->state = TASK_INTERRUPTIBLE;
3439 SLEEP_ON_HEAD
3440 timeout = schedule_timeout(timeout);
3441 SLEEP_ON_TAIL
3443 return timeout;
3446 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3448 void fastcall __sched sleep_on(wait_queue_head_t *q)
3450 SLEEP_ON_VAR
3452 current->state = TASK_UNINTERRUPTIBLE;
3454 SLEEP_ON_HEAD
3455 schedule();
3456 SLEEP_ON_TAIL
3459 EXPORT_SYMBOL(sleep_on);
3461 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3463 SLEEP_ON_VAR
3465 current->state = TASK_UNINTERRUPTIBLE;
3467 SLEEP_ON_HEAD
3468 timeout = schedule_timeout(timeout);
3469 SLEEP_ON_TAIL
3471 return timeout;
3474 EXPORT_SYMBOL(sleep_on_timeout);
3476 void set_user_nice(task_t *p, long nice)
3478 unsigned long flags;
3479 prio_array_t *array;
3480 runqueue_t *rq;
3481 int old_prio, new_prio, delta;
3483 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3484 return;
3486 * We have to be careful, if called from sys_setpriority(),
3487 * the task might be in the middle of scheduling on another CPU.
3489 rq = task_rq_lock(p, &flags);
3491 * The RT priorities are set via sched_setscheduler(), but we still
3492 * allow the 'normal' nice value to be set - but as expected
3493 * it wont have any effect on scheduling until the task is
3494 * not SCHED_NORMAL/SCHED_BATCH:
3496 if (rt_task(p)) {
3497 p->static_prio = NICE_TO_PRIO(nice);
3498 goto out_unlock;
3500 array = p->array;
3501 if (array)
3502 dequeue_task(p, array);
3504 old_prio = p->prio;
3505 new_prio = NICE_TO_PRIO(nice);
3506 delta = new_prio - old_prio;
3507 p->static_prio = NICE_TO_PRIO(nice);
3508 p->prio += delta;
3510 if (array) {
3511 enqueue_task(p, array);
3513 * If the task increased its priority or is running and
3514 * lowered its priority, then reschedule its CPU:
3516 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3517 resched_task(rq->curr);
3519 out_unlock:
3520 task_rq_unlock(rq, &flags);
3523 EXPORT_SYMBOL(set_user_nice);
3526 * can_nice - check if a task can reduce its nice value
3527 * @p: task
3528 * @nice: nice value
3530 int can_nice(const task_t *p, const int nice)
3532 /* convert nice value [19,-20] to rlimit style value [1,40] */
3533 int nice_rlim = 20 - nice;
3534 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3535 capable(CAP_SYS_NICE));
3538 #ifdef __ARCH_WANT_SYS_NICE
3541 * sys_nice - change the priority of the current process.
3542 * @increment: priority increment
3544 * sys_setpriority is a more generic, but much slower function that
3545 * does similar things.
3547 asmlinkage long sys_nice(int increment)
3549 int retval;
3550 long nice;
3553 * Setpriority might change our priority at the same moment.
3554 * We don't have to worry. Conceptually one call occurs first
3555 * and we have a single winner.
3557 if (increment < -40)
3558 increment = -40;
3559 if (increment > 40)
3560 increment = 40;
3562 nice = PRIO_TO_NICE(current->static_prio) + increment;
3563 if (nice < -20)
3564 nice = -20;
3565 if (nice > 19)
3566 nice = 19;
3568 if (increment < 0 && !can_nice(current, nice))
3569 return -EPERM;
3571 retval = security_task_setnice(current, nice);
3572 if (retval)
3573 return retval;
3575 set_user_nice(current, nice);
3576 return 0;
3579 #endif
3582 * task_prio - return the priority value of a given task.
3583 * @p: the task in question.
3585 * This is the priority value as seen by users in /proc.
3586 * RT tasks are offset by -200. Normal tasks are centered
3587 * around 0, value goes from -16 to +15.
3589 int task_prio(const task_t *p)
3591 return p->prio - MAX_RT_PRIO;
3595 * task_nice - return the nice value of a given task.
3596 * @p: the task in question.
3598 int task_nice(const task_t *p)
3600 return TASK_NICE(p);
3602 EXPORT_SYMBOL_GPL(task_nice);
3605 * idle_cpu - is a given cpu idle currently?
3606 * @cpu: the processor in question.
3608 int idle_cpu(int cpu)
3610 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3614 * idle_task - return the idle task for a given cpu.
3615 * @cpu: the processor in question.
3617 task_t *idle_task(int cpu)
3619 return cpu_rq(cpu)->idle;
3623 * find_process_by_pid - find a process with a matching PID value.
3624 * @pid: the pid in question.
3626 static inline task_t *find_process_by_pid(pid_t pid)
3628 return pid ? find_task_by_pid(pid) : current;
3631 /* Actually do priority change: must hold rq lock. */
3632 static void __setscheduler(struct task_struct *p, int policy, int prio)
3634 BUG_ON(p->array);
3635 p->policy = policy;
3636 p->rt_priority = prio;
3637 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
3638 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3639 } else {
3640 p->prio = p->static_prio;
3642 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3644 if (policy == SCHED_BATCH)
3645 p->sleep_avg = 0;
3650 * sched_setscheduler - change the scheduling policy and/or RT priority of
3651 * a thread.
3652 * @p: the task in question.
3653 * @policy: new policy.
3654 * @param: structure containing the new RT priority.
3656 int sched_setscheduler(struct task_struct *p, int policy,
3657 struct sched_param *param)
3659 int retval;
3660 int oldprio, oldpolicy = -1;
3661 prio_array_t *array;
3662 unsigned long flags;
3663 runqueue_t *rq;
3665 recheck:
3666 /* double check policy once rq lock held */
3667 if (policy < 0)
3668 policy = oldpolicy = p->policy;
3669 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3670 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3671 return -EINVAL;
3673 * Valid priorities for SCHED_FIFO and SCHED_RR are
3674 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3675 * SCHED_BATCH is 0.
3677 if (param->sched_priority < 0 ||
3678 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3679 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3680 return -EINVAL;
3681 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3682 != (param->sched_priority == 0))
3683 return -EINVAL;
3686 * Allow unprivileged RT tasks to decrease priority:
3688 if (!capable(CAP_SYS_NICE)) {
3690 * can't change policy, except between SCHED_NORMAL
3691 * and SCHED_BATCH:
3693 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3694 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3695 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3696 return -EPERM;
3697 /* can't increase priority */
3698 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
3699 param->sched_priority > p->rt_priority &&
3700 param->sched_priority >
3701 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3702 return -EPERM;
3703 /* can't change other user's priorities */
3704 if ((current->euid != p->euid) &&
3705 (current->euid != p->uid))
3706 return -EPERM;
3709 retval = security_task_setscheduler(p, policy, param);
3710 if (retval)
3711 return retval;
3713 * To be able to change p->policy safely, the apropriate
3714 * runqueue lock must be held.
3716 rq = task_rq_lock(p, &flags);
3717 /* recheck policy now with rq lock held */
3718 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3719 policy = oldpolicy = -1;
3720 task_rq_unlock(rq, &flags);
3721 goto recheck;
3723 array = p->array;
3724 if (array)
3725 deactivate_task(p, rq);
3726 oldprio = p->prio;
3727 __setscheduler(p, policy, param->sched_priority);
3728 if (array) {
3729 __activate_task(p, rq);
3731 * Reschedule if we are currently running on this runqueue and
3732 * our priority decreased, or if we are not currently running on
3733 * this runqueue and our priority is higher than the current's
3735 if (task_running(rq, p)) {
3736 if (p->prio > oldprio)
3737 resched_task(rq->curr);
3738 } else if (TASK_PREEMPTS_CURR(p, rq))
3739 resched_task(rq->curr);
3741 task_rq_unlock(rq, &flags);
3742 return 0;
3744 EXPORT_SYMBOL_GPL(sched_setscheduler);
3746 static int
3747 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3749 int retval;
3750 struct sched_param lparam;
3751 struct task_struct *p;
3753 if (!param || pid < 0)
3754 return -EINVAL;
3755 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3756 return -EFAULT;
3757 read_lock_irq(&tasklist_lock);
3758 p = find_process_by_pid(pid);
3759 if (!p) {
3760 read_unlock_irq(&tasklist_lock);
3761 return -ESRCH;
3763 retval = sched_setscheduler(p, policy, &lparam);
3764 read_unlock_irq(&tasklist_lock);
3765 return retval;
3769 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3770 * @pid: the pid in question.
3771 * @policy: new policy.
3772 * @param: structure containing the new RT priority.
3774 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3775 struct sched_param __user *param)
3777 /* negative values for policy are not valid */
3778 if (policy < 0)
3779 return -EINVAL;
3781 return do_sched_setscheduler(pid, policy, param);
3785 * sys_sched_setparam - set/change the RT priority of a thread
3786 * @pid: the pid in question.
3787 * @param: structure containing the new RT priority.
3789 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3791 return do_sched_setscheduler(pid, -1, param);
3795 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3796 * @pid: the pid in question.
3798 asmlinkage long sys_sched_getscheduler(pid_t pid)
3800 int retval = -EINVAL;
3801 task_t *p;
3803 if (pid < 0)
3804 goto out_nounlock;
3806 retval = -ESRCH;
3807 read_lock(&tasklist_lock);
3808 p = find_process_by_pid(pid);
3809 if (p) {
3810 retval = security_task_getscheduler(p);
3811 if (!retval)
3812 retval = p->policy;
3814 read_unlock(&tasklist_lock);
3816 out_nounlock:
3817 return retval;
3821 * sys_sched_getscheduler - get the RT priority of a thread
3822 * @pid: the pid in question.
3823 * @param: structure containing the RT priority.
