Linux 2.6.17.7
[linux/fpc-iii.git] / net / ipv4 / tcp_input.c
blobb5521a9d3dc1a3acbbbf35ca50b8425fb0f882ca
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
91 int sysctl_tcp_moderate_rcvbuf = 1;
92 int sysctl_tcp_abc = 1;
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
115 /* Adapt the MSS value used to make delayed ack decision to the
116 * real world.
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 const struct sk_buff *skb)
121 struct inet_connection_sock *icsk = inet_csk(sk);
122 const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 unsigned int len;
125 icsk->icsk_ack.last_seg_size = 0;
127 /* skb->len may jitter because of SACKs, even if peer
128 * sends good full-sized frames.
130 len = skb->len;
131 if (len >= icsk->icsk_ack.rcv_mss) {
132 icsk->icsk_ack.rcv_mss = len;
133 } else {
134 /* Otherwise, we make more careful check taking into account,
135 * that SACKs block is variable.
137 * "len" is invariant segment length, including TCP header.
139 len += skb->data - skb->h.raw;
140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 /* If PSH is not set, packet should be
142 * full sized, provided peer TCP is not badly broken.
143 * This observation (if it is correct 8)) allows
144 * to handle super-low mtu links fairly.
146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 /* Subtract also invariant (if peer is RFC compliant),
149 * tcp header plus fixed timestamp option length.
150 * Resulting "len" is MSS free of SACK jitter.
152 len -= tcp_sk(sk)->tcp_header_len;
153 icsk->icsk_ack.last_seg_size = len;
154 if (len == lss) {
155 icsk->icsk_ack.rcv_mss = len;
156 return;
159 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
163 static void tcp_incr_quickack(struct sock *sk)
165 struct inet_connection_sock *icsk = inet_csk(sk);
166 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
168 if (quickacks==0)
169 quickacks=2;
170 if (quickacks > icsk->icsk_ack.quick)
171 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174 void tcp_enter_quickack_mode(struct sock *sk)
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 tcp_incr_quickack(sk);
178 icsk->icsk_ack.pingpong = 0;
179 icsk->icsk_ack.ato = TCP_ATO_MIN;
182 /* Send ACKs quickly, if "quick" count is not exhausted
183 * and the session is not interactive.
186 static inline int tcp_in_quickack_mode(const struct sock *sk)
188 const struct inet_connection_sock *icsk = inet_csk(sk);
189 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192 /* Buffer size and advertised window tuning.
194 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197 static void tcp_fixup_sndbuf(struct sock *sk)
199 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
200 sizeof(struct sk_buff);
202 if (sk->sk_sndbuf < 3 * sndmem)
203 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
208 * All tcp_full_space() is split to two parts: "network" buffer, allocated
209 * forward and advertised in receiver window (tp->rcv_wnd) and
210 * "application buffer", required to isolate scheduling/application
211 * latencies from network.
212 * window_clamp is maximal advertised window. It can be less than
213 * tcp_full_space(), in this case tcp_full_space() - window_clamp
214 * is reserved for "application" buffer. The less window_clamp is
215 * the smoother our behaviour from viewpoint of network, but the lower
216 * throughput and the higher sensitivity of the connection to losses. 8)
218 * rcv_ssthresh is more strict window_clamp used at "slow start"
219 * phase to predict further behaviour of this connection.
220 * It is used for two goals:
221 * - to enforce header prediction at sender, even when application
222 * requires some significant "application buffer". It is check #1.
223 * - to prevent pruning of receive queue because of misprediction
224 * of receiver window. Check #2.
226 * The scheme does not work when sender sends good segments opening
227 * window and then starts to feed us spaghetti. But it should work
228 * in common situations. Otherwise, we have to rely on queue collapsing.
231 /* Slow part of check#2. */
232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
233 const struct sk_buff *skb)
235 /* Optimize this! */
236 int truesize = tcp_win_from_space(skb->truesize)/2;
237 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
239 while (tp->rcv_ssthresh <= window) {
240 if (truesize <= skb->len)
241 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
243 truesize >>= 1;
244 window >>= 1;
246 return 0;
249 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
250 struct sk_buff *skb)
252 /* Check #1 */
253 if (tp->rcv_ssthresh < tp->window_clamp &&
254 (int)tp->rcv_ssthresh < tcp_space(sk) &&
255 !tcp_memory_pressure) {
256 int incr;
258 /* Check #2. Increase window, if skb with such overhead
259 * will fit to rcvbuf in future.
261 if (tcp_win_from_space(skb->truesize) <= skb->len)
262 incr = 2*tp->advmss;
263 else
264 incr = __tcp_grow_window(sk, tp, skb);
266 if (incr) {
267 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
268 inet_csk(sk)->icsk_ack.quick |= 1;
273 /* 3. Tuning rcvbuf, when connection enters established state. */
275 static void tcp_fixup_rcvbuf(struct sock *sk)
277 struct tcp_sock *tp = tcp_sk(sk);
278 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
280 /* Try to select rcvbuf so that 4 mss-sized segments
281 * will fit to window and corresponding skbs will fit to our rcvbuf.
282 * (was 3; 4 is minimum to allow fast retransmit to work.)
284 while (tcp_win_from_space(rcvmem) < tp->advmss)
285 rcvmem += 128;
286 if (sk->sk_rcvbuf < 4 * rcvmem)
287 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290 /* 4. Try to fixup all. It is made immediately after connection enters
291 * established state.
293 static void tcp_init_buffer_space(struct sock *sk)
295 struct tcp_sock *tp = tcp_sk(sk);
296 int maxwin;
298 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
299 tcp_fixup_rcvbuf(sk);
300 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
301 tcp_fixup_sndbuf(sk);
303 tp->rcvq_space.space = tp->rcv_wnd;
305 maxwin = tcp_full_space(sk);
307 if (tp->window_clamp >= maxwin) {
308 tp->window_clamp = maxwin;
310 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
311 tp->window_clamp = max(maxwin -
312 (maxwin >> sysctl_tcp_app_win),
313 4 * tp->advmss);
316 /* Force reservation of one segment. */
317 if (sysctl_tcp_app_win &&
318 tp->window_clamp > 2 * tp->advmss &&
319 tp->window_clamp + tp->advmss > maxwin)
320 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
322 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
323 tp->snd_cwnd_stamp = tcp_time_stamp;
326 /* 5. Recalculate window clamp after socket hit its memory bounds. */
327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
329 struct inet_connection_sock *icsk = inet_csk(sk);
331 icsk->icsk_ack.quick = 0;
333 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
334 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
335 !tcp_memory_pressure &&
336 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
337 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
338 sysctl_tcp_rmem[2]);
340 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
341 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
345 /* Initialize RCV_MSS value.
346 * RCV_MSS is an our guess about MSS used by the peer.
347 * We haven't any direct information about the MSS.
348 * It's better to underestimate the RCV_MSS rather than overestimate.
349 * Overestimations make us ACKing less frequently than needed.
350 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
352 void tcp_initialize_rcv_mss(struct sock *sk)
354 struct tcp_sock *tp = tcp_sk(sk);
355 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
357 hint = min(hint, tp->rcv_wnd/2);
358 hint = min(hint, TCP_MIN_RCVMSS);
359 hint = max(hint, TCP_MIN_MSS);
361 inet_csk(sk)->icsk_ack.rcv_mss = hint;
364 /* Receiver "autotuning" code.
366 * The algorithm for RTT estimation w/o timestamps is based on
367 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
368 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
370 * More detail on this code can be found at
371 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
372 * though this reference is out of date. A new paper
373 * is pending.
375 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
377 u32 new_sample = tp->rcv_rtt_est.rtt;
378 long m = sample;
380 if (m == 0)
381 m = 1;
383 if (new_sample != 0) {
384 /* If we sample in larger samples in the non-timestamp
385 * case, we could grossly overestimate the RTT especially
386 * with chatty applications or bulk transfer apps which
387 * are stalled on filesystem I/O.
389 * Also, since we are only going for a minimum in the
390 * non-timestamp case, we do not smooth things out
391 * else with timestamps disabled convergence takes too
392 * long.
394 if (!win_dep) {
395 m -= (new_sample >> 3);
396 new_sample += m;
397 } else if (m < new_sample)
398 new_sample = m << 3;
399 } else {
400 /* No previous measure. */
401 new_sample = m << 3;
404 if (tp->rcv_rtt_est.rtt != new_sample)
405 tp->rcv_rtt_est.rtt = new_sample;
408 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
410 if (tp->rcv_rtt_est.time == 0)
411 goto new_measure;
412 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
413 return;
414 tcp_rcv_rtt_update(tp,
415 jiffies - tp->rcv_rtt_est.time,
418 new_measure:
419 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
420 tp->rcv_rtt_est.time = tcp_time_stamp;
423 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
425 struct tcp_sock *tp = tcp_sk(sk);
426 if (tp->rx_opt.rcv_tsecr &&
427 (TCP_SKB_CB(skb)->end_seq -
428 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
429 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
433 * This function should be called every time data is copied to user space.
434 * It calculates the appropriate TCP receive buffer space.
436 void tcp_rcv_space_adjust(struct sock *sk)
438 struct tcp_sock *tp = tcp_sk(sk);
439 int time;
440 int space;
442 if (tp->rcvq_space.time == 0)
443 goto new_measure;
445 time = tcp_time_stamp - tp->rcvq_space.time;
446 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
447 tp->rcv_rtt_est.rtt == 0)
448 return;
450 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
452 space = max(tp->rcvq_space.space, space);
454 if (tp->rcvq_space.space != space) {
455 int rcvmem;
457 tp->rcvq_space.space = space;
459 if (sysctl_tcp_moderate_rcvbuf &&
460 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
461 int new_clamp = space;
463 /* Receive space grows, normalize in order to
464 * take into account packet headers and sk_buff
465 * structure overhead.
467 space /= tp->advmss;
468 if (!space)
469 space = 1;
470 rcvmem = (tp->advmss + MAX_TCP_HEADER +
471 16 + sizeof(struct sk_buff));
472 while (tcp_win_from_space(rcvmem) < tp->advmss)
473 rcvmem += 128;
474 space *= rcvmem;
475 space = min(space, sysctl_tcp_rmem[2]);
476 if (space > sk->sk_rcvbuf) {
477 sk->sk_rcvbuf = space;
479 /* Make the window clamp follow along. */
480 tp->window_clamp = new_clamp;
485 new_measure:
486 tp->rcvq_space.seq = tp->copied_seq;
487 tp->rcvq_space.time = tcp_time_stamp;
490 /* There is something which you must keep in mind when you analyze the
491 * behavior of the tp->ato delayed ack timeout interval. When a
492 * connection starts up, we want to ack as quickly as possible. The
493 * problem is that "good" TCP's do slow start at the beginning of data
494 * transmission. The means that until we send the first few ACK's the
495 * sender will sit on his end and only queue most of his data, because
496 * he can only send snd_cwnd unacked packets at any given time. For
497 * each ACK we send, he increments snd_cwnd and transmits more of his
498 * queue. -DaveM
500 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
502 struct inet_connection_sock *icsk = inet_csk(sk);
503 u32 now;
505 inet_csk_schedule_ack(sk);
507 tcp_measure_rcv_mss(sk, skb);
509 tcp_rcv_rtt_measure(tp);
511 now = tcp_time_stamp;
513 if (!icsk->icsk_ack.ato) {
514 /* The _first_ data packet received, initialize
515 * delayed ACK engine.
517 tcp_incr_quickack(sk);
518 icsk->icsk_ack.ato = TCP_ATO_MIN;
519 } else {
520 int m = now - icsk->icsk_ack.lrcvtime;
522 if (m <= TCP_ATO_MIN/2) {
523 /* The fastest case is the first. */
524 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
525 } else if (m < icsk->icsk_ack.ato) {
526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
527 if (icsk->icsk_ack.ato > icsk->icsk_rto)
528 icsk->icsk_ack.ato = icsk->icsk_rto;
529 } else if (m > icsk->icsk_rto) {
530 /* Too long gap. Apparently sender failed to
531 * restart window, so that we send ACKs quickly.
533 tcp_incr_quickack(sk);
534 sk_stream_mem_reclaim(sk);
537 icsk->icsk_ack.lrcvtime = now;
539 TCP_ECN_check_ce(tp, skb);
541 if (skb->len >= 128)
542 tcp_grow_window(sk, tp, skb);
545 /* Called to compute a smoothed rtt estimate. The data fed to this
546 * routine either comes from timestamps, or from segments that were
547 * known _not_ to have been retransmitted [see Karn/Partridge
548 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
549 * piece by Van Jacobson.
550 * NOTE: the next three routines used to be one big routine.
551 * To save cycles in the RFC 1323 implementation it was better to break
552 * it up into three procedures. -- erics
554 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
556 struct tcp_sock *tp = tcp_sk(sk);
557 long m = mrtt; /* RTT */
559 /* The following amusing code comes from Jacobson's
560 * article in SIGCOMM '88. Note that rtt and mdev
561 * are scaled versions of rtt and mean deviation.
562 * This is designed to be as fast as possible
563 * m stands for "measurement".
565 * On a 1990 paper the rto value is changed to:
566 * RTO = rtt + 4 * mdev
568 * Funny. This algorithm seems to be very broken.
569 * These formulae increase RTO, when it should be decreased, increase
570 * too slowly, when it should be increased quickly, decrease too quickly
571 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
572 * does not matter how to _calculate_ it. Seems, it was trap
573 * that VJ failed to avoid. 8)
575 if(m == 0)
576 m = 1;
577 if (tp->srtt != 0) {
578 m -= (tp->srtt >> 3); /* m is now error in rtt est */
579 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
580 if (m < 0) {
581 m = -m; /* m is now abs(error) */
582 m -= (tp->mdev >> 2); /* similar update on mdev */
583 /* This is similar to one of Eifel findings.
584 * Eifel blocks mdev updates when rtt decreases.
585 * This solution is a bit different: we use finer gain
586 * for mdev in this case (alpha*beta).
587 * Like Eifel it also prevents growth of rto,
588 * but also it limits too fast rto decreases,
589 * happening in pure Eifel.
591 if (m > 0)
592 m >>= 3;
593 } else {
594 m -= (tp->mdev >> 2); /* similar update on mdev */
596 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
597 if (tp->mdev > tp->mdev_max) {
598 tp->mdev_max = tp->mdev;
599 if (tp->mdev_max > tp->rttvar)
600 tp->rttvar = tp->mdev_max;
602 if (after(tp->snd_una, tp->rtt_seq)) {
603 if (tp->mdev_max < tp->rttvar)
604 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
605 tp->rtt_seq = tp->snd_nxt;
606 tp->mdev_max = TCP_RTO_MIN;
608 } else {
609 /* no previous measure. */
610 tp->srtt = m<<3; /* take the measured time to be rtt */
611 tp->mdev = m<<1; /* make sure rto = 3*rtt */
612 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
613 tp->rtt_seq = tp->snd_nxt;
617 /* Calculate rto without backoff. This is the second half of Van Jacobson's
618 * routine referred to above.
620 static inline void tcp_set_rto(struct sock *sk)
622 const struct tcp_sock *tp = tcp_sk(sk);
623 /* Old crap is replaced with new one. 8)
625 * More seriously:
626 * 1. If rtt variance happened to be less 50msec, it is hallucination.
627 * It cannot be less due to utterly erratic ACK generation made
628 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
629 * to do with delayed acks, because at cwnd>2 true delack timeout
630 * is invisible. Actually, Linux-2.4 also generates erratic
631 * ACKs in some circumstances.
633 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
635 /* 2. Fixups made earlier cannot be right.
636 * If we do not estimate RTO correctly without them,
637 * all the algo is pure shit and should be replaced
638 * with correct one. It is exactly, which we pretend to do.
642 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
643 * guarantees that rto is higher.
645 static inline void tcp_bound_rto(struct sock *sk)
647 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
648 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
651 /* Save metrics learned by this TCP session.
