Linux 2.6.17.7
[linux/fpc-iii.git] / mm / memory.c
blob0ec7bc644271cf6ee2b88b7d32cc7987c5ea6dc6
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
70 unsigned long num_physpages;
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
85 int randomize_va_space __read_mostly = 1;
87 static int __init disable_randmaps(char *s)
89 randomize_va_space = 0;
90 return 1;
92 __setup("norandmaps", disable_randmaps);
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none. Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
101 void pgd_clear_bad(pgd_t *pgd)
103 pgd_ERROR(*pgd);
104 pgd_clear(pgd);
107 void pud_clear_bad(pud_t *pud)
109 pud_ERROR(*pud);
110 pud_clear(pud);
113 void pmd_clear_bad(pmd_t *pmd)
115 pmd_ERROR(*pmd);
116 pmd_clear(pmd);
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
125 struct page *page = pmd_page(*pmd);
126 pmd_clear(pmd);
127 pte_lock_deinit(page);
128 pte_free_tlb(tlb, page);
129 dec_page_state(nr_page_table_pages);
130 tlb->mm->nr_ptes--;
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 unsigned long addr, unsigned long end,
135 unsigned long floor, unsigned long ceiling)
137 pmd_t *pmd;
138 unsigned long next;
139 unsigned long start;
141 start = addr;
142 pmd = pmd_offset(pud, addr);
143 do {
144 next = pmd_addr_end(addr, end);
145 if (pmd_none_or_clear_bad(pmd))
146 continue;
147 free_pte_range(tlb, pmd);
148 } while (pmd++, addr = next, addr != end);
150 start &= PUD_MASK;
151 if (start < floor)
152 return;
153 if (ceiling) {
154 ceiling &= PUD_MASK;
155 if (!ceiling)
156 return;
158 if (end - 1 > ceiling - 1)
159 return;
161 pmd = pmd_offset(pud, start);
162 pud_clear(pud);
163 pmd_free_tlb(tlb, pmd);
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 unsigned long addr, unsigned long end,
168 unsigned long floor, unsigned long ceiling)
170 pud_t *pud;
171 unsigned long next;
172 unsigned long start;
174 start = addr;
175 pud = pud_offset(pgd, addr);
176 do {
177 next = pud_addr_end(addr, end);
178 if (pud_none_or_clear_bad(pud))
179 continue;
180 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181 } while (pud++, addr = next, addr != end);
183 start &= PGDIR_MASK;
184 if (start < floor)
185 return;
186 if (ceiling) {
187 ceiling &= PGDIR_MASK;
188 if (!ceiling)
189 return;
191 if (end - 1 > ceiling - 1)
192 return;
194 pud = pud_offset(pgd, start);
195 pgd_clear(pgd);
196 pud_free_tlb(tlb, pud);
200 * This function frees user-level page tables of a process.
202 * Must be called with pagetable lock held.
204 void free_pgd_range(struct mmu_gather **tlb,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
208 pgd_t *pgd;
209 unsigned long next;
210 unsigned long start;
213 * The next few lines have given us lots of grief...
215 * Why are we testing PMD* at this top level? Because often
216 * there will be no work to do at all, and we'd prefer not to
217 * go all the way down to the bottom just to discover that.
219 * Why all these "- 1"s? Because 0 represents both the bottom
220 * of the address space and the top of it (using -1 for the
221 * top wouldn't help much: the masks would do the wrong thing).
222 * The rule is that addr 0 and floor 0 refer to the bottom of
223 * the address space, but end 0 and ceiling 0 refer to the top
224 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 * that end 0 case should be mythical).
227 * Wherever addr is brought up or ceiling brought down, we must
228 * be careful to reject "the opposite 0" before it confuses the
229 * subsequent tests. But what about where end is brought down
230 * by PMD_SIZE below? no, end can't go down to 0 there.
232 * Whereas we round start (addr) and ceiling down, by different
233 * masks at different levels, in order to test whether a table
234 * now has no other vmas using it, so can be freed, we don't
235 * bother to round floor or end up - the tests don't need that.
238 addr &= PMD_MASK;
239 if (addr < floor) {
240 addr += PMD_SIZE;
241 if (!addr)
242 return;
244 if (ceiling) {
245 ceiling &= PMD_MASK;
246 if (!ceiling)
247 return;
249 if (end - 1 > ceiling - 1)
250 end -= PMD_SIZE;
251 if (addr > end - 1)
252 return;
254 start = addr;
255 pgd = pgd_offset((*tlb)->mm, addr);
256 do {
257 next = pgd_addr_end(addr, end);
258 if (pgd_none_or_clear_bad(pgd))
259 continue;
260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261 } while (pgd++, addr = next, addr != end);
263 if (!(*tlb)->fullmm)
264 flush_tlb_pgtables((*tlb)->mm, start, end);
267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
268 unsigned long floor, unsigned long ceiling)
270 while (vma) {
271 struct vm_area_struct *next = vma->vm_next;
272 unsigned long addr = vma->vm_start;
275 * Hide vma from rmap and vmtruncate before freeing pgtables
277 anon_vma_unlink(vma);
278 unlink_file_vma(vma);
280 if (is_vm_hugetlb_page(vma)) {
281 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
282 floor, next? next->vm_start: ceiling);
283 } else {
285 * Optimization: gather nearby vmas into one call down
287 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
288 && !is_vm_hugetlb_page(next)) {
289 vma = next;
290 next = vma->vm_next;
291 anon_vma_unlink(vma);
292 unlink_file_vma(vma);
294 free_pgd_range(tlb, addr, vma->vm_end,
295 floor, next? next->vm_start: ceiling);
297 vma = next;
301 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
303 struct page *new = pte_alloc_one(mm, address);
304 if (!new)
305 return -ENOMEM;
307 pte_lock_init(new);
308 spin_lock(&mm->page_table_lock);
309 if (pmd_present(*pmd)) { /* Another has populated it */
310 pte_lock_deinit(new);
311 pte_free(new);
312 } else {
313 mm->nr_ptes++;
314 inc_page_state(nr_page_table_pages);
315 pmd_populate(mm, pmd, new);
317 spin_unlock(&mm->page_table_lock);
318 return 0;
321 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
323 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
324 if (!new)
325 return -ENOMEM;
327 spin_lock(&init_mm.page_table_lock);
328 if (pmd_present(*pmd)) /* Another has populated it */
329 pte_free_kernel(new);
330 else
331 pmd_populate_kernel(&init_mm, pmd, new);
332 spin_unlock(&init_mm.page_table_lock);
333 return 0;
336 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
338 if (file_rss)
339 add_mm_counter(mm, file_rss, file_rss);
340 if (anon_rss)
341 add_mm_counter(mm, anon_rss, anon_rss);
345 * This function is called to print an error when a bad pte
346 * is found. For example, we might have a PFN-mapped pte in
347 * a region that doesn't allow it.
349 * The calling function must still handle the error.
351 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
353 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
354 "vm_flags = %lx, vaddr = %lx\n",
355 (long long)pte_val(pte),
356 (vma->vm_mm == current->mm ? current->comm : "???"),
357 vma->vm_flags, vaddr);
358 dump_stack();
361 static inline int is_cow_mapping(unsigned int flags)
363 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
367 * This function gets the "struct page" associated with a pte.
369 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
370 * will have each page table entry just pointing to a raw page frame
371 * number, and as far as the VM layer is concerned, those do not have
372 * pages associated with them - even if the PFN might point to memory
373 * that otherwise is perfectly fine and has a "struct page".
375 * The way we recognize those mappings is through the rules set up
376 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
377 * and the vm_pgoff will point to the first PFN mapped: thus every
378 * page that is a raw mapping will always honor the rule
380 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
382 * and if that isn't true, the page has been COW'ed (in which case it
383 * _does_ have a "struct page" associated with it even if it is in a
384 * VM_PFNMAP range).
386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
388 unsigned long pfn = pte_pfn(pte);
390 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
391 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
392 if (pfn == vma->vm_pgoff + off)
393 return NULL;
394 if (!is_cow_mapping(vma->vm_flags))
395 return NULL;
399 * Add some anal sanity checks for now. Eventually,
400 * we should just do "return pfn_to_page(pfn)", but
401 * in the meantime we check that we get a valid pfn,
402 * and that the resulting page looks ok.
404 if (unlikely(!pfn_valid(pfn))) {
405 print_bad_pte(vma, pte, addr);
406 return NULL;
410 * NOTE! We still have PageReserved() pages in the page
411 * tables.
413 * The PAGE_ZERO() pages and various VDSO mappings can
414 * cause them to exist.