3825 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3827 struct sched_param lp;
3828 int retval = -EINVAL;
3829 task_t *p;
3831 if (!param || pid < 0)
3832 goto out_nounlock;
3834 read_lock(&tasklist_lock);
3835 p = find_process_by_pid(pid);
3836 retval = -ESRCH;
3837 if (!p)
3838 goto out_unlock;
3840 retval = security_task_getscheduler(p);
3841 if (retval)
3842 goto out_unlock;
3844 lp.sched_priority = p->rt_priority;
3845 read_unlock(&tasklist_lock);
3848 * This one might sleep, we cannot do it with a spinlock held ...
3850 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3852 out_nounlock:
3853 return retval;
3855 out_unlock:
3856 read_unlock(&tasklist_lock);
3857 return retval;
3860 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3862 task_t *p;
3863 int retval;
3864 cpumask_t cpus_allowed;
3866 lock_cpu_hotplug();
3867 read_lock(&tasklist_lock);
3869 p = find_process_by_pid(pid);
3870 if (!p) {
3871 read_unlock(&tasklist_lock);
3872 unlock_cpu_hotplug();
3873 return -ESRCH;
3877 * It is not safe to call set_cpus_allowed with the
3878 * tasklist_lock held. We will bump the task_struct's
3879 * usage count and then drop tasklist_lock.
3881 get_task_struct(p);
3882 read_unlock(&tasklist_lock);
3884 retval = -EPERM;
3885 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3886 !capable(CAP_SYS_NICE))
3887 goto out_unlock;
3889 cpus_allowed = cpuset_cpus_allowed(p);
3890 cpus_and(new_mask, new_mask, cpus_allowed);
3891 retval = set_cpus_allowed(p, new_mask);
3893 out_unlock:
3894 put_task_struct(p);
3895 unlock_cpu_hotplug();
3896 return retval;
3899 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3900 cpumask_t *new_mask)
3902 if (len < sizeof(cpumask_t)) {
3903 memset(new_mask, 0, sizeof(cpumask_t));
3904 } else if (len > sizeof(cpumask_t)) {
3905 len = sizeof(cpumask_t);
3907 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3911 * sys_sched_setaffinity - set the cpu affinity of a process
3912 * @pid: pid of the process
3913 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3914 * @user_mask_ptr: user-space pointer to the new cpu mask
3916 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3917 unsigned long __user *user_mask_ptr)
3919 cpumask_t new_mask;
3920 int retval;
3922 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3923 if (retval)
3924 return retval;
3926 return sched_setaffinity(pid, new_mask);
3930 * Represents all cpu's present in the system
3931 * In systems capable of hotplug, this map could dynamically grow
3932 * as new cpu's are detected in the system via any platform specific
3933 * method, such as ACPI for e.g.
3936 cpumask_t cpu_present_map __read_mostly;
3937 EXPORT_SYMBOL(cpu_present_map);
3939 #ifndef CONFIG_SMP
3940 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3941 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
3942 #endif
3944 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3946 int retval;
3947 task_t *p;
3949 lock_cpu_hotplug();
3950 read_lock(&tasklist_lock);
3952 retval = -ESRCH;
3953 p = find_process_by_pid(pid);
3954 if (!p)
3955 goto out_unlock;
3957 retval = 0;
3958 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
3960 out_unlock:
3961 read_unlock(&tasklist_lock);
3962 unlock_cpu_hotplug();
3963 if (retval)
3964 return retval;
3966 return 0;
3970 * sys_sched_getaffinity - get the cpu affinity of a process
3971 * @pid: pid of the process
3972 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3973 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3975 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3976 unsigned long __user *user_mask_ptr)
3978 int ret;
3979 cpumask_t mask;
3981 if (len < sizeof(cpumask_t))
3982 return -EINVAL;
3984 ret = sched_getaffinity(pid, &mask);
3985 if (ret < 0)
3986 return ret;
3988 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3989 return -EFAULT;
3991 return sizeof(cpumask_t);
3995 * sys_sched_yield - yield the current processor to other threads.
3997 * this function yields the current CPU by moving the calling thread
3998 * to the expired array. If there are no other threads running on this
3999 * CPU then this function will return.
4001 asmlinkage long sys_sched_yield(void)
4003 runqueue_t *rq = this_rq_lock();
4004 prio_array_t *array = current->array;
4005 prio_array_t *target = rq->expired;
4007 schedstat_inc(rq, yld_cnt);
4009 * We implement yielding by moving the task into the expired
4010 * queue.
4012 * (special rule: RT tasks will just roundrobin in the active
4013 * array.)
4015 if (rt_task(current))
4016 target = rq->active;
4018 if (array->nr_active == 1) {
4019 schedstat_inc(rq, yld_act_empty);
4020 if (!rq->expired->nr_active)
4021 schedstat_inc(rq, yld_both_empty);
4022 } else if (!rq->expired->nr_active)
4023 schedstat_inc(rq, yld_exp_empty);
4025 if (array != target) {
4026 dequeue_task(current, array);
4027 enqueue_task(current, target);
4028 } else
4030 * requeue_task is cheaper so perform that if possible.
4032 requeue_task(current, array);
4035 * Since we are going to call schedule() anyway, there's
4036 * no need to preempt or enable interrupts:
4038 __release(rq->lock);
4039 _raw_spin_unlock(&rq->lock);
4040 preempt_enable_no_resched();
4042 schedule();
4044 return 0;
4047 static inline void __cond_resched(void)
4050 * The BKS might be reacquired before we have dropped
4051 * PREEMPT_ACTIVE, which could trigger a second
4052 * cond_resched() call.
4054 if (unlikely(preempt_count()))
4055 return;
4056 if (unlikely(system_state != SYSTEM_RUNNING))
4057 return;
4058 do {
4059 add_preempt_count(PREEMPT_ACTIVE);
4060 schedule();
4061 sub_preempt_count(PREEMPT_ACTIVE);
4062 } while (need_resched());
4065 int __sched cond_resched(void)
4067 if (need_resched()) {
4068 __cond_resched();
4069 return 1;
4071 return 0;
4074 EXPORT_SYMBOL(cond_resched);
4077 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4078 * call schedule, and on return reacquire the lock.
4080 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4081 * operations here to prevent schedule() from being called twice (once via
4082 * spin_unlock(), once by hand).
4084 int cond_resched_lock(spinlock_t *lock)
4086 int ret = 0;
4088 if (need_lockbreak(lock)) {
4089 spin_unlock(lock);
4090 cpu_relax();
4091 ret = 1;
4092 spin_lock(lock);
4094 if (need_resched()) {
4095 _raw_spin_unlock(lock);
4096 preempt_enable_no_resched();
4097 __cond_resched();
4098 ret = 1;
4099 spin_lock(lock);
4101 return ret;
4104 EXPORT_SYMBOL(cond_resched_lock);
4106 int __sched cond_resched_softirq(void)
4108 BUG_ON(!in_softirq());
4110 if (need_resched()) {
4111 __local_bh_enable();
4112 __cond_resched();
4113 local_bh_disable();
4114 return 1;
4116 return 0;
4119 EXPORT_SYMBOL(cond_resched_softirq);
4123 * yield - yield the current processor to other threads.
4125 * this is a shortcut for kernel-space yielding - it marks the
4126 * thread runnable and calls sys_sched_yield().
4128 void __sched yield(void)
4130 set_current_state(TASK_RUNNING);
4131 sys_sched_yield();
4134 EXPORT_SYMBOL(yield);
4137 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4138 * that process accounting knows that this is a task in IO wait state.
4140 * But don't do that if it is a deliberate, throttling IO wait (this task
4141 * has set its backing_dev_info: the queue against which it should throttle)
4143 void __sched io_schedule(void)
4145 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4147 atomic_inc(&rq->nr_iowait);
4148 schedule();
4149 atomic_dec(&rq->nr_iowait);
4152 EXPORT_SYMBOL(io_schedule);
4154 long __sched io_schedule_timeout(long timeout)
4156 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4157 long ret;
4159 atomic_inc(&rq->nr_iowait);
4160 ret = schedule_timeout(timeout);
4161 atomic_dec(&rq->nr_iowait);
4162 return ret;
4166 * sys_sched_get_priority_max - return maximum RT priority.
4167 * @policy: scheduling class.
4169 * this syscall returns the maximum rt_priority that can be used
4170 * by a given scheduling class.
4172 asmlinkage long sys_sched_get_priority_max(int policy)
4174 int ret = -EINVAL;
4176 switch (policy) {
4177 case SCHED_FIFO:
4178 case SCHED_RR:
4179 ret = MAX_USER_RT_PRIO-1;
4180 break;
4181 case SCHED_NORMAL:
4182 case SCHED_BATCH:
4183 ret = 0;
4184 break;
4186 return ret;
4190 * sys_sched_get_priority_min - return minimum RT priority.
4191 * @policy: scheduling class.
4193 * this syscall returns the minimum rt_priority that can be used
4194 * by a given scheduling class.
4196 asmlinkage long sys_sched_get_priority_min(int policy)
4198 int ret = -EINVAL;
4200 switch (policy) {
4201 case SCHED_FIFO:
4202 case SCHED_RR:
4203 ret = 1;
4204 break;
4205 case SCHED_NORMAL:
4206 case SCHED_BATCH:
4207 ret = 0;
4209 return ret;
4213 * sys_sched_rr_get_interval - return the default timeslice of a process.
4214 * @pid: pid of the process.
4215 * @interval: userspace pointer to the timeslice value.
4217 * this syscall writes the default timeslice value of a given process
4218 * into the user-space timespec buffer. A value of '0' means infinity.
