Linux 2.6.17.7
[linux/fpc-iii.git] / mm / swap.c
blob88895c249bc901f576760a633f993c75bfcd5cf7
1 /*
2 * linux/mm/swap.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * This file contains the default values for the opereation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/module.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/init.h>
34 /* How many pages do we try to swap or page in/out together? */
35 int page_cluster;
37 static void put_compound_page(struct page *page)
39 page = (struct page *)page_private(page);
40 if (put_page_testzero(page)) {
41 void (*dtor)(struct page *page);
43 dtor = (void (*)(struct page *))page[1].lru.next;
44 (*dtor)(page);
48 void put_page(struct page *page)
50 if (unlikely(PageCompound(page)))
51 put_compound_page(page);
52 else if (put_page_testzero(page))
53 __page_cache_release(page);
55 EXPORT_SYMBOL(put_page);
58 * Writeback is about to end against a page which has been marked for immediate
59 * reclaim. If it still appears to be reclaimable, move it to the tail of the
60 * inactive list. The page still has PageWriteback set, which will pin it.
62 * We don't expect many pages to come through here, so don't bother batching
63 * things up.
65 * To avoid placing the page at the tail of the LRU while PG_writeback is still
66 * set, this function will clear PG_writeback before performing the page
67 * motion. Do that inside the lru lock because once PG_writeback is cleared
68 * we may not touch the page.
70 * Returns zero if it cleared PG_writeback.
72 int rotate_reclaimable_page(struct page *page)
74 struct zone *zone;
75 unsigned long flags;
77 if (PageLocked(page))
78 return 1;
79 if (PageDirty(page))
80 return 1;
81 if (PageActive(page))
82 return 1;
83 if (!PageLRU(page))
84 return 1;
86 zone = page_zone(page);
87 spin_lock_irqsave(&zone->lru_lock, flags);
88 if (PageLRU(page) && !PageActive(page)) {
89 list_del(&page->lru);
90 list_add_tail(&page->lru, &zone->inactive_list);
91 inc_page_state(pgrotated);
93 if (!test_clear_page_writeback(page))
94 BUG();
95 spin_unlock_irqrestore(&zone->lru_lock, flags);
96 return 0;
100 * FIXME: speed this up?
102 void fastcall activate_page(struct page *page)
104 struct zone *zone = page_zone(page);
106 spin_lock_irq(&zone->lru_lock);
107 if (PageLRU(page) && !PageActive(page)) {
108 del_page_from_inactive_list(zone, page);
109 SetPageActive(page);
110 add_page_to_active_list(zone, page);
111 inc_page_state(pgactivate);
113 spin_unlock_irq(&zone->lru_lock);
117 * Mark a page as having seen activity.
119 * inactive,unreferenced -> inactive,referenced
120 * inactive,referenced -> active,unreferenced
121 * active,unreferenced -> active,referenced
123 void fastcall mark_page_accessed(struct page *page)
125 if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
126 activate_page(page);
127 ClearPageReferenced(page);
128 } else if (!PageReferenced(page)) {
129 SetPageReferenced(page);
133 EXPORT_SYMBOL(mark_page_accessed);
136 * lru_cache_add: add a page to the page lists
137 * @page: the page to add
139 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
140 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
142 void fastcall lru_cache_add(struct page *page)
144 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
146 page_cache_get(page);
147 if (!pagevec_add(pvec, page))
148 __pagevec_lru_add(pvec);
149 put_cpu_var(lru_add_pvecs);
152 void fastcall lru_cache_add_active(struct page *page)
154 struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
156 page_cache_get(page);
157 if (!pagevec_add(pvec, page))
158 __pagevec_lru_add_active(pvec);
159 put_cpu_var(lru_add_active_pvecs);
162 static void __lru_add_drain(int cpu)
164 struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu);
166 /* CPU is dead, so no locking needed. */
167 if (pagevec_count(pvec))
168 __pagevec_lru_add(pvec);
169 pvec = &per_cpu(lru_add_active_pvecs, cpu);
170 if (pagevec_count(pvec))
171 __pagevec_lru_add_active(pvec);
174 void lru_add_drain(void)
176 __lru_add_drain(get_cpu());
177 put_cpu();
180 #ifdef CONFIG_NUMA
181 static void lru_add_drain_per_cpu(void *dummy)
183 lru_add_drain();
187 * Returns 0 for success
189 int lru_add_drain_all(void)
191 return schedule_on_each_cpu(lru_add_drain_per_cpu, NULL);
194 #else
197 * Returns 0 for success
199 int lru_add_drain_all(void)
201 lru_add_drain();
202 return 0;
204 #endif
207 * This path almost never happens for VM activity - pages are normally
208 * freed via pagevecs. But it gets used by networking.