416 return pfn_to_page(pfn);
420 * copy one vm_area from one task to the other. Assumes the page tables
421 * already present in the new task to be cleared in the whole range
422 * covered by this vma.
425 static inline void
426 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
427 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
428 unsigned long addr, int *rss)
430 unsigned long vm_flags = vma->vm_flags;
431 pte_t pte = *src_pte;
432 struct page *page;
434 /* pte contains position in swap or file, so copy. */
435 if (unlikely(!pte_present(pte))) {
436 if (!pte_file(pte)) {
437 swap_duplicate(pte_to_swp_entry(pte));
438 /* make sure dst_mm is on swapoff's mmlist. */
439 if (unlikely(list_empty(&dst_mm->mmlist))) {
440 spin_lock(&mmlist_lock);
441 if (list_empty(&dst_mm->mmlist))
442 list_add(&dst_mm->mmlist,
443 &src_mm->mmlist);
444 spin_unlock(&mmlist_lock);
447 goto out_set_pte;
451 * If it's a COW mapping, write protect it both
452 * in the parent and the child
454 if (is_cow_mapping(vm_flags)) {
455 ptep_set_wrprotect(src_mm, addr, src_pte);
456 pte = *src_pte;
460 * If it's a shared mapping, mark it clean in
461 * the child
463 if (vm_flags & VM_SHARED)
464 pte = pte_mkclean(pte);
465 pte = pte_mkold(pte);
467 page = vm_normal_page(vma, addr, pte);
468 if (page) {
469 get_page(page);
470 page_dup_rmap(page);
471 rss[!!PageAnon(page)]++;
474 out_set_pte:
475 set_pte_at(dst_mm, addr, dst_pte, pte);
478 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
479 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
480 unsigned long addr, unsigned long end)
482 pte_t *src_pte, *dst_pte;
483 spinlock_t *src_ptl, *dst_ptl;
484 int progress = 0;
485 int rss[2];
487 again:
488 rss[1] = rss[0] = 0;
489 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
490 if (!dst_pte)
491 return -ENOMEM;
492 src_pte = pte_offset_map_nested(src_pmd, addr);
493 src_ptl = pte_lockptr(src_mm, src_pmd);
494 spin_lock(src_ptl);
496 do {
498 * We are holding two locks at this point - either of them
499 * could generate latencies in another task on another CPU.
501 if (progress >= 32) {
502 progress = 0;
503 if (need_resched() ||
504 need_lockbreak(src_ptl) ||
505 need_lockbreak(dst_ptl))
506 break;
508 if (pte_none(*src_pte)) {
509 progress++;
510 continue;
512 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
513 progress += 8;
514 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
516 spin_unlock(src_ptl);
517 pte_unmap_nested(src_pte - 1);
518 add_mm_rss(dst_mm, rss[0], rss[1]);
519 pte_unmap_unlock(dst_pte - 1, dst_ptl);
520 cond_resched();
521 if (addr != end)
522 goto again;
523 return 0;
526 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
527 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
528 unsigned long addr, unsigned long end)
530 pmd_t *src_pmd, *dst_pmd;
531 unsigned long next;
533 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
534 if (!dst_pmd)
535 return -ENOMEM;
536 src_pmd = pmd_offset(src_pud, addr);
537 do {
538 next = pmd_addr_end(addr, end);
539 if (pmd_none_or_clear_bad(src_pmd))
540 continue;
541 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
542 vma, addr, next))
543 return -ENOMEM;
544 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
545 return 0;
548 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
549 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
550 unsigned long addr, unsigned long end)
552 pud_t *src_pud, *dst_pud;
553 unsigned long next;
555 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
556 if (!dst_pud)
557 return -ENOMEM;
558 src_pud = pud_offset(src_pgd, addr);
559 do {
560 next = pud_addr_end(addr, end);
561 if (pud_none_or_clear_bad(src_pud))
562 continue;
563 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
564 vma, addr, next))
565 return -ENOMEM;
566 } while (dst_pud++, src_pud++, addr = next, addr != end);
567 return 0;
570 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
571 struct vm_area_struct *vma)
573 pgd_t *src_pgd, *dst_pgd;
574 unsigned long next;
575 unsigned long addr = vma->vm_start;
576 unsigned long end = vma->vm_end;
579 * Don't copy ptes where a page fault will fill them correctly.
580 * Fork becomes much lighter when there are big shared or private
581 * readonly mappings. The tradeoff is that copy_page_range is more
582 * efficient than faulting.
584 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
585 if (!vma->anon_vma)
586 return 0;
589 if (is_vm_hugetlb_page(vma))
590 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
592 dst_pgd = pgd_offset(dst_mm, addr);
593 src_pgd = pgd_offset(src_mm, addr);
594 do {
595 next = pgd_addr_end(addr, end);
596 if (pgd_none_or_clear_bad(src_pgd))
597 continue;
598 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
599 vma, addr, next))
600 return -ENOMEM;
601 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
602 return 0;
605 static unsigned long zap_pte_range(struct mmu_gather *tlb,
606 struct vm_area_struct *vma, pmd_t *pmd,
607 unsigned long addr, unsigned long end,
608 long *zap_work, struct zap_details *details)
610 struct mm_struct *mm = tlb->mm;
611 pte_t *pte;
612 spinlock_t *ptl;
613 int file_rss = 0;
614 int anon_rss = 0;
616 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
617 do {
618 pte_t ptent = *pte;
619 if (pte_none(ptent)) {
620 (*zap_work)--;
621 continue;
624 (*zap_work) -= PAGE_SIZE;
626 if (pte_present(ptent)) {
627 struct page *page;
629 page = vm_normal_page(vma, addr, ptent);
630 if (unlikely(details) && page) {
632 * unmap_shared_mapping_pages() wants to
633 * invalidate cache without truncating:
634 * unmap shared but keep private pages.
636 if (details->check_mapping &&
637 details->check_mapping != page->mapping)
638 continue;
640 * Each page->index must be checked when
641 * invalidating or truncating nonlinear.
643 if (details->nonlinear_vma &&
644 (page->index < details->first_index ||
645 page->index > details->last_index))
646 continue;
648 ptent = ptep_get_and_clear_full(mm, addr, pte,
649 tlb->fullmm);
650 tlb_remove_tlb_entry(tlb, pte, addr);
651 if (unlikely(!page))
652 continue;
653 if (unlikely(details) && details->nonlinear_vma
654 && linear_page_index(details->nonlinear_vma,
655 addr) != page->index)
656 set_pte_at(mm, addr, pte,
657 pgoff_to_pte(page->index));
658 if (PageAnon(page))
659 anon_rss--;
660 else {
661 if (pte_dirty(ptent))
662 set_page_dirty(page);
663 if (pte_young(ptent))
664 mark_page_accessed(page);
665 file_rss--;
667 page_remove_rmap(page);
668 tlb_remove_page(tlb, page);
669 continue;
672 * If details->check_mapping, we leave swap entries;
673 * if details->nonlinear_vma, we leave file entries.
675 if (unlikely(details))
676 continue;
677 if (!pte_file(ptent))
678 free_swap_and_cache(pte_to_swp_entry(ptent));
679 pte_clear_full(mm, addr, pte, tlb->fullmm);
680 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
682 add_mm_rss(mm, file_rss, anon_rss);
683 pte_unmap_unlock(pte - 1, ptl);
685 return addr;
688 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
689 struct vm_area_struct *vma, pud_t *pud,
690 unsigned long addr, unsigned long end,
691 long *zap_work, struct zap_details *details)
693 pmd_t *pmd;
694 unsigned long next;
696 pmd = pmd_offset(pud, addr);
697 do {
698 next = pmd_addr_end(addr, end);
699 if (pmd_none_or_clear_bad(pmd)) {
700 (*zap_work)--;
701 continue;
703 next = zap_pte_range(tlb, vma, pmd, addr, next,
704 zap_work, details);
705 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
707 return addr;
710 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
711 struct vm_area_struct *vma, pgd_t *pgd,
712 unsigned long addr, unsigned long end,
713 long *zap_work, struct zap_details *details)
715 pud_t *pud;
716 unsigned long next;
718 pud = pud_offset(pgd, addr);
719 do {
720 next = pud_addr_end(addr, end);
721 if (pud_none_or_clear_bad(pud)) {
722 (*zap_work)--;
723 continue;
725 next = zap_pmd_range(tlb, vma, pud, addr, next,
726 zap_work, details);
727 } while (pud++, addr = next, (addr != end && *zap_work > 0));
729 return addr;
732 static unsigned long unmap_page_range(struct mmu_gather *tlb,
733 struct vm_area_struct *vma,
734 unsigned long addr, unsigned long end,
735 long *zap_work, struct zap_details *details)
737 pgd_t *pgd;
738 unsigned long next;
740 if (details && !details->check_mapping && !details->nonlinear_vma)
741 details = NULL;
743 BUG_ON(addr >= end);
744 tlb_start_vma(tlb, vma);
745 pgd = pgd_offset(vma->vm_mm, addr);
746 do {
747 next = pgd_addr_end(addr, end);
748 if (pgd_none_or_clear_bad(pgd)) {
749 (*zap_work)--;
750 continue;
752 next = zap_pud_range(tlb, vma, pgd, addr, next,
753 zap_work, details);
754 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
755 tlb_end_vma(tlb, vma);
757 return addr;
760 #ifdef CONFIG_PREEMPT
761 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
762 #else
763 /* No preempt: go for improved straight-line efficiency */
764 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
765 #endif
768 * unmap_vmas - unmap a range of memory covered by a list of vma's
769 * @tlbp: address of the caller's struct mmu_gather
770 * @vma: the starting vma
771 * @start_addr: virtual address at which to start unmapping
772 * @end_addr: virtual address at which to end unmapping
773 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
774 * @details: details of nonlinear truncation or shared cache invalidation
776 * Returns the end address of the unmapping (restart addr if interrupted).
