2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
5 * Copyright (c) 2001,2002 Richard Russon
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/stddef.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/spinlock.h>
28 #include <linux/blkdev.h> /* For bdev_logical_block_size(). */
29 #include <linux/backing-dev.h>
30 #include <linux/buffer_head.h>
31 #include <linux/vfs.h>
32 #include <linux/moduleparam.h>
33 #include <linux/bitmap.h>
48 /* Number of mounted filesystems which have compression enabled. */
49 static unsigned long ntfs_nr_compression_users
;
51 /* A global default upcase table and a corresponding reference count. */
52 static ntfschar
*default_upcase
= NULL
;
53 static unsigned long ntfs_nr_upcase_users
= 0;
55 /* Error constants/strings used in inode.c::ntfs_show_options(). */
57 /* One of these must be present, default is ON_ERRORS_CONTINUE. */
58 ON_ERRORS_PANIC
= 0x01,
59 ON_ERRORS_REMOUNT_RO
= 0x02,
60 ON_ERRORS_CONTINUE
= 0x04,
61 /* Optional, can be combined with any of the above. */
62 ON_ERRORS_RECOVER
= 0x10,
65 const option_t on_errors_arr
[] = {
66 { ON_ERRORS_PANIC
, "panic" },
67 { ON_ERRORS_REMOUNT_RO
, "remount-ro", },
68 { ON_ERRORS_CONTINUE
, "continue", },
69 { ON_ERRORS_RECOVER
, "recover" },
76 * Copied from old ntfs driver (which copied from vfat driver).
78 static int simple_getbool(char *s
, bool *setval
)
81 if (!strcmp(s
, "1") || !strcmp(s
, "yes") || !strcmp(s
, "true"))
83 else if (!strcmp(s
, "0") || !strcmp(s
, "no") ||
94 * parse_options - parse the (re)mount options
96 * @opt: string containing the (re)mount options
98 * Parse the recognized options in @opt for the ntfs volume described by @vol.
100 static bool parse_options(ntfs_volume
*vol
, char *opt
)
103 static char *utf8
= "utf8";
104 int errors
= 0, sloppy
= 0;
105 kuid_t uid
= INVALID_UID
;
106 kgid_t gid
= INVALID_GID
;
107 umode_t fmask
= (umode_t
)-1, dmask
= (umode_t
)-1;
108 int mft_zone_multiplier
= -1, on_errors
= -1;
109 int show_sys_files
= -1, case_sensitive
= -1, disable_sparse
= -1;
110 struct nls_table
*nls_map
= NULL
, *old_nls
;
112 /* I am lazy... (-8 */
113 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
114 if (!strcmp(p, option)) { \
116 variable = default_value; \
118 variable = simple_strtoul(ov = v, &v, 0); \
123 #define NTFS_GETOPT(option, variable) \
124 if (!strcmp(p, option)) { \
127 variable = simple_strtoul(ov = v, &v, 0); \
131 #define NTFS_GETOPT_UID(option, variable) \
132 if (!strcmp(p, option)) { \
136 uid_value = simple_strtoul(ov = v, &v, 0); \
139 variable = make_kuid(current_user_ns(), uid_value); \
140 if (!uid_valid(variable)) \
143 #define NTFS_GETOPT_GID(option, variable) \
144 if (!strcmp(p, option)) { \
148 gid_value = simple_strtoul(ov = v, &v, 0); \
151 variable = make_kgid(current_user_ns(), gid_value); \
152 if (!gid_valid(variable)) \
155 #define NTFS_GETOPT_OCTAL(option, variable) \
156 if (!strcmp(p, option)) { \
159 variable = simple_strtoul(ov = v, &v, 8); \
163 #define NTFS_GETOPT_BOOL(option, variable) \
164 if (!strcmp(p, option)) { \
166 if (!simple_getbool(v, &val)) \
170 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
171 if (!strcmp(p, option)) { \
176 if (variable == -1) \
178 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
179 if (!strcmp(opt_array[_i].str, v)) { \
180 variable |= opt_array[_i].val; \
183 if (!opt_array[_i].str || !*opt_array[_i].str) \
187 goto no_mount_options
;
188 ntfs_debug("Entering with mount options string: %s", opt
);
189 while ((p
= strsep(&opt
, ","))) {
190 if ((v
= strchr(p
, '=')))
192 NTFS_GETOPT_UID("uid", uid
)
193 else NTFS_GETOPT_GID("gid", gid
)
194 else NTFS_GETOPT_OCTAL("umask", fmask
= dmask
)
195 else NTFS_GETOPT_OCTAL("fmask", fmask
)
196 else NTFS_GETOPT_OCTAL("dmask", dmask
)
197 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier
)