210 void fastcall __page_cache_release(struct page *page)
212 if (PageLRU(page)) {
213 unsigned long flags;
214 struct zone *zone = page_zone(page);
216 spin_lock_irqsave(&zone->lru_lock, flags);
217 BUG_ON(!PageLRU(page));
218 __ClearPageLRU(page);
219 del_page_from_lru(zone, page);
220 spin_unlock_irqrestore(&zone->lru_lock, flags);
222 free_hot_page(page);
224 EXPORT_SYMBOL(__page_cache_release);
227 * Batched page_cache_release(). Decrement the reference count on all the
228 * passed pages. If it fell to zero then remove the page from the LRU and
229 * free it.
231 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
232 * for the remainder of the operation.
234 * The locking in this function is against shrink_cache(): we recheck the
235 * page count inside the lock to see whether shrink_cache grabbed the page
236 * via the LRU. If it did, give up: shrink_cache will free it.
238 void release_pages(struct page **pages, int nr, int cold)
240 int i;
241 struct pagevec pages_to_free;
242 struct zone *zone = NULL;
244 pagevec_init(&pages_to_free, cold);
245 for (i = 0; i < nr; i++) {
246 struct page *page = pages[i];
248 if (unlikely(PageCompound(page))) {
249 if (zone) {
250 spin_unlock_irq(&zone->lru_lock);
251 zone = NULL;
253 put_compound_page(page);
254 continue;
257 if (!put_page_testzero(page))
258 continue;
260 if (PageLRU(page)) {
261 struct zone *pagezone = page_zone(page);
262 if (pagezone != zone) {
263 if (zone)
264 spin_unlock_irq(&zone->lru_lock);
265 zone = pagezone;
266 spin_lock_irq(&zone->lru_lock);
268 BUG_ON(!PageLRU(page));
269 __ClearPageLRU(page);
270 del_page_from_lru(zone, page);
273 if (!pagevec_add(&pages_to_free, page)) {
274 if (zone) {
275 spin_unlock_irq(&zone->lru_lock);
276 zone = NULL;
278 __pagevec_free(&pages_to_free);
279 pagevec_reinit(&pages_to_free);
282 if (zone)
283 spin_unlock_irq(&zone->lru_lock);
285 pagevec_free(&pages_to_free);
289 * The pages which we're about to release may be in the deferred lru-addition
290 * queues. That would prevent them from really being freed right now. That's
291 * OK from a correctness point of view but is inefficient - those pages may be
292 * cache-warm and we want to give them back to the page allocator ASAP.
294 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
295 * and __pagevec_lru_add_active() call release_pages() directly to avoid
296 * mutual recursion.
298 void __pagevec_release(struct pagevec *pvec)
300 lru_add_drain();
301 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
302 pagevec_reinit(pvec);
305 EXPORT_SYMBOL(__pagevec_release);
308 * pagevec_release() for pages which are known to not be on the LRU
310 * This function reinitialises the caller's pagevec.
312 void __pagevec_release_nonlru(struct pagevec *pvec)
314 int i;
315 struct pagevec pages_to_free;
317 pagevec_init(&pages_to_free, pvec->cold);
318 for (i = 0; i < pagevec_count(pvec); i++) {
319 struct page *page = pvec->pages[i];
321 BUG_ON(PageLRU(page));
322 if (put_page_testzero(page))
323 pagevec_add(&pages_to_free, page);
325 pagevec_free(&pages_to_free);
326 pagevec_reinit(pvec);
330 * Add the passed pages to the LRU, then drop the caller's refcount
331 * on them. Reinitialises the caller's pagevec.