778 * Unmap all pages in the vma list.
780 * We aim to not hold locks for too long (for scheduling latency reasons).
781 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
782 * return the ending mmu_gather to the caller.
784 * Only addresses between `start' and `end' will be unmapped.
786 * The VMA list must be sorted in ascending virtual address order.
788 * unmap_vmas() assumes that the caller will flush the whole unmapped address
789 * range after unmap_vmas() returns. So the only responsibility here is to
790 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
791 * drops the lock and schedules.
793 unsigned long unmap_vmas(struct mmu_gather **tlbp,
794 struct vm_area_struct *vma, unsigned long start_addr,
795 unsigned long end_addr, unsigned long *nr_accounted,
796 struct zap_details *details)
798 long zap_work = ZAP_BLOCK_SIZE;
799 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
800 int tlb_start_valid = 0;
801 unsigned long start = start_addr;
802 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
803 int fullmm = (*tlbp)->fullmm;
805 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
806 unsigned long end;
808 start = max(vma->vm_start, start_addr);
809 if (start >= vma->vm_end)
810 continue;
811 end = min(vma->vm_end, end_addr);
812 if (end <= vma->vm_start)
813 continue;
815 if (vma->vm_flags & VM_ACCOUNT)
816 *nr_accounted += (end - start) >> PAGE_SHIFT;
818 while (start != end) {
819 if (!tlb_start_valid) {
820 tlb_start = start;
821 tlb_start_valid = 1;
824 if (unlikely(is_vm_hugetlb_page(vma))) {
825 unmap_hugepage_range(vma, start, end);
826 zap_work -= (end - start) /
827 (HPAGE_SIZE / PAGE_SIZE);
828 start = end;
829 } else
830 start = unmap_page_range(*tlbp, vma,
831 start, end, &zap_work, details);
833 if (zap_work > 0) {
834 BUG_ON(start != end);
835 break;
838 tlb_finish_mmu(*tlbp, tlb_start, start);
840 if (need_resched() ||
841 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
842 if (i_mmap_lock) {
843 *tlbp = NULL;
844 goto out;
846 cond_resched();
849 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
850 tlb_start_valid = 0;
851 zap_work = ZAP_BLOCK_SIZE;
854 out:
855 return start; /* which is now the end (or restart) address */
859 * zap_page_range - remove user pages in a given range
860 * @vma: vm_area_struct holding the applicable pages
861 * @address: starting address of pages to zap
862 * @size: number of bytes to zap
863 * @details: details of nonlinear truncation or shared cache invalidation
865 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
866 unsigned long size, struct zap_details *details)
868 struct mm_struct *mm = vma->vm_mm;
869 struct mmu_gather *tlb;
870 unsigned long end = address + size;
871 unsigned long nr_accounted = 0;
873 lru_add_drain();
874 tlb = tlb_gather_mmu(mm, 0);
875 update_hiwater_rss(mm);
876 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
877 if (tlb)
878 tlb_finish_mmu(tlb, address, end);
879 return end;
883 * Do a quick page-table lookup for a single page.
885 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
886 unsigned int flags)
888 pgd_t *pgd;
889 pud_t *pud;
890 pmd_t *pmd;
891 pte_t *ptep, pte;
892 spinlock_t *ptl;
893 struct page *page;
894 struct mm_struct *mm = vma->vm_mm;
896 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
897 if (!IS_ERR(page)) {
898 BUG_ON(flags & FOLL_GET);
899 goto out;
902 page = NULL;
903 pgd = pgd_offset(mm, address);
904 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
905 goto no_page_table;
907 pud = pud_offset(pgd, address);
908 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
909 goto no_page_table;
911 pmd = pmd_offset(pud, address);
912 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
913 goto no_page_table;
915 if (pmd_huge(*pmd)) {
916 BUG_ON(flags & FOLL_GET);
917 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
918 goto out;
921 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
922 if (!ptep)
923 goto out;
925 pte = *ptep;
926 if (!pte_present(pte))
927 goto unlock;
928 if ((flags & FOLL_WRITE) && !pte_write(pte))
929 goto unlock;
930 page = vm_normal_page(vma, address, pte);
931 if (unlikely(!page))
932 goto unlock;
934 if (flags & FOLL_GET)
935 get_page(page);
936 if (flags & FOLL_TOUCH) {
937 if ((flags & FOLL_WRITE) &&
938 !pte_dirty(pte) && !PageDirty(page))
939 set_page_dirty(page);
940 mark_page_accessed(page);
942 unlock:
943 pte_unmap_unlock(ptep, ptl);
944 out:
945 return page;
947 no_page_table:
949 * When core dumping an enormous anonymous area that nobody
950 * has touched so far, we don't want to allocate page tables.
952 if (flags & FOLL_ANON) {
953 page = ZERO_PAGE(address);
954 if (flags & FOLL_GET)
955 get_page(page);
956 BUG_ON(flags & FOLL_WRITE);
958 return page;
961 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
962 unsigned long start, int len, int write, int force,
963 struct page **pages, struct vm_area_struct **vmas)
965 int i;
966 unsigned int vm_flags;
969 * Require read or write permissions.
970 * If 'force' is set, we only require the "MAY" flags.
972 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
973 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
974 i = 0;
976 do {
977 struct vm_area_struct *vma;
978 unsigned int foll_flags;
980 vma = find_extend_vma(mm, start);
981 if (!vma && in_gate_area(tsk, start)) {
982 unsigned long pg = start & PAGE_MASK;
983 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
984 pgd_t *pgd;
985 pud_t *pud;
986 pmd_t *pmd;
987 pte_t *pte;
988 if (write) /* user gate pages are read-only */
989 return i ? : -EFAULT;
990 if (pg > TASK_SIZE)
991 pgd = pgd_offset_k(pg);
992 else
993 pgd = pgd_offset_gate(mm, pg);
994 BUG_ON(pgd_none(*pgd));
995 pud = pud_offset(pgd, pg);
996 BUG_ON(pud_none(*pud));
997 pmd = pmd_offset(pud, pg);
998 if (pmd_none(*pmd))
999 return i ? : -EFAULT;
1000 pte = pte_offset_map(pmd, pg);
1001 if (pte_none(*pte)) {
1002 pte_unmap(pte);
1003 return i ? : -EFAULT;
1005 if (pages) {
1006 struct page *page = vm_normal_page(gate_vma, start, *pte);
1007 pages[i] = page;
1008 if (page)
1009 get_page(page);
1011 pte_unmap(pte);
1012 if (vmas)
1013 vmas[i] = gate_vma;
1014 i++;
1015 start += PAGE_SIZE;
1016 len--;
1017 continue;
1020 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1021 || !(vm_flags & vma->vm_flags))
1022 return i ? : -EFAULT;
1024 if (is_vm_hugetlb_page(vma)) {
1025 i = follow_hugetlb_page(mm, vma, pages, vmas,
1026 &start, &len, i);
1027 continue;
1030 foll_flags = FOLL_TOUCH;
1031 if (pages)
1032 foll_flags |= FOLL_GET;
1033 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1034 (!vma->vm_ops || !vma->vm_ops->nopage))
1035 foll_flags |= FOLL_ANON;
1037 do {
1038 struct page *page;
1040 if (write)
1041 foll_flags |= FOLL_WRITE;
1043 cond_resched();
1044 while (!(page = follow_page(vma, start, foll_flags))) {
1045 int ret;
1046 ret = __handle_mm_fault(mm, vma, start,
1047 foll_flags & FOLL_WRITE);
1049 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1050 * broken COW when necessary, even if maybe_mkwrite
1051 * decided not to set pte_write. We can thus safely do
1052 * subsequent page lookups as if they were reads.