652 This function is called only, when TCP finishes successfully
653 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
655 void tcp_update_metrics(struct sock *sk)
657 struct tcp_sock *tp = tcp_sk(sk);
658 struct dst_entry *dst = __sk_dst_get(sk);
660 if (sysctl_tcp_nometrics_save)
661 return;
663 dst_confirm(dst);
665 if (dst && (dst->flags&DST_HOST)) {
666 const struct inet_connection_sock *icsk = inet_csk(sk);
667 int m;
669 if (icsk->icsk_backoff || !tp->srtt) {
670 /* This session failed to estimate rtt. Why?
671 * Probably, no packets returned in time.
672 * Reset our results.
674 if (!(dst_metric_locked(dst, RTAX_RTT)))
675 dst->metrics[RTAX_RTT-1] = 0;
676 return;
679 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
681 /* If newly calculated rtt larger than stored one,
682 * store new one. Otherwise, use EWMA. Remember,
683 * rtt overestimation is always better than underestimation.
685 if (!(dst_metric_locked(dst, RTAX_RTT))) {
686 if (m <= 0)
687 dst->metrics[RTAX_RTT-1] = tp->srtt;
688 else
689 dst->metrics[RTAX_RTT-1] -= (m>>3);
692 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
693 if (m < 0)
694 m = -m;
696 /* Scale deviation to rttvar fixed point */
697 m >>= 1;
698 if (m < tp->mdev)
699 m = tp->mdev;
701 if (m >= dst_metric(dst, RTAX_RTTVAR))
702 dst->metrics[RTAX_RTTVAR-1] = m;
703 else
704 dst->metrics[RTAX_RTTVAR-1] -=
705 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 if (tp->snd_ssthresh >= 0xFFFF) {
709 /* Slow start still did not finish. */
710 if (dst_metric(dst, RTAX_SSTHRESH) &&
711 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
712 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
713 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
714 if (!dst_metric_locked(dst, RTAX_CWND) &&
715 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
716 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
717 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
718 icsk->icsk_ca_state == TCP_CA_Open) {
719 /* Cong. avoidance phase, cwnd is reliable. */
720 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
721 dst->metrics[RTAX_SSTHRESH-1] =
722 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
723 if (!dst_metric_locked(dst, RTAX_CWND))
724 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
725 } else {
726 /* Else slow start did not finish, cwnd is non-sense,
727 ssthresh may be also invalid.
729 if (!dst_metric_locked(dst, RTAX_CWND))
730 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
731 if (dst->metrics[RTAX_SSTHRESH-1] &&
732 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
733 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
734 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
738 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
739 tp->reordering != sysctl_tcp_reordering)
740 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
745 /* Numbers are taken from RFC2414. */
746 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
748 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
750 if (!cwnd) {
751 if (tp->mss_cache > 1460)
752 cwnd = 2;
753 else
754 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
756 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759 /* Set slow start threshold and cwnd not falling to slow start */
760 void tcp_enter_cwr(struct sock *sk)
762 struct tcp_sock *tp = tcp_sk(sk);
764 tp->prior_ssthresh = 0;
765 tp->bytes_acked = 0;
766 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
767 tp->undo_marker = 0;
768 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
769 tp->snd_cwnd = min(tp->snd_cwnd,
770 tcp_packets_in_flight(tp) + 1U);
771 tp->snd_cwnd_cnt = 0;
772 tp->high_seq = tp->snd_nxt;
773 tp->snd_cwnd_stamp = tcp_time_stamp;
774 TCP_ECN_queue_cwr(tp);
776 tcp_set_ca_state(sk, TCP_CA_CWR);
780 /* Initialize metrics on socket. */
782 static void tcp_init_metrics(struct sock *sk)
784 struct tcp_sock *tp = tcp_sk(sk);
785 struct dst_entry *dst = __sk_dst_get(sk);
787 if (dst == NULL)
788 goto reset;
790 dst_confirm(dst);
792 if (dst_metric_locked(dst, RTAX_CWND))
793 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
794 if (dst_metric(dst, RTAX_SSTHRESH)) {
795 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
796 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
797 tp->snd_ssthresh = tp->snd_cwnd_clamp;
799 if (dst_metric(dst, RTAX_REORDERING) &&
800 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
801 tp->rx_opt.sack_ok &= ~2;
802 tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 if (dst_metric(dst, RTAX_RTT) == 0)
806 goto reset;
808 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
809 goto reset;
811 /* Initial rtt is determined from SYN,SYN-ACK.
812 * The segment is small and rtt may appear much
813 * less than real one. Use per-dst memory
814 * to make it more realistic.
816 * A bit of theory. RTT is time passed after "normal" sized packet
817 * is sent until it is ACKed. In normal circumstances sending small
818 * packets force peer to delay ACKs and calculation is correct too.
819 * The algorithm is adaptive and, provided we follow specs, it
820 * NEVER underestimate RTT. BUT! If peer tries to make some clever
821 * tricks sort of "quick acks" for time long enough to decrease RTT
822 * to low value, and then abruptly stops to do it and starts to delay
823 * ACKs, wait for troubles.
825 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
826 tp->srtt = dst_metric(dst, RTAX_RTT);
827 tp->rtt_seq = tp->snd_nxt;
829 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
830 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
831 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
833 tcp_set_rto(sk);
834 tcp_bound_rto(sk);
835 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
836 goto reset;
837 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
838 tp->snd_cwnd_stamp = tcp_time_stamp;
839 return;
841 reset:
842 /* Play conservative. If timestamps are not
843 * supported, TCP will fail to recalculate correct
844 * rtt, if initial rto is too small. FORGET ALL AND RESET!
846 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
847 tp->srtt = 0;
848 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
849 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
853 static void tcp_update_reordering(struct sock *sk, const int metric,
854 const int ts)
856 struct tcp_sock *tp = tcp_sk(sk);
857 if (metric > tp->reordering) {
858 tp->reordering = min(TCP_MAX_REORDERING, metric);
860 /* This exciting event is worth to be remembered. 8) */
861 if (ts)
862 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
863 else if (IsReno(tp))
864 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
865 else if (IsFack(tp))
866 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
867 else
868 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
869 #if FASTRETRANS_DEBUG > 1
870 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
871 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
872 tp->reordering,
873 tp->fackets_out,
874 tp->sacked_out,
875 tp->undo_marker ? tp->undo_retrans : 0);
876 #endif
877 /* Disable FACK yet. */
878 tp->rx_opt.sack_ok &= ~2;
882 /* This procedure tags the retransmission queue when SACKs arrive.
884 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
885 * Packets in queue with these bits set are counted in variables
886 * sacked_out, retrans_out and lost_out, correspondingly.
888 * Valid combinations are:
889 * Tag InFlight Description
890 * 0 1 - orig segment is in flight.
891 * S 0 - nothing flies, orig reached receiver.
892 * L 0 - nothing flies, orig lost by net.
893 * R 2 - both orig and retransmit are in flight.
894 * L|R 1 - orig is lost, retransmit is in flight.
895 * S|R 1 - orig reached receiver, retrans is still in flight.
896 * (L|S|R is logically valid, it could occur when L|R is sacked,
897 * but it is equivalent to plain S and code short-curcuits it to S.
898 * L|S is logically invalid, it would mean -1 packet in flight 8))
900 * These 6 states form finite state machine, controlled by the following events:
901 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
902 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
903 * 3. Loss detection event of one of three flavors:
904 * A. Scoreboard estimator decided the packet is lost.
905 * A'. Reno "three dupacks" marks head of queue lost.
906 * A''. Its FACK modfication, head until snd.fack is lost.
907 * B. SACK arrives sacking data transmitted after never retransmitted
908 * hole was sent out.
909 * C. SACK arrives sacking SND.NXT at the moment, when the
910 * segment was retransmitted.
911 * 4. D-SACK added new rule: D-SACK changes any tag to S.
913 * It is pleasant to note, that state diagram turns out to be commutative,
914 * so that we are allowed not to be bothered by order of our actions,
915 * when multiple events arrive simultaneously. (see the function below).
917 * Reordering detection.
918 * --------------------
919 * Reordering metric is maximal distance, which a packet can be displaced
920 * in packet stream. With SACKs we can estimate it:
922 * 1. SACK fills old hole and the corresponding segment was not
923 * ever retransmitted -> reordering. Alas, we cannot use it
924 * when segment was retransmitted.
925 * 2. The last flaw is solved with D-SACK. D-SACK arrives
926 * for retransmitted and already SACKed segment -> reordering..
927 * Both of these heuristics are not used in Loss state, when we cannot
928 * account for retransmits accurately.
930 static int
931 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
933 const struct inet_connection_sock *icsk = inet_csk(sk);
934 struct tcp_sock *tp = tcp_sk(sk);
935 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
936 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
937 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
938 int reord = tp->packets_out;
939 int prior_fackets;
940 u32 lost_retrans = 0;
941 int flag = 0;
942 int dup_sack = 0;
943 int i;
945 if (!tp->sacked_out)
946 tp->fackets_out = 0;
947 prior_fackets = tp->fackets_out;
949 /* SACK fastpath:
950 * if the only SACK change is the increase of the end_seq of
951 * the first block then only apply that SACK block
952 * and use retrans queue hinting otherwise slowpath */
953 flag = 1;
954 for (i = 0; i< num_sacks; i++) {
955 __u32 start_seq = ntohl(sp[i].start_seq);
956 __u32 end_seq = ntohl(sp[i].end_seq);
958 if (i == 0){
959 if (tp->recv_sack_cache[i].start_seq != start_seq)
960 flag = 0;
961 } else {
962 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
963 (tp->recv_sack_cache[i].end_seq != end_seq))
964 flag = 0;
966 tp->recv_sack_cache[i].start_seq = start_seq;
967 tp->recv_sack_cache[i].end_seq = end_seq;
969 /* Check for D-SACK. */
970 if (i == 0) {
971 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
973 if (before(start_seq, ack)) {
974 dup_sack = 1;
975 tp->rx_opt.sack_ok |= 4;
976 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
977 } else if (num_sacks > 1 &&
978 !after(end_seq, ntohl(sp[1].end_seq)) &&
979 !before(start_seq, ntohl(sp[1].start_seq))) {
980 dup_sack = 1;
981 tp->rx_opt.sack_ok |= 4;
982 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
985 /* D-SACK for already forgotten data...
986 * Do dumb counting. */
987 if (dup_sack &&
988 !after(end_seq, prior_snd_una) &&
989 after(end_seq, tp->undo_marker))
990 tp->undo_retrans--;
992 /* Eliminate too old ACKs, but take into
993 * account more or less fresh ones, they can
994 * contain valid SACK info.
996 if (before(ack, prior_snd_una - tp->max_window))
997 return 0;
1001 if (flag)
1002 num_sacks = 1;
1003 else {
1004 int j;
1005 tp->fastpath_skb_hint = NULL;
1007 /* order SACK blocks to allow in order walk of the retrans queue */
1008 for (i = num_sacks-1; i > 0; i--) {
1009 for (j = 0; j < i; j++){
1010 if (after(ntohl(sp[j].start_seq),
1011 ntohl(sp[j+1].start_seq))){
1012 sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq);
1013 sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq);
1014 sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq);
1015 sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq);
1022 /* clear flag as used for different purpose in following code */
1023 flag = 0;
1025 for (i=0; i<num_sacks; i++, sp++) {
1026 struct sk_buff *skb;
1027 __u32 start_seq = ntohl(sp->start_seq);
1028 __u32 end_seq = ntohl(sp->end_seq);
1029 int fack_count;
1031 /* Use SACK fastpath hint if valid */
1032 if (tp->fastpath_skb_hint) {
1033 skb = tp->fastpath_skb_hint;
1034 fack_count = tp->fastpath_cnt_hint;
1035 } else {
1036 skb = sk->sk_write_queue.next;
1037 fack_count = 0;
1040 /* Event "B" in the comment above. */
1041 if (after(end_seq, tp->high_seq))
1042 flag |= FLAG_DATA_LOST;
1044 sk_stream_for_retrans_queue_from(skb, sk) {
1045 int in_sack, pcount;
1046 u8 sacked;
1048 tp->fastpath_skb_hint = skb;
1049 tp->fastpath_cnt_hint = fack_count;
1051 /* The retransmission queue is always in order, so
1052 * we can short-circuit the walk early.
1054 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1055 break;
1057 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1058 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1060 pcount = tcp_skb_pcount(skb);
1062 if (pcount > 1 && !in_sack &&
1063 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1064 unsigned int pkt_len;
1066 in_sack = !after(start_seq,
1067 TCP_SKB_CB(skb)->seq);
1069 if (!in_sack)
1070 pkt_len = (start_seq -
1071 TCP_SKB_CB(skb)->seq);
1072 else
1073 pkt_len = (end_seq -
1074 TCP_SKB_CB(skb)->seq);
1075 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size))
1076 break;
1077 pcount = tcp_skb_pcount(skb);
1080 fack_count += pcount;
1082 sacked = TCP_SKB_CB(skb)->sacked;
1084 /* Account D-SACK for retransmitted packet. */
1085 if ((dup_sack && in_sack) &&
1086 (sacked & TCPCB_RETRANS) &&
1087 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1088 tp->undo_retrans--;
1090 /* The frame is ACKed. */
1091 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1092 if (sacked&TCPCB_RETRANS) {
1093 if ((dup_sack && in_sack) &&
1094 (sacked&TCPCB_SACKED_ACKED))
1095 reord = min(fack_count, reord);
1096 } else {
1097 /* If it was in a hole, we detected reordering. */
1098 if (fack_count < prior_fackets &&
1099 !(sacked&TCPCB_SACKED_ACKED))
1100 reord = min(fack_count, reord);
1103 /* Nothing to do; acked frame is about to be dropped. */
1104 continue;
1107 if ((sacked&TCPCB_SACKED_RETRANS) &&
1108 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1109 (!lost_retrans || after(end_seq, lost_retrans)))
1110 lost_retrans = end_seq;
1112 if (!in_sack)
1113 continue;
1115 if (!(sacked&TCPCB_SACKED_ACKED)) {
1116 if (sacked & TCPCB_SACKED_RETRANS) {
1117 /* If the segment is not tagged as lost,
1118 * we do not clear RETRANS, believing
1119 * that retransmission is still in flight.
1121 if (sacked & TCPCB_LOST) {
1122 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1123 tp->lost_out -= tcp_skb_pcount(skb);
1124 tp->retrans_out -= tcp_skb_pcount(skb);
1126 /* clear lost hint */
1127 tp->retransmit_skb_hint = NULL;
1129 } else {
1130 /* New sack for not retransmitted frame,
1131 * which was in hole. It is reordering.
1133 if (!(sacked & TCPCB_RETRANS) &&
1134 fack_count < prior_fackets)
1135 reord = min(fack_count, reord);
1137 if (sacked & TCPCB_LOST) {
1138 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1139 tp->lost_out -= tcp_skb_pcount(skb);
1141 /* clear lost hint */
1142 tp->retransmit_skb_hint = NULL;
1146 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1147 flag |= FLAG_DATA_SACKED;
1148 tp->sacked_out += tcp_skb_pcount(skb);
1150 if (fack_count > tp->fackets_out)
1151 tp->fackets_out = fack_count;
1152 } else {
1153 if (dup_sack && (sacked&TCPCB_RETRANS))
1154 reord = min(fack_count, reord);
1157 /* D-SACK. We can detect redundant retransmission
1158 * in S|R and plain R frames and clear it.
1159 * undo_retrans is decreased above, L|R frames
1160 * are accounted above as well.
1162 if (dup_sack &&
1163 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1164 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1165 tp->retrans_out -= tcp_skb_pcount(skb);
1166 tp->retransmit_skb_hint = NULL;
1171 /* Check for lost retransmit. This superb idea is
1172 * borrowed from "ratehalving". Event "C".
1173 * Later note: FACK people cheated me again 8),
1174 * we have to account for reordering! Ugly,
1175 * but should help.