198 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy
, true)
199 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files
)
200 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive
)
201 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse
)
202 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors
,
204 else if (!strcmp(p
, "posix") || !strcmp(p
, "show_inodes"))
205 ntfs_warning(vol
->sb
, "Ignoring obsolete option %s.",
207 else if (!strcmp(p
, "nls") || !strcmp(p
, "iocharset")) {
208 if (!strcmp(p
, "iocharset"))
209 ntfs_warning(vol
->sb
, "Option iocharset is "
210 "deprecated. Please use "
211 "option nls=<charsetname> in "
217 nls_map
= load_nls(v
);
220 ntfs_error(vol
->sb
, "NLS character set "
224 ntfs_error(vol
->sb
, "NLS character set %s not "
225 "found. Using previous one %s.",
226 v
, old_nls
->charset
);
228 } else /* nls_map */ {
231 } else if (!strcmp(p
, "utf8")) {
233 ntfs_warning(vol
->sb
, "Option utf8 is no longer "
234 "supported, using option nls=utf8. Please "
235 "use option nls=utf8 in the future and "
236 "make sure utf8 is compiled either as a "
237 "module or into the kernel.");
240 else if (!simple_getbool(v
, &val
))
247 ntfs_error(vol
->sb
, "Unrecognized mount option %s.", p
);
248 if (errors
< INT_MAX
)
251 #undef NTFS_GETOPT_OPTIONS_ARRAY
252 #undef NTFS_GETOPT_BOOL
254 #undef NTFS_GETOPT_WITH_DEFAULT
257 if (errors
&& !sloppy
)
260 ntfs_warning(vol
->sb
, "Sloppy option given. Ignoring "
261 "unrecognized mount option(s) and continuing.");
262 /* Keep this first! */
263 if (on_errors
!= -1) {
265 ntfs_error(vol
->sb
, "Invalid errors option argument "
266 "or bug in options parser.");
271 if (vol
->nls_map
&& vol
->nls_map
!= nls_map
) {
272 ntfs_error(vol
->sb
, "Cannot change NLS character set "
275 } /* else (!vol->nls_map) */
276 ntfs_debug("Using NLS character set %s.", nls_map
->charset
);
277 vol
->nls_map
= nls_map
;
278 } else /* (!nls_map) */ {
280 vol
->nls_map
= load_nls_default();
282 ntfs_error(vol
->sb
, "Failed to load default "
283 "NLS character set.");
286 ntfs_debug("Using default NLS character set (%s).",
287 vol
->nls_map
->charset
);
290 if (mft_zone_multiplier
!= -1) {
291 if (vol
->mft_zone_multiplier
&& vol
->mft_zone_multiplier
!=
292 mft_zone_multiplier
) {
293 ntfs_error(vol
->sb
, "Cannot change mft_zone_multiplier "
297 if (mft_zone_multiplier
< 1 || mft_zone_multiplier
> 4) {
298 ntfs_error(vol
->sb
, "Invalid mft_zone_multiplier. "
299 "Using default value, i.e. 1.");
300 mft_zone_multiplier
= 1;
302 vol
->mft_zone_multiplier
= mft_zone_multiplier
;
304 if (!vol
->mft_zone_multiplier
)
305 vol
->mft_zone_multiplier
= 1;
307 vol
->on_errors
= on_errors
;
308 if (!vol
->on_errors
|| vol
->on_errors
== ON_ERRORS_RECOVER
)
309 vol
->on_errors
|= ON_ERRORS_CONTINUE
;
314 if (fmask
!= (umode_t
)-1)
316 if (dmask
!= (umode_t
)-1)
318 if (show_sys_files
!= -1) {
320 NVolSetShowSystemFiles(vol
);
322 NVolClearShowSystemFiles(vol
);
324 if (case_sensitive
!= -1) {
326 NVolSetCaseSensitive(vol
);
328 NVolClearCaseSensitive(vol
);
330 if (disable_sparse
!= -1) {
332 NVolClearSparseEnabled(vol
);
334 if (!NVolSparseEnabled(vol
) &&
335 vol
->major_ver
&& vol
->major_ver
< 3)
336 ntfs_warning(vol
->sb
, "Not enabling sparse "
337 "support due to NTFS volume "
338 "version %i.%i (need at least "
339 "version 3.0).", vol
->major_ver
,
342 NVolSetSparseEnabled(vol
);
347 ntfs_error(vol
->sb
, "The %s option requires an argument.", p
);
350 ntfs_error(vol
->sb
, "The %s option requires a boolean argument.", p
);
353 ntfs_error(vol
->sb
, "Invalid %s option argument: %s", p
, ov
);
360 * ntfs_write_volume_flags - write new flags to the volume information flags
361 * @vol: ntfs volume on which to modify the flags
362 * @flags: new flags value for the volume information flags
364 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
365 * instead (see below).