1054 if (ret & VM_FAULT_WRITE)
1055 foll_flags &= ~FOLL_WRITE;
1057 switch (ret & ~VM_FAULT_WRITE) {
1058 case VM_FAULT_MINOR:
1059 tsk->min_flt++;
1060 break;
1061 case VM_FAULT_MAJOR:
1062 tsk->maj_flt++;
1063 break;
1064 case VM_FAULT_SIGBUS:
1065 return i ? i : -EFAULT;
1066 case VM_FAULT_OOM:
1067 return i ? i : -ENOMEM;
1068 default:
1069 BUG();
1072 if (pages) {
1073 pages[i] = page;
1075 flush_anon_page(page, start);
1076 flush_dcache_page(page);
1078 if (vmas)
1079 vmas[i] = vma;
1080 i++;
1081 start += PAGE_SIZE;
1082 len--;
1083 } while (len && start < vma->vm_end);
1084 } while (len);
1085 return i;
1087 EXPORT_SYMBOL(get_user_pages);
1089 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1090 unsigned long addr, unsigned long end, pgprot_t prot)
1092 pte_t *pte;
1093 spinlock_t *ptl;
1095 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1096 if (!pte)
1097 return -ENOMEM;
1098 do {
1099 struct page *page = ZERO_PAGE(addr);
1100 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1101 page_cache_get(page);
1102 page_add_file_rmap(page);
1103 inc_mm_counter(mm, file_rss);
1104 BUG_ON(!pte_none(*pte));
1105 set_pte_at(mm, addr, pte, zero_pte);
1106 } while (pte++, addr += PAGE_SIZE, addr != end);
1107 pte_unmap_unlock(pte - 1, ptl);
1108 return 0;
1111 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1112 unsigned long addr, unsigned long end, pgprot_t prot)
1114 pmd_t *pmd;
1115 unsigned long next;
1117 pmd = pmd_alloc(mm, pud, addr);
1118 if (!pmd)
1119 return -ENOMEM;
1120 do {
1121 next = pmd_addr_end(addr, end);
1122 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1123 return -ENOMEM;
1124 } while (pmd++, addr = next, addr != end);
1125 return 0;
1128 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1129 unsigned long addr, unsigned long end, pgprot_t prot)
1131 pud_t *pud;
1132 unsigned long next;
1134 pud = pud_alloc(mm, pgd, addr);
1135 if (!pud)
1136 return -ENOMEM;
1137 do {
1138 next = pud_addr_end(addr, end);
1139 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1140 return -ENOMEM;
1141 } while (pud++, addr = next, addr != end);
1142 return 0;
1145 int zeromap_page_range(struct vm_area_struct *vma,
1146 unsigned long addr, unsigned long size, pgprot_t prot)
1148 pgd_t *pgd;
1149 unsigned long next;
1150 unsigned long end = addr + size;
1151 struct mm_struct *mm = vma->vm_mm;
1152 int err;
1154 BUG_ON(addr >= end);
1155 pgd = pgd_offset(mm, addr);
1156 flush_cache_range(vma, addr, end);
1157 do {
1158 next = pgd_addr_end(addr, end);
1159 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1160 if (err)
1161 break;
1162 } while (pgd++, addr = next, addr != end);
1163 return err;
1166 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1168 pgd_t * pgd = pgd_offset(mm, addr);
1169 pud_t * pud = pud_alloc(mm, pgd, addr);
1170 if (pud) {
1171 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1172 if (pmd)
1173 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1175 return NULL;
1179 * This is the old fallback for page remapping.
1181 * For historical reasons, it only allows reserved pages. Only
1182 * old drivers should use this, and they needed to mark their
1183 * pages reserved for the old functions anyway.
1185 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1187 int retval;
1188 pte_t *pte;
1189 spinlock_t *ptl;
1191 retval = -EINVAL;
1192 if (PageAnon(page))
1193 goto out;
1194 retval = -ENOMEM;
1195 flush_dcache_page(page);
1196 pte = get_locked_pte(mm, addr, &ptl);
1197 if (!pte)
1198 goto out;
1199 retval = -EBUSY;
1200 if (!pte_none(*pte))
1201 goto out_unlock;
1203 /* Ok, finally just insert the thing.. */
1204 get_page(page);
1205 inc_mm_counter(mm, file_rss);
1206 page_add_file_rmap(page);
1207 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1209 retval = 0;
1210 out_unlock:
1211 pte_unmap_unlock(pte, ptl);
1212 out:
1213 return retval;
1217 * This allows drivers to insert individual pages they've allocated
1218 * into a user vma.
1220 * The page has to be a nice clean _individual_ kernel allocation.
1221 * If you allocate a compound page, you need to have marked it as
1222 * such (__GFP_COMP), or manually just split the page up yourself
1223 * (see split_page()).
1225 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1226 * took an arbitrary page protection parameter. This doesn't allow
1227 * that. Your vma protection will have to be set up correctly, which
1228 * means that if you want a shared writable mapping, you'd better
1229 * ask for a shared writable mapping!
1231 * The page does not need to be reserved.
1233 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1235 if (addr < vma->vm_start || addr >= vma->vm_end)
1236 return -EFAULT;
1237 if (!page_count(page))
1238 return -EINVAL;
1239 vma->vm_flags |= VM_INSERTPAGE;
1240 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1242 EXPORT_SYMBOL(vm_insert_page);
1245 * maps a range of physical memory into the requested pages. the old
1246 * mappings are removed. any references to nonexistent pages results
1247 * in null mappings (currently treated as "copy-on-access")
1249 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1250 unsigned long addr, unsigned long end,
1251 unsigned long pfn, pgprot_t prot)
1253 pte_t *pte;
1254 spinlock_t *ptl;
1256 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1257 if (!pte)
1258 return -ENOMEM;
1259 do {
1260 BUG_ON(!pte_none(*pte));
1261 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1262 pfn++;
1263 } while (pte++, addr += PAGE_SIZE, addr != end);
1264 pte_unmap_unlock(pte - 1, ptl);
1265 return 0;
1268 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1269 unsigned long addr, unsigned long end,
1270 unsigned long pfn, pgprot_t prot)
1272 pmd_t *pmd;
1273 unsigned long next;
1275 pfn -= addr >> PAGE_SHIFT;
1276 pmd = pmd_alloc(mm, pud, addr);
1277 if (!pmd)
1278 return -ENOMEM;
1279 do {
1280 next = pmd_addr_end(addr, end);
1281 if (remap_pte_range(mm, pmd, addr, next,
1282 pfn + (addr >> PAGE_SHIFT), prot))
1283 return -ENOMEM;
1284 } while (pmd++, addr = next, addr != end);
1285 return 0;
1288 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1289 unsigned long addr, unsigned long end,
1290 unsigned long pfn, pgprot_t prot)
1292 pud_t *pud;
1293 unsigned long next;
1295 pfn -= addr >> PAGE_SHIFT;
1296 pud = pud_alloc(mm, pgd, addr);
1297 if (!pud)
1298 return -ENOMEM;
1299 do {
1300 next = pud_addr_end(addr, end);
1301 if (remap_pmd_range(mm, pud, addr, next,
1302 pfn + (addr >> PAGE_SHIFT), prot))
1303 return -ENOMEM;
1304 } while (pud++, addr = next, addr != end);
1305 return 0;
1308 /* Note: this is only safe if the mm semaphore is held when called. */
1309 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1310 unsigned long pfn, unsigned long size, pgprot_t prot)
1312 pgd_t *pgd;
1313 unsigned long next;
1314 unsigned long end = addr + PAGE_ALIGN(size);
1315 struct mm_struct *mm = vma->vm_mm;
1316 int err;
1319 * Physically remapped pages are special. Tell the
1320 * rest of the world about it:
1321 * VM_IO tells people not to look at these pages
1322 * (accesses can have side effects).
1323 * VM_RESERVED is specified all over the place, because
1324 * in 2.4 it kept swapout's vma scan off this vma; but
1325 * in 2.6 the LRU scan won't even find its pages, so this
1326 * flag means no more than count its pages in reserved_vm,
1327 * and omit it from core dump, even when VM_IO turned off.
1328 * VM_PFNMAP tells the core MM that the base pages are just
1329 * raw PFN mappings, and do not have a "struct page" associated
1330 * with them.