1177 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1178 struct sk_buff *skb;
1180 sk_stream_for_retrans_queue(skb, sk) {
1181 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1182 break;
1183 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1184 continue;
1185 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1186 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1187 (IsFack(tp) ||
1188 !before(lost_retrans,
1189 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1190 tp->mss_cache))) {
1191 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1192 tp->retrans_out -= tcp_skb_pcount(skb);
1194 /* clear lost hint */
1195 tp->retransmit_skb_hint = NULL;
1197 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1198 tp->lost_out += tcp_skb_pcount(skb);
1199 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1200 flag |= FLAG_DATA_SACKED;
1201 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1207 tp->left_out = tp->sacked_out + tp->lost_out;
1209 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1210 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1212 #if FASTRETRANS_DEBUG > 0
1213 BUG_TRAP((int)tp->sacked_out >= 0);
1214 BUG_TRAP((int)tp->lost_out >= 0);
1215 BUG_TRAP((int)tp->retrans_out >= 0);
1216 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1217 #endif
1218 return flag;
1221 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1222 * segments to see from the next ACKs whether any data was really missing.
1223 * If the RTO was spurious, new ACKs should arrive.
1225 void tcp_enter_frto(struct sock *sk)
1227 const struct inet_connection_sock *icsk = inet_csk(sk);
1228 struct tcp_sock *tp = tcp_sk(sk);
1229 struct sk_buff *skb;
1231 tp->frto_counter = 1;
1233 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1234 tp->snd_una == tp->high_seq ||
1235 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1236 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1237 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1238 tcp_ca_event(sk, CA_EVENT_FRTO);
1241 /* Have to clear retransmission markers here to keep the bookkeeping
1242 * in shape, even though we are not yet in Loss state.
1243 * If something was really lost, it is eventually caught up
1244 * in tcp_enter_frto_loss.
1246 tp->retrans_out = 0;
1247 tp->undo_marker = tp->snd_una;
1248 tp->undo_retrans = 0;
1250 sk_stream_for_retrans_queue(skb, sk) {
1251 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1253 tcp_sync_left_out(tp);
1255 tcp_set_ca_state(sk, TCP_CA_Open);
1256 tp->frto_highmark = tp->snd_nxt;
1259 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1260 * which indicates that we should follow the traditional RTO recovery,
1261 * i.e. mark everything lost and do go-back-N retransmission.
1263 static void tcp_enter_frto_loss(struct sock *sk)
1265 struct tcp_sock *tp = tcp_sk(sk);
1266 struct sk_buff *skb;
1267 int cnt = 0;
1269 tp->sacked_out = 0;
1270 tp->lost_out = 0;
1271 tp->fackets_out = 0;
1273 sk_stream_for_retrans_queue(skb, sk) {
1274 cnt += tcp_skb_pcount(skb);
1275 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1276 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1278 /* Do not mark those segments lost that were
1279 * forward transmitted after RTO
1281 if (!after(TCP_SKB_CB(skb)->end_seq,
1282 tp->frto_highmark)) {
1283 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1284 tp->lost_out += tcp_skb_pcount(skb);
1286 } else {
1287 tp->sacked_out += tcp_skb_pcount(skb);
1288 tp->fackets_out = cnt;
1291 tcp_sync_left_out(tp);
1293 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1294 tp->snd_cwnd_cnt = 0;
1295 tp->snd_cwnd_stamp = tcp_time_stamp;
1296 tp->undo_marker = 0;
1297 tp->frto_counter = 0;
1299 tp->reordering = min_t(unsigned int, tp->reordering,
1300 sysctl_tcp_reordering);
1301 tcp_set_ca_state(sk, TCP_CA_Loss);
1302 tp->high_seq = tp->frto_highmark;
1303 TCP_ECN_queue_cwr(tp);
1305 clear_all_retrans_hints(tp);
1308 void tcp_clear_retrans(struct tcp_sock *tp)
1310 tp->left_out = 0;
1311 tp->retrans_out = 0;
1313 tp->fackets_out = 0;
1314 tp->sacked_out = 0;
1315 tp->lost_out = 0;
1317 tp->undo_marker = 0;
1318 tp->undo_retrans = 0;
1321 /* Enter Loss state. If "how" is not zero, forget all SACK information
1322 * and reset tags completely, otherwise preserve SACKs. If receiver
1323 * dropped its ofo queue, we will know this due to reneging detection.
1325 void tcp_enter_loss(struct sock *sk, int how)
1327 const struct inet_connection_sock *icsk = inet_csk(sk);
1328 struct tcp_sock *tp = tcp_sk(sk);
1329 struct sk_buff *skb;
1330 int cnt = 0;
1332 /* Reduce ssthresh if it has not yet been made inside this window. */
1333 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1334 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1335 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1336 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1337 tcp_ca_event(sk, CA_EVENT_LOSS);
1339 tp->snd_cwnd = 1;
1340 tp->snd_cwnd_cnt = 0;
1341 tp->snd_cwnd_stamp = tcp_time_stamp;
1343 tp->bytes_acked = 0;
1344 tcp_clear_retrans(tp);
1346 /* Push undo marker, if it was plain RTO and nothing
1347 * was retransmitted. */
1348 if (!how)
1349 tp->undo_marker = tp->snd_una;
1351 sk_stream_for_retrans_queue(skb, sk) {
1352 cnt += tcp_skb_pcount(skb);
1353 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1354 tp->undo_marker = 0;
1355 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1356 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1357 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1358 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1359 tp->lost_out += tcp_skb_pcount(skb);
1360 } else {
1361 tp->sacked_out += tcp_skb_pcount(skb);
1362 tp->fackets_out = cnt;
1365 tcp_sync_left_out(tp);
1367 tp->reordering = min_t(unsigned int, tp->reordering,
1368 sysctl_tcp_reordering);
1369 tcp_set_ca_state(sk, TCP_CA_Loss);
1370 tp->high_seq = tp->snd_nxt;
1371 TCP_ECN_queue_cwr(tp);
1373 clear_all_retrans_hints(tp);
1376 static int tcp_check_sack_reneging(struct sock *sk)
1378 struct sk_buff *skb;
1380 /* If ACK arrived pointing to a remembered SACK,
1381 * it means that our remembered SACKs do not reflect
1382 * real state of receiver i.e.
1383 * receiver _host_ is heavily congested (or buggy).
1384 * Do processing similar to RTO timeout.
1386 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1387 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1388 struct inet_connection_sock *icsk = inet_csk(sk);
1389 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1391 tcp_enter_loss(sk, 1);
1392 icsk->icsk_retransmits++;
1393 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1394 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1395 icsk->icsk_rto, TCP_RTO_MAX);
1396 return 1;
1398 return 0;
1401 static inline int tcp_fackets_out(struct tcp_sock *tp)
1403 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1406 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1408 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1411 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1413 return tp->packets_out &&
1414 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1417 /* Linux NewReno/SACK/FACK/ECN state machine.
1418 * --------------------------------------
1420 * "Open" Normal state, no dubious events, fast path.
1421 * "Disorder" In all the respects it is "Open",
1422 * but requires a bit more attention. It is entered when
1423 * we see some SACKs or dupacks. It is split of "Open"
1424 * mainly to move some processing from fast path to slow one.
1425 * "CWR" CWND was reduced due to some Congestion Notification event.
1426 * It can be ECN, ICMP source quench, local device congestion.
1427 * "Recovery" CWND was reduced, we are fast-retransmitting.
1428 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1430 * tcp_fastretrans_alert() is entered:
1431 * - each incoming ACK, if state is not "Open"
1432 * - when arrived ACK is unusual, namely:
1433 * * SACK
1434 * * Duplicate ACK.
1435 * * ECN ECE.
1437 * Counting packets in flight is pretty simple.
1439 * in_flight = packets_out - left_out + retrans_out
1441 * packets_out is SND.NXT-SND.UNA counted in packets.
1443 * retrans_out is number of retransmitted segments.
1445 * left_out is number of segments left network, but not ACKed yet.
1447 * left_out = sacked_out + lost_out
1449 * sacked_out: Packets, which arrived to receiver out of order
1450 * and hence not ACKed. With SACKs this number is simply
1451 * amount of SACKed data. Even without SACKs
1452 * it is easy to give pretty reliable estimate of this number,
1453 * counting duplicate ACKs.
1455 * lost_out: Packets lost by network. TCP has no explicit
1456 * "loss notification" feedback from network (for now).
1457 * It means that this number can be only _guessed_.
1458 * Actually, it is the heuristics to predict lossage that
1459 * distinguishes different algorithms.
1461 * F.e. after RTO, when all the queue is considered as lost,
1462 * lost_out = packets_out and in_flight = retrans_out.
1464 * Essentially, we have now two algorithms counting
1465 * lost packets.
1467 * FACK: It is the simplest heuristics. As soon as we decided
1468 * that something is lost, we decide that _all_ not SACKed
1469 * packets until the most forward SACK are lost. I.e.
1470 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1471 * It is absolutely correct estimate, if network does not reorder
1472 * packets. And it loses any connection to reality when reordering
1473 * takes place. We use FACK by default until reordering
1474 * is suspected on the path to this destination.
1476 * NewReno: when Recovery is entered, we assume that one segment
1477 * is lost (classic Reno). While we are in Recovery and
1478 * a partial ACK arrives, we assume that one more packet
1479 * is lost (NewReno). This heuristics are the same in NewReno
1480 * and SACK.
1482 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1483 * deflation etc. CWND is real congestion window, never inflated, changes
1484 * only according to classic VJ rules.
1486 * Really tricky (and requiring careful tuning) part of algorithm
1487 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1488 * The first determines the moment _when_ we should reduce CWND and,
1489 * hence, slow down forward transmission. In fact, it determines the moment
1490 * when we decide that hole is caused by loss, rather than by a reorder.
1492 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1493 * holes, caused by lost packets.
1495 * And the most logically complicated part of algorithm is undo
1496 * heuristics. We detect false retransmits due to both too early
1497 * fast retransmit (reordering) and underestimated RTO, analyzing
1498 * timestamps and D-SACKs. When we detect that some segments were
1499 * retransmitted by mistake and CWND reduction was wrong, we undo
1500 * window reduction and abort recovery phase. This logic is hidden
1501 * inside several functions named tcp_try_undo_<something>.
1504 /* This function decides, when we should leave Disordered state
1505 * and enter Recovery phase, reducing congestion window.
1507 * Main question: may we further continue forward transmission
1508 * with the same cwnd?
1510 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1512 __u32 packets_out;
1514 /* Trick#1: The loss is proven. */
1515 if (tp->lost_out)
1516 return 1;
1518 /* Not-A-Trick#2 : Classic rule... */
1519 if (tcp_fackets_out(tp) > tp->reordering)
1520 return 1;
1522 /* Trick#3 : when we use RFC2988 timer restart, fast
1523 * retransmit can be triggered by timeout of queue head.
1525 if (tcp_head_timedout(sk, tp))
1526 return 1;
1528 /* Trick#4: It is still not OK... But will it be useful to delay
1529 * recovery more?
1531 packets_out = tp->packets_out;
1532 if (packets_out <= tp->reordering &&
1533 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1534 !tcp_may_send_now(sk, tp)) {
1535 /* We have nothing to send. This connection is limited
1536 * either by receiver window or by application.
1538 return 1;
1541 return 0;
1544 /* If we receive more dupacks than we expected counting segments
1545 * in assumption of absent reordering, interpret this as reordering.
1546 * The only another reason could be bug in receiver TCP.
1548 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1550 struct tcp_sock *tp = tcp_sk(sk);
1551 u32 holes;
1553 holes = max(tp->lost_out, 1U);
1554 holes = min(holes, tp->packets_out);
1556 if ((tp->sacked_out + holes) > tp->packets_out) {
1557 tp->sacked_out = tp->packets_out - holes;
1558 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1562 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1564 static void tcp_add_reno_sack(struct sock *sk)
1566 struct tcp_sock *tp = tcp_sk(sk);
1567 tp->sacked_out++;
1568 tcp_check_reno_reordering(sk, 0);
1569 tcp_sync_left_out(tp);
1572 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1574 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1576 if (acked > 0) {
1577 /* One ACK acked hole. The rest eat duplicate ACKs. */
1578 if (acked-1 >= tp->sacked_out)
1579 tp->sacked_out = 0;
1580 else
1581 tp->sacked_out -= acked-1;
1583 tcp_check_reno_reordering(sk, acked);
1584 tcp_sync_left_out(tp);
1587 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1589 tp->sacked_out = 0;
1590 tp->left_out = tp->lost_out;
1593 /* Mark head of queue up as lost. */
1594 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1595 int packets, u32 high_seq)
1597 struct sk_buff *skb;
1598 int cnt;
1600 BUG_TRAP(packets <= tp->packets_out);
1601 if (tp->lost_skb_hint) {
1602 skb = tp->lost_skb_hint;
1603 cnt = tp->lost_cnt_hint;
1604 } else {
1605 skb = sk->sk_write_queue.next;
1606 cnt = 0;
1609 sk_stream_for_retrans_queue_from(skb, sk) {
1610 /* TODO: do this better */
1611 /* this is not the most efficient way to do this... */
1612 tp->lost_skb_hint = skb;
1613 tp->lost_cnt_hint = cnt;
1614 cnt += tcp_skb_pcount(skb);
1615 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1616 break;
1617 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1618 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1619 tp->lost_out += tcp_skb_pcount(skb);
1621 /* clear xmit_retransmit_queue hints
1622 * if this is beyond hint */
1623 if(tp->retransmit_skb_hint != NULL &&
1624 before(TCP_SKB_CB(skb)->seq,
1625 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1627 tp->retransmit_skb_hint = NULL;
1631 tcp_sync_left_out(tp);
1634 /* Account newly detected lost packet(s) */
1636 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1638 if (IsFack(tp)) {
1639 int lost = tp->fackets_out - tp->reordering;
1640 if (lost <= 0)
1641 lost = 1;
1642 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1643 } else {
1644 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1647 /* New heuristics: it is possible only after we switched
1648 * to restart timer each time when something is ACKed.
1649 * Hence, we can detect timed out packets during fast
1650 * retransmit without falling to slow start.
1652 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1653 struct sk_buff *skb;
1655 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1656 : sk->sk_write_queue.next;
1658 sk_stream_for_retrans_queue_from(skb, sk) {
1659 if (!tcp_skb_timedout(sk, skb))
1660 break;
1662 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1663 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1664 tp->lost_out += tcp_skb_pcount(skb);
1666 /* clear xmit_retrans hint */
1667 if (tp->retransmit_skb_hint &&
1668 before(TCP_SKB_CB(skb)->seq,
1669 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1671 tp->retransmit_skb_hint = NULL;
1675 tp->scoreboard_skb_hint = skb;
1677 tcp_sync_left_out(tp);
1681 /* CWND moderation, preventing bursts due to too big ACKs
1682 * in dubious situations.
1684 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1686 tp->snd_cwnd = min(tp->snd_cwnd,
1687 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1688 tp->snd_cwnd_stamp = tcp_time_stamp;
1691 /* Decrease cwnd each second ack. */
1692 static void tcp_cwnd_down(struct sock *sk)
1694 const struct inet_connection_sock *icsk = inet_csk(sk);
1695 struct tcp_sock *tp = tcp_sk(sk);
1696 int decr = tp->snd_cwnd_cnt + 1;
1698 tp->snd_cwnd_cnt = decr&1;
1699 decr >>= 1;
1701 if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk))
1702 tp->snd_cwnd -= decr;
1704 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1705 tp->snd_cwnd_stamp = tcp_time_stamp;
1708 /* Nothing was retransmitted or returned timestamp is less
1709 * than timestamp of the first retransmission.