333 void __pagevec_lru_add(struct pagevec *pvec)
335 int i;
336 struct zone *zone = NULL;
338 for (i = 0; i < pagevec_count(pvec); i++) {
339 struct page *page = pvec->pages[i];
340 struct zone *pagezone = page_zone(page);
342 if (pagezone != zone) {
343 if (zone)
344 spin_unlock_irq(&zone->lru_lock);
345 zone = pagezone;
346 spin_lock_irq(&zone->lru_lock);
348 BUG_ON(PageLRU(page));
349 SetPageLRU(page);
350 add_page_to_inactive_list(zone, page);
352 if (zone)
353 spin_unlock_irq(&zone->lru_lock);
354 release_pages(pvec->pages, pvec->nr, pvec->cold);
355 pagevec_reinit(pvec);
358 EXPORT_SYMBOL(__pagevec_lru_add);
360 void __pagevec_lru_add_active(struct pagevec *pvec)
362 int i;
363 struct zone *zone = NULL;
365 for (i = 0; i < pagevec_count(pvec); i++) {
366 struct page *page = pvec->pages[i];
367 struct zone *pagezone = page_zone(page);
369 if (pagezone != zone) {
370 if (zone)
371 spin_unlock_irq(&zone->lru_lock);
372 zone = pagezone;
373 spin_lock_irq(&zone->lru_lock);
375 BUG_ON(PageLRU(page));
376 SetPageLRU(page);
377 BUG_ON(PageActive(page));
378 SetPageActive(page);
379 add_page_to_active_list(zone, page);
381 if (zone)
382 spin_unlock_irq(&zone->lru_lock);
383 release_pages(pvec->pages, pvec->nr, pvec->cold);
384 pagevec_reinit(pvec);
388 * Try to drop buffers from the pages in a pagevec
390 void pagevec_strip(struct pagevec *pvec)
392 int i;
394 for (i = 0; i < pagevec_count(pvec); i++) {
395 struct page *page = pvec->pages[i];
397 if (PagePrivate(page) && !TestSetPageLocked(page)) {
398 if (PagePrivate(page))
399 try_to_release_page(page, 0);
400 unlock_page(page);
406 * pagevec_lookup - gang pagecache lookup
407 * @pvec: Where the resulting pages are placed
408 * @mapping: The address_space to search
409 * @start: The starting page index
410 * @nr_pages: The maximum number of pages
412 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
413 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
414 * reference against the pages in @pvec.
416 * The search returns a group of mapping-contiguous pages with ascending
417 * indexes. There may be holes in the indices due to not-present pages.
419 * pagevec_lookup() returns the number of pages which were found.
421 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
422 pgoff_t start, unsigned nr_pages)
424 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
425 return pagevec_count(pvec);
428 EXPORT_SYMBOL(pagevec_lookup);
430 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
431 pgoff_t *index, int tag, unsigned nr_pages)
433 pvec->nr = find_get_pages_tag(mapping, index, tag,
434 nr_pages, pvec->pages);
435 return pagevec_count(pvec);
438 EXPORT_SYMBOL(pagevec_lookup_tag);
440 #ifdef CONFIG_SMP
442 * We tolerate a little inaccuracy to avoid ping-ponging the counter between
443 * CPUs
445 #define ACCT_THRESHOLD max(16, NR_CPUS * 2)
447 static DEFINE_PER_CPU(long, committed_space) = 0;
449 void vm_acct_memory(long pages)
451 long *local;
453 preempt_disable();
454 local = &__get_cpu_var(committed_space);
455 *local += pages;
456 if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
457 atomic_add(*local, &vm_committed_space);
458 *local = 0;
460 preempt_enable();
463 #ifdef CONFIG_HOTPLUG_CPU
465 /* Drop the CPU's cached committed space back into the central pool. */
466 static int cpu_swap_callback(struct notifier_block *nfb,
467 unsigned long action,
468 void *hcpu)
470 long *committed;
472 committed = &per_cpu(committed_space, (long)hcpu);
473 if (action == CPU_DEAD) {
474 atomic_add(*committed, &vm_committed_space);
475 *committed = 0;
476 __lru_add_drain((long)hcpu);
478 return NOTIFY_OK;
480 #endif /* CONFIG_HOTPLUG_CPU */
481 #endif /* CONFIG_SMP */
483 #ifdef CONFIG_SMP
484 void percpu_counter_mod(struct percpu_counter *fbc, long amount)
486 long count;
487 long *pcount;
488 int cpu = get_cpu();
490 pcount = per_cpu_ptr(fbc->counters, cpu);
491 count = *pcount + amount;
492 if (count >= FBC_BATCH || count <= -FBC_BATCH) {
493 spin_lock(&fbc->lock);
494 fbc->count += count;
495 *pcount = 0;
496 spin_unlock(&fbc->lock);
497 } else {
498 *pcount = count;
500 put_cpu();
502 EXPORT_SYMBOL(percpu_counter_mod);
505 * Add up all the per-cpu counts, return the result. This is a more accurate
506 * but much slower version of percpu_counter_read_positive()
508 long percpu_counter_sum(struct percpu_counter *fbc)
510 long ret;
511 int cpu;
513 spin_lock(&fbc->lock);
514 ret = fbc->count;
515 for_each_possible_cpu(cpu) {
516 long *pcount = per_cpu_ptr(fbc->counters, cpu);
517 ret += *pcount;
519 spin_unlock(&fbc->lock);
520 return ret < 0 ? 0 : ret;
522 EXPORT_SYMBOL(percpu_counter_sum);
523 #endif
526 * Perform any setup for the swap system
528 void __init swap_setup(void)
530 unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
532 /* Use a smaller cluster for small-memory machines */
533 if (megs < 16)
534 page_cluster = 2;
535 else
536 page_cluster = 3;
538 * Right now other parts of the system means that we
539 * _really_ don't want to cluster much more
541 hotcpu_notifier(cpu_swap_callback, 0);