1332 * There's a horrible special case to handle copy-on-write
1333 * behaviour that some programs depend on. We mark the "original"
1334 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1336 if (is_cow_mapping(vma->vm_flags)) {
1337 if (addr != vma->vm_start || end != vma->vm_end)
1338 return -EINVAL;
1339 vma->vm_pgoff = pfn;
1342 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1344 BUG_ON(addr >= end);
1345 pfn -= addr >> PAGE_SHIFT;
1346 pgd = pgd_offset(mm, addr);
1347 flush_cache_range(vma, addr, end);
1348 do {
1349 next = pgd_addr_end(addr, end);
1350 err = remap_pud_range(mm, pgd, addr, next,
1351 pfn + (addr >> PAGE_SHIFT), prot);
1352 if (err)
1353 break;
1354 } while (pgd++, addr = next, addr != end);
1355 return err;
1357 EXPORT_SYMBOL(remap_pfn_range);
1360 * handle_pte_fault chooses page fault handler according to an entry
1361 * which was read non-atomically. Before making any commitment, on
1362 * those architectures or configurations (e.g. i386 with PAE) which
1363 * might give a mix of unmatched parts, do_swap_page and do_file_page
1364 * must check under lock before unmapping the pte and proceeding
1365 * (but do_wp_page is only called after already making such a check;
1366 * and do_anonymous_page and do_no_page can safely check later on).
1368 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1369 pte_t *page_table, pte_t orig_pte)
1371 int same = 1;
1372 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1373 if (sizeof(pte_t) > sizeof(unsigned long)) {
1374 spinlock_t *ptl = pte_lockptr(mm, pmd);
1375 spin_lock(ptl);
1376 same = pte_same(*page_table, orig_pte);
1377 spin_unlock(ptl);
1379 #endif
1380 pte_unmap(page_table);
1381 return same;
1385 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1386 * servicing faults for write access. In the normal case, do always want
1387 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1388 * that do not have writing enabled, when used by access_process_vm.
1390 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1392 if (likely(vma->vm_flags & VM_WRITE))
1393 pte = pte_mkwrite(pte);
1394 return pte;
1397 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1400 * If the source page was a PFN mapping, we don't have
1401 * a "struct page" for it. We do a best-effort copy by
1402 * just copying from the original user address. If that
1403 * fails, we just zero-fill it. Live with it.
1405 if (unlikely(!src)) {
1406 void *kaddr = kmap_atomic(dst, KM_USER0);
1407 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1410 * This really shouldn't fail, because the page is there
1411 * in the page tables. But it might just be unreadable,
1412 * in which case we just give up and fill the result with
1413 * zeroes.
1415 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1416 memset(kaddr, 0, PAGE_SIZE);
1417 kunmap_atomic(kaddr, KM_USER0);
1418 return;
1421 copy_user_highpage(dst, src, va);
1425 * This routine handles present pages, when users try to write
1426 * to a shared page. It is done by copying the page to a new address
1427 * and decrementing the shared-page counter for the old page.
1429 * Note that this routine assumes that the protection checks have been
1430 * done by the caller (the low-level page fault routine in most cases).
1431 * Thus we can safely just mark it writable once we've done any necessary
1432 * COW.
1434 * We also mark the page dirty at this point even though the page will
1435 * change only once the write actually happens. This avoids a few races,
1436 * and potentially makes it more efficient.
1438 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1439 * but allow concurrent faults), with pte both mapped and locked.
1440 * We return with mmap_sem still held, but pte unmapped and unlocked.
1442 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1443 unsigned long address, pte_t *page_table, pmd_t *pmd,
1444 spinlock_t *ptl, pte_t orig_pte)
1446 struct page *old_page, *new_page;
1447 pte_t entry;
1448 int ret = VM_FAULT_MINOR;
1450 old_page = vm_normal_page(vma, address, orig_pte);
1451 if (!old_page)
1452 goto gotten;
1454 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1455 int reuse = can_share_swap_page(old_page);
1456 unlock_page(old_page);
1457 if (reuse) {
1458 flush_cache_page(vma, address, pte_pfn(orig_pte));
1459 entry = pte_mkyoung(orig_pte);
1460 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1461 ptep_set_access_flags(vma, address, page_table, entry, 1);
1462 update_mmu_cache(vma, address, entry);
1463 lazy_mmu_prot_update(entry);
1464 ret |= VM_FAULT_WRITE;
1465 goto unlock;
1470 * Ok, we need to copy. Oh, well..
1472 page_cache_get(old_page);
1473 gotten:
1474 pte_unmap_unlock(page_table, ptl);
1476 if (unlikely(anon_vma_prepare(vma)))
1477 goto oom;
1478 if (old_page == ZERO_PAGE(address)) {
1479 new_page = alloc_zeroed_user_highpage(vma, address);
1480 if (!new_page)
1481 goto oom;
1482 } else {
1483 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1484 if (!new_page)
1485 goto oom;
1486 cow_user_page(new_page, old_page, address);
1490 * Re-check the pte - we dropped the lock
1492 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1493 if (likely(pte_same(*page_table, orig_pte))) {
1494 if (old_page) {
1495 page_remove_rmap(old_page);
1496 if (!PageAnon(old_page)) {
1497 dec_mm_counter(mm, file_rss);
1498 inc_mm_counter(mm, anon_rss);
1500 } else
1501 inc_mm_counter(mm, anon_rss);
1502 flush_cache_page(vma, address, pte_pfn(orig_pte));
1503 entry = mk_pte(new_page, vma->vm_page_prot);
1504 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1505 ptep_establish(vma, address, page_table, entry);
1506 update_mmu_cache(vma, address, entry);
1507 lazy_mmu_prot_update(entry);
1508 lru_cache_add_active(new_page);
1509 page_add_new_anon_rmap(new_page, vma, address);
1511 /* Free the old page.. */
1512 new_page = old_page;
1513 ret |= VM_FAULT_WRITE;
1515 if (new_page)
1516 page_cache_release(new_page);
1517 if (old_page)
1518 page_cache_release(old_page);
1519 unlock:
1520 pte_unmap_unlock(page_table, ptl);
1521 return ret;
1522 oom:
1523 if (old_page)
1524 page_cache_release(old_page);
1525 return VM_FAULT_OOM;
1529 * Helper functions for unmap_mapping_range().
1531 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1533 * We have to restart searching the prio_tree whenever we drop the lock,
1534 * since the iterator is only valid while the lock is held, and anyway
1535 * a later vma might be split and reinserted earlier while lock dropped.
1537 * The list of nonlinear vmas could be handled more efficiently, using
1538 * a placeholder, but handle it in the same way until a need is shown.
1539 * It is important to search the prio_tree before nonlinear list: a vma
1540 * may become nonlinear and be shifted from prio_tree to nonlinear list
1541 * while the lock is dropped; but never shifted from list to prio_tree.
1543 * In order to make forward progress despite restarting the search,
1544 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1545 * quickly skip it next time around. Since the prio_tree search only
1546 * shows us those vmas affected by unmapping the range in question, we
1547 * can't efficiently keep all vmas in step with mapping->truncate_count:
1548 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1549 * mapping->truncate_count and vma->vm_truncate_count are protected by
1550 * i_mmap_lock.
1552 * In order to make forward progress despite repeatedly restarting some
1553 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1554 * and restart from that address when we reach that vma again. It might
1555 * have been split or merged, shrunk or extended, but never shifted: so
1556 * restart_addr remains valid so long as it remains in the vma's range.
1557 * unmap_mapping_range forces truncate_count to leap over page-aligned
1558 * values so we can save vma's restart_addr in its truncate_count field.