4220 asmlinkage
4221 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4223 int retval = -EINVAL;
4224 struct timespec t;
4225 task_t *p;
4227 if (pid < 0)
4228 goto out_nounlock;
4230 retval = -ESRCH;
4231 read_lock(&tasklist_lock);
4232 p = find_process_by_pid(pid);
4233 if (!p)
4234 goto out_unlock;
4236 retval = security_task_getscheduler(p);
4237 if (retval)
4238 goto out_unlock;
4240 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4241 0 : task_timeslice(p), &t);
4242 read_unlock(&tasklist_lock);
4243 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4244 out_nounlock:
4245 return retval;
4246 out_unlock:
4247 read_unlock(&tasklist_lock);
4248 return retval;
4251 static inline struct task_struct *eldest_child(struct task_struct *p)
4253 if (list_empty(&p->children)) return NULL;
4254 return list_entry(p->children.next,struct task_struct,sibling);
4257 static inline struct task_struct *older_sibling(struct task_struct *p)
4259 if (p->sibling.prev==&p->parent->children) return NULL;
4260 return list_entry(p->sibling.prev,struct task_struct,sibling);
4263 static inline struct task_struct *younger_sibling(struct task_struct *p)
4265 if (p->sibling.next==&p->parent->children) return NULL;
4266 return list_entry(p->sibling.next,struct task_struct,sibling);
4269 static void show_task(task_t *p)
4271 task_t *relative;
4272 unsigned state;
4273 unsigned long free = 0;
4274 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4276 printk("%-13.13s ", p->comm);
4277 state = p->state ? __ffs(p->state) + 1 : 0;
4278 if (state < ARRAY_SIZE(stat_nam))
4279 printk(stat_nam[state]);
4280 else
4281 printk("?");
4282 #if (BITS_PER_LONG == 32)
4283 if (state == TASK_RUNNING)
4284 printk(" running ");
4285 else
4286 printk(" %08lX ", thread_saved_pc(p));
4287 #else
4288 if (state == TASK_RUNNING)
4289 printk(" running task ");
4290 else
4291 printk(" %016lx ", thread_saved_pc(p));
4292 #endif
4293 #ifdef CONFIG_DEBUG_STACK_USAGE
4295 unsigned long *n = end_of_stack(p);
4296 while (!*n)
4297 n++;
4298 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4300 #endif
4301 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4302 if ((relative = eldest_child(p)))
4303 printk("%5d ", relative->pid);
4304 else
4305 printk(" ");
4306 if ((relative = younger_sibling(p)))
4307 printk("%7d", relative->pid);
4308 else
4309 printk(" ");
4310 if ((relative = older_sibling(p)))
4311 printk(" %5d", relative->pid);
4312 else
4313 printk(" ");
4314 if (!p->mm)
4315 printk(" (L-TLB)\n");
4316 else
4317 printk(" (NOTLB)\n");
4319 if (state != TASK_RUNNING)
4320 show_stack(p, NULL);
4323 void show_state(void)
4325 task_t *g, *p;
4327 #if (BITS_PER_LONG == 32)
4328 printk("\n"
4329 " sibling\n");
4330 printk(" task PC pid father child younger older\n");
4331 #else
4332 printk("\n"
4333 " sibling\n");
4334 printk(" task PC pid father child younger older\n");
4335 #endif
4336 read_lock(&tasklist_lock);
4337 do_each_thread(g, p) {
4339 * reset the NMI-timeout, listing all files on a slow
4340 * console might take alot of time:
4342 touch_nmi_watchdog();
4343 show_task(p);
4344 } while_each_thread(g, p);
4346 read_unlock(&tasklist_lock);
4347 mutex_debug_show_all_locks();
4351 * init_idle - set up an idle thread for a given CPU
4352 * @idle: task in question
4353 * @cpu: cpu the idle task belongs to
4355 * NOTE: this function does not set the idle thread's NEED_RESCHED
4356 * flag, to make booting more robust.
4358 void __devinit init_idle(task_t *idle, int cpu)
4360 runqueue_t *rq = cpu_rq(cpu);
4361 unsigned long flags;
4363 idle->timestamp = sched_clock();
4364 idle->sleep_avg = 0;
4365 idle->array = NULL;
4366 idle->prio = MAX_PRIO;
4367 idle->state = TASK_RUNNING;
4368 idle->cpus_allowed = cpumask_of_cpu(cpu);
4369 set_task_cpu(idle, cpu);
4371 spin_lock_irqsave(&rq->lock, flags);
4372 rq->curr = rq->idle = idle;
4373 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4374 idle->oncpu = 1;
4375 #endif
4376 spin_unlock_irqrestore(&rq->lock, flags);
4378 /* Set the preempt count _outside_ the spinlocks! */
4379 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4380 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4381 #else
4382 task_thread_info(idle)->preempt_count = 0;
4383 #endif
4387 * In a system that switches off the HZ timer nohz_cpu_mask
4388 * indicates which cpus entered this state. This is used
4389 * in the rcu update to wait only for active cpus. For system
4390 * which do not switch off the HZ timer nohz_cpu_mask should
4391 * always be CPU_MASK_NONE.
4393 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4395 #ifdef CONFIG_SMP
4397 * This is how migration works:
4399 * 1) we queue a migration_req_t structure in the source CPU's
4400 * runqueue and wake up that CPU's migration thread.
4401 * 2) we down() the locked semaphore => thread blocks.
4402 * 3) migration thread wakes up (implicitly it forces the migrated
4403 * thread off the CPU)
4404 * 4) it gets the migration request and checks whether the migrated
4405 * task is still in the wrong runqueue.
4406 * 5) if it's in the wrong runqueue then the migration thread removes
4407 * it and puts it into the right queue.
4408 * 6) migration thread up()s the semaphore.
4409 * 7) we wake up and the migration is done.
4413 * Change a given task's CPU affinity. Migrate the thread to a
4414 * proper CPU and schedule it away if the CPU it's executing on
4415 * is removed from the allowed bitmask.
4417 * NOTE: the caller must have a valid reference to the task, the
4418 * task must not exit() & deallocate itself prematurely. The
4419 * call is not atomic; no spinlocks may be held.
4421 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4423 unsigned long flags;
4424 int ret = 0;
4425 migration_req_t req;
4426 runqueue_t *rq;
4428 rq = task_rq_lock(p, &flags);
4429 if (!cpus_intersects(new_mask, cpu_online_map)) {
4430 ret = -EINVAL;
4431 goto out;
4434 p->cpus_allowed = new_mask;
4435 /* Can the task run on the task's current CPU? If so, we're done */
4436 if (cpu_isset(task_cpu(p), new_mask))
4437 goto out;
4439 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4440 /* Need help from migration thread: drop lock and wait. */
4441 task_rq_unlock(rq, &flags);
4442 wake_up_process(rq->migration_thread);
4443 wait_for_completion(&req.done);
4444 tlb_migrate_finish(p->mm);
4445 return 0;
4447 out:
4448 task_rq_unlock(rq, &flags);
4449 return ret;
4452 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4455 * Move (not current) task off this cpu, onto dest cpu. We're doing
4456 * this because either it can't run here any more (set_cpus_allowed()
4457 * away from this CPU, or CPU going down), or because we're
4458 * attempting to rebalance this task on exec (sched_exec).
4460 * So we race with normal scheduler movements, but that's OK, as long
4461 * as the task is no longer on this CPU.
4463 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4465 runqueue_t *rq_dest, *rq_src;
4467 if (unlikely(cpu_is_offline(dest_cpu)))
4468 return;
4470 rq_src = cpu_rq(src_cpu);
4471 rq_dest = cpu_rq(dest_cpu);
4473 double_rq_lock(rq_src, rq_dest);
4474 /* Already moved. */
4475 if (task_cpu(p) != src_cpu)
4476 goto out;
4477 /* Affinity changed (again). */
4478 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4479 goto out;
4481 set_task_cpu(p, dest_cpu);
4482 if (p->array) {
4484 * Sync timestamp with rq_dest's before activating.
4485 * The same thing could be achieved by doing this step
4486 * afterwards, and pretending it was a local activate.
4487 * This way is cleaner and logically correct.
4489 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4490 + rq_dest->timestamp_last_tick;
4491 deactivate_task(p, rq_src);
4492 activate_task(p, rq_dest, 0);
4493 if (TASK_PREEMPTS_CURR(p, rq_dest))
4494 resched_task(rq_dest->curr);
4497 out:
4498 double_rq_unlock(rq_src, rq_dest);
4502 * migration_thread - this is a highprio system thread that performs
4503 * thread migration by bumping thread off CPU then 'pushing' onto
4504 * another runqueue.
4506 static int migration_thread(void *data)
4508 runqueue_t *rq;
4509 int cpu = (long)data;
4511 rq = cpu_rq(cpu);
4512 BUG_ON(rq->migration_thread != current);
4514 set_current_state(TASK_INTERRUPTIBLE);
4515 while (!kthread_should_stop()) {
4516 struct list_head *head;
4517 migration_req_t *req;
4519 try_to_freeze();
4521 spin_lock_irq(&rq->lock);
4523 if (cpu_is_offline(cpu)) {
4524 spin_unlock_irq(&rq->lock);
4525 goto wait_to_die;
4528 if (rq->active_balance) {
4529 active_load_balance(rq, cpu);
4530 rq->active_balance = 0;
4533 head = &rq->migration_queue;
4535 if (list_empty(head)) {
4536 spin_unlock_irq(&rq->lock);
4537 schedule();
4538 set_current_state(TASK_INTERRUPTIBLE);
4539 continue;
4541 req = list_entry(head->next, migration_req_t, list);
4542 list_del_init(head->next);
4544 spin_unlock(&rq->lock);
4545 __migrate_task(req->task, cpu, req->dest_cpu);
4546 local_irq_enable();
4548 complete(&req->done);
4550 __set_current_state(TASK_RUNNING);
4551 return 0;
4553 wait_to_die:
4554 /* Wait for kthread_stop */
4555 set_current_state(TASK_INTERRUPTIBLE);
4556 while (!kthread_should_stop()) {
4557 schedule();
4558 set_current_state(TASK_INTERRUPTIBLE);
4560 __set_current_state(TASK_RUNNING);
4561 return 0;
4564 #ifdef CONFIG_HOTPLUG_CPU
4565 /* Figure out where task on dead CPU should go, use force if neccessary. */
4566 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4568 int dest_cpu;
4569 cpumask_t mask;
4571 /* On same node? */
4572 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4573 cpus_and(mask, mask, tsk->cpus_allowed);
4574 dest_cpu = any_online_cpu(mask);
4576 /* On any allowed CPU? */
4577 if (dest_cpu == NR_CPUS)
4578 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4580 /* No more Mr. Nice Guy. */
4581 if (dest_cpu == NR_CPUS) {
4582 cpus_setall(tsk->cpus_allowed);
4583 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4586 * Don't tell them about moving exiting tasks or
4587 * kernel threads (both mm NULL), since they never
4588 * leave kernel.