367 * Replace the volume information flags on the volume @vol with the value
368 * supplied in @flags. Note, this overwrites the volume information flags, so
369 * make sure to combine the flags you want to modify with the old flags and use
370 * the result when calling ntfs_write_volume_flags().
372 * Return 0 on success and -errno on error.
374 static int ntfs_write_volume_flags(ntfs_volume
*vol
, const VOLUME_FLAGS flags
)
376 ntfs_inode
*ni
= NTFS_I(vol
->vol_ino
);
378 VOLUME_INFORMATION
*vi
;
379 ntfs_attr_search_ctx
*ctx
;
382 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
383 le16_to_cpu(vol
->vol_flags
), le16_to_cpu(flags
));
384 if (vol
->vol_flags
== flags
)
387 m
= map_mft_record(ni
);
392 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
395 goto put_unm_err_out
;
397 err
= ntfs_attr_lookup(AT_VOLUME_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
400 goto put_unm_err_out
;
401 vi
= (VOLUME_INFORMATION
*)((u8
*)ctx
->attr
+
402 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
403 vol
->vol_flags
= vi
->flags
= flags
;
404 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
405 mark_mft_record_dirty(ctx
->ntfs_ino
);
406 ntfs_attr_put_search_ctx(ctx
);
407 unmap_mft_record(ni
);
413 ntfs_attr_put_search_ctx(ctx
);
414 unmap_mft_record(ni
);
416 ntfs_error(vol
->sb
, "Failed with error code %i.", -err
);
421 * ntfs_set_volume_flags - set bits in the volume information flags
422 * @vol: ntfs volume on which to modify the flags
423 * @flags: flags to set on the volume
425 * Set the bits in @flags in the volume information flags on the volume @vol.
427 * Return 0 on success and -errno on error.
429 static inline int ntfs_set_volume_flags(ntfs_volume
*vol
, VOLUME_FLAGS flags
)
431 flags
&= VOLUME_FLAGS_MASK
;
432 return ntfs_write_volume_flags(vol
, vol
->vol_flags
| flags
);
436 * ntfs_clear_volume_flags - clear bits in the volume information flags
437 * @vol: ntfs volume on which to modify the flags
438 * @flags: flags to clear on the volume
440 * Clear the bits in @flags in the volume information flags on the volume @vol.
442 * Return 0 on success and -errno on error.
444 static inline int ntfs_clear_volume_flags(ntfs_volume
*vol
, VOLUME_FLAGS flags
)
446 flags
&= VOLUME_FLAGS_MASK
;
447 flags
= vol
->vol_flags
& cpu_to_le16(~le16_to_cpu(flags
));
448 return ntfs_write_volume_flags(vol
, flags
);
454 * ntfs_remount - change the mount options of a mounted ntfs filesystem
455 * @sb: superblock of mounted ntfs filesystem
456 * @flags: remount flags
457 * @opt: remount options string
459 * Change the mount options of an already mounted ntfs filesystem.
461 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
462 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
463 * @sb->s_flags are not changed.
465 static int ntfs_remount(struct super_block
*sb
, int *flags
, char *opt
)
467 ntfs_volume
*vol
= NTFS_SB(sb
);
469 ntfs_debug("Entering with remount options string: %s", opt
);
472 /* For read-only compiled driver, enforce read-only flag. */
476 * For the read-write compiled driver, if we are remounting read-write,
477 * make sure there are no volume errors and that no unsupported volume
478 * flags are set. Also, empty the logfile journal as it would become
479 * stale as soon as something is written to the volume and mark the
480 * volume dirty so that chkdsk is run if the volume is not umounted
481 * cleanly. Finally, mark the quotas out of date so Windows rescans
482 * the volume on boot and updates them.