1560 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1562 static void reset_vma_truncate_counts(struct address_space *mapping)
1564 struct vm_area_struct *vma;
1565 struct prio_tree_iter iter;
1567 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1568 vma->vm_truncate_count = 0;
1569 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1570 vma->vm_truncate_count = 0;
1573 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1574 unsigned long start_addr, unsigned long end_addr,
1575 struct zap_details *details)
1577 unsigned long restart_addr;
1578 int need_break;
1580 again:
1581 restart_addr = vma->vm_truncate_count;
1582 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1583 start_addr = restart_addr;
1584 if (start_addr >= end_addr) {
1585 /* Top of vma has been split off since last time */
1586 vma->vm_truncate_count = details->truncate_count;
1587 return 0;
1591 restart_addr = zap_page_range(vma, start_addr,
1592 end_addr - start_addr, details);
1593 need_break = need_resched() ||
1594 need_lockbreak(details->i_mmap_lock);
1596 if (restart_addr >= end_addr) {
1597 /* We have now completed this vma: mark it so */
1598 vma->vm_truncate_count = details->truncate_count;
1599 if (!need_break)
1600 return 0;
1601 } else {
1602 /* Note restart_addr in vma's truncate_count field */
1603 vma->vm_truncate_count = restart_addr;
1604 if (!need_break)
1605 goto again;
1608 spin_unlock(details->i_mmap_lock);
1609 cond_resched();
1610 spin_lock(details->i_mmap_lock);
1611 return -EINTR;
1614 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1615 struct zap_details *details)
1617 struct vm_area_struct *vma;
1618 struct prio_tree_iter iter;
1619 pgoff_t vba, vea, zba, zea;
1621 restart:
1622 vma_prio_tree_foreach(vma, &iter, root,
1623 details->first_index, details->last_index) {
1624 /* Skip quickly over those we have already dealt with */
1625 if (vma->vm_truncate_count == details->truncate_count)
1626 continue;
1628 vba = vma->vm_pgoff;
1629 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1630 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1631 zba = details->first_index;
1632 if (zba < vba)
1633 zba = vba;
1634 zea = details->last_index;
1635 if (zea > vea)
1636 zea = vea;
1638 if (unmap_mapping_range_vma(vma,
1639 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1640 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1641 details) < 0)
1642 goto restart;
1646 static inline void unmap_mapping_range_list(struct list_head *head,
1647 struct zap_details *details)
1649 struct vm_area_struct *vma;
1652 * In nonlinear VMAs there is no correspondence between virtual address
1653 * offset and file offset. So we must perform an exhaustive search
1654 * across *all* the pages in each nonlinear VMA, not just the pages
1655 * whose virtual address lies outside the file truncation point.
1657 restart:
1658 list_for_each_entry(vma, head, shared.vm_set.list) {
1659 /* Skip quickly over those we have already dealt with */
1660 if (vma->vm_truncate_count == details->truncate_count)
1661 continue;
1662 details->nonlinear_vma = vma;
1663 if (unmap_mapping_range_vma(vma, vma->vm_start,
1664 vma->vm_end, details) < 0)
1665 goto restart;
1670 * unmap_mapping_range - unmap the portion of all mmaps
1671 * in the specified address_space corresponding to the specified
1672 * page range in the underlying file.
1673 * @mapping: the address space containing mmaps to be unmapped.
1674 * @holebegin: byte in first page to unmap, relative to the start of
1675 * the underlying file. This will be rounded down to a PAGE_SIZE
1676 * boundary. Note that this is different from vmtruncate(), which
1677 * must keep the partial page. In contrast, we must get rid of
1678 * partial pages.
1679 * @holelen: size of prospective hole in bytes. This will be rounded
1680 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1681 * end of the file.
1682 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1683 * but 0 when invalidating pagecache, don't throw away private data.
1685 void unmap_mapping_range(struct address_space *mapping,
1686 loff_t const holebegin, loff_t const holelen, int even_cows)
1688 struct zap_details details;
1689 pgoff_t hba = holebegin >> PAGE_SHIFT;
1690 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1692 /* Check for overflow. */
1693 if (sizeof(holelen) > sizeof(hlen)) {
1694 long long holeend =
1695 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1696 if (holeend & ~(long long)ULONG_MAX)
1697 hlen = ULONG_MAX - hba + 1;
1700 details.check_mapping = even_cows? NULL: mapping;
1701 details.nonlinear_vma = NULL;
1702 details.first_index = hba;
1703 details.last_index = hba + hlen - 1;
1704 if (details.last_index < details.first_index)
1705 details.last_index = ULONG_MAX;
1706 details.i_mmap_lock = &mapping->i_mmap_lock;
1708 spin_lock(&mapping->i_mmap_lock);
1710 /* serialize i_size write against truncate_count write */
1711 smp_wmb();
1712 /* Protect against page faults, and endless unmapping loops */
1713 mapping->truncate_count++;
1715 * For archs where spin_lock has inclusive semantics like ia64
1716 * this smp_mb() will prevent to read pagetable contents
1717 * before the truncate_count increment is visible to
1718 * other cpus.
1720 smp_mb();
1721 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1722 if (mapping->truncate_count == 0)
1723 reset_vma_truncate_counts(mapping);
1724 mapping->truncate_count++;
1726 details.truncate_count = mapping->truncate_count;
1728 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1729 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1730 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1731 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1732 spin_unlock(&mapping->i_mmap_lock);
1734 EXPORT_SYMBOL(unmap_mapping_range);
1737 * Handle all mappings that got truncated by a "truncate()"
1738 * system call.
1740 * NOTE! We have to be ready to update the memory sharing
1741 * between the file and the memory map for a potential last
1742 * incomplete page. Ugly, but necessary.
1744 int vmtruncate(struct inode * inode, loff_t offset)
1746 struct address_space *mapping = inode->i_mapping;
1747 unsigned long limit;
1749 if (inode->i_size < offset)
1750 goto do_expand;
1752 * truncation of in-use swapfiles is disallowed - it would cause
1753 * subsequent swapout to scribble on the now-freed blocks.
1755 if (IS_SWAPFILE(inode))
1756 goto out_busy;
1757 i_size_write(inode, offset);
1758 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1759 truncate_inode_pages(mapping, offset);
1760 goto out_truncate;
1762 do_expand:
1763 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1764 if (limit != RLIM_INFINITY && offset > limit)
1765 goto out_sig;
1766 if (offset > inode->i_sb->s_maxbytes)
1767 goto out_big;
1768 i_size_write(inode, offset);
1770 out_truncate:
1771 if (inode->i_op && inode->i_op->truncate)
1772 inode->i_op->truncate(inode);
1773 return 0;
1774 out_sig:
1775 send_sig(SIGXFSZ, current, 0);
1776 out_big:
1777 return -EFBIG;
1778 out_busy:
1779 return -ETXTBSY;
1781 EXPORT_SYMBOL(vmtruncate);
1783 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1785 struct address_space *mapping = inode->i_mapping;
1788 * If the underlying filesystem is not going to provide
1789 * a way to truncate a range of blocks (punch a hole) -
1790 * we should return failure right now.
1792 if (!inode->i_op || !inode->i_op->truncate_range)
1793 return -ENOSYS;
1795 mutex_lock(&inode->i_mutex);
1796 down_write(&inode->i_alloc_sem);
1797 unmap_mapping_range(mapping, offset, (end - offset), 1);
1798 truncate_inode_pages_range(mapping, offset, end);
1799 inode->i_op->truncate_range(inode, offset, end);
1800 up_write(&inode->i_alloc_sem);
1801 mutex_unlock(&inode->i_mutex);
1803 return 0;
1805 EXPORT_SYMBOL(vmtruncate_range);
1808 * Primitive swap readahead code. We simply read an aligned block of
1809 * (1 << page_cluster) entries in the swap area. This method is chosen
1810 * because it doesn't cost us any seek time. We also make sure to queue
1811 * the 'original' request together with the readahead ones...
1813 * This has been extended to use the NUMA policies from the mm triggering
1814 * the readahead.
1816 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1818 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1820 #ifdef CONFIG_NUMA
1821 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1822 #endif
1823 int i, num;
1824 struct page *new_page;
1825 unsigned long offset;
1828 * Get the number of handles we should do readahead io to.
1830 num = valid_swaphandles(entry, &offset);
1831 for (i = 0; i < num; offset++, i++) {
1832 /* Ok, do the async read-ahead now */
1833 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1834 offset), vma, addr);
1835 if (!new_page)
1836 break;
1837 page_cache_release(new_page);
1838 #ifdef CONFIG_NUMA
1840 * Find the next applicable VMA for the NUMA policy.
1842 addr += PAGE_SIZE;
1843 if (addr == 0)
1844 vma = NULL;
1845 if (vma) {
1846 if (addr >= vma->vm_end) {
1847 vma = next_vma;
1848 next_vma = vma ? vma->vm_next : NULL;
1850 if (vma && addr < vma->vm_start)
1851 vma = NULL;
1852 } else {
1853 if (next_vma && addr >= next_vma->vm_start) {
1854 vma = next_vma;
1855 next_vma = vma->vm_next;
1858 #endif
1860 lru_add_drain(); /* Push any new pages onto the LRU now */
1864 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1865 * but allow concurrent faults), and pte mapped but not yet locked.
1866 * We return with mmap_sem still held, but pte unmapped and unlocked.