4590 if (tsk->mm && printk_ratelimit())
4591 printk(KERN_INFO "process %d (%s) no "
4592 "longer affine to cpu%d\n",
4593 tsk->pid, tsk->comm, dead_cpu);
4595 __migrate_task(tsk, dead_cpu, dest_cpu);
4599 * While a dead CPU has no uninterruptible tasks queued at this point,
4600 * it might still have a nonzero ->nr_uninterruptible counter, because
4601 * for performance reasons the counter is not stricly tracking tasks to
4602 * their home CPUs. So we just add the counter to another CPU's counter,
4603 * to keep the global sum constant after CPU-down:
4605 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4607 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4608 unsigned long flags;
4610 local_irq_save(flags);
4611 double_rq_lock(rq_src, rq_dest);
4612 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4613 rq_src->nr_uninterruptible = 0;
4614 double_rq_unlock(rq_src, rq_dest);
4615 local_irq_restore(flags);
4618 /* Run through task list and migrate tasks from the dead cpu. */
4619 static void migrate_live_tasks(int src_cpu)
4621 struct task_struct *tsk, *t;
4623 write_lock_irq(&tasklist_lock);
4625 do_each_thread(t, tsk) {
4626 if (tsk == current)
4627 continue;
4629 if (task_cpu(tsk) == src_cpu)
4630 move_task_off_dead_cpu(src_cpu, tsk);
4631 } while_each_thread(t, tsk);
4633 write_unlock_irq(&tasklist_lock);
4636 /* Schedules idle task to be the next runnable task on current CPU.
4637 * It does so by boosting its priority to highest possible and adding it to
4638 * the _front_ of runqueue. Used by CPU offline code.
4640 void sched_idle_next(void)
4642 int cpu = smp_processor_id();
4643 runqueue_t *rq = this_rq();
4644 struct task_struct *p = rq->idle;
4645 unsigned long flags;
4647 /* cpu has to be offline */
4648 BUG_ON(cpu_online(cpu));
4650 /* Strictly not necessary since rest of the CPUs are stopped by now
4651 * and interrupts disabled on current cpu.
4653 spin_lock_irqsave(&rq->lock, flags);
4655 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4656 /* Add idle task to _front_ of it's priority queue */
4657 __activate_idle_task(p, rq);
4659 spin_unlock_irqrestore(&rq->lock, flags);
4662 /* Ensures that the idle task is using init_mm right before its cpu goes
4663 * offline.
4665 void idle_task_exit(void)
4667 struct mm_struct *mm = current->active_mm;
4669 BUG_ON(cpu_online(smp_processor_id()));
4671 if (mm != &init_mm)
4672 switch_mm(mm, &init_mm, current);
4673 mmdrop(mm);
4676 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4678 struct runqueue *rq = cpu_rq(dead_cpu);
4680 /* Must be exiting, otherwise would be on tasklist. */
4681 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4683 /* Cannot have done final schedule yet: would have vanished. */
4684 BUG_ON(tsk->flags & PF_DEAD);
4686 get_task_struct(tsk);
4689 * Drop lock around migration; if someone else moves it,
4690 * that's OK. No task can be added to this CPU, so iteration is
4691 * fine.
4693 spin_unlock_irq(&rq->lock);
4694 move_task_off_dead_cpu(dead_cpu, tsk);
4695 spin_lock_irq(&rq->lock);
4697 put_task_struct(tsk);
4700 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4701 static void migrate_dead_tasks(unsigned int dead_cpu)
4703 unsigned arr, i;
4704 struct runqueue *rq = cpu_rq(dead_cpu);
4706 for (arr = 0; arr < 2; arr++) {
4707 for (i = 0; i < MAX_PRIO; i++) {
4708 struct list_head *list = &rq->arrays[arr].queue[i];
4709 while (!list_empty(list))
4710 migrate_dead(dead_cpu,
4711 list_entry(list->next, task_t,
4712 run_list));
4716 #endif /* CONFIG_HOTPLUG_CPU */
4719 * migration_call - callback that gets triggered when a CPU is added.
4720 * Here we can start up the necessary migration thread for the new CPU.
4722 static int migration_call(struct notifier_block *nfb, unsigned long action,
4723 void *hcpu)
4725 int cpu = (long)hcpu;
4726 struct task_struct *p;
4727 struct runqueue *rq;
4728 unsigned long flags;
4730 switch (action) {
4731 case CPU_UP_PREPARE:
4732 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4733 if (IS_ERR(p))
4734 return NOTIFY_BAD;
4735 p->flags |= PF_NOFREEZE;
4736 kthread_bind(p, cpu);
4737 /* Must be high prio: stop_machine expects to yield to it. */
4738 rq = task_rq_lock(p, &flags);
4739 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4740 task_rq_unlock(rq, &flags);
4741 cpu_rq(cpu)->migration_thread = p;
4742 break;
4743 case CPU_ONLINE:
4744 /* Strictly unneccessary, as first user will wake it. */
4745 wake_up_process(cpu_rq(cpu)->migration_thread);
4746 break;
4747 #ifdef CONFIG_HOTPLUG_CPU
4748 case CPU_UP_CANCELED:
4749 /* Unbind it from offline cpu so it can run. Fall thru. */
4750 kthread_bind(cpu_rq(cpu)->migration_thread,
4751 any_online_cpu(cpu_online_map));
4752 kthread_stop(cpu_rq(cpu)->migration_thread);
4753 cpu_rq(cpu)->migration_thread = NULL;
4754 break;
4755 case CPU_DEAD:
4756 migrate_live_tasks(cpu);
4757 rq = cpu_rq(cpu);
4758 kthread_stop(rq->migration_thread);
4759 rq->migration_thread = NULL;
4760 /* Idle task back to normal (off runqueue, low prio) */
4761 rq = task_rq_lock(rq->idle, &flags);
4762 deactivate_task(rq->idle, rq);
4763 rq->idle->static_prio = MAX_PRIO;
4764 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4765 migrate_dead_tasks(cpu);
4766 task_rq_unlock(rq, &flags);
4767 migrate_nr_uninterruptible(rq);
4768 BUG_ON(rq->nr_running != 0);
4770 /* No need to migrate the tasks: it was best-effort if
4771 * they didn't do lock_cpu_hotplug(). Just wake up
4772 * the requestors. */
4773 spin_lock_irq(&rq->lock);
4774 while (!list_empty(&rq->migration_queue)) {
4775 migration_req_t *req;
4776 req = list_entry(rq->migration_queue.next,
4777 migration_req_t, list);
4778 list_del_init(&req->list);
4779 complete(&req->done);
4781 spin_unlock_irq(&rq->lock);
4782 break;
4783 #endif
4785 return NOTIFY_OK;
4788 /* Register at highest priority so that task migration (migrate_all_tasks)
4789 * happens before everything else.
4791 static struct notifier_block migration_notifier = {
4792 .notifier_call = migration_call,
4793 .priority = 10
4796 int __init migration_init(void)
4798 void *cpu = (void *)(long)smp_processor_id();
4799 /* Start one for boot CPU. */
4800 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4801 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4802 register_cpu_notifier(&migration_notifier);
4803 return 0;
4805 #endif
4807 #ifdef CONFIG_SMP
4808 #undef SCHED_DOMAIN_DEBUG
4809 #ifdef SCHED_DOMAIN_DEBUG
4810 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4812 int level = 0;
4814 if (!sd) {
4815 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4816 return;
4819 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4821 do {
4822 int i;
4823 char str[NR_CPUS];
4824 struct sched_group *group = sd->groups;
4825 cpumask_t groupmask;
4827 cpumask_scnprintf(str, NR_CPUS, sd->span);
4828 cpus_clear(groupmask);
4830 printk(KERN_DEBUG);
4831 for (i = 0; i < level + 1; i++)
4832 printk(" ");
4833 printk("domain %d: ", level);
4835 if (!(sd->flags & SD_LOAD_BALANCE)) {
4836 printk("does not load-balance\n");
4837 if (sd->parent)
4838 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4839 break;
4842 printk("span %s\n", str);
4844 if (!cpu_isset(cpu, sd->span))
4845 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4846 if (!cpu_isset(cpu, group->cpumask))
4847 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4849 printk(KERN_DEBUG);
4850 for (i = 0; i < level + 2; i++)
4851 printk(" ");
4852 printk("groups:");
4853 do {
4854 if (!group) {
4855 printk("\n");
4856 printk(KERN_ERR "ERROR: group is NULL\n");
4857 break;
4860 if (!group->cpu_power) {
4861 printk("\n");
4862 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4865 if (!cpus_weight(group->cpumask)) {
4866 printk("\n");
4867 printk(KERN_ERR "ERROR: empty group\n");
4870 if (cpus_intersects(groupmask, group->cpumask)) {
4871 printk("\n");
4872 printk(KERN_ERR "ERROR: repeated CPUs\n");
4875 cpus_or(groupmask, groupmask, group->cpumask);
4877 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4878 printk(" %s", str);
4880 group = group->next;
4881 } while (group != sd->groups);
4882 printk("\n");
4884 if (!cpus_equal(sd->span, groupmask))
4885 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4887 level++;
4888 sd = sd->parent;
4890 if (sd) {
4891 if (!cpus_subset(groupmask, sd->span))
4892 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4895 } while (sd);
4897 #else
4898 #define sched_domain_debug(sd, cpu) {}
4899 #endif
4901 static int sd_degenerate(struct sched_domain *sd)
4903 if (cpus_weight(sd->span) == 1)
4904 return 1;
4906 /* Following flags need at least 2 groups */
4907 if (sd->flags & (SD_LOAD_BALANCE |
4908 SD_BALANCE_NEWIDLE |
4909 SD_BALANCE_FORK |
4910 SD_BALANCE_EXEC)) {
4911 if (sd->groups != sd->groups->next)
4912 return 0;
4915 /* Following flags don't use groups */
4916 if (sd->flags & (SD_WAKE_IDLE |
4917 SD_WAKE_AFFINE |
4918 SD_WAKE_BALANCE))
4919 return 0;
4921 return 1;
4924 static int sd_parent_degenerate(struct sched_domain *sd,
4925 struct sched_domain *parent)
4927 unsigned long cflags = sd->flags, pflags = parent->flags;
4929 if (sd_degenerate(parent))
4930 return 1;
4932 if (!cpus_equal(sd->span, parent->span))
4933 return 0;
4935 /* Does parent contain flags not in child? */
4936 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4937 if (cflags & SD_WAKE_AFFINE)
4938 pflags &= ~SD_WAKE_BALANCE;
4939 /* Flags needing groups don't count if only 1 group in parent */
4940 if (parent->groups == parent->groups->next) {
4941 pflags &= ~(SD_LOAD_BALANCE |
4942 SD_BALANCE_NEWIDLE |
4943 SD_BALANCE_FORK |
4944 SD_BALANCE_EXEC);
4946 if (~cflags & pflags)
4947 return 0;
4949 return 1;
4953 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4954 * hold the hotplug lock.