484 * When remounting read-only, mark the volume clean if no volume errors
487 if ((sb
->s_flags
& MS_RDONLY
) && !(*flags
& MS_RDONLY
)) {
488 static const char *es
= ". Cannot remount read-write.";
490 /* Remounting read-write. */
491 if (NVolErrors(vol
)) {
492 ntfs_error(sb
, "Volume has errors and is read-only%s",
496 if (vol
->vol_flags
& VOLUME_IS_DIRTY
) {
497 ntfs_error(sb
, "Volume is dirty and read-only%s", es
);
500 if (vol
->vol_flags
& VOLUME_MODIFIED_BY_CHKDSK
) {
501 ntfs_error(sb
, "Volume has been modified by chkdsk "
502 "and is read-only%s", es
);
505 if (vol
->vol_flags
& VOLUME_MUST_MOUNT_RO_MASK
) {
506 ntfs_error(sb
, "Volume has unsupported flags set "
507 "(0x%x) and is read-only%s",
508 (unsigned)le16_to_cpu(vol
->vol_flags
),
512 if (ntfs_set_volume_flags(vol
, VOLUME_IS_DIRTY
)) {
513 ntfs_error(sb
, "Failed to set dirty bit in volume "
514 "information flags%s", es
);
518 // TODO: Enable this code once we start modifying anything that
519 // is different between NTFS 1.2 and 3.x...
520 /* Set NT4 compatibility flag on newer NTFS version volumes. */
521 if ((vol
->major_ver
> 1)) {
522 if (ntfs_set_volume_flags(vol
, VOLUME_MOUNTED_ON_NT4
)) {
523 ntfs_error(sb
, "Failed to set NT4 "
524 "compatibility flag%s", es
);
530 if (!ntfs_empty_logfile(vol
->logfile_ino
)) {
531 ntfs_error(sb
, "Failed to empty journal $LogFile%s",
536 if (!ntfs_mark_quotas_out_of_date(vol
)) {
537 ntfs_error(sb
, "Failed to mark quotas out of date%s",
542 if (!ntfs_stamp_usnjrnl(vol
)) {
543 ntfs_error(sb
, "Failed to stamp transation log "
548 } else if (!(sb
->s_flags
& MS_RDONLY
) && (*flags
& MS_RDONLY
)) {
549 /* Remounting read-only. */
550 if (!NVolErrors(vol
)) {
551 if (ntfs_clear_volume_flags(vol
, VOLUME_IS_DIRTY
))
552 ntfs_warning(sb
, "Failed to clear dirty bit "
553 "in volume information "
554 "flags. Run chkdsk.");
559 // TODO: Deal with *flags.
561 if (!parse_options(vol
, opt
))
569 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
570 * @sb: Super block of the device to which @b belongs.
571 * @b: Boot sector of device @sb to check.
572 * @silent: If 'true', all output will be silenced.
574 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
575 * sector. Returns 'true' if it is valid and 'false' if not.
577 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
580 static bool is_boot_sector_ntfs(const struct super_block
*sb
,
581 const NTFS_BOOT_SECTOR
*b
, const bool silent
)
584 * Check that checksum == sum of u32 values from b to the checksum
585 * field. If checksum is zero, no checking is done. We will work when
586 * the checksum test fails, since some utilities update the boot sector
587 * ignoring the checksum which leaves the checksum out-of-date. We
588 * report a warning if this is the case.