1868 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1869 unsigned long address, pte_t *page_table, pmd_t *pmd,
1870 int write_access, pte_t orig_pte)
1872 spinlock_t *ptl;
1873 struct page *page;
1874 swp_entry_t entry;
1875 pte_t pte;
1876 int ret = VM_FAULT_MINOR;
1878 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1879 goto out;
1881 entry = pte_to_swp_entry(orig_pte);
1882 again:
1883 page = lookup_swap_cache(entry);
1884 if (!page) {
1885 swapin_readahead(entry, address, vma);
1886 page = read_swap_cache_async(entry, vma, address);
1887 if (!page) {
1889 * Back out if somebody else faulted in this pte
1890 * while we released the pte lock.
1892 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1893 if (likely(pte_same(*page_table, orig_pte)))
1894 ret = VM_FAULT_OOM;
1895 goto unlock;
1898 /* Had to read the page from swap area: Major fault */
1899 ret = VM_FAULT_MAJOR;
1900 inc_page_state(pgmajfault);
1901 grab_swap_token();
1904 mark_page_accessed(page);
1905 lock_page(page);
1906 if (!PageSwapCache(page)) {
1907 /* Page migration has occured */
1908 unlock_page(page);
1909 page_cache_release(page);
1910 goto again;
1914 * Back out if somebody else already faulted in this pte.
1916 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1917 if (unlikely(!pte_same(*page_table, orig_pte)))
1918 goto out_nomap;
1920 if (unlikely(!PageUptodate(page))) {
1921 ret = VM_FAULT_SIGBUS;
1922 goto out_nomap;
1925 /* The page isn't present yet, go ahead with the fault. */
1927 inc_mm_counter(mm, anon_rss);
1928 pte = mk_pte(page, vma->vm_page_prot);
1929 if (write_access && can_share_swap_page(page)) {
1930 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1931 write_access = 0;
1934 flush_icache_page(vma, page);
1935 set_pte_at(mm, address, page_table, pte);
1936 page_add_anon_rmap(page, vma, address);
1938 swap_free(entry);
1939 if (vm_swap_full())
1940 remove_exclusive_swap_page(page);
1941 unlock_page(page);
1943 if (write_access) {
1944 if (do_wp_page(mm, vma, address,
1945 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1946 ret = VM_FAULT_OOM;
1947 goto out;
1950 /* No need to invalidate - it was non-present before */
1951 update_mmu_cache(vma, address, pte);
1952 lazy_mmu_prot_update(pte);
1953 unlock:
1954 pte_unmap_unlock(page_table, ptl);
1955 out:
1956 return ret;
1957 out_nomap:
1958 pte_unmap_unlock(page_table, ptl);
1959 unlock_page(page);
1960 page_cache_release(page);
1961 return ret;
1965 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1966 * but allow concurrent faults), and pte mapped but not yet locked.
1967 * We return with mmap_sem still held, but pte unmapped and unlocked.
1969 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1970 unsigned long address, pte_t *page_table, pmd_t *pmd,
1971 int write_access)
1973 struct page *page;
1974 spinlock_t *ptl;
1975 pte_t entry;
1977 if (write_access) {
1978 /* Allocate our own private page. */
1979 pte_unmap(page_table);
1981 if (unlikely(anon_vma_prepare(vma)))
1982 goto oom;
1983 page = alloc_zeroed_user_highpage(vma, address);
1984 if (!page)
1985 goto oom;
1987 entry = mk_pte(page, vma->vm_page_prot);
1988 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1990 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1991 if (!pte_none(*page_table))
1992 goto release;
1993 inc_mm_counter(mm, anon_rss);
1994 lru_cache_add_active(page);
1995 page_add_new_anon_rmap(page, vma, address);
1996 } else {
1997 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1998 page = ZERO_PAGE(address);
1999 page_cache_get(page);
2000 entry = mk_pte(page, vma->vm_page_prot);
2002 ptl = pte_lockptr(mm, pmd);
2003 spin_lock(ptl);
2004 if (!pte_none(*page_table))
2005 goto release;
2006 inc_mm_counter(mm, file_rss);
2007 page_add_file_rmap(page);
2010 set_pte_at(mm, address, page_table, entry);
2012 /* No need to invalidate - it was non-present before */
2013 update_mmu_cache(vma, address, entry);
2014 lazy_mmu_prot_update(entry);
2015 unlock:
2016 pte_unmap_unlock(page_table, ptl);
2017 return VM_FAULT_MINOR;
2018 release:
2019 page_cache_release(page);
2020 goto unlock;
2021 oom:
2022 return VM_FAULT_OOM;
2026 * do_no_page() tries to create a new page mapping. It aggressively
2027 * tries to share with existing pages, but makes a separate copy if
2028 * the "write_access" parameter is true in order to avoid the next
2029 * page fault.
2031 * As this is called only for pages that do not currently exist, we
2032 * do not need to flush old virtual caches or the TLB.
2034 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2035 * but allow concurrent faults), and pte mapped but not yet locked.
2036 * We return with mmap_sem still held, but pte unmapped and unlocked.
2038 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2039 unsigned long address, pte_t *page_table, pmd_t *pmd,
2040 int write_access)
2042 spinlock_t *ptl;
2043 struct page *new_page;
2044 struct address_space *mapping = NULL;
2045 pte_t entry;
2046 unsigned int sequence = 0;
2047 int ret = VM_FAULT_MINOR;
2048 int anon = 0;
2050 pte_unmap(page_table);
2051 BUG_ON(vma->vm_flags & VM_PFNMAP);
2053 if (vma->vm_file) {
2054 mapping = vma->vm_file->f_mapping;
2055 sequence = mapping->truncate_count;
2056 smp_rmb(); /* serializes i_size against truncate_count */
2058 retry:
2059 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2061 * No smp_rmb is needed here as long as there's a full
2062 * spin_lock/unlock sequence inside the ->nopage callback
2063 * (for the pagecache lookup) that acts as an implicit
2064 * smp_mb() and prevents the i_size read to happen
2065 * after the next truncate_count read.
2068 /* no page was available -- either SIGBUS or OOM */
2069 if (new_page == NOPAGE_SIGBUS)
2070 return VM_FAULT_SIGBUS;
2071 if (new_page == NOPAGE_OOM)
2072 return VM_FAULT_OOM;
2075 * Should we do an early C-O-W break?
2077 if (write_access && !(vma->vm_flags & VM_SHARED)) {
2078 struct page *page;
2080 if (unlikely(anon_vma_prepare(vma)))
2081 goto oom;
2082 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2083 if (!page)
2084 goto oom;
2085 copy_user_highpage(page, new_page, address);
2086 page_cache_release(new_page);
2087 new_page = page;
2088 anon = 1;
2091 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2093 * For a file-backed vma, someone could have truncated or otherwise
2094 * invalidated this page. If unmap_mapping_range got called,
2095 * retry getting the page.
2097 if (mapping && unlikely(sequence != mapping->truncate_count)) {
2098 pte_unmap_unlock(page_table, ptl);
2099 page_cache_release(new_page);
2100 cond_resched();
2101 sequence = mapping->truncate_count;
2102 smp_rmb();
2103 goto retry;
2107 * This silly early PAGE_DIRTY setting removes a race
2108 * due to the bad i386 page protection. But it's valid
2109 * for other architectures too.
2111 * Note that if write_access is true, we either now have
2112 * an exclusive copy of the page, or this is a shared mapping,
2113 * so we can make it writable and dirty to avoid having to
2114 * handle that later.
2116 /* Only go through if we didn't race with anybody else... */
2117 if (pte_none(*page_table)) {
2118 flush_icache_page(vma, new_page);
2119 entry = mk_pte(new_page, vma->vm_page_prot);
2120 if (write_access)
2121 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2122 set_pte_at(mm, address, page_table, entry);
2123 if (anon) {
2124 inc_mm_counter(mm, anon_rss);
2125 lru_cache_add_active(new_page);
2126 page_add_new_anon_rmap(new_page, vma, address);
2127 } else {
2128 inc_mm_counter(mm, file_rss);
2129 page_add_file_rmap(new_page);
2131 } else {
2132 /* One of our sibling threads was faster, back out. */
2133 page_cache_release(new_page);
2134 goto unlock;
2137 /* no need to invalidate: a not-present page shouldn't be cached */
2138 update_mmu_cache(vma, address, entry);
2139 lazy_mmu_prot_update(entry);
2140 unlock:
2141 pte_unmap_unlock(page_table, ptl);
2142 return ret;
2143 oom:
2144 page_cache_release(new_page);
2145 return VM_FAULT_OOM;
2149 * Fault of a previously existing named mapping. Repopulate the pte
2150 * from the encoded file_pte if possible. This enables swappable
2151 * nonlinear vmas.
2153 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2154 * but allow concurrent faults), and pte mapped but not yet locked.
2155 * We return with mmap_sem still held, but pte unmapped and unlocked.