4956 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4958 runqueue_t *rq = cpu_rq(cpu);
4959 struct sched_domain *tmp;
4961 /* Remove the sched domains which do not contribute to scheduling. */
4962 for (tmp = sd; tmp; tmp = tmp->parent) {
4963 struct sched_domain *parent = tmp->parent;
4964 if (!parent)
4965 break;
4966 if (sd_parent_degenerate(tmp, parent))
4967 tmp->parent = parent->parent;
4970 if (sd && sd_degenerate(sd))
4971 sd = sd->parent;
4973 sched_domain_debug(sd, cpu);
4975 rcu_assign_pointer(rq->sd, sd);
4978 /* cpus with isolated domains */
4979 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4981 /* Setup the mask of cpus configured for isolated domains */
4982 static int __init isolated_cpu_setup(char *str)
4984 int ints[NR_CPUS], i;
4986 str = get_options(str, ARRAY_SIZE(ints), ints);
4987 cpus_clear(cpu_isolated_map);
4988 for (i = 1; i <= ints[0]; i++)
4989 if (ints[i] < NR_CPUS)
4990 cpu_set(ints[i], cpu_isolated_map);
4991 return 1;
4994 __setup ("isolcpus=", isolated_cpu_setup);
4997 * init_sched_build_groups takes an array of groups, the cpumask we wish
4998 * to span, and a pointer to a function which identifies what group a CPU
4999 * belongs to. The return value of group_fn must be a valid index into the
5000 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5001 * keep track of groups covered with a cpumask_t).
5003 * init_sched_build_groups will build a circular linked list of the groups
5004 * covered by the given span, and will set each group's ->cpumask correctly,
5005 * and ->cpu_power to 0.
5007 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5008 int (*group_fn)(int cpu))
5010 struct sched_group *first = NULL, *last = NULL;
5011 cpumask_t covered = CPU_MASK_NONE;
5012 int i;
5014 for_each_cpu_mask(i, span) {
5015 int group = group_fn(i);
5016 struct sched_group *sg = &groups[group];
5017 int j;
5019 if (cpu_isset(i, covered))
5020 continue;
5022 sg->cpumask = CPU_MASK_NONE;
5023 sg->cpu_power = 0;
5025 for_each_cpu_mask(j, span) {
5026 if (group_fn(j) != group)
5027 continue;
5029 cpu_set(j, covered);
5030 cpu_set(j, sg->cpumask);
5032 if (!first)
5033 first = sg;
5034 if (last)
5035 last->next = sg;
5036 last = sg;
5038 last->next = first;
5041 #define SD_NODES_PER_DOMAIN 16
5044 * Self-tuning task migration cost measurement between source and target CPUs.
5046 * This is done by measuring the cost of manipulating buffers of varying
5047 * sizes. For a given buffer-size here are the steps that are taken:
5049 * 1) the source CPU reads+dirties a shared buffer
5050 * 2) the target CPU reads+dirties the same shared buffer
5052 * We measure how long they take, in the following 4 scenarios:
5054 * - source: CPU1, target: CPU2 | cost1
5055 * - source: CPU2, target: CPU1 | cost2
5056 * - source: CPU1, target: CPU1 | cost3
5057 * - source: CPU2, target: CPU2 | cost4
5059 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5060 * the cost of migration.
5062 * We then start off from a small buffer-size and iterate up to larger
5063 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5064 * doing a maximum search for the cost. (The maximum cost for a migration
5065 * normally occurs when the working set size is around the effective cache
5066 * size.)
5068 #define SEARCH_SCOPE 2
5069 #define MIN_CACHE_SIZE (64*1024U)
5070 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5071 #define ITERATIONS 1
5072 #define SIZE_THRESH 130
5073 #define COST_THRESH 130
5076 * The migration cost is a function of 'domain distance'. Domain
5077 * distance is the number of steps a CPU has to iterate down its
5078 * domain tree to share a domain with the other CPU. The farther
5079 * two CPUs are from each other, the larger the distance gets.
5081 * Note that we use the distance only to cache measurement results,
5082 * the distance value is not used numerically otherwise. When two
5083 * CPUs have the same distance it is assumed that the migration
5084 * cost is the same. (this is a simplification but quite practical)
5086 #define MAX_DOMAIN_DISTANCE 32
5088 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5089 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5091 * Architectures may override the migration cost and thus avoid
5092 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5093 * virtualized hardware:
5095 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5096 CONFIG_DEFAULT_MIGRATION_COST
5097 #else
5098 -1LL
5099 #endif
5103 * Allow override of migration cost - in units of microseconds.
5104 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5105 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5107 static int __init migration_cost_setup(char *str)
5109 int ints[MAX_DOMAIN_DISTANCE+1], i;
5111 str = get_options(str, ARRAY_SIZE(ints), ints);
5113 printk("#ints: %d\n", ints[0]);
5114 for (i = 1; i <= ints[0]; i++) {
5115 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5116 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5118 return 1;
5121 __setup ("migration_cost=", migration_cost_setup);
5124 * Global multiplier (divisor) for migration-cutoff values,
5125 * in percentiles. E.g. use a value of 150 to get 1.5 times
5126 * longer cache-hot cutoff times.
5128 * (We scale it from 100 to 128 to long long handling easier.)
5131 #define MIGRATION_FACTOR_SCALE 128
5133 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5135 static int __init setup_migration_factor(char *str)
5137 get_option(&str, &migration_factor);
5138 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5139 return 1;
5142 __setup("migration_factor=", setup_migration_factor);
5145 * Estimated distance of two CPUs, measured via the number of domains
5146 * we have to pass for the two CPUs to be in the same span:
5148 static unsigned long domain_distance(int cpu1, int cpu2)
5150 unsigned long distance = 0;
5151 struct sched_domain *sd;
5153 for_each_domain(cpu1, sd) {
5154 WARN_ON(!cpu_isset(cpu1, sd->span));
5155 if (cpu_isset(cpu2, sd->span))
5156 return distance;
5157 distance++;
5159 if (distance >= MAX_DOMAIN_DISTANCE) {
5160 WARN_ON(1);
5161 distance = MAX_DOMAIN_DISTANCE-1;
5164 return distance;
5167 static unsigned int migration_debug;
5169 static int __init setup_migration_debug(char *str)
5171 get_option(&str, &migration_debug);
5172 return 1;
5175 __setup("migration_debug=", setup_migration_debug);
5178 * Maximum cache-size that the scheduler should try to measure.
5179 * Architectures with larger caches should tune this up during
5180 * bootup. Gets used in the domain-setup code (i.e. during SMP
5181 * bootup).
5183 unsigned int max_cache_size;
5185 static int __init setup_max_cache_size(char *str)
5187 get_option(&str, &max_cache_size);
5188 return 1;
5191 __setup("max_cache_size=", setup_max_cache_size);
5194 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5195 * is the operation that is timed, so we try to generate unpredictable
5196 * cachemisses that still end up filling the L2 cache:
5198 static void touch_cache(void *__cache, unsigned long __size)
5200 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5201 chunk2 = 2*size/3;
5202 unsigned long *cache = __cache;
5203 int i;
5205 for (i = 0; i < size/6; i += 8) {
5206 switch (i % 6) {
5207 case 0: cache[i]++;
5208 case 1: cache[size-1-i]++;
5209 case 2: cache[chunk1-i]++;
5210 case 3: cache[chunk1+i]++;
5211 case 4: cache[chunk2-i]++;
5212 case 5: cache[chunk2+i]++;
5218 * Measure the cache-cost of one task migration. Returns in units of nsec.