590 if ((void*)b
< (void*)&b
->checksum
&& b
->checksum
&& !silent
) {
594 for (i
= 0, u
= (le32
*)b
; u
< (le32
*)(&b
->checksum
); ++u
)
595 i
+= le32_to_cpup(u
);
596 if (le32_to_cpu(b
->checksum
) != i
)
597 ntfs_warning(sb
, "Invalid boot sector checksum.");
599 /* Check OEMidentifier is "NTFS " */
600 if (b
->oem_id
!= magicNTFS
)
602 /* Check bytes per sector value is between 256 and 4096. */
603 if (le16_to_cpu(b
->bpb
.bytes_per_sector
) < 0x100 ||
604 le16_to_cpu(b
->bpb
.bytes_per_sector
) > 0x1000)
606 /* Check sectors per cluster value is valid. */
607 switch (b
->bpb
.sectors_per_cluster
) {
608 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
613 /* Check the cluster size is not above the maximum (64kiB). */
614 if ((u32
)le16_to_cpu(b
->bpb
.bytes_per_sector
) *
615 b
->bpb
.sectors_per_cluster
> NTFS_MAX_CLUSTER_SIZE
)
617 /* Check reserved/unused fields are really zero. */
618 if (le16_to_cpu(b
->bpb
.reserved_sectors
) ||
619 le16_to_cpu(b
->bpb
.root_entries
) ||
620 le16_to_cpu(b
->bpb
.sectors
) ||
621 le16_to_cpu(b
->bpb
.sectors_per_fat
) ||
622 le32_to_cpu(b
->bpb
.large_sectors
) || b
->bpb
.fats
)
624 /* Check clusters per file mft record value is valid. */
625 if ((u8
)b
->clusters_per_mft_record
< 0xe1 ||
626 (u8
)b
->clusters_per_mft_record
> 0xf7)
627 switch (b
->clusters_per_mft_record
) {
628 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
633 /* Check clusters per index block value is valid. */
634 if ((u8
)b
->clusters_per_index_record
< 0xe1 ||
635 (u8
)b
->clusters_per_index_record
> 0xf7)
636 switch (b
->clusters_per_index_record
) {
637 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
643 * Check for valid end of sector marker. We will work without it, but
644 * many BIOSes will refuse to boot from a bootsector if the magic is
645 * incorrect, so we emit a warning.
647 if (!silent
&& b
->end_of_sector_marker
!= cpu_to_le16(0xaa55))
648 ntfs_warning(sb
, "Invalid end of sector marker.");
655 * read_ntfs_boot_sector - read the NTFS boot sector of a device
656 * @sb: super block of device to read the boot sector from
657 * @silent: if true, suppress all output
659 * Reads the boot sector from the device and validates it. If that fails, tries
660 * to read the backup boot sector, first from the end of the device a-la NT4 and
661 * later and then from the middle of the device a-la NT3.51 and before.
663 * If a valid boot sector is found but it is not the primary boot sector, we
664 * repair the primary boot sector silently (unless the device is read-only or
665 * the primary boot sector is not accessible).
667 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
668 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
669 * to their respective values.
671 * Return the unlocked buffer head containing the boot sector or NULL on error.
673 static struct buffer_head
*read_ntfs_boot_sector(struct super_block
*sb
,
676 const char *read_err_str
= "Unable to read %s boot sector.";
677 struct buffer_head
*bh_primary
, *bh_backup
;
678 sector_t nr_blocks
= NTFS_SB(sb
)->nr_blocks
;
680 /* Try to read primary boot sector. */
681 if ((bh_primary
= sb_bread(sb
, 0))) {
682 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
683 bh_primary
->b_data
, silent
))
686 ntfs_error(sb
, "Primary boot sector is invalid.");
688 ntfs_error(sb
, read_err_str
, "primary");
689 if (!(NTFS_SB(sb
)->on_errors
& ON_ERRORS_RECOVER
)) {
693 ntfs_error(sb
, "Mount option errors=recover not used. "
694 "Aborting without trying to recover.");
697 /* Try to read NT4+ backup boot sector. */
698 if ((bh_backup
= sb_bread(sb
, nr_blocks
- 1))) {
699 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
700 bh_backup
->b_data
, silent
))
701 goto hotfix_primary_boot_sector
;
704 ntfs_error(sb
, read_err_str
, "backup");
705 /* Try to read NT3.51- backup boot sector. */
706 if ((bh_backup
= sb_bread(sb
, nr_blocks
>> 1))) {
707 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
708 bh_backup
->b_data
, silent
))
709 goto hotfix_primary_boot_sector
;
711 ntfs_error(sb
, "Could not find a valid backup boot "
715 ntfs_error(sb
, read_err_str
, "backup");
716 /* We failed. Cleanup and return. */
720 hotfix_primary_boot_sector
:
723 * If we managed to read sector zero and the volume is not
724 * read-only, copy the found, valid backup boot sector to the
725 * primary boot sector. Note we only copy the actual boot
726 * sector structure, not the actual whole device sector as that
727 * may be bigger and would potentially damage the $Boot system
728 * file (FIXME: Would be nice to know if the backup boot sector
729 * on a large sector device contains the whole boot loader or
730 * just the first 512 bytes).