1711 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1713 return !tp->retrans_stamp ||
1714 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1715 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1718 /* Undo procedures. */
1720 #if FASTRETRANS_DEBUG > 1
1721 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1723 struct inet_sock *inet = inet_sk(sk);
1724 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1725 msg,
1726 NIPQUAD(inet->daddr), ntohs(inet->dport),
1727 tp->snd_cwnd, tp->left_out,
1728 tp->snd_ssthresh, tp->prior_ssthresh,
1729 tp->packets_out);
1731 #else
1732 #define DBGUNDO(x...) do { } while (0)
1733 #endif
1735 static void tcp_undo_cwr(struct sock *sk, const int undo)
1737 struct tcp_sock *tp = tcp_sk(sk);
1739 if (tp->prior_ssthresh) {
1740 const struct inet_connection_sock *icsk = inet_csk(sk);
1742 if (icsk->icsk_ca_ops->undo_cwnd)
1743 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1744 else
1745 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1747 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1748 tp->snd_ssthresh = tp->prior_ssthresh;
1749 TCP_ECN_withdraw_cwr(tp);
1751 } else {
1752 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1754 tcp_moderate_cwnd(tp);
1755 tp->snd_cwnd_stamp = tcp_time_stamp;
1757 /* There is something screwy going on with the retrans hints after
1758 an undo */
1759 clear_all_retrans_hints(tp);
1762 static inline int tcp_may_undo(struct tcp_sock *tp)
1764 return tp->undo_marker &&
1765 (!tp->undo_retrans || tcp_packet_delayed(tp));
1768 /* People celebrate: "We love our President!" */
1769 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1771 if (tcp_may_undo(tp)) {
1772 /* Happy end! We did not retransmit anything
1773 * or our original transmission succeeded.
1775 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1776 tcp_undo_cwr(sk, 1);
1777 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1778 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1779 else
1780 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1781 tp->undo_marker = 0;
1783 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1784 /* Hold old state until something *above* high_seq
1785 * is ACKed. For Reno it is MUST to prevent false
1786 * fast retransmits (RFC2582). SACK TCP is safe. */
1787 tcp_moderate_cwnd(tp);
1788 return 1;
1790 tcp_set_ca_state(sk, TCP_CA_Open);
1791 return 0;
1794 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1795 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1797 if (tp->undo_marker && !tp->undo_retrans) {
1798 DBGUNDO(sk, tp, "D-SACK");
1799 tcp_undo_cwr(sk, 1);
1800 tp->undo_marker = 0;
1801 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1805 /* Undo during fast recovery after partial ACK. */
1807 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1808 int acked)
1810 /* Partial ACK arrived. Force Hoe's retransmit. */
1811 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1813 if (tcp_may_undo(tp)) {
1814 /* Plain luck! Hole if filled with delayed
1815 * packet, rather than with a retransmit.
1817 if (tp->retrans_out == 0)
1818 tp->retrans_stamp = 0;
1820 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1822 DBGUNDO(sk, tp, "Hoe");
1823 tcp_undo_cwr(sk, 0);
1824 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1826 /* So... Do not make Hoe's retransmit yet.
1827 * If the first packet was delayed, the rest
1828 * ones are most probably delayed as well.
1830 failed = 0;
1832 return failed;
1835 /* Undo during loss recovery after partial ACK. */
1836 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1838 if (tcp_may_undo(tp)) {
1839 struct sk_buff *skb;
1840 sk_stream_for_retrans_queue(skb, sk) {
1841 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1844 clear_all_retrans_hints(tp);
1846 DBGUNDO(sk, tp, "partial loss");
1847 tp->lost_out = 0;
1848 tp->left_out = tp->sacked_out;
1849 tcp_undo_cwr(sk, 1);
1850 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1851 inet_csk(sk)->icsk_retransmits = 0;
1852 tp->undo_marker = 0;
1853 if (!IsReno(tp))
1854 tcp_set_ca_state(sk, TCP_CA_Open);
1855 return 1;
1857 return 0;
1860 static inline void tcp_complete_cwr(struct sock *sk)
1862 struct tcp_sock *tp = tcp_sk(sk);
1863 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1864 tp->snd_cwnd_stamp = tcp_time_stamp;
1865 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1868 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1870 tp->left_out = tp->sacked_out;
1872 if (tp->retrans_out == 0)
1873 tp->retrans_stamp = 0;
1875 if (flag&FLAG_ECE)
1876 tcp_enter_cwr(sk);
1878 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1879 int state = TCP_CA_Open;
1881 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1882 state = TCP_CA_Disorder;
1884 if (inet_csk(sk)->icsk_ca_state != state) {
1885 tcp_set_ca_state(sk, state);
1886 tp->high_seq = tp->snd_nxt;
1888 tcp_moderate_cwnd(tp);
1889 } else {
1890 tcp_cwnd_down(sk);
1894 static void tcp_mtup_probe_failed(struct sock *sk)
1896 struct inet_connection_sock *icsk = inet_csk(sk);
1898 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1899 icsk->icsk_mtup.probe_size = 0;
1902 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1904 struct tcp_sock *tp = tcp_sk(sk);
1905 struct inet_connection_sock *icsk = inet_csk(sk);
1907 /* FIXME: breaks with very large cwnd */
1908 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1909 tp->snd_cwnd = tp->snd_cwnd *
1910 tcp_mss_to_mtu(sk, tp->mss_cache) /
1911 icsk->icsk_mtup.probe_size;
1912 tp->snd_cwnd_cnt = 0;
1913 tp->snd_cwnd_stamp = tcp_time_stamp;
1914 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1916 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1917 icsk->icsk_mtup.probe_size = 0;
1918 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1922 /* Process an event, which can update packets-in-flight not trivially.
1923 * Main goal of this function is to calculate new estimate for left_out,
1924 * taking into account both packets sitting in receiver's buffer and
1925 * packets lost by network.
1927 * Besides that it does CWND reduction, when packet loss is detected
1928 * and changes state of machine.
1930 * It does _not_ decide what to send, it is made in function
1931 * tcp_xmit_retransmit_queue().
1933 static void
1934 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1935 int prior_packets, int flag)
1937 struct inet_connection_sock *icsk = inet_csk(sk);
1938 struct tcp_sock *tp = tcp_sk(sk);
1939 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1941 /* Some technical things:
1942 * 1. Reno does not count dupacks (sacked_out) automatically. */
1943 if (!tp->packets_out)
1944 tp->sacked_out = 0;
1945 /* 2. SACK counts snd_fack in packets inaccurately. */
1946 if (tp->sacked_out == 0)
1947 tp->fackets_out = 0;
1949 /* Now state machine starts.
1950 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1951 if (flag&FLAG_ECE)
1952 tp->prior_ssthresh = 0;
1954 /* B. In all the states check for reneging SACKs. */
1955 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1956 return;
1958 /* C. Process data loss notification, provided it is valid. */
1959 if ((flag&FLAG_DATA_LOST) &&
1960 before(tp->snd_una, tp->high_seq) &&
1961 icsk->icsk_ca_state != TCP_CA_Open &&
1962 tp->fackets_out > tp->reordering) {
1963 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1964 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1967 /* D. Synchronize left_out to current state. */
1968 tcp_sync_left_out(tp);
1970 /* E. Check state exit conditions. State can be terminated
1971 * when high_seq is ACKed. */
1972 if (icsk->icsk_ca_state == TCP_CA_Open) {
1973 if (!sysctl_tcp_frto)
1974 BUG_TRAP(tp->retrans_out == 0);
1975 tp->retrans_stamp = 0;
1976 } else if (!before(tp->snd_una, tp->high_seq)) {
1977 switch (icsk->icsk_ca_state) {
1978 case TCP_CA_Loss:
1979 icsk->icsk_retransmits = 0;
1980 if (tcp_try_undo_recovery(sk, tp))
1981 return;
1982 break;
1984 case TCP_CA_CWR:
1985 /* CWR is to be held something *above* high_seq
1986 * is ACKed for CWR bit to reach receiver. */
1987 if (tp->snd_una != tp->high_seq) {
1988 tcp_complete_cwr(sk);
1989 tcp_set_ca_state(sk, TCP_CA_Open);
1991 break;
1993 case TCP_CA_Disorder:
1994 tcp_try_undo_dsack(sk, tp);
1995 if (!tp->undo_marker ||
1996 /* For SACK case do not Open to allow to undo
1997 * catching for all duplicate ACKs. */
1998 IsReno(tp) || tp->snd_una != tp->high_seq) {
1999 tp->undo_marker = 0;
2000 tcp_set_ca_state(sk, TCP_CA_Open);
2002 break;
2004 case TCP_CA_Recovery:
2005 if (IsReno(tp))
2006 tcp_reset_reno_sack(tp);
2007 if (tcp_try_undo_recovery(sk, tp))
2008 return;
2009 tcp_complete_cwr(sk);
2010 break;
2014 /* F. Process state. */
2015 switch (icsk->icsk_ca_state) {
2016 case TCP_CA_Recovery:
2017 if (prior_snd_una == tp->snd_una) {
2018 if (IsReno(tp) && is_dupack)
2019 tcp_add_reno_sack(sk);
2020 } else {
2021 int acked = prior_packets - tp->packets_out;
2022 if (IsReno(tp))
2023 tcp_remove_reno_sacks(sk, tp, acked);
2024 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2026 break;
2027 case TCP_CA_Loss:
2028 if (flag&FLAG_DATA_ACKED)
2029 icsk->icsk_retransmits = 0;
2030 if (!tcp_try_undo_loss(sk, tp)) {
2031 tcp_moderate_cwnd(tp);
2032 tcp_xmit_retransmit_queue(sk);
2033 return;
2035 if (icsk->icsk_ca_state != TCP_CA_Open)
2036 return;
2037 /* Loss is undone; fall through to processing in Open state. */
2038 default:
2039 if (IsReno(tp)) {
2040 if (tp->snd_una != prior_snd_una)
2041 tcp_reset_reno_sack(tp);
2042 if (is_dupack)
2043 tcp_add_reno_sack(sk);
2046 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2047 tcp_try_undo_dsack(sk, tp);
2049 if (!tcp_time_to_recover(sk, tp)) {
2050 tcp_try_to_open(sk, tp, flag);
2051 return;
2054 /* MTU probe failure: don't reduce cwnd */
2055 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2056 icsk->icsk_mtup.probe_size &&
2057 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2058 tcp_mtup_probe_failed(sk);
2059 /* Restores the reduction we did in tcp_mtup_probe() */
2060 tp->snd_cwnd++;
2061 tcp_simple_retransmit(sk);
2062 return;
2065 /* Otherwise enter Recovery state */
2067 if (IsReno(tp))
2068 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2069 else
2070 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2072 tp->high_seq = tp->snd_nxt;
2073 tp->prior_ssthresh = 0;
2074 tp->undo_marker = tp->snd_una;
2075 tp->undo_retrans = tp->retrans_out;
2077 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2078 if (!(flag&FLAG_ECE))
2079 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2080 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2081 TCP_ECN_queue_cwr(tp);
2084 tp->bytes_acked = 0;
2085 tp->snd_cwnd_cnt = 0;
2086 tcp_set_ca_state(sk, TCP_CA_Recovery);
2089 if (is_dupack || tcp_head_timedout(sk, tp))
2090 tcp_update_scoreboard(sk, tp);
2091 tcp_cwnd_down(sk);
2092 tcp_xmit_retransmit_queue(sk);
2095 /* Read draft-ietf-tcplw-high-performance before mucking
2096 * with this code. (Supersedes RFC1323)
2098 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2100 /* RTTM Rule: A TSecr value received in a segment is used to
2101 * update the averaged RTT measurement only if the segment
2102 * acknowledges some new data, i.e., only if it advances the
2103 * left edge of the send window.
2105 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2106 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2108 * Changed: reset backoff as soon as we see the first valid sample.
2109 * If we do not, we get strongly overestimated rto. With timestamps
2110 * samples are accepted even from very old segments: f.e., when rtt=1
2111 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2112 * answer arrives rto becomes 120 seconds! If at least one of segments
2113 * in window is lost... Voila. --ANK (010210)
2115 struct tcp_sock *tp = tcp_sk(sk);
2116 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2117 tcp_rtt_estimator(sk, seq_rtt);
2118 tcp_set_rto(sk);
2119 inet_csk(sk)->icsk_backoff = 0;
2120 tcp_bound_rto(sk);
2123 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2125 /* We don't have a timestamp. Can only use
2126 * packets that are not retransmitted to determine
2127 * rtt estimates. Also, we must not reset the
2128 * backoff for rto until we get a non-retransmitted
2129 * packet. This allows us to deal with a situation
2130 * where the network delay has increased suddenly.
2131 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2134 if (flag & FLAG_RETRANS_DATA_ACKED)
2135 return;
2137 tcp_rtt_estimator(sk, seq_rtt);
2138 tcp_set_rto(sk);
2139 inet_csk(sk)->icsk_backoff = 0;
2140 tcp_bound_rto(sk);
2143 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2144 const s32 seq_rtt)
2146 const struct tcp_sock *tp = tcp_sk(sk);
2147 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2148 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2149 tcp_ack_saw_tstamp(sk, flag);
2150 else if (seq_rtt >= 0)
2151 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2154 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2155 u32 in_flight, int good)
2157 const struct inet_connection_sock *icsk = inet_csk(sk);
2158 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2159 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2162 /* Restart timer after forward progress on connection.
2163 * RFC2988 recommends to restart timer to now+rto.
2166 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2168 if (!tp->packets_out) {
2169 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2170 } else {
2171 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2175 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2176 __u32 now, __s32 *seq_rtt)
2178 struct tcp_sock *tp = tcp_sk(sk);
2179 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2180 __u32 seq = tp->snd_una;
2181 __u32 packets_acked;
2182 int acked = 0;
2184 /* If we get here, the whole TSO packet has not been
2185 * acked.
2187 BUG_ON(!after(scb->end_seq, seq));
2189 packets_acked = tcp_skb_pcount(skb);
2190 if (tcp_trim_head(sk, skb, seq - scb->seq))
2191 return 0;
2192 packets_acked -= tcp_skb_pcount(skb);
2194 if (packets_acked) {
2195 __u8 sacked = scb->sacked;
2197 acked |= FLAG_DATA_ACKED;
2198 if (sacked) {
2199 if (sacked & TCPCB_RETRANS) {
2200 if (sacked & TCPCB_SACKED_RETRANS)
2201 tp->retrans_out -= packets_acked;
2202 acked |= FLAG_RETRANS_DATA_ACKED;
2203 *seq_rtt = -1;
2204 } else if (*seq_rtt < 0)
2205 *seq_rtt = now - scb->when;
2206 if (sacked & TCPCB_SACKED_ACKED)
2207 tp->sacked_out -= packets_acked;
2208 if (sacked & TCPCB_LOST)
2209 tp->lost_out -= packets_acked;
2210 if (sacked & TCPCB_URG) {
2211 if (tp->urg_mode &&
2212 !before(seq, tp->snd_up))
2213 tp->urg_mode = 0;
2215 } else if (*seq_rtt < 0)
2216 *seq_rtt = now - scb->when;
2218 if (tp->fackets_out) {
2219 __u32 dval = min(tp->fackets_out, packets_acked);
2220 tp->fackets_out -= dval;
2222 tp->packets_out -= packets_acked;
2224 BUG_ON(tcp_skb_pcount(skb) == 0);
2225 BUG_ON(!before(scb->seq, scb->end_seq));
2228 return acked;
2231 static u32 tcp_usrtt(const struct sk_buff *skb)
2233 struct timeval tv, now;
2235 do_gettimeofday(&now);
2236 skb_get_timestamp(skb, &tv);
2237 return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec);
2240 /* Remove acknowledged frames from the retransmission queue. */
2241 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2243 struct tcp_sock *tp = tcp_sk(sk);
2244 const struct inet_connection_sock *icsk = inet_csk(sk);
2245 struct sk_buff *skb;
2246 __u32 now = tcp_time_stamp;
2247 int acked = 0;
2248 __s32 seq_rtt = -1;
2249 u32 pkts_acked = 0;
2250 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2251 = icsk->icsk_ca_ops->rtt_sample;
2253 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2254 skb != sk->sk_send_head) {
2255 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2256 __u8 sacked = scb->sacked;
2258 /* If our packet is before the ack sequence we can
2259 * discard it as it's confirmed to have arrived at
2260 * the other end.