2157 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2158 unsigned long address, pte_t *page_table, pmd_t *pmd,
2159 int write_access, pte_t orig_pte)
2161 pgoff_t pgoff;
2162 int err;
2164 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2165 return VM_FAULT_MINOR;
2167 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2169 * Page table corrupted: show pte and kill process.
2171 print_bad_pte(vma, orig_pte, address);
2172 return VM_FAULT_OOM;
2174 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2176 pgoff = pte_to_pgoff(orig_pte);
2177 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2178 vma->vm_page_prot, pgoff, 0);
2179 if (err == -ENOMEM)
2180 return VM_FAULT_OOM;
2181 if (err)
2182 return VM_FAULT_SIGBUS;
2183 return VM_FAULT_MAJOR;
2187 * These routines also need to handle stuff like marking pages dirty
2188 * and/or accessed for architectures that don't do it in hardware (most
2189 * RISC architectures). The early dirtying is also good on the i386.
2191 * There is also a hook called "update_mmu_cache()" that architectures
2192 * with external mmu caches can use to update those (ie the Sparc or
2193 * PowerPC hashed page tables that act as extended TLBs).
2195 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2196 * but allow concurrent faults), and pte mapped but not yet locked.
2197 * We return with mmap_sem still held, but pte unmapped and unlocked.
2199 static inline int handle_pte_fault(struct mm_struct *mm,
2200 struct vm_area_struct *vma, unsigned long address,
2201 pte_t *pte, pmd_t *pmd, int write_access)
2203 pte_t entry;
2204 pte_t old_entry;
2205 spinlock_t *ptl;
2207 old_entry = entry = *pte;
2208 if (!pte_present(entry)) {
2209 if (pte_none(entry)) {
2210 if (!vma->vm_ops || !vma->vm_ops->nopage)
2211 return do_anonymous_page(mm, vma, address,
2212 pte, pmd, write_access);
2213 return do_no_page(mm, vma, address,
2214 pte, pmd, write_access);
2216 if (pte_file(entry))
2217 return do_file_page(mm, vma, address,
2218 pte, pmd, write_access, entry);
2219 return do_swap_page(mm, vma, address,
2220 pte, pmd, write_access, entry);
2223 ptl = pte_lockptr(mm, pmd);
2224 spin_lock(ptl);
2225 if (unlikely(!pte_same(*pte, entry)))
2226 goto unlock;
2227 if (write_access) {
2228 if (!pte_write(entry))
2229 return do_wp_page(mm, vma, address,
2230 pte, pmd, ptl, entry);
2231 entry = pte_mkdirty(entry);
2233 entry = pte_mkyoung(entry);
2234 if (!pte_same(old_entry, entry)) {
2235 ptep_set_access_flags(vma, address, pte, entry, write_access);
2236 update_mmu_cache(vma, address, entry);
2237 lazy_mmu_prot_update(entry);
2238 } else {
2240 * This is needed only for protection faults but the arch code
2241 * is not yet telling us if this is a protection fault or not.
2242 * This still avoids useless tlb flushes for .text page faults
2243 * with threads.
2245 if (write_access)
2246 flush_tlb_page(vma, address);
2248 unlock:
2249 pte_unmap_unlock(pte, ptl);
2250 return VM_FAULT_MINOR;
2254 * By the time we get here, we already hold the mm semaphore
2256 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2257 unsigned long address, int write_access)
2259 pgd_t *pgd;
2260 pud_t *pud;
2261 pmd_t *pmd;
2262 pte_t *pte;
2264 __set_current_state(TASK_RUNNING);
2266 inc_page_state(pgfault);
2268 if (unlikely(is_vm_hugetlb_page(vma)))
2269 return hugetlb_fault(mm, vma, address, write_access);
2271 pgd = pgd_offset(mm, address);
2272 pud = pud_alloc(mm, pgd, address);
2273 if (!pud)
2274 return VM_FAULT_OOM;
2275 pmd = pmd_alloc(mm, pud, address);
2276 if (!pmd)
2277 return VM_FAULT_OOM;
2278 pte = pte_alloc_map(mm, pmd, address);
2279 if (!pte)
2280 return VM_FAULT_OOM;
2282 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2285 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2287 #ifndef __PAGETABLE_PUD_FOLDED
2289 * Allocate page upper directory.
2290 * We've already handled the fast-path in-line.
2292 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2294 pud_t *new = pud_alloc_one(mm, address);
2295 if (!new)
2296 return -ENOMEM;
2298 spin_lock(&mm->page_table_lock);
2299 if (pgd_present(*pgd)) /* Another has populated it */
2300 pud_free(new);
2301 else
2302 pgd_populate(mm, pgd, new);
2303 spin_unlock(&mm->page_table_lock);
2304 return 0;
2306 #else
2307 /* Workaround for gcc 2.96 */
2308 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2310 return 0;
2312 #endif /* __PAGETABLE_PUD_FOLDED */
2314 #ifndef __PAGETABLE_PMD_FOLDED
2316 * Allocate page middle directory.
2317 * We've already handled the fast-path in-line.
2319 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2321 pmd_t *new = pmd_alloc_one(mm, address);
2322 if (!new)
2323 return -ENOMEM;
2325 spin_lock(&mm->page_table_lock);
2326 #ifndef __ARCH_HAS_4LEVEL_HACK
2327 if (pud_present(*pud)) /* Another has populated it */
2328 pmd_free(new);
2329 else
2330 pud_populate(mm, pud, new);
2331 #else
2332 if (pgd_present(*pud)) /* Another has populated it */
2333 pmd_free(new);
2334 else
2335 pgd_populate(mm, pud, new);
2336 #endif /* __ARCH_HAS_4LEVEL_HACK */
2337 spin_unlock(&mm->page_table_lock);
2338 return 0;
2340 #else
2341 /* Workaround for gcc 2.96 */
2342 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2344 return 0;
2346 #endif /* __PAGETABLE_PMD_FOLDED */
2348 int make_pages_present(unsigned long addr, unsigned long end)
2350 int ret, len, write;
2351 struct vm_area_struct * vma;
2353 vma = find_vma(current->mm, addr);
2354 if (!vma)
2355 return -1;
2356 write = (vma->vm_flags & VM_WRITE) != 0;
2357 BUG_ON(addr >= end);
2358 BUG_ON(end > vma->vm_end);
2359 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2360 ret = get_user_pages(current, current->mm, addr,
2361 len, write, 0, NULL, NULL);
2362 if (ret < 0)
2363 return ret;
2364 return ret == len ? 0 : -1;
2368 * Map a vmalloc()-space virtual address to the physical page.
2370 struct page * vmalloc_to_page(void * vmalloc_addr)
2372 unsigned long addr = (unsigned long) vmalloc_addr;
2373 struct page *page = NULL;
2374 pgd_t *pgd = pgd_offset_k(addr);
2375 pud_t *pud;
2376 pmd_t *pmd;
2377 pte_t *ptep, pte;
2379 if (!pgd_none(*pgd)) {
2380 pud = pud_offset(pgd, addr);
2381 if (!pud_none(*pud)) {
2382 pmd = pmd_offset(pud, addr);
2383 if (!pmd_none(*pmd)) {
2384 ptep = pte_offset_map(pmd, addr);
2385 pte = *ptep;
2386 if (pte_present(pte))
2387 page = pte_page(pte);
2388 pte_unmap(ptep);
2392 return page;
2395 EXPORT_SYMBOL(vmalloc_to_page);
2398 * Map a vmalloc()-space virtual address to the physical page frame number.
2400 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2402 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2405 EXPORT_SYMBOL(vmalloc_to_pfn);
2407 #if !defined(__HAVE_ARCH_GATE_AREA)
2409 #if defined(AT_SYSINFO_EHDR)
2410 static struct vm_area_struct gate_vma;
2412 static int __init gate_vma_init(void)
2414 gate_vma.vm_mm = NULL;
2415 gate_vma.vm_start = FIXADDR_USER_START;
2416 gate_vma.vm_end = FIXADDR_USER_END;
2417 gate_vma.vm_page_prot = PAGE_READONLY;
2418 gate_vma.vm_flags = 0;
2419 return 0;
2421 __initcall(gate_vma_init);
2422 #endif
2424 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2426 #ifdef AT_SYSINFO_EHDR
2427 return &gate_vma;
2428 #else
2429 return NULL;
2430 #endif
2433 int in_gate_area_no_task(unsigned long addr)
2435 #ifdef AT_SYSINFO_EHDR
2436 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2437 return 1;
2438 #endif
2439 return 0;
2442 #endif /* __HAVE_ARCH_GATE_AREA */