732 if (!(sb
->s_flags
& MS_RDONLY
)) {
733 ntfs_warning(sb
, "Hot-fix: Recovering invalid primary "
734 "boot sector from backup copy.");
735 memcpy(bh_primary
->b_data
, bh_backup
->b_data
,
737 mark_buffer_dirty(bh_primary
);
738 sync_dirty_buffer(bh_primary
);
739 if (buffer_uptodate(bh_primary
)) {
743 ntfs_error(sb
, "Hot-fix: Device write error while "
744 "recovering primary boot sector.");
746 ntfs_warning(sb
, "Hot-fix: Recovery of primary boot "
747 "sector failed: Read-only mount.");
751 ntfs_warning(sb
, "Using backup boot sector.");
756 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
757 * @vol: volume structure to initialise with data from boot sector
758 * @b: boot sector to parse
760 * Parse the ntfs boot sector @b and store all imporant information therein in
761 * the ntfs super block @vol. Return 'true' on success and 'false' on error.
763 static bool parse_ntfs_boot_sector(ntfs_volume
*vol
, const NTFS_BOOT_SECTOR
*b
)
765 unsigned int sectors_per_cluster_bits
, nr_hidden_sects
;
766 int clusters_per_mft_record
, clusters_per_index_record
;
769 vol
->sector_size
= le16_to_cpu(b
->bpb
.bytes_per_sector
);
770 vol
->sector_size_bits
= ffs(vol
->sector_size
) - 1;
771 ntfs_debug("vol->sector_size = %i (0x%x)", vol
->sector_size
,
773 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol
->sector_size_bits
,
774 vol
->sector_size_bits
);
775 if (vol
->sector_size
< vol
->sb
->s_blocksize
) {
776 ntfs_error(vol
->sb
, "Sector size (%i) is smaller than the "
777 "device block size (%lu). This is not "
778 "supported. Sorry.", vol
->sector_size
,
779 vol
->sb
->s_blocksize
);
782 ntfs_debug("sectors_per_cluster = 0x%x", b
->bpb
.sectors_per_cluster
);
783 sectors_per_cluster_bits
= ffs(b
->bpb
.sectors_per_cluster
) - 1;
784 ntfs_debug("sectors_per_cluster_bits = 0x%x",
785 sectors_per_cluster_bits
);
786 nr_hidden_sects
= le32_to_cpu(b
->bpb
.hidden_sectors
);
787 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects
);
788 vol
->cluster_size
= vol
->sector_size
<< sectors_per_cluster_bits
;
789 vol
->cluster_size_mask
= vol
->cluster_size
- 1;
790 vol
->cluster_size_bits
= ffs(vol
->cluster_size
) - 1;
791 ntfs_debug("vol->cluster_size = %i (0x%x)", vol
->cluster_size
,
793 ntfs_debug("vol->cluster_size_mask = 0x%x", vol
->cluster_size_mask
);
794 ntfs_debug("vol->cluster_size_bits = %i", vol
->cluster_size_bits
);
795 if (vol
->cluster_size
< vol
->sector_size
) {
796 ntfs_error(vol
->sb
, "Cluster size (%i) is smaller than the "
797 "sector size (%i). This is not supported. "
798 "Sorry.", vol
->cluster_size
, vol
->sector_size
);
801 clusters_per_mft_record
= b
->clusters_per_mft_record
;
802 ntfs_debug("clusters_per_mft_record = %i (0x%x)",
803 clusters_per_mft_record
, clusters_per_mft_record
);
804 if (clusters_per_mft_record
> 0)
805 vol
->mft_record_size
= vol
->cluster_size
<<
806 (ffs(clusters_per_mft_record
) - 1);
809 * When mft_record_size < cluster_size, clusters_per_mft_record
810 * = -log2(mft_record_size) bytes. mft_record_size normaly is
811 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
813 vol
->mft_record_size
= 1 << -clusters_per_mft_record
;
814 vol
->mft_record_size_mask
= vol
->mft_record_size
- 1;
815 vol
->mft_record_size_bits
= ffs(vol
->mft_record_size
) - 1;
816 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol
->mft_record_size
,
817 vol
->mft_record_size
);
818 ntfs_debug("vol->mft_record_size_mask = 0x%x",
819 vol
->mft_record_size_mask
);
820 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
821 vol
->mft_record_size_bits
, vol
->mft_record_size_bits
);
823 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
824 * we store $MFT/$DATA, the table of mft records in the page cache.