2262 if (after(scb->end_seq, tp->snd_una)) {
2263 if (tcp_skb_pcount(skb) > 1 &&
2264 after(tp->snd_una, scb->seq))
2265 acked |= tcp_tso_acked(sk, skb,
2266 now, &seq_rtt);
2267 break;
2270 /* Initial outgoing SYN's get put onto the write_queue
2271 * just like anything else we transmit. It is not
2272 * true data, and if we misinform our callers that
2273 * this ACK acks real data, we will erroneously exit
2274 * connection startup slow start one packet too
2275 * quickly. This is severely frowned upon behavior.
2277 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2278 acked |= FLAG_DATA_ACKED;
2279 ++pkts_acked;
2280 } else {
2281 acked |= FLAG_SYN_ACKED;
2282 tp->retrans_stamp = 0;
2285 /* MTU probing checks */
2286 if (icsk->icsk_mtup.probe_size) {
2287 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2288 tcp_mtup_probe_success(sk, skb);
2292 if (sacked) {
2293 if (sacked & TCPCB_RETRANS) {
2294 if(sacked & TCPCB_SACKED_RETRANS)
2295 tp->retrans_out -= tcp_skb_pcount(skb);
2296 acked |= FLAG_RETRANS_DATA_ACKED;
2297 seq_rtt = -1;
2298 } else if (seq_rtt < 0) {
2299 seq_rtt = now - scb->when;
2300 if (rtt_sample)
2301 (*rtt_sample)(sk, tcp_usrtt(skb));
2303 if (sacked & TCPCB_SACKED_ACKED)
2304 tp->sacked_out -= tcp_skb_pcount(skb);
2305 if (sacked & TCPCB_LOST)
2306 tp->lost_out -= tcp_skb_pcount(skb);
2307 if (sacked & TCPCB_URG) {
2308 if (tp->urg_mode &&
2309 !before(scb->end_seq, tp->snd_up))
2310 tp->urg_mode = 0;
2312 } else if (seq_rtt < 0) {
2313 seq_rtt = now - scb->when;
2314 if (rtt_sample)
2315 (*rtt_sample)(sk, tcp_usrtt(skb));
2317 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2318 tcp_packets_out_dec(tp, skb);
2319 __skb_unlink(skb, &sk->sk_write_queue);
2320 sk_stream_free_skb(sk, skb);
2321 clear_all_retrans_hints(tp);
2324 if (acked&FLAG_ACKED) {
2325 tcp_ack_update_rtt(sk, acked, seq_rtt);
2326 tcp_ack_packets_out(sk, tp);
2328 if (icsk->icsk_ca_ops->pkts_acked)
2329 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2332 #if FASTRETRANS_DEBUG > 0
2333 BUG_TRAP((int)tp->sacked_out >= 0);
2334 BUG_TRAP((int)tp->lost_out >= 0);
2335 BUG_TRAP((int)tp->retrans_out >= 0);
2336 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2337 const struct inet_connection_sock *icsk = inet_csk(sk);
2338 if (tp->lost_out) {
2339 printk(KERN_DEBUG "Leak l=%u %d\n",
2340 tp->lost_out, icsk->icsk_ca_state);
2341 tp->lost_out = 0;
2343 if (tp->sacked_out) {
2344 printk(KERN_DEBUG "Leak s=%u %d\n",
2345 tp->sacked_out, icsk->icsk_ca_state);
2346 tp->sacked_out = 0;
2348 if (tp->retrans_out) {
2349 printk(KERN_DEBUG "Leak r=%u %d\n",
2350 tp->retrans_out, icsk->icsk_ca_state);
2351 tp->retrans_out = 0;
2354 #endif
2355 *seq_rtt_p = seq_rtt;
2356 return acked;
2359 static void tcp_ack_probe(struct sock *sk)
2361 const struct tcp_sock *tp = tcp_sk(sk);
2362 struct inet_connection_sock *icsk = inet_csk(sk);
2364 /* Was it a usable window open? */
2366 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2367 tp->snd_una + tp->snd_wnd)) {
2368 icsk->icsk_backoff = 0;
2369 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2370 /* Socket must be waked up by subsequent tcp_data_snd_check().
2371 * This function is not for random using!
2373 } else {
2374 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2375 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2376 TCP_RTO_MAX);
2380 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2382 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2383 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2386 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2388 const struct tcp_sock *tp = tcp_sk(sk);
2389 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2390 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2393 /* Check that window update is acceptable.
2394 * The function assumes that snd_una<=ack<=snd_next.
2396 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2397 const u32 ack_seq, const u32 nwin)
2399 return (after(ack, tp->snd_una) ||
2400 after(ack_seq, tp->snd_wl1) ||
2401 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2404 /* Update our send window.
2406 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2407 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2409 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2410 struct sk_buff *skb, u32 ack, u32 ack_seq)
2412 int flag = 0;
2413 u32 nwin = ntohs(skb->h.th->window);
2415 if (likely(!skb->h.th->syn))
2416 nwin <<= tp->rx_opt.snd_wscale;
2418 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2419 flag |= FLAG_WIN_UPDATE;
2420 tcp_update_wl(tp, ack, ack_seq);
2422 if (tp->snd_wnd != nwin) {
2423 tp->snd_wnd = nwin;
2425 /* Note, it is the only place, where
2426 * fast path is recovered for sending TCP.
2428 tp->pred_flags = 0;
2429 tcp_fast_path_check(sk, tp);
2431 if (nwin > tp->max_window) {
2432 tp->max_window = nwin;
2433 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2438 tp->snd_una = ack;
2440 return flag;
2443 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2445 struct tcp_sock *tp = tcp_sk(sk);
2447 tcp_sync_left_out(tp);
2449 if (tp->snd_una == prior_snd_una ||
2450 !before(tp->snd_una, tp->frto_highmark)) {
2451 /* RTO was caused by loss, start retransmitting in
2452 * go-back-N slow start
2454 tcp_enter_frto_loss(sk);
2455 return;
2458 if (tp->frto_counter == 1) {
2459 /* First ACK after RTO advances the window: allow two new
2460 * segments out.
2462 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2463 } else {
2464 /* Also the second ACK after RTO advances the window.
2465 * The RTO was likely spurious. Reduce cwnd and continue
2466 * in congestion avoidance
2468 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2469 tcp_moderate_cwnd(tp);
2472 /* F-RTO affects on two new ACKs following RTO.
2473 * At latest on third ACK the TCP behavior is back to normal.
2475 tp->frto_counter = (tp->frto_counter + 1) % 3;
2478 /* This routine deals with incoming acks, but not outgoing ones. */
2479 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2481 struct inet_connection_sock *icsk = inet_csk(sk);
2482 struct tcp_sock *tp = tcp_sk(sk);
2483 u32 prior_snd_una = tp->snd_una;
2484 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2485 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2486 u32 prior_in_flight;
2487 s32 seq_rtt;
2488 int prior_packets;
2490 /* If the ack is newer than sent or older than previous acks
2491 * then we can probably ignore it.
2493 if (after(ack, tp->snd_nxt))
2494 goto uninteresting_ack;
2496 if (before(ack, prior_snd_una))
2497 goto old_ack;
2499 if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR)
2500 tp->bytes_acked += ack - prior_snd_una;
2502 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2503 /* Window is constant, pure forward advance.
2504 * No more checks are required.
2505 * Note, we use the fact that SND.UNA>=SND.WL2.
2507 tcp_update_wl(tp, ack, ack_seq);
2508 tp->snd_una = ack;
2509 flag |= FLAG_WIN_UPDATE;
2511 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2513 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2514 } else {
2515 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2516 flag |= FLAG_DATA;
2517 else
2518 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2520 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2522 if (TCP_SKB_CB(skb)->sacked)
2523 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2525 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2526 flag |= FLAG_ECE;
2528 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2531 /* We passed data and got it acked, remove any soft error
2532 * log. Something worked...
2534 sk->sk_err_soft = 0;
2535 tp->rcv_tstamp = tcp_time_stamp;
2536 prior_packets = tp->packets_out;
2537 if (!prior_packets)
2538 goto no_queue;
2540 prior_in_flight = tcp_packets_in_flight(tp);
2542 /* See if we can take anything off of the retransmit queue. */
2543 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2545 if (tp->frto_counter)
2546 tcp_process_frto(sk, prior_snd_una);
2548 if (tcp_ack_is_dubious(sk, flag)) {
2549 /* Advance CWND, if state allows this. */
2550 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2551 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2552 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2553 } else {
2554 if ((flag & FLAG_DATA_ACKED))
2555 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2558 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2559 dst_confirm(sk->sk_dst_cache);
2561 return 1;
2563 no_queue:
2564 icsk->icsk_probes_out = 0;
2566 /* If this ack opens up a zero window, clear backoff. It was
2567 * being used to time the probes, and is probably far higher than
2568 * it needs to be for normal retransmission.
2570 if (sk->sk_send_head)
2571 tcp_ack_probe(sk);
2572 return 1;
2574 old_ack:
2575 if (TCP_SKB_CB(skb)->sacked)
2576 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2578 uninteresting_ack:
2579 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2580 return 0;
2584 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2585 * But, this can also be called on packets in the established flow when
2586 * the fast version below fails.
2588 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2590 unsigned char *ptr;
2591 struct tcphdr *th = skb->h.th;
2592 int length=(th->doff*4)-sizeof(struct tcphdr);
2594 ptr = (unsigned char *)(th + 1);
2595 opt_rx->saw_tstamp = 0;
2597 while(length>0) {
2598 int opcode=*ptr++;
2599 int opsize;
2601 switch (opcode) {
2602 case TCPOPT_EOL:
2603 return;
2604 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2605 length--;
2606 continue;
2607 default:
2608 opsize=*ptr++;
2609 if (opsize < 2) /* "silly options" */
2610 return;
2611 if (opsize > length)
2612 return; /* don't parse partial options */
2613 switch(opcode) {
2614 case TCPOPT_MSS:
2615 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2616 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2617 if (in_mss) {
2618 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2619 in_mss = opt_rx->user_mss;
2620 opt_rx->mss_clamp = in_mss;
2623 break;
2624 case TCPOPT_WINDOW:
2625 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2626 if (sysctl_tcp_window_scaling) {
2627 __u8 snd_wscale = *(__u8 *) ptr;
2628 opt_rx->wscale_ok = 1;
2629 if (snd_wscale > 14) {
2630 if(net_ratelimit())
2631 printk(KERN_INFO "tcp_parse_options: Illegal window "
2632 "scaling value %d >14 received.\n",
2633 snd_wscale);
2634 snd_wscale = 14;
2636 opt_rx->snd_wscale = snd_wscale;
2638 break;
2639 case TCPOPT_TIMESTAMP:
2640 if(opsize==TCPOLEN_TIMESTAMP) {
2641 if ((estab && opt_rx->tstamp_ok) ||
2642 (!estab && sysctl_tcp_timestamps)) {
2643 opt_rx->saw_tstamp = 1;
2644 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2645 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2648 break;
2649 case TCPOPT_SACK_PERM:
2650 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2651 if (sysctl_tcp_sack) {
2652 opt_rx->sack_ok = 1;
2653 tcp_sack_reset(opt_rx);
2656 break;
2658 case TCPOPT_SACK:
2659 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2660 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2661 opt_rx->sack_ok) {
2662 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2665 ptr+=opsize-2;
2666 length-=opsize;
2671 /* Fast parse options. This hopes to only see timestamps.
2672 * If it is wrong it falls back on tcp_parse_options().
2674 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2675 struct tcp_sock *tp)
2677 if (th->doff == sizeof(struct tcphdr)>>2) {
2678 tp->rx_opt.saw_tstamp = 0;
2679 return 0;
2680 } else if (tp->rx_opt.tstamp_ok &&
2681 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2682 __u32 *ptr = (__u32 *)(th + 1);
2683 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2684 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2685 tp->rx_opt.saw_tstamp = 1;
2686 ++ptr;
2687 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2688 ++ptr;
2689 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2690 return 1;
2693 tcp_parse_options(skb, &tp->rx_opt, 1);
2694 return 1;
2697 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2699 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2700 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2703 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2705 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2706 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2707 * extra check below makes sure this can only happen
2708 * for pure ACK frames. -DaveM
2710 * Not only, also it occurs for expired timestamps.
2713 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2714 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2715 tcp_store_ts_recent(tp);
2719 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2721 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2722 * it can pass through stack. So, the following predicate verifies that
2723 * this segment is not used for anything but congestion avoidance or
2724 * fast retransmit. Moreover, we even are able to eliminate most of such
2725 * second order effects, if we apply some small "replay" window (~RTO)
2726 * to timestamp space.
2728 * All these measures still do not guarantee that we reject wrapped ACKs
2729 * on networks with high bandwidth, when sequence space is recycled fastly,
2730 * but it guarantees that such events will be very rare and do not affect
2731 * connection seriously. This doesn't look nice, but alas, PAWS is really
2732 * buggy extension.
2734 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2735 * states that events when retransmit arrives after original data are rare.
2736 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2737 * the biggest problem on large power networks even with minor reordering.
2738 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2739 * up to bandwidth of 18Gigabit/sec. 8) ]
2742 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2744 struct tcp_sock *tp = tcp_sk(sk);
2745 struct tcphdr *th = skb->h.th;
2746 u32 seq = TCP_SKB_CB(skb)->seq;
2747 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2749 return (/* 1. Pure ACK with correct sequence number. */
2750 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2752 /* 2. ... and duplicate ACK. */
2753 ack == tp->snd_una &&
2755 /* 3. ... and does not update window. */
2756 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2758 /* 4. ... and sits in replay window. */
2759 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2762 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2764 const struct tcp_sock *tp = tcp_sk(sk);
2765 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2766 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2767 !tcp_disordered_ack(sk, skb));
2770 /* Check segment sequence number for validity.
2772 * Segment controls are considered valid, if the segment
2773 * fits to the window after truncation to the window. Acceptability
2774 * of data (and SYN, FIN, of course) is checked separately.
2775 * See tcp_data_queue(), for example.
2777 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2778 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2779 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2780 * (borrowed from freebsd)
2783 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2785 return !before(end_seq, tp->rcv_wup) &&
2786 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2789 /* When we get a reset we do this. */
2790 static void tcp_reset(struct sock *sk)
2792 /* We want the right error as BSD sees it (and indeed as we do). */
2793 switch (sk->sk_state) {
2794 case TCP_SYN_SENT:
2795 sk->sk_err = ECONNREFUSED;
2796 break;
2797 case TCP_CLOSE_WAIT:
2798 sk->sk_err = EPIPE;
2799 break;
2800 case TCP_CLOSE:
2801 return;
2802 default:
2803 sk->sk_err = ECONNRESET;
2806 if (!sock_flag(sk, SOCK_DEAD))
2807 sk->sk_error_report(sk);
2809 tcp_done(sk);
2813 * Process the FIN bit. This now behaves as it is supposed to work
2814 * and the FIN takes effect when it is validly part of sequence
2815 * space. Not before when we get holes.
2817 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2818 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2819 * TIME-WAIT)
2821 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2822 * close and we go into CLOSING (and later onto TIME-WAIT)
2824 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2826 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2828 struct tcp_sock *tp = tcp_sk(sk);
2830 inet_csk_schedule_ack(sk);
2832 sk->sk_shutdown |= RCV_SHUTDOWN;
2833 sock_set_flag(sk, SOCK_DONE);
2835 switch (sk->sk_state) {
2836 case TCP_SYN_RECV:
2837 case TCP_ESTABLISHED:
2838 /* Move to CLOSE_WAIT */
2839 tcp_set_state(sk, TCP_CLOSE_WAIT);
2840 inet_csk(sk)->icsk_ack.pingpong = 1;
2841 break;
2843 case TCP_CLOSE_WAIT:
2844 case TCP_CLOSING:
2845 /* Received a retransmission of the FIN, do
2846 * nothing.