5220 static unsigned long long measure_one(void *cache, unsigned long size,
5221 int source, int target)
5223 cpumask_t mask, saved_mask;
5224 unsigned long long t0, t1, t2, t3, cost;
5226 saved_mask = current->cpus_allowed;
5229 * Flush source caches to RAM and invalidate them:
5231 sched_cacheflush();
5234 * Migrate to the source CPU:
5236 mask = cpumask_of_cpu(source);
5237 set_cpus_allowed(current, mask);
5238 WARN_ON(smp_processor_id() != source);
5241 * Dirty the working set:
5243 t0 = sched_clock();
5244 touch_cache(cache, size);
5245 t1 = sched_clock();
5248 * Migrate to the target CPU, dirty the L2 cache and access
5249 * the shared buffer. (which represents the working set
5250 * of a migrated task.)
5252 mask = cpumask_of_cpu(target);
5253 set_cpus_allowed(current, mask);
5254 WARN_ON(smp_processor_id() != target);
5256 t2 = sched_clock();
5257 touch_cache(cache, size);
5258 t3 = sched_clock();
5260 cost = t1-t0 + t3-t2;
5262 if (migration_debug >= 2)
5263 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5264 source, target, t1-t0, t1-t0, t3-t2, cost);
5266 * Flush target caches to RAM and invalidate them:
5268 sched_cacheflush();
5270 set_cpus_allowed(current, saved_mask);
5272 return cost;
5276 * Measure a series of task migrations and return the average
5277 * result. Since this code runs early during bootup the system
5278 * is 'undisturbed' and the average latency makes sense.
5280 * The algorithm in essence auto-detects the relevant cache-size,
5281 * so it will properly detect different cachesizes for different
5282 * cache-hierarchies, depending on how the CPUs are connected.
5284 * Architectures can prime the upper limit of the search range via
5285 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5287 static unsigned long long
5288 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5290 unsigned long long cost1, cost2;
5291 int i;
5294 * Measure the migration cost of 'size' bytes, over an
5295 * average of 10 runs:
5297 * (We perturb the cache size by a small (0..4k)
5298 * value to compensate size/alignment related artifacts.
5299 * We also subtract the cost of the operation done on
5300 * the same CPU.)
5302 cost1 = 0;
5305 * dry run, to make sure we start off cache-cold on cpu1,
5306 * and to get any vmalloc pagefaults in advance:
5308 measure_one(cache, size, cpu1, cpu2);
5309 for (i = 0; i < ITERATIONS; i++)
5310 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5312 measure_one(cache, size, cpu2, cpu1);
5313 for (i = 0; i < ITERATIONS; i++)
5314 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5317 * (We measure the non-migrating [cached] cost on both
5318 * cpu1 and cpu2, to handle CPUs with different speeds)
5320 cost2 = 0;
5322 measure_one(cache, size, cpu1, cpu1);
5323 for (i = 0; i < ITERATIONS; i++)
5324 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5326 measure_one(cache, size, cpu2, cpu2);
5327 for (i = 0; i < ITERATIONS; i++)
5328 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5331 * Get the per-iteration migration cost:
5333 do_div(cost1, 2*ITERATIONS);
5334 do_div(cost2, 2*ITERATIONS);
5336 return cost1 - cost2;
5339 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5341 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5342 unsigned int max_size, size, size_found = 0;
5343 long long cost = 0, prev_cost;
5344 void *cache;
5347 * Search from max_cache_size*5 down to 64K - the real relevant
5348 * cachesize has to lie somewhere inbetween.
5350 if (max_cache_size) {
5351 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5352 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5353 } else {
5355 * Since we have no estimation about the relevant
5356 * search range
5358 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5359 size = MIN_CACHE_SIZE;
5362 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5363 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5364 return 0;
5368 * Allocate the working set:
5370 cache = vmalloc(max_size);
5371 if (!cache) {
5372 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5373 return 1000000; // return 1 msec on very small boxen
5376 while (size <= max_size) {
5377 prev_cost = cost;
5378 cost = measure_cost(cpu1, cpu2, cache, size);
5381 * Update the max:
5383 if (cost > 0) {
5384 if (max_cost < cost) {
5385 max_cost = cost;
5386 size_found = size;
5390 * Calculate average fluctuation, we use this to prevent
5391 * noise from triggering an early break out of the loop:
5393 fluct = abs(cost - prev_cost);
5394 avg_fluct = (avg_fluct + fluct)/2;
5396 if (migration_debug)
5397 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5398 cpu1, cpu2, size,
5399 (long)cost / 1000000,
5400 ((long)cost / 100000) % 10,
5401 (long)max_cost / 1000000,
5402 ((long)max_cost / 100000) % 10,
5403 domain_distance(cpu1, cpu2),
5404 cost, avg_fluct);
5407 * If we iterated at least 20% past the previous maximum,
5408 * and the cost has dropped by more than 20% already,
5409 * (taking fluctuations into account) then we assume to
5410 * have found the maximum and break out of the loop early:
5412 if (size_found && (size*100 > size_found*SIZE_THRESH))
5413 if (cost+avg_fluct <= 0 ||
5414 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5416 if (migration_debug)
5417 printk("-> found max.\n");
5418 break;
5421 * Increase the cachesize in 10% steps:
5423 size = size * 10 / 9;
5426 if (migration_debug)
5427 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5428 cpu1, cpu2, size_found, max_cost);
5430 vfree(cache);
5433 * A task is considered 'cache cold' if at least 2 times
5434 * the worst-case cost of migration has passed.
5436 * (this limit is only listened to if the load-balancing
5437 * situation is 'nice' - if there is a large imbalance we
5438 * ignore it for the sake of CPU utilization and
5439 * processing fairness.)
5441 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5444 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5446 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5447 unsigned long j0, j1, distance, max_distance = 0;
5448 struct sched_domain *sd;
5450 j0 = jiffies;
5453 * First pass - calculate the cacheflush times:
5455 for_each_cpu_mask(cpu1, *cpu_map) {
5456 for_each_cpu_mask(cpu2, *cpu_map) {
5457 if (cpu1 == cpu2)
5458 continue;
5459 distance = domain_distance(cpu1, cpu2);
5460 max_distance = max(max_distance, distance);
5462 * No result cached yet?
5464 if (migration_cost[distance] == -1LL)
5465 migration_cost[distance] =
5466 measure_migration_cost(cpu1, cpu2);
5470 * Second pass - update the sched domain hierarchy with
5471 * the new cache-hot-time estimations:
5473 for_each_cpu_mask(cpu, *cpu_map) {
5474 distance = 0;
5475 for_each_domain(cpu, sd) {
5476 sd->cache_hot_time = migration_cost[distance];
5477 distance++;
5481 * Print the matrix:
5483 if (migration_debug)
5484 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5485 max_cache_size,
5486 #ifdef CONFIG_X86
5487 cpu_khz/1000
5488 #else
5490 #endif
5492 if (system_state == SYSTEM_BOOTING) {
5493 printk("migration_cost=");
5494 for (distance = 0; distance <= max_distance; distance++) {
5495 if (distance)
5496 printk(",");
5497 printk("%ld", (long)migration_cost[distance] / 1000);
5499 printk("\n");
5501 j1 = jiffies;
5502 if (migration_debug)
5503 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5506 * Move back to the original CPU. NUMA-Q gets confused
5507 * if we migrate to another quad during bootup.
5509 if (raw_smp_processor_id() != orig_cpu) {
5510 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5511 saved_mask = current->cpus_allowed;
5513 set_cpus_allowed(current, mask);
5514 set_cpus_allowed(current, saved_mask);
5518 #ifdef CONFIG_NUMA
5521 * find_next_best_node - find the next node to include in a sched_domain
5522 * @node: node whose sched_domain we're building
5523 * @used_nodes: nodes already in the sched_domain
5525 * Find the next node to include in a given scheduling domain. Simply
5526 * finds the closest node not already in the @used_nodes map.
5528 * Should use nodemask_t.
5530 static int find_next_best_node(int node, unsigned long *used_nodes)
5532 int i, n, val, min_val, best_node = 0;
5534 min_val = INT_MAX;
5536 for (i = 0; i < MAX_NUMNODES; i++) {
5537 /* Start at @node */
5538 n = (node + i) % MAX_NUMNODES;
5540 if (!nr_cpus_node(n))
5541 continue;
5543 /* Skip already used nodes */
5544 if (test_bit(n, used_nodes))
5545 continue;
5547 /* Simple min distance search */
5548 val = node_distance(node, n);
5550 if (val < min_val) {
5551 min_val = val;
5552 best_node = n;
5556 set_bit(best_node, used_nodes);
5557 return best_node;
5561 * sched_domain_node_span - get a cpumask for a node's sched_domain
5562 * @node: node whose cpumask we're constructing
5563 * @size: number of nodes to include in this span
5565 * Given a node, construct a good cpumask for its sched_domain to span. It
5566 * should be one that prevents unnecessary balancing, but also spreads tasks
5567 * out optimally.
5569 static cpumask_t sched_domain_node_span(int node)
5571 int i;
5572 cpumask_t span, nodemask;
5573 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5575 cpus_clear(span);
5576 bitmap_zero(used_nodes, MAX_NUMNODES);
5578 nodemask = node_to_cpumask(node);
5579 cpus_or(span, span, nodemask);
5580 set_bit(node, used_nodes);
5582 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5583 int next_node = find_next_best_node(node, used_nodes);
5584 nodemask = node_to_cpumask(next_node);
5585 cpus_or(span, span, nodemask);
5588 return span;
5590 #endif
5593 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5594 * can switch it on easily if needed.