826 if (vol
->mft_record_size
> PAGE_CACHE_SIZE
) {
827 ntfs_error(vol
->sb
, "Mft record size (%i) exceeds the "
828 "PAGE_CACHE_SIZE on your system (%lu). "
829 "This is not supported. Sorry.",
830 vol
->mft_record_size
, PAGE_CACHE_SIZE
);
833 /* We cannot support mft record sizes below the sector size. */
834 if (vol
->mft_record_size
< vol
->sector_size
) {
835 ntfs_error(vol
->sb
, "Mft record size (%i) is smaller than the "
836 "sector size (%i). This is not supported. "
837 "Sorry.", vol
->mft_record_size
,
841 clusters_per_index_record
= b
->clusters_per_index_record
;
842 ntfs_debug("clusters_per_index_record = %i (0x%x)",
843 clusters_per_index_record
, clusters_per_index_record
);
844 if (clusters_per_index_record
> 0)
845 vol
->index_record_size
= vol
->cluster_size
<<
846 (ffs(clusters_per_index_record
) - 1);
849 * When index_record_size < cluster_size,
850 * clusters_per_index_record = -log2(index_record_size) bytes.
851 * index_record_size normaly equals 4096 bytes, which is
852 * encoded as 0xF4 (-12 in decimal).
854 vol
->index_record_size
= 1 << -clusters_per_index_record
;
855 vol
->index_record_size_mask
= vol
->index_record_size
- 1;
856 vol
->index_record_size_bits
= ffs(vol
->index_record_size
) - 1;
857 ntfs_debug("vol->index_record_size = %i (0x%x)",
858 vol
->index_record_size
, vol
->index_record_size
);
859 ntfs_debug("vol->index_record_size_mask = 0x%x",
860 vol
->index_record_size_mask
);
861 ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
862 vol
->index_record_size_bits
,
863 vol
->index_record_size_bits
);
864 /* We cannot support index record sizes below the sector size. */
865 if (vol
->index_record_size
< vol
->sector_size
) {
866 ntfs_error(vol
->sb
, "Index record size (%i) is smaller than "
867 "the sector size (%i). This is not "
868 "supported. Sorry.", vol
->index_record_size
,
873 * Get the size of the volume in clusters and check for 64-bit-ness.
874 * Windows currently only uses 32 bits to save the clusters so we do
875 * the same as it is much faster on 32-bit CPUs.
877 ll
= sle64_to_cpu(b
->number_of_sectors
) >> sectors_per_cluster_bits
;
878 if ((u64
)ll
>= 1ULL << 32) {
879 ntfs_error(vol
->sb
, "Cannot handle 64-bit clusters. Sorry.");
882 vol
->nr_clusters
= ll
;
883 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol
->nr_clusters
);
885 * On an architecture where unsigned long is 32-bits, we restrict the
886 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
887 * will hopefully optimize the whole check away.
889 if (sizeof(unsigned long) < 8) {
890 if ((ll
<< vol
->cluster_size_bits
) >= (1ULL << 41)) {
891 ntfs_error(vol
->sb
, "Volume size (%lluTiB) is too "
892 "large for this architecture. "
893 "Maximum supported is 2TiB. Sorry.",
894 (unsigned long long)ll
>> (40 -
895 vol
->cluster_size_bits
));
899 ll
= sle64_to_cpu(b
->mft_lcn
);
900 if (ll
>= vol
->nr_clusters
) {
901 ntfs_error(vol
->sb
, "MFT LCN (%lli, 0x%llx) is beyond end of "
902 "volume. Weird.", (unsigned long long)ll
,
903 (unsigned long long)ll
);
907 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol
->mft_lcn
);
908 ll
= sle64_to_cpu(b
->mftmirr_lcn
);
909 if (ll
>= vol
->nr_clusters
) {
910 ntfs_error(vol
->sb
, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
911 "of volume. Weird.", (unsigned long long)ll
,
912 (unsigned long long)ll
);
915 vol
->mftmirr_lcn
= ll
;
916 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol
->mftmirr_lcn
);
919 * Work out the size of the mft mirror in number of mft records. If the
920 * cluster size is less than or equal to the size taken by four mft
921 * records, the mft mirror stores the first four mft records. If the
922 * cluster size is bigger than the size taken by four mft records, the
923 * mft mirror contains as many mft records as will fit into one
926 if (vol
->cluster_size
<= (4 << vol
->mft_record_size_bits
))
927 vol
->mftmirr_size
= 4;
929 vol
->mftmirr_size
= vol
->cluster_size
>>
930 vol
->mft_record_size_bits
;
931 ntfs_debug("vol->mftmirr_size = %i", vol
->mftmirr_size
);
933 vol
->serial_no
= le64_to_cpu(b
->volume_serial_number
);
934 ntfs_debug("vol->serial_no = 0x%llx",
935 (unsigned long long)vol
->serial_no
);
940 * ntfs_setup_allocators - initialize the cluster and mft allocators
941 * @vol: volume structure for which to setup the allocators
943 * Setup the cluster (lcn) and mft allocators to the starting values.