2848 break;
2849 case TCP_LAST_ACK:
2850 /* RFC793: Remain in the LAST-ACK state. */
2851 break;
2853 case TCP_FIN_WAIT1:
2854 /* This case occurs when a simultaneous close
2855 * happens, we must ack the received FIN and
2856 * enter the CLOSING state.
2858 tcp_send_ack(sk);
2859 tcp_set_state(sk, TCP_CLOSING);
2860 break;
2861 case TCP_FIN_WAIT2:
2862 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2863 tcp_send_ack(sk);
2864 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2865 break;
2866 default:
2867 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2868 * cases we should never reach this piece of code.
2870 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2871 __FUNCTION__, sk->sk_state);
2872 break;
2875 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2876 * Probably, we should reset in this case. For now drop them.
2878 __skb_queue_purge(&tp->out_of_order_queue);
2879 if (tp->rx_opt.sack_ok)
2880 tcp_sack_reset(&tp->rx_opt);
2881 sk_stream_mem_reclaim(sk);
2883 if (!sock_flag(sk, SOCK_DEAD)) {
2884 sk->sk_state_change(sk);
2886 /* Do not send POLL_HUP for half duplex close. */
2887 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2888 sk->sk_state == TCP_CLOSE)
2889 sk_wake_async(sk, 1, POLL_HUP);
2890 else
2891 sk_wake_async(sk, 1, POLL_IN);
2895 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2897 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2898 if (before(seq, sp->start_seq))
2899 sp->start_seq = seq;
2900 if (after(end_seq, sp->end_seq))
2901 sp->end_seq = end_seq;
2902 return 1;
2904 return 0;
2907 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2909 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2910 if (before(seq, tp->rcv_nxt))
2911 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2912 else
2913 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2915 tp->rx_opt.dsack = 1;
2916 tp->duplicate_sack[0].start_seq = seq;
2917 tp->duplicate_sack[0].end_seq = end_seq;
2918 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2922 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2924 if (!tp->rx_opt.dsack)
2925 tcp_dsack_set(tp, seq, end_seq);
2926 else
2927 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2930 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2932 struct tcp_sock *tp = tcp_sk(sk);
2934 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2935 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2936 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2937 tcp_enter_quickack_mode(sk);
2939 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2940 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2942 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2943 end_seq = tp->rcv_nxt;
2944 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2948 tcp_send_ack(sk);
2951 /* These routines update the SACK block as out-of-order packets arrive or
2952 * in-order packets close up the sequence space.
2954 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2956 int this_sack;
2957 struct tcp_sack_block *sp = &tp->selective_acks[0];
2958 struct tcp_sack_block *swalk = sp+1;
2960 /* See if the recent change to the first SACK eats into
2961 * or hits the sequence space of other SACK blocks, if so coalesce.
2963 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2964 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2965 int i;
2967 /* Zap SWALK, by moving every further SACK up by one slot.
2968 * Decrease num_sacks.
2970 tp->rx_opt.num_sacks--;
2971 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2972 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2973 sp[i] = sp[i+1];
2974 continue;
2976 this_sack++, swalk++;
2980 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2982 __u32 tmp;
2984 tmp = sack1->start_seq;
2985 sack1->start_seq = sack2->start_seq;
2986 sack2->start_seq = tmp;
2988 tmp = sack1->end_seq;
2989 sack1->end_seq = sack2->end_seq;
2990 sack2->end_seq = tmp;
2993 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2995 struct tcp_sock *tp = tcp_sk(sk);
2996 struct tcp_sack_block *sp = &tp->selective_acks[0];
2997 int cur_sacks = tp->rx_opt.num_sacks;
2998 int this_sack;
3000 if (!cur_sacks)
3001 goto new_sack;
3003 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3004 if (tcp_sack_extend(sp, seq, end_seq)) {
3005 /* Rotate this_sack to the first one. */
3006 for (; this_sack>0; this_sack--, sp--)
3007 tcp_sack_swap(sp, sp-1);
3008 if (cur_sacks > 1)
3009 tcp_sack_maybe_coalesce(tp);
3010 return;
3014 /* Could not find an adjacent existing SACK, build a new one,
3015 * put it at the front, and shift everyone else down. We
3016 * always know there is at least one SACK present already here.
3018 * If the sack array is full, forget about the last one.
3020 if (this_sack >= 4) {
3021 this_sack--;
3022 tp->rx_opt.num_sacks--;
3023 sp--;
3025 for(; this_sack > 0; this_sack--, sp--)
3026 *sp = *(sp-1);
3028 new_sack:
3029 /* Build the new head SACK, and we're done. */
3030 sp->start_seq = seq;
3031 sp->end_seq = end_seq;
3032 tp->rx_opt.num_sacks++;
3033 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3036 /* RCV.NXT advances, some SACKs should be eaten. */
3038 static void tcp_sack_remove(struct tcp_sock *tp)
3040 struct tcp_sack_block *sp = &tp->selective_acks[0];
3041 int num_sacks = tp->rx_opt.num_sacks;
3042 int this_sack;
3044 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3045 if (skb_queue_empty(&tp->out_of_order_queue)) {
3046 tp->rx_opt.num_sacks = 0;
3047 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3048 return;
3051 for(this_sack = 0; this_sack < num_sacks; ) {
3052 /* Check if the start of the sack is covered by RCV.NXT. */
3053 if (!before(tp->rcv_nxt, sp->start_seq)) {
3054 int i;
3056 /* RCV.NXT must cover all the block! */
3057 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3059 /* Zap this SACK, by moving forward any other SACKS. */
3060 for (i=this_sack+1; i < num_sacks; i++)
3061 tp->selective_acks[i-1] = tp->selective_acks[i];
3062 num_sacks--;
3063 continue;
3065 this_sack++;
3066 sp++;
3068 if (num_sacks != tp->rx_opt.num_sacks) {
3069 tp->rx_opt.num_sacks = num_sacks;
3070 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3074 /* This one checks to see if we can put data from the
3075 * out_of_order queue into the receive_queue.
3077 static void tcp_ofo_queue(struct sock *sk)
3079 struct tcp_sock *tp = tcp_sk(sk);
3080 __u32 dsack_high = tp->rcv_nxt;
3081 struct sk_buff *skb;
3083 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3084 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3085 break;
3087 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3088 __u32 dsack = dsack_high;
3089 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3090 dsack_high = TCP_SKB_CB(skb)->end_seq;
3091 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3094 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3095 SOCK_DEBUG(sk, "ofo packet was already received \n");
3096 __skb_unlink(skb, &tp->out_of_order_queue);
3097 __kfree_skb(skb);
3098 continue;
3100 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3101 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3102 TCP_SKB_CB(skb)->end_seq);
3104 __skb_unlink(skb, &tp->out_of_order_queue);
3105 __skb_queue_tail(&sk->sk_receive_queue, skb);
3106 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3107 if(skb->h.th->fin)
3108 tcp_fin(skb, sk, skb->h.th);
3112 static int tcp_prune_queue(struct sock *sk);
3114 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3116 struct tcphdr *th = skb->h.th;
3117 struct tcp_sock *tp = tcp_sk(sk);
3118 int eaten = -1;
3120 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3121 goto drop;
3123 __skb_pull(skb, th->doff*4);
3125 TCP_ECN_accept_cwr(tp, skb);
3127 if (tp->rx_opt.dsack) {
3128 tp->rx_opt.dsack = 0;
3129 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3130 4 - tp->rx_opt.tstamp_ok);
3133 /* Queue data for delivery to the user.
3134 * Packets in sequence go to the receive queue.
3135 * Out of sequence packets to the out_of_order_queue.
3137 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3138 if (tcp_receive_window(tp) == 0)
3139 goto out_of_window;
3141 /* Ok. In sequence. In window. */
3142 if (tp->ucopy.task == current &&
3143 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3144 sock_owned_by_user(sk) && !tp->urg_data) {
3145 int chunk = min_t(unsigned int, skb->len,
3146 tp->ucopy.len);
3148 __set_current_state(TASK_RUNNING);
3150 local_bh_enable();
3151 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3152 tp->ucopy.len -= chunk;
3153 tp->copied_seq += chunk;
3154 eaten = (chunk == skb->len && !th->fin);
3155 tcp_rcv_space_adjust(sk);
3157 local_bh_disable();
3160 if (eaten <= 0) {
3161 queue_and_out:
3162 if (eaten < 0 &&
3163 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3164 !sk_stream_rmem_schedule(sk, skb))) {
3165 if (tcp_prune_queue(sk) < 0 ||
3166 !sk_stream_rmem_schedule(sk, skb))
3167 goto drop;
3169 sk_stream_set_owner_r(skb, sk);
3170 __skb_queue_tail(&sk->sk_receive_queue, skb);
3172 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3173 if(skb->len)
3174 tcp_event_data_recv(sk, tp, skb);
3175 if(th->fin)
3176 tcp_fin(skb, sk, th);
3178 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3179 tcp_ofo_queue(sk);
3181 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3182 * gap in queue is filled.
3184 if (skb_queue_empty(&tp->out_of_order_queue))
3185 inet_csk(sk)->icsk_ack.pingpong = 0;
3188 if (tp->rx_opt.num_sacks)
3189 tcp_sack_remove(tp);
3191 tcp_fast_path_check(sk, tp);
3193 if (eaten > 0)
3194 __kfree_skb(skb);
3195 else if (!sock_flag(sk, SOCK_DEAD))
3196 sk->sk_data_ready(sk, 0);
3197 return;
3200 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3201 /* A retransmit, 2nd most common case. Force an immediate ack. */
3202 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3203 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3205 out_of_window:
3206 tcp_enter_quickack_mode(sk);
3207 inet_csk_schedule_ack(sk);
3208 drop:
3209 __kfree_skb(skb);
3210 return;
3213 /* Out of window. F.e. zero window probe. */
3214 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3215 goto out_of_window;
3217 tcp_enter_quickack_mode(sk);
3219 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3220 /* Partial packet, seq < rcv_next < end_seq */
3221 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3222 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3223 TCP_SKB_CB(skb)->end_seq);
3225 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3227 /* If window is closed, drop tail of packet. But after
3228 * remembering D-SACK for its head made in previous line.
3230 if (!tcp_receive_window(tp))
3231 goto out_of_window;
3232 goto queue_and_out;
3235 TCP_ECN_check_ce(tp, skb);
3237 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3238 !sk_stream_rmem_schedule(sk, skb)) {
3239 if (tcp_prune_queue(sk) < 0 ||
3240 !sk_stream_rmem_schedule(sk, skb))
3241 goto drop;
3244 /* Disable header prediction. */
3245 tp->pred_flags = 0;
3246 inet_csk_schedule_ack(sk);
3248 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3249 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3251 sk_stream_set_owner_r(skb, sk);
3253 if (!skb_peek(&tp->out_of_order_queue)) {
3254 /* Initial out of order segment, build 1 SACK. */
3255 if (tp->rx_opt.sack_ok) {
3256 tp->rx_opt.num_sacks = 1;
3257 tp->rx_opt.dsack = 0;
3258 tp->rx_opt.eff_sacks = 1;
3259 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3260 tp->selective_acks[0].end_seq =
3261 TCP_SKB_CB(skb)->end_seq;
3263 __skb_queue_head(&tp->out_of_order_queue,skb);
3264 } else {
3265 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3266 u32 seq = TCP_SKB_CB(skb)->seq;
3267 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3269 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3270 __skb_append(skb1, skb, &tp->out_of_order_queue);
3272 if (!tp->rx_opt.num_sacks ||
3273 tp->selective_acks[0].end_seq != seq)
3274 goto add_sack;
3276 /* Common case: data arrive in order after hole. */
3277 tp->selective_acks[0].end_seq = end_seq;
3278 return;
3281 /* Find place to insert this segment. */
3282 do {
3283 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3284 break;
3285 } while ((skb1 = skb1->prev) !=
3286 (struct sk_buff*)&tp->out_of_order_queue);
3288 /* Do skb overlap to previous one? */
3289 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3290 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3291 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3292 /* All the bits are present. Drop. */
3293 __kfree_skb(skb);
3294 tcp_dsack_set(tp, seq, end_seq);
3295 goto add_sack;
3297 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3298 /* Partial overlap. */
3299 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3300 } else {
3301 skb1 = skb1->prev;
3304 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3306 /* And clean segments covered by new one as whole. */
3307 while ((skb1 = skb->next) !=
3308 (struct sk_buff*)&tp->out_of_order_queue &&
3309 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3310 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3311 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3312 break;
3314 __skb_unlink(skb1, &tp->out_of_order_queue);
3315 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3316 __kfree_skb(skb1);
3319 add_sack:
3320 if (tp->rx_opt.sack_ok)
3321 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3325 /* Collapse contiguous sequence of skbs head..tail with
3326 * sequence numbers start..end.
3327 * Segments with FIN/SYN are not collapsed (only because this
3328 * simplifies code)
3330 static void
3331 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3332 struct sk_buff *head, struct sk_buff *tail,
3333 u32 start, u32 end)
3335 struct sk_buff *skb;
3337 /* First, check that queue is collapsible and find
3338 * the point where collapsing can be useful. */
3339 for (skb = head; skb != tail; ) {
3340 /* No new bits? It is possible on ofo queue. */
3341 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3342 struct sk_buff *next = skb->next;
3343 __skb_unlink(skb, list);
3344 __kfree_skb(skb);
3345 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3346 skb = next;
3347 continue;
3350 /* The first skb to collapse is:
3351 * - not SYN/FIN and
3352 * - bloated or contains data before "start" or
3353 * overlaps to the next one.
3355 if (!skb->h.th->syn && !skb->h.th->fin &&
3356 (tcp_win_from_space(skb->truesize) > skb->len ||
3357 before(TCP_SKB_CB(skb)->seq, start) ||
3358 (skb->next != tail &&
3359 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3360 break;
3362 /* Decided to skip this, advance start seq. */
3363 start = TCP_SKB_CB(skb)->end_seq;
3364 skb = skb->next;
3366 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3367 return;
3369 while (before(start, end)) {
3370 struct sk_buff *nskb;
3371 int header = skb_headroom(skb);
3372 int copy = SKB_MAX_ORDER(header, 0);
3374 /* Too big header? This can happen with IPv6. */
3375 if (copy < 0)
3376 return;
3377 if (end-start < copy)
3378 copy = end-start;
3379 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3380 if (!nskb)
3381 return;
3382 skb_reserve(nskb, header);
3383 memcpy(nskb->head, skb->head, header);
3384 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3385 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3386 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3387 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3388 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3389 __skb_insert(nskb, skb->prev, skb, list);
3390 sk_stream_set_owner_r(nskb, sk);
3392 /* Copy data, releasing collapsed skbs. */
3393 while (copy > 0) {
3394 int offset = start - TCP_SKB_CB(skb)->seq;
3395 int size = TCP_SKB_CB(skb)->end_seq - start;
3397 BUG_ON(offset < 0);
3398 if (size > 0) {
3399 size = min(copy, size);
3400 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3401 BUG();
3402 TCP_SKB_CB(nskb)->end_seq += size;
3403 copy -= size;
3404 start += size;
3406 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3407 struct sk_buff *next = skb->next;
3408 __skb_unlink(skb, list);
3409 __kfree_skb(skb);
3410 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3411 skb = next;
3412 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3413 return;
3419 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3420 * and tcp_collapse() them until all the queue is collapsed.