5596 #ifdef CONFIG_SCHED_SMT
5597 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5598 static struct sched_group sched_group_cpus[NR_CPUS];
5599 static int cpu_to_cpu_group(int cpu)
5601 return cpu;
5603 #endif
5605 #ifdef CONFIG_SCHED_MC
5606 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5607 static struct sched_group sched_group_core[NR_CPUS];
5608 #endif
5610 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5611 static int cpu_to_core_group(int cpu)
5613 return first_cpu(cpu_sibling_map[cpu]);
5615 #elif defined(CONFIG_SCHED_MC)
5616 static int cpu_to_core_group(int cpu)
5618 return cpu;
5620 #endif
5622 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5623 static struct sched_group sched_group_phys[NR_CPUS];
5624 static int cpu_to_phys_group(int cpu)
5626 #if defined(CONFIG_SCHED_MC)
5627 cpumask_t mask = cpu_coregroup_map(cpu);
5628 return first_cpu(mask);
5629 #elif defined(CONFIG_SCHED_SMT)
5630 return first_cpu(cpu_sibling_map[cpu]);
5631 #else
5632 return cpu;
5633 #endif
5636 #ifdef CONFIG_NUMA
5638 * The init_sched_build_groups can't handle what we want to do with node
5639 * groups, so roll our own. Now each node has its own list of groups which
5640 * gets dynamically allocated.
5642 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5643 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5645 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5646 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5648 static int cpu_to_allnodes_group(int cpu)
5650 return cpu_to_node(cpu);
5652 static void init_numa_sched_groups_power(struct sched_group *group_head)
5654 struct sched_group *sg = group_head;
5655 int j;
5657 if (!sg)
5658 return;
5659 next_sg:
5660 for_each_cpu_mask(j, sg->cpumask) {
5661 struct sched_domain *sd;
5663 sd = &per_cpu(phys_domains, j);
5664 if (j != first_cpu(sd->groups->cpumask)) {
5666 * Only add "power" once for each
5667 * physical package.
5669 continue;
5672 sg->cpu_power += sd->groups->cpu_power;
5674 sg = sg->next;
5675 if (sg != group_head)
5676 goto next_sg;
5678 #endif
5681 * Build sched domains for a given set of cpus and attach the sched domains
5682 * to the individual cpus
5684 void build_sched_domains(const cpumask_t *cpu_map)
5686 int i;
5687 #ifdef CONFIG_NUMA
5688 struct sched_group **sched_group_nodes = NULL;
5689 struct sched_group *sched_group_allnodes = NULL;
5692 * Allocate the per-node list of sched groups
5694 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5695 GFP_ATOMIC);
5696 if (!sched_group_nodes) {
5697 printk(KERN_WARNING "Can not alloc sched group node list\n");
5698 return;
5700 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5701 #endif
5704 * Set up domains for cpus specified by the cpu_map.
5706 for_each_cpu_mask(i, *cpu_map) {
5707 int group;
5708 struct sched_domain *sd = NULL, *p;
5709 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5711 cpus_and(nodemask, nodemask, *cpu_map);
5713 #ifdef CONFIG_NUMA
5714 if (cpus_weight(*cpu_map)
5715 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5716 if (!sched_group_allnodes) {
5717 sched_group_allnodes
5718 = kmalloc(sizeof(struct sched_group)
5719 * MAX_NUMNODES,
5720 GFP_KERNEL);
5721 if (!sched_group_allnodes) {
5722 printk(KERN_WARNING
5723 "Can not alloc allnodes sched group\n");
5724 break;
5726 sched_group_allnodes_bycpu[i]
5727 = sched_group_allnodes;
5729 sd = &per_cpu(allnodes_domains, i);
5730 *sd = SD_ALLNODES_INIT;
5731 sd->span = *cpu_map;
5732 group = cpu_to_allnodes_group(i);
5733 sd->groups = &sched_group_allnodes[group];
5734 p = sd;
5735 } else
5736 p = NULL;
5738 sd = &per_cpu(node_domains, i);
5739 *sd = SD_NODE_INIT;
5740 sd->span = sched_domain_node_span(cpu_to_node(i));
5741 sd->parent = p;
5742 cpus_and(sd->span, sd->span, *cpu_map);
5743 #endif
5745 p = sd;
5746 sd = &per_cpu(phys_domains, i);
5747 group = cpu_to_phys_group(i);
5748 *sd = SD_CPU_INIT;
5749 sd->span = nodemask;
5750 sd->parent = p;
5751 sd->groups = &sched_group_phys[group];
5753 #ifdef CONFIG_SCHED_MC
5754 p = sd;
5755 sd = &per_cpu(core_domains, i);
5756 group = cpu_to_core_group(i);
5757 *sd = SD_MC_INIT;
5758 sd->span = cpu_coregroup_map(i);
5759 cpus_and(sd->span, sd->span, *cpu_map);
5760 sd->parent = p;
5761 sd->groups = &sched_group_core[group];
5762 #endif
5764 #ifdef CONFIG_SCHED_SMT
5765 p = sd;
5766 sd = &per_cpu(cpu_domains, i);
5767 group = cpu_to_cpu_group(i);
5768 *sd = SD_SIBLING_INIT;
5769 sd->span = cpu_sibling_map[i];
5770 cpus_and(sd->span, sd->span, *cpu_map);
5771 sd->parent = p;
5772 sd->groups = &sched_group_cpus[group];
5773 #endif
5776 #ifdef CONFIG_SCHED_SMT
5777 /* Set up CPU (sibling) groups */
5778 for_each_cpu_mask(i, *cpu_map) {
5779 cpumask_t this_sibling_map = cpu_sibling_map[i];
5780 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5781 if (i != first_cpu(this_sibling_map))
5782 continue;
5784 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5785 &cpu_to_cpu_group);
5787 #endif
5789 #ifdef CONFIG_SCHED_MC
5790 /* Set up multi-core groups */
5791 for_each_cpu_mask(i, *cpu_map) {
5792 cpumask_t this_core_map = cpu_coregroup_map(i);
5793 cpus_and(this_core_map, this_core_map, *cpu_map);
5794 if (i != first_cpu(this_core_map))
5795 continue;
5796 init_sched_build_groups(sched_group_core, this_core_map,
5797 &cpu_to_core_group);
5799 #endif
5802 /* Set up physical groups */
5803 for (i = 0; i < MAX_NUMNODES; i++) {
5804 cpumask_t nodemask = node_to_cpumask(i);
5806 cpus_and(nodemask, nodemask, *cpu_map);
5807 if (cpus_empty(nodemask))
5808 continue;
5810 init_sched_build_groups(sched_group_phys, nodemask,
5811 &cpu_to_phys_group);
5814 #ifdef CONFIG_NUMA
5815 /* Set up node groups */
5816 if (sched_group_allnodes)
5817 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5818 &cpu_to_allnodes_group);
5820 for (i = 0; i < MAX_NUMNODES; i++) {
5821 /* Set up node groups */
5822 struct sched_group *sg, *prev;
5823 cpumask_t nodemask = node_to_cpumask(i);
5824 cpumask_t domainspan;
5825 cpumask_t covered = CPU_MASK_NONE;
5826 int j;
5828 cpus_and(nodemask, nodemask, *cpu_map);
5829 if (cpus_empty(nodemask)) {
5830 sched_group_nodes[i] = NULL;
5831 continue;
5834 domainspan = sched_domain_node_span(i);
5835 cpus_and(domainspan, domainspan, *cpu_map);
5837 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5838 sched_group_nodes[i] = sg;
5839 for_each_cpu_mask(j, nodemask) {
5840 struct sched_domain *sd;
5841 sd = &per_cpu(node_domains, j);
5842 sd->groups = sg;
5843 if (sd->groups == NULL) {
5844 /* Turn off balancing if we have no groups */
5845 sd->flags = 0;
5848 if (!sg) {
5849 printk(KERN_WARNING
5850 "Can not alloc domain group for node %d\n", i);
5851 continue;
5853 sg->cpu_power = 0;
5854 sg->cpumask = nodemask;
5855 cpus_or(covered, covered, nodemask);
5856 prev = sg;
5858 for (j = 0; j < MAX_NUMNODES; j++) {
5859 cpumask_t tmp, notcovered;
5860 int n = (i + j) % MAX_NUMNODES;
5862 cpus_complement(notcovered, covered);
5863 cpus_and(tmp, notcovered, *cpu_map);
5864 cpus_and(tmp, tmp, domainspan);
5865 if (cpus_empty(tmp))
5866 break;
5868 nodemask = node_to_cpumask(n);
5869 cpus_and(tmp, tmp, nodemask);
5870 if (cpus_empty(tmp))
5871 continue;
5873 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5874 if (!sg) {
5875 printk(KERN_WARNING
5876 "Can not alloc domain group for node %d\n", j);
5877 break;
5879 sg->cpu_power = 0;
5880 sg->cpumask = tmp;
5881 cpus_or(covered, covered, tmp);
5882 prev->next = sg;
5883 prev = sg;
5885 prev->next = sched_group_nodes[i];
5887 #endif
5889 /* Calculate CPU power for physical packages and nodes */
5890 for_each_cpu_mask(i, *cpu_map) {
5891 int power;
5892 struct sched_domain *sd;
5893 #ifdef CONFIG_SCHED_SMT
5894 sd = &per_cpu(cpu_domains, i);
5895 power = SCHED_LOAD_SCALE;
5896 sd->groups->cpu_power = power;
5897 #endif
5898 #ifdef CONFIG_SCHED_MC
5899 sd = &per_cpu(core_domains, i);
5900 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
5901 * SCHED_LOAD_SCALE / 10;
5902 sd->groups->cpu_power = power;
5904 sd = &per_cpu(phys_domains, i);
5907 * This has to be < 2 * SCHED_LOAD_SCALE
5908 * Lets keep it SCHED_LOAD_SCALE, so that
5909 * while calculating NUMA group's cpu_power
5910 * we can simply do
5911 * numa_group->cpu_power += phys_group->cpu_power;
5913 * See "only add power once for each physical pkg"
5914 * comment below
5916 sd->groups->cpu_power = SCHED_LOAD_SCALE;
5917 #else
5918 sd = &per_cpu(phys_domains, i);
5919 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5920 (cpus_weight(sd->groups->cpumask)-1) / 10;
5921 sd->groups->cpu_power = power;
5922 #endif
5925 #ifdef CONFIG_NUMA
5926 for (i = 0; i < MAX_NUMNODES; i++)
5927 init_numa_sched_groups_power(sched_group_nodes[i]);
5929 init_numa_sched_groups_power(sched_group_allnodes);
5930 #endif
5932 /* Attach the domains */
5933 for_each_cpu_mask(i, *cpu_map) {
5934 struct sched_domain *sd;
5935 #ifdef CONFIG_SCHED_SMT
5936 sd = &per_cpu(cpu_domains, i);
5937 #elif defined(CONFIG_SCHED_MC)
5938 sd = &per_cpu(core_domains, i);
5939 #else
5940 sd = &per_cpu(phys_domains, i);
5941 #endif
5942 cpu_attach_domain(sd, i);
5945 * Tune cache-hot values:
5947 calibrate_migration_costs(cpu_map);
5950 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5952 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5954 cpumask_t cpu_default_map;
5957 * Setup mask for cpus without special case scheduling requirements.