3422 static void tcp_collapse_ofo_queue(struct sock *sk)
3424 struct tcp_sock *tp = tcp_sk(sk);
3425 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3426 struct sk_buff *head;
3427 u32 start, end;
3429 if (skb == NULL)
3430 return;
3432 start = TCP_SKB_CB(skb)->seq;
3433 end = TCP_SKB_CB(skb)->end_seq;
3434 head = skb;
3436 for (;;) {
3437 skb = skb->next;
3439 /* Segment is terminated when we see gap or when
3440 * we are at the end of all the queue. */
3441 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3442 after(TCP_SKB_CB(skb)->seq, end) ||
3443 before(TCP_SKB_CB(skb)->end_seq, start)) {
3444 tcp_collapse(sk, &tp->out_of_order_queue,
3445 head, skb, start, end);
3446 head = skb;
3447 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3448 break;
3449 /* Start new segment */
3450 start = TCP_SKB_CB(skb)->seq;
3451 end = TCP_SKB_CB(skb)->end_seq;
3452 } else {
3453 if (before(TCP_SKB_CB(skb)->seq, start))
3454 start = TCP_SKB_CB(skb)->seq;
3455 if (after(TCP_SKB_CB(skb)->end_seq, end))
3456 end = TCP_SKB_CB(skb)->end_seq;
3461 /* Reduce allocated memory if we can, trying to get
3462 * the socket within its memory limits again.
3464 * Return less than zero if we should start dropping frames
3465 * until the socket owning process reads some of the data
3466 * to stabilize the situation.
3468 static int tcp_prune_queue(struct sock *sk)
3470 struct tcp_sock *tp = tcp_sk(sk);
3472 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3474 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3476 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3477 tcp_clamp_window(sk, tp);
3478 else if (tcp_memory_pressure)
3479 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3481 tcp_collapse_ofo_queue(sk);
3482 tcp_collapse(sk, &sk->sk_receive_queue,
3483 sk->sk_receive_queue.next,
3484 (struct sk_buff*)&sk->sk_receive_queue,
3485 tp->copied_seq, tp->rcv_nxt);
3486 sk_stream_mem_reclaim(sk);
3488 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3489 return 0;
3491 /* Collapsing did not help, destructive actions follow.
3492 * This must not ever occur. */
3494 /* First, purge the out_of_order queue. */
3495 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3496 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3497 __skb_queue_purge(&tp->out_of_order_queue);
3499 /* Reset SACK state. A conforming SACK implementation will
3500 * do the same at a timeout based retransmit. When a connection
3501 * is in a sad state like this, we care only about integrity
3502 * of the connection not performance.
3504 if (tp->rx_opt.sack_ok)
3505 tcp_sack_reset(&tp->rx_opt);
3506 sk_stream_mem_reclaim(sk);
3509 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3510 return 0;
3512 /* If we are really being abused, tell the caller to silently
3513 * drop receive data on the floor. It will get retransmitted
3514 * and hopefully then we'll have sufficient space.
3516 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3518 /* Massive buffer overcommit. */
3519 tp->pred_flags = 0;
3520 return -1;
3524 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3525 * As additional protections, we do not touch cwnd in retransmission phases,
3526 * and if application hit its sndbuf limit recently.
3528 void tcp_cwnd_application_limited(struct sock *sk)
3530 struct tcp_sock *tp = tcp_sk(sk);
3532 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3533 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3534 /* Limited by application or receiver window. */
3535 u32 win_used = max(tp->snd_cwnd_used, 2U);
3536 if (win_used < tp->snd_cwnd) {
3537 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3538 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3540 tp->snd_cwnd_used = 0;
3542 tp->snd_cwnd_stamp = tcp_time_stamp;
3545 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3547 /* If the user specified a specific send buffer setting, do
3548 * not modify it.
3550 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3551 return 0;
3553 /* If we are under global TCP memory pressure, do not expand. */
3554 if (tcp_memory_pressure)
3555 return 0;
3557 /* If we are under soft global TCP memory pressure, do not expand. */
3558 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3559 return 0;
3561 /* If we filled the congestion window, do not expand. */
3562 if (tp->packets_out >= tp->snd_cwnd)
3563 return 0;
3565 return 1;
3568 /* When incoming ACK allowed to free some skb from write_queue,
3569 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3570 * on the exit from tcp input handler.
3572 * PROBLEM: sndbuf expansion does not work well with largesend.
3574 static void tcp_new_space(struct sock *sk)
3576 struct tcp_sock *tp = tcp_sk(sk);
3578 if (tcp_should_expand_sndbuf(sk, tp)) {
3579 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3580 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3581 demanded = max_t(unsigned int, tp->snd_cwnd,
3582 tp->reordering + 1);
3583 sndmem *= 2*demanded;
3584 if (sndmem > sk->sk_sndbuf)
3585 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3586 tp->snd_cwnd_stamp = tcp_time_stamp;
3589 sk->sk_write_space(sk);
3592 static void tcp_check_space(struct sock *sk)
3594 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3595 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3596 if (sk->sk_socket &&
3597 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3598 tcp_new_space(sk);
3602 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3604 tcp_push_pending_frames(sk, tp);
3605 tcp_check_space(sk);
3609 * Check if sending an ack is needed.
3611 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3613 struct tcp_sock *tp = tcp_sk(sk);
3615 /* More than one full frame received... */
3616 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3617 /* ... and right edge of window advances far enough.
3618 * (tcp_recvmsg() will send ACK otherwise). Or...
3620 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3621 /* We ACK each frame or... */
3622 tcp_in_quickack_mode(sk) ||
3623 /* We have out of order data. */
3624 (ofo_possible &&
3625 skb_peek(&tp->out_of_order_queue))) {
3626 /* Then ack it now */
3627 tcp_send_ack(sk);
3628 } else {
3629 /* Else, send delayed ack. */
3630 tcp_send_delayed_ack(sk);
3634 static inline void tcp_ack_snd_check(struct sock *sk)
3636 if (!inet_csk_ack_scheduled(sk)) {
3637 /* We sent a data segment already. */
3638 return;
3640 __tcp_ack_snd_check(sk, 1);
3644 * This routine is only called when we have urgent data
3645 * signaled. Its the 'slow' part of tcp_urg. It could be
3646 * moved inline now as tcp_urg is only called from one
3647 * place. We handle URGent data wrong. We have to - as
3648 * BSD still doesn't use the correction from RFC961.
3649 * For 1003.1g we should support a new option TCP_STDURG to permit
3650 * either form (or just set the sysctl tcp_stdurg).
3653 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3655 struct tcp_sock *tp = tcp_sk(sk);
3656 u32 ptr = ntohs(th->urg_ptr);
3658 if (ptr && !sysctl_tcp_stdurg)
3659 ptr--;
3660 ptr += ntohl(th->seq);
3662 /* Ignore urgent data that we've already seen and read. */
3663 if (after(tp->copied_seq, ptr))
3664 return;
3666 /* Do not replay urg ptr.
3668 * NOTE: interesting situation not covered by specs.
3669 * Misbehaving sender may send urg ptr, pointing to segment,
3670 * which we already have in ofo queue. We are not able to fetch
3671 * such data and will stay in TCP_URG_NOTYET until will be eaten
3672 * by recvmsg(). Seems, we are not obliged to handle such wicked
3673 * situations. But it is worth to think about possibility of some
3674 * DoSes using some hypothetical application level deadlock.
3676 if (before(ptr, tp->rcv_nxt))
3677 return;
3679 /* Do we already have a newer (or duplicate) urgent pointer? */
3680 if (tp->urg_data && !after(ptr, tp->urg_seq))
3681 return;
3683 /* Tell the world about our new urgent pointer. */
3684 sk_send_sigurg(sk);
3686 /* We may be adding urgent data when the last byte read was
3687 * urgent. To do this requires some care. We cannot just ignore
3688 * tp->copied_seq since we would read the last urgent byte again
3689 * as data, nor can we alter copied_seq until this data arrives
3690 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3692 * NOTE. Double Dutch. Rendering to plain English: author of comment
3693 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3694 * and expect that both A and B disappear from stream. This is _wrong_.
3695 * Though this happens in BSD with high probability, this is occasional.
3696 * Any application relying on this is buggy. Note also, that fix "works"
3697 * only in this artificial test. Insert some normal data between A and B and we will
3698 * decline of BSD again. Verdict: it is better to remove to trap
3699 * buggy users.
3701 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3702 !sock_flag(sk, SOCK_URGINLINE) &&
3703 tp->copied_seq != tp->rcv_nxt) {
3704 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3705 tp->copied_seq++;
3706 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3707 __skb_unlink(skb, &sk->sk_receive_queue);
3708 __kfree_skb(skb);
3712 tp->urg_data = TCP_URG_NOTYET;
3713 tp->urg_seq = ptr;
3715 /* Disable header prediction. */
3716 tp->pred_flags = 0;
3719 /* This is the 'fast' part of urgent handling. */
3720 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3722 struct tcp_sock *tp = tcp_sk(sk);
3724 /* Check if we get a new urgent pointer - normally not. */
3725 if (th->urg)
3726 tcp_check_urg(sk,th);
3728 /* Do we wait for any urgent data? - normally not... */
3729 if (tp->urg_data == TCP_URG_NOTYET) {
3730 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3731 th->syn;
3733 /* Is the urgent pointer pointing into this packet? */
3734 if (ptr < skb->len) {
3735 u8 tmp;
3736 if (skb_copy_bits(skb, ptr, &tmp, 1))
3737 BUG();
3738 tp->urg_data = TCP_URG_VALID | tmp;
3739 if (!sock_flag(sk, SOCK_DEAD))
3740 sk->sk_data_ready(sk, 0);
3745 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3747 struct tcp_sock *tp = tcp_sk(sk);
3748 int chunk = skb->len - hlen;
3749 int err;
3751 local_bh_enable();
3752 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3753 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3754 else
3755 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3756 tp->ucopy.iov);
3758 if (!err) {
3759 tp->ucopy.len -= chunk;
3760 tp->copied_seq += chunk;
3761 tcp_rcv_space_adjust(sk);
3764 local_bh_disable();
3765 return err;
3768 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3770 int result;
3772 if (sock_owned_by_user(sk)) {
3773 local_bh_enable();
3774 result = __tcp_checksum_complete(skb);
3775 local_bh_disable();
3776 } else {
3777 result = __tcp_checksum_complete(skb);
3779 return result;
3782 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3784 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3785 __tcp_checksum_complete_user(sk, skb);
3789 * TCP receive function for the ESTABLISHED state.
3791 * It is split into a fast path and a slow path. The fast path is
3792 * disabled when:
3793 * - A zero window was announced from us - zero window probing
3794 * is only handled properly in the slow path.
3795 * - Out of order segments arrived.
3796 * - Urgent data is expected.
3797 * - There is no buffer space left
3798 * - Unexpected TCP flags/window values/header lengths are received
3799 * (detected by checking the TCP header against pred_flags)
3800 * - Data is sent in both directions. Fast path only supports pure senders
3801 * or pure receivers (this means either the sequence number or the ack
3802 * value must stay constant)
3803 * - Unexpected TCP option.
3805 * When these conditions are not satisfied it drops into a standard
3806 * receive procedure patterned after RFC793 to handle all cases.
3807 * The first three cases are guaranteed by proper pred_flags setting,
3808 * the rest is checked inline. Fast processing is turned on in
3809 * tcp_data_queue when everything is OK.
3811 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3812 struct tcphdr *th, unsigned len)
3814 struct tcp_sock *tp = tcp_sk(sk);
3817 * Header prediction.
3818 * The code loosely follows the one in the famous
3819 * "30 instruction TCP receive" Van Jacobson mail.
3821 * Van's trick is to deposit buffers into socket queue
3822 * on a device interrupt, to call tcp_recv function
3823 * on the receive process context and checksum and copy
3824 * the buffer to user space. smart...
3826 * Our current scheme is not silly either but we take the
3827 * extra cost of the net_bh soft interrupt processing...
3828 * We do checksum and copy also but from device to kernel.
3831 tp->rx_opt.saw_tstamp = 0;
3833 /* pred_flags is 0xS?10 << 16 + snd_wnd
3834 * if header_prediction is to be made
3835 * 'S' will always be tp->tcp_header_len >> 2
3836 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3837 * turn it off (when there are holes in the receive
3838 * space for instance)
3839 * PSH flag is ignored.
3842 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3843 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3844 int tcp_header_len = tp->tcp_header_len;
3846 /* Timestamp header prediction: tcp_header_len
3847 * is automatically equal to th->doff*4 due to pred_flags
3848 * match.
3851 /* Check timestamp */
3852 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3853 __u32 *ptr = (__u32 *)(th + 1);
3855 /* No? Slow path! */
3856 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3857 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3858 goto slow_path;
3860 tp->rx_opt.saw_tstamp = 1;
3861 ++ptr;
3862 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3863 ++ptr;
3864 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3866 /* If PAWS failed, check it more carefully in slow path */
3867 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3868 goto slow_path;
3870 /* DO NOT update ts_recent here, if checksum fails
3871 * and timestamp was corrupted part, it will result
3872 * in a hung connection since we will drop all
3873 * future packets due to the PAWS test.
3877 if (len <= tcp_header_len) {
3878 /* Bulk data transfer: sender */
3879 if (len == tcp_header_len) {
3880 /* Predicted packet is in window by definition.
3881 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3882 * Hence, check seq<=rcv_wup reduces to:
3884 if (tcp_header_len ==
3885 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3886 tp->rcv_nxt == tp->rcv_wup)
3887 tcp_store_ts_recent(tp);
3889 tcp_rcv_rtt_measure_ts(sk, skb);
3891 /* We know that such packets are checksummed
3892 * on entry.
3894 tcp_ack(sk, skb, 0);
3895 __kfree_skb(skb);
3896 tcp_data_snd_check(sk, tp);
3897 return 0;
3898 } else { /* Header too small */
3899 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3900 goto discard;
3902 } else {
3903 int eaten = 0;
3905 if (tp->ucopy.task == current &&
3906 tp->copied_seq == tp->rcv_nxt &&
3907 len - tcp_header_len <= tp->ucopy.len &&
3908 sock_owned_by_user(sk)) {
3909 __set_current_state(TASK_RUNNING);
3911 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3912 /* Predicted packet is in window by definition.
3913 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3914 * Hence, check seq<=rcv_wup reduces to:
3916 if (tcp_header_len ==
3917 (sizeof(struct tcphdr) +
3918 TCPOLEN_TSTAMP_ALIGNED) &&
3919 tp->rcv_nxt == tp->rcv_wup)
3920 tcp_store_ts_recent(tp);
3922 tcp_rcv_rtt_measure_ts(sk, skb);
3924 __skb_pull(skb, tcp_header_len);
3925 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3926 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3927 eaten = 1;
3930 if (!eaten) {
3931 if (tcp_checksum_complete_user(sk, skb))
3932 goto csum_error;
3934 /* Predicted packet is in window by definition.
3935 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3936 * Hence, check seq<=rcv_wup reduces to:
3938 if (tcp_header_len ==
3939 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3940 tp->rcv_nxt == tp->rcv_wup)
3941 tcp_store_ts_recent(tp);
3943 tcp_rcv_rtt_measure_ts(sk, skb);
3945 if ((int)skb->truesize > sk->sk_forward_alloc)
3946 goto step5;
3948 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3950 /* Bulk data transfer: receiver */
3951 __skb_pull(skb,tcp_header_len);
3952 __skb_queue_tail(&sk->sk_receive_queue, skb);
3953 sk_stream_set_owner_r(skb, sk);
3954 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3957 tcp_event_data_recv(sk, tp, skb);
3959 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3960 /* Well, only one small jumplet in fast path... */
3961 tcp_ack(sk, skb, FLAG_DATA);
3962 tcp_data_snd_check(sk, tp);
3963 if (!inet_csk_ack_scheduled(sk))
3964 goto no_ack;
3967 __tcp_ack_snd_check(sk, 0);
3968 no_ack:
3969 if (eaten)
3970 __kfree_skb(skb);
3971 else
3972 sk->sk_data_ready(sk, 0);
3973 return 0;
3977 slow_path:
3978 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3979 goto csum_error;
3982 * RFC1323: H1. Apply PAWS check first.
3984 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3985 tcp_paws_discard(sk, skb)) {
3986 if (!th->rst) {
3987 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3988 tcp_send_dupack(sk, skb);
3989 goto discard;
3991 /* Resets are accepted even if PAWS failed.
3993 ts_recent update must be made after we are sure
3994 that the packet is in window.
3999 * Standard slow path.
4002 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4003 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4004 * (RST) segments are validated by checking their SEQ-fields."
4005 * And page 69: "If an incoming segment is not acceptable,
4006 * an acknowledgment should be sent in reply (unless the RST bit
4007 * is set, if so drop the segment and return)".
4009 if (!th->rst)
4010 tcp_send_dupack(sk, skb);
4011 goto discard;
4014 if(th->rst) {
4015 tcp_reset(sk);
4016 goto discard;
4019 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4021 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4022 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4023 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4024 tcp_reset(sk);
4025 return 1;
4028 step5:
4029 if(th->ack)
4030 tcp_ack(sk, skb, FLAG_SLOWPATH);
4032 tcp_rcv_rtt_measure_ts(sk, skb);
4034 /* Process urgent data. */
4035 tcp_urg(sk, skb, th);
4037 /* step 7: process the segment text */
4038 tcp_data_queue(sk, skb);
4040 tcp_data_snd_check(sk, tp);
4041 tcp_ack_snd_check(sk);
4042 return 0;
4044 csum_error:
4045 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4047 discard:
4048 __kfree_skb(skb);
4049 return 0;
4052 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4053 struct tcphdr *th, unsigned len)
4055 struct tcp_sock *tp = tcp_sk(sk);
4056 struct inet_connection_sock *icsk = inet_csk(sk);
4057 int saved_clamp = tp->rx_opt.mss_clamp;
4059 tcp_parse_options(skb, &tp->rx_opt, 0);
4061 if (th->ack) {
4062 /* rfc793:
4063 * "If the state is SYN-SENT then
4064 * first check the ACK bit
4065 * If the ACK bit is set
4066 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4067 * a reset (unless the RST bit is set, if so drop
4068 * the segment and return)"
4070 * We do not send data with SYN, so that RFC-correct
4071 * test reduces to:
4073 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4074 goto reset_and_undo;
4076 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4077 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4078 tcp_time_stamp)) {
4079 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4080 goto reset_and_undo;
4083 /* Now ACK is acceptable.
4085 * "If the RST bit is set
4086 * If the ACK was acceptable then signal the user "error:
4087 * connection reset", drop the segment, enter CLOSED state,
4088 * delete TCB, and return."
4091 if (th->rst) {
4092 tcp_reset(sk);
4093 goto discard;
4096 /* rfc793:
4097 * "fifth, if neither of the SYN or RST bits is set then
4098 * drop the segment and return."
4100 * See note below!
4101 * --ANK(990513)
4103 if (!th->syn)
4104 goto discard_and_undo;
4106 /* rfc793:
4107 * "If the SYN bit is on ...
4108 * are acceptable then ...
4109 * (our SYN has been ACKed), change the connection
4110 * state to ESTABLISHED..."
4113 TCP_ECN_rcv_synack(tp, th);
4114 if (tp->ecn_flags&TCP_ECN_OK)
4115 sock_set_flag(sk, SOCK_NO_LARGESEND);
4117 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4118 tcp_ack(sk, skb, FLAG_SLOWPATH);
4120 /* Ok.. it's good. Set up sequence numbers and
4121 * move to established.
4123 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4124 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4126 /* RFC1323: The window in SYN & SYN/ACK segments is
4127 * never scaled.
4129 tp->snd_wnd = ntohs(th->window);
4130 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4132 if (!tp->rx_opt.wscale_ok) {
4133 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4134 tp->window_clamp = min(tp->window_clamp, 65535U);
4137 if (tp->rx_opt.saw_tstamp) {
4138 tp->rx_opt.tstamp_ok = 1;
4139 tp->tcp_header_len =
4140 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4141 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4142 tcp_store_ts_recent(tp);
4143 } else {
4144 tp->tcp_header_len = sizeof(struct tcphdr);
4147 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4148 tp->rx_opt.sack_ok |= 2;
4150 tcp_mtup_init(sk);
4151 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4152 tcp_initialize_rcv_mss(sk);
4154 /* Remember, tcp_poll() does not lock socket!
4155 * Change state from SYN-SENT only after copied_seq
4156 * is initialized. */
4157 tp->copied_seq = tp->rcv_nxt;
4158 mb();
4159 tcp_set_state(sk, TCP_ESTABLISHED);
4161 /* Make sure socket is routed, for correct metrics. */
4162 icsk->icsk_af_ops->rebuild_header(sk);
4164 tcp_init_metrics(sk);
4166 tcp_init_congestion_control(sk);
4168 /* Prevent spurious tcp_cwnd_restart() on first data
4169 * packet.
4171 tp->lsndtime = tcp_time_stamp;
4173 tcp_init_buffer_space(sk);
4175 if (sock_flag(sk, SOCK_KEEPOPEN))
4176 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4178 if (!tp->rx_opt.snd_wscale)
4179 __tcp_fast_path_on(tp, tp->snd_wnd);
4180 else
4181 tp->pred_flags = 0;
4183 if (!sock_flag(sk, SOCK_DEAD)) {
4184 sk->sk_state_change(sk);
4185 sk_wake_async(sk, 0, POLL_OUT);
4188 if (sk->sk_write_pending ||
4189 icsk->icsk_accept_queue.rskq_defer_accept ||
4190 icsk->icsk_ack.pingpong) {
4191 /* Save one ACK. Data will be ready after
4192 * several ticks, if write_pending is set.
4194 * It may be deleted, but with this feature tcpdumps
4195 * look so _wonderfully_ clever, that I was not able
4196 * to stand against the temptation 8) --ANK
4198 inet_csk_schedule_ack(sk);
4199 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4200 icsk->icsk_ack.ato = TCP_ATO_MIN;
4201 tcp_incr_quickack(sk);
4202 tcp_enter_quickack_mode(sk);
4203 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4204 TCP_DELACK_MAX, TCP_RTO_MAX);
4206 discard:
4207 __kfree_skb(skb);
4208 return 0;
4209 } else {
4210 tcp_send_ack(sk);
4212 return -1;
4215 /* No ACK in the segment */
4217 if (th->rst) {
4218 /* rfc793:
4219 * "If the RST bit is set
4221 * Otherwise (no ACK) drop the segment and return."
4224 goto discard_and_undo;
4227 /* PAWS check. */
4228 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4229 goto discard_and_undo;
4231 if (th->syn) {
4232 /* We see SYN without ACK. It is attempt of
4233 * simultaneous connect with crossed SYNs.
4234 * Particularly, it can be connect to self.
4236 tcp_set_state(sk, TCP_SYN_RECV);
4238 if (tp->rx_opt.saw_tstamp) {
4239 tp->rx_opt.tstamp_ok = 1;
4240 tcp_store_ts_recent(tp);
4241 tp->tcp_header_len =
4242 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4243 } else {
4244 tp->tcp_header_len = sizeof(struct tcphdr);
4247 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4248 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4250 /* RFC1323: The window in SYN & SYN/ACK segments is
4251 * never scaled.
4253 tp->snd_wnd = ntohs(th->window);
4254 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4255 tp->max_window = tp->snd_wnd;
4257 TCP_ECN_rcv_syn(tp, th);
4258 if (tp->ecn_flags&TCP_ECN_OK)
4259 sock_set_flag(sk, SOCK_NO_LARGESEND);
4261 tcp_mtup_init(sk);
4262 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4263 tcp_initialize_rcv_mss(sk);
4266 tcp_send_synack(sk);
4267 #if 0
4268 /* Note, we could accept data and URG from this segment.
4269 * There are no obstacles to make this.
4271 * However, if we ignore data in ACKless segments sometimes,
4272 * we have no reasons to accept it sometimes.
4273 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4274 * is not flawless. So, discard packet for sanity.
4275 * Uncomment this return to process the data.
4277 return -1;
4278 #else
4279 goto discard;
4280 #endif
4282 /* "fifth, if neither of the SYN or RST bits is set then
4283 * drop the segment and return."
4286 discard_and_undo:
4287 tcp_clear_options(&tp->rx_opt);
4288 tp->rx_opt.mss_clamp = saved_clamp;
4289 goto discard;
4291 reset_and_undo:
4292 tcp_clear_options(&tp->rx_opt);
4293 tp->rx_opt.mss_clamp = saved_clamp;
4294 return 1;
4299 * This function implements the receiving procedure of RFC 793 for
4300 * all states except ESTABLISHED and TIME_WAIT.
4301 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4302 * address independent.
4305 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4306 struct tcphdr *th, unsigned len)
4308 struct tcp_sock *tp = tcp_sk(sk);
4309 struct inet_connection_sock *icsk = inet_csk(sk);
4310 int queued = 0;
4312 tp->rx_opt.saw_tstamp = 0;
4314 switch (sk->sk_state) {
4315 case TCP_CLOSE:
4316 goto discard;
4318 case TCP_LISTEN:
4319 if(th->ack)
4320 return 1;
4322 if(th->rst)
4323 goto discard;
4325 if(th->syn) {
4326 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4327 return 1;
4329 /* Now we have several options: In theory there is
4330 * nothing else in the frame. KA9Q has an option to
4331 * send data with the syn, BSD accepts data with the
4332 * syn up to the [to be] advertised window and
4333 * Solaris 2.1 gives you a protocol error. For now
4334 * we just ignore it, that fits the spec precisely
4335 * and avoids incompatibilities. It would be nice in
4336 * future to drop through and process the data.
4338 * Now that TTCP is starting to be used we ought to
4339 * queue this data.
4340 * But, this leaves one open to an easy denial of
4341 * service attack, and SYN cookies can't defend
4342 * against this problem. So, we drop the data
4343 * in the interest of security over speed.
4345 goto discard;
4347 goto discard;
4349 case TCP_SYN_SENT:
4350 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4351 if (queued >= 0)
4352 return queued;
4354 /* Do step6 onward by hand. */
4355 tcp_urg(sk, skb, th);
4356 __kfree_skb(skb);
4357 tcp_data_snd_check(sk, tp);
4358 return 0;
4361 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4362 tcp_paws_discard(sk, skb)) {
4363 if (!th->rst) {
4364 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4365 tcp_send_dupack(sk, skb);
4366 goto discard;
4368 /* Reset is accepted even if it did not pass PAWS. */
4371 /* step 1: check sequence number */
4372 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4373 if (!th->rst)
4374 tcp_send_dupack(sk, skb);
4375 goto discard;
4378 /* step 2: check RST bit */
4379 if(th->rst) {
4380 tcp_reset(sk);
4381 goto discard;
4384 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4386 /* step 3: check security and precedence [ignored] */
4388 /* step 4:
4390 * Check for a SYN in window.
4392 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4393 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4394 tcp_reset(sk);
4395 return 1;
4398 /* step 5: check the ACK field */
4399 if (th->ack) {
4400 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4402 switch(sk->sk_state) {
4403 case TCP_SYN_RECV:
4404 if (acceptable) {
4405 tp->copied_seq = tp->rcv_nxt;
4406 mb();
4407 tcp_set_state(sk, TCP_ESTABLISHED);
4408 sk->sk_state_change(sk);
4410 /* Note, that this wakeup is only for marginal
4411 * crossed SYN case. Passively open sockets
4412 * are not waked up, because sk->sk_sleep ==
4413 * NULL and sk->sk_socket == NULL.
4415 if (sk->sk_socket) {
4416 sk_wake_async(sk,0,POLL_OUT);
4419 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4420 tp->snd_wnd = ntohs(th->window) <<
4421 tp->rx_opt.snd_wscale;
4422 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4423 TCP_SKB_CB(skb)->seq);
4425 /* tcp_ack considers this ACK as duplicate
4426 * and does not calculate rtt.
4427 * Fix it at least with timestamps.
4429 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4430 !tp->srtt)
4431 tcp_ack_saw_tstamp(sk, 0);
4433 if (tp->rx_opt.tstamp_ok)
4434 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4436 /* Make sure socket is routed, for
4437 * correct metrics.
4439 icsk->icsk_af_ops->rebuild_header(sk);
4441 tcp_init_metrics(sk);
4443 tcp_init_congestion_control(sk);
4445 /* Prevent spurious tcp_cwnd_restart() on
4446 * first data packet.
4448 tp->lsndtime = tcp_time_stamp;
4450 tcp_mtup_init(sk);
4451 tcp_initialize_rcv_mss(sk);
4452 tcp_init_buffer_space(sk);
4453 tcp_fast_path_on(tp);
4454 } else {
4455 return 1;
4457 break;
4459 case TCP_FIN_WAIT1:
4460 if (tp->snd_una == tp->write_seq) {
4461 tcp_set_state(sk, TCP_FIN_WAIT2);
4462 sk->sk_shutdown |= SEND_SHUTDOWN;
4463 dst_confirm(sk->sk_dst_cache);
4465 if (!sock_flag(sk, SOCK_DEAD))
4466 /* Wake up lingering close() */
4467 sk->sk_state_change(sk);
4468 else {
4469 int tmo;
4471 if (tp->linger2 < 0 ||
4472 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4473 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4474 tcp_done(sk);
4475 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4476 return 1;
4479 tmo = tcp_fin_time(sk);
4480 if (tmo > TCP_TIMEWAIT_LEN) {
4481 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4482 } else if (th->fin || sock_owned_by_user(sk)) {
4483 /* Bad case. We could lose such FIN otherwise.
4484 * It is not a big problem, but it looks confusing
4485 * and not so rare event. We still can lose it now,
4486 * if it spins in bh_lock_sock(), but it is really
4487 * marginal case.
4489 inet_csk_reset_keepalive_timer(sk, tmo);
4490 } else {
4491 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4492 goto discard;
4496 break;
4498 case TCP_CLOSING:
4499 if (tp->snd_una == tp->write_seq) {
4500 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4501 goto discard;
4503 break;
4505 case TCP_LAST_ACK:
4506 if (tp->snd_una == tp->write_seq) {
4507 tcp_update_metrics(sk);
4508 tcp_done(sk);
4509 goto discard;
4511 break;
4513 } else
4514 goto discard;
4516 /* step 6: check the URG bit */
4517 tcp_urg(sk, skb, th);
4519 /* step 7: process the segment text */
4520 switch (sk->sk_state) {
4521 case TCP_CLOSE_WAIT:
4522 case TCP_CLOSING:
4523 case TCP_LAST_ACK:
4524 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4525 break;
4526 case TCP_FIN_WAIT1:
4527 case TCP_FIN_WAIT2:
4528 /* RFC 793 says to queue data in these states,
4529 * RFC 1122 says we MUST send a reset.
4530 * BSD 4.4 also does reset.
4532 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4533 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4534 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4535 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4536 tcp_reset(sk);
4537 return 1;
4540 /* Fall through */
4541 case TCP_ESTABLISHED:
4542 tcp_data_queue(sk, skb);
4543 queued = 1;
4544 break;
4547 /* tcp_data could move socket to TIME-WAIT */
4548 if (sk->sk_state != TCP_CLOSE) {
4549 tcp_data_snd_check(sk, tp);
4550 tcp_ack_snd_check(sk);
4553 if (!queued) {
4554 discard:
4555 __kfree_skb(skb);
4557 return 0;
4560 EXPORT_SYMBOL(sysctl_tcp_ecn);
4561 EXPORT_SYMBOL(sysctl_tcp_reordering);
4562 EXPORT_SYMBOL(tcp_parse_options);
4563 EXPORT_SYMBOL(tcp_rcv_established);
4564 EXPORT_SYMBOL(tcp_rcv_state_process);
4565 EXPORT_SYMBOL(tcp_initialize_rcv_mss);