5958 * For now this just excludes isolated cpus, but could be used to
5959 * exclude other special cases in the future.
5961 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5963 build_sched_domains(&cpu_default_map);
5966 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5968 #ifdef CONFIG_NUMA
5969 int i;
5970 int cpu;
5972 for_each_cpu_mask(cpu, *cpu_map) {
5973 struct sched_group *sched_group_allnodes
5974 = sched_group_allnodes_bycpu[cpu];
5975 struct sched_group **sched_group_nodes
5976 = sched_group_nodes_bycpu[cpu];
5978 if (sched_group_allnodes) {
5979 kfree(sched_group_allnodes);
5980 sched_group_allnodes_bycpu[cpu] = NULL;
5983 if (!sched_group_nodes)
5984 continue;
5986 for (i = 0; i < MAX_NUMNODES; i++) {
5987 cpumask_t nodemask = node_to_cpumask(i);
5988 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5990 cpus_and(nodemask, nodemask, *cpu_map);
5991 if (cpus_empty(nodemask))
5992 continue;
5994 if (sg == NULL)
5995 continue;
5996 sg = sg->next;
5997 next_sg:
5998 oldsg = sg;
5999 sg = sg->next;
6000 kfree(oldsg);
6001 if (oldsg != sched_group_nodes[i])
6002 goto next_sg;
6004 kfree(sched_group_nodes);
6005 sched_group_nodes_bycpu[cpu] = NULL;
6007 #endif
6011 * Detach sched domains from a group of cpus specified in cpu_map
6012 * These cpus will now be attached to the NULL domain
6014 static void detach_destroy_domains(const cpumask_t *cpu_map)
6016 int i;
6018 for_each_cpu_mask(i, *cpu_map)
6019 cpu_attach_domain(NULL, i);
6020 synchronize_sched();
6021 arch_destroy_sched_domains(cpu_map);
6025 * Partition sched domains as specified by the cpumasks below.
6026 * This attaches all cpus from the cpumasks to the NULL domain,
6027 * waits for a RCU quiescent period, recalculates sched
6028 * domain information and then attaches them back to the
6029 * correct sched domains
6030 * Call with hotplug lock held
6032 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6034 cpumask_t change_map;
6036 cpus_and(*partition1, *partition1, cpu_online_map);
6037 cpus_and(*partition2, *partition2, cpu_online_map);
6038 cpus_or(change_map, *partition1, *partition2);
6040 /* Detach sched domains from all of the affected cpus */
6041 detach_destroy_domains(&change_map);
6042 if (!cpus_empty(*partition1))
6043 build_sched_domains(partition1);
6044 if (!cpus_empty(*partition2))
6045 build_sched_domains(partition2);
6048 #ifdef CONFIG_HOTPLUG_CPU
6050 * Force a reinitialization of the sched domains hierarchy. The domains
6051 * and groups cannot be updated in place without racing with the balancing
6052 * code, so we temporarily attach all running cpus to the NULL domain
6053 * which will prevent rebalancing while the sched domains are recalculated.
6055 static int update_sched_domains(struct notifier_block *nfb,
6056 unsigned long action, void *hcpu)
6058 switch (action) {
6059 case CPU_UP_PREPARE:
6060 case CPU_DOWN_PREPARE:
6061 detach_destroy_domains(&cpu_online_map);
6062 return NOTIFY_OK;
6064 case CPU_UP_CANCELED:
6065 case CPU_DOWN_FAILED:
6066 case CPU_ONLINE:
6067 case CPU_DEAD:
6069 * Fall through and re-initialise the domains.
6071 break;
6072 default:
6073 return NOTIFY_DONE;
6076 /* The hotplug lock is already held by cpu_up/cpu_down */
6077 arch_init_sched_domains(&cpu_online_map);
6079 return NOTIFY_OK;
6081 #endif
6083 void __init sched_init_smp(void)
6085 lock_cpu_hotplug();
6086 arch_init_sched_domains(&cpu_online_map);
6087 unlock_cpu_hotplug();
6088 /* XXX: Theoretical race here - CPU may be hotplugged now */
6089 hotcpu_notifier(update_sched_domains, 0);
6091 #else
6092 void __init sched_init_smp(void)
6095 #endif /* CONFIG_SMP */
6097 int in_sched_functions(unsigned long addr)
6099 /* Linker adds these: start and end of __sched functions */
6100 extern char __sched_text_start[], __sched_text_end[];
6101 return in_lock_functions(addr) ||
6102 (addr >= (unsigned long)__sched_text_start
6103 && addr < (unsigned long)__sched_text_end);
6106 void __init sched_init(void)
6108 runqueue_t *rq;
6109 int i, j, k;
6111 for_each_possible_cpu(i) {
6112 prio_array_t *array;
6114 rq = cpu_rq(i);
6115 spin_lock_init(&rq->lock);
6116 rq->nr_running = 0;
6117 rq->active = rq->arrays;
6118 rq->expired = rq->arrays + 1;
6119 rq->best_expired_prio = MAX_PRIO;
6121 #ifdef CONFIG_SMP
6122 rq->sd = NULL;
6123 for (j = 1; j < 3; j++)
6124 rq->cpu_load[j] = 0;
6125 rq->active_balance = 0;
6126 rq->push_cpu = 0;
6127 rq->migration_thread = NULL;
6128 INIT_LIST_HEAD(&rq->migration_queue);
6129 rq->cpu = i;
6130 #endif
6131 atomic_set(&rq->nr_iowait, 0);
6133 for (j = 0; j < 2; j++) {
6134 array = rq->arrays + j;
6135 for (k = 0; k < MAX_PRIO; k++) {
6136 INIT_LIST_HEAD(array->queue + k);
6137 __clear_bit(k, array->bitmap);
6139 // delimiter for bitsearch
6140 __set_bit(MAX_PRIO, array->bitmap);
6145 * The boot idle thread does lazy MMU switching as well:
6147 atomic_inc(&init_mm.mm_count);
6148 enter_lazy_tlb(&init_mm, current);
6151 * Make us the idle thread. Technically, schedule() should not be
6152 * called from this thread, however somewhere below it might be,
6153 * but because we are the idle thread, we just pick up running again
6154 * when this runqueue becomes "idle".
6156 init_idle(current, smp_processor_id());
6159 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6160 void __might_sleep(char *file, int line)
6162 #if defined(in_atomic)
6163 static unsigned long prev_jiffy; /* ratelimiting */
6165 if ((in_atomic() || irqs_disabled()) &&
6166 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6167 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6168 return;
6169 prev_jiffy = jiffies;
6170 printk(KERN_ERR "BUG: sleeping function called from invalid"
6171 " context at %s:%d\n", file, line);
6172 printk("in_atomic():%d, irqs_disabled():%d\n",
6173 in_atomic(), irqs_disabled());
6174 dump_stack();
6176 #endif
6178 EXPORT_SYMBOL(__might_sleep);
6179 #endif
6181 #ifdef CONFIG_MAGIC_SYSRQ
6182 void normalize_rt_tasks(void)
6184 struct task_struct *p;
6185 prio_array_t *array;
6186 unsigned long flags;
6187 runqueue_t *rq;
6189 read_lock_irq(&tasklist_lock);
6190 for_each_process (p) {
6191 if (!rt_task(p))
6192 continue;
6194 rq = task_rq_lock(p, &flags);
6196 array = p->array;
6197 if (array)
6198 deactivate_task(p, task_rq(p));
6199 __setscheduler(p, SCHED_NORMAL, 0);
6200 if (array) {
6201 __activate_task(p, task_rq(p));
6202 resched_task(rq->curr);
6205 task_rq_unlock(rq, &flags);
6207 read_unlock_irq(&tasklist_lock);
6210 #endif /* CONFIG_MAGIC_SYSRQ */
6212 #ifdef CONFIG_IA64
6214 * These functions are only useful for the IA64 MCA handling.
6216 * They can only be called when the whole system has been
6217 * stopped - every CPU needs to be quiescent, and no scheduling
6218 * activity can take place. Using them for anything else would
6219 * be a serious bug, and as a result, they aren't even visible
6220 * under any other configuration.
6224 * curr_task - return the current task for a given cpu.
6225 * @cpu: the processor in question.
6227 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6229 task_t *curr_task(int cpu)
6231 return cpu_curr(cpu);
6235 * set_curr_task - set the current task for a given cpu.
6236 * @cpu: the processor in question.
6237 * @p: the task pointer to set.
6239 * Description: This function must only be used when non-maskable interrupts
6240 * are serviced on a separate stack. It allows the architecture to switch the
6241 * notion of the current task on a cpu in a non-blocking manner. This function
6242 * must be called with all CPU's synchronized, and interrupts disabled, the
6243 * and caller must save the original value of the current task (see
6244 * curr_task() above) and restore that value before reenabling interrupts and
6245 * re-starting the system.
6247 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6249 void set_curr_task(int cpu, task_t *p)
6251 cpu_curr(cpu) = p;
6254 #endif