945 static void ntfs_setup_allocators(ntfs_volume
*vol
)
948 LCN mft_zone_size
, mft_lcn
;
951 ntfs_debug("vol->mft_zone_multiplier = 0x%x",
952 vol
->mft_zone_multiplier
);
954 /* Determine the size of the MFT zone. */
955 mft_zone_size
= vol
->nr_clusters
;
956 switch (vol
->mft_zone_multiplier
) { /* % of volume size in clusters */
958 mft_zone_size
>>= 1; /* 50% */
961 mft_zone_size
= (mft_zone_size
+
962 (mft_zone_size
>> 1)) >> 2; /* 37.5% */
965 mft_zone_size
>>= 2; /* 25% */
969 mft_zone_size
>>= 3; /* 12.5% */
972 /* Setup the mft zone. */
973 vol
->mft_zone_start
= vol
->mft_zone_pos
= vol
->mft_lcn
;
974 ntfs_debug("vol->mft_zone_pos = 0x%llx",
975 (unsigned long long)vol
->mft_zone_pos
);
977 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
978 * source) and if the actual mft_lcn is in the expected place or even
979 * further to the front of the volume, extend the mft_zone to cover the
980 * beginning of the volume as well. This is in order to protect the
981 * area reserved for the mft bitmap as well within the mft_zone itself.
982 * On non-standard volumes we do not protect it as the overhead would
983 * be higher than the speed increase we would get by doing it.
985 mft_lcn
= (8192 + 2 * vol
->cluster_size
- 1) / vol
->cluster_size
;
986 if (mft_lcn
* vol
->cluster_size
< 16 * 1024)
987 mft_lcn
= (16 * 1024 + vol
->cluster_size
- 1) /
989 if (vol
->mft_zone_start
<= mft_lcn
)
990 vol
->mft_zone_start
= 0;
991 ntfs_debug("vol->mft_zone_start = 0x%llx",
992 (unsigned long long)vol
->mft_zone_start
);
994 * Need to cap the mft zone on non-standard volumes so that it does
995 * not point outside the boundaries of the volume. We do this by
996 * halving the zone size until we are inside the volume.
998 vol
->mft_zone_end
= vol
->mft_lcn
+ mft_zone_size
;
999 while (vol
->mft_zone_end
>= vol
->nr_clusters
) {
1000 mft_zone_size
>>= 1;
1001 vol
->mft_zone_end
= vol
->mft_lcn
+ mft_zone_size
;
1003 ntfs_debug("vol->mft_zone_end = 0x%llx",
1004 (unsigned long long)vol
->mft_zone_end
);
1006 * Set the current position within each data zone to the start of the
1009 vol
->data1_zone_pos
= vol
->mft_zone_end
;
1010 ntfs_debug("vol->data1_zone_pos = 0x%llx",
1011 (unsigned long long)vol
->data1_zone_pos
);
1012 vol
->data2_zone_pos
= 0;
1013 ntfs_debug("vol->data2_zone_pos = 0x%llx",
1014 (unsigned long long)vol
->data2_zone_pos
);
1016 /* Set the mft data allocation position to mft record 24. */
1017 vol
->mft_data_pos
= 24;
1018 ntfs_debug("vol->mft_data_pos = 0x%llx",
1019 (unsigned long long)vol
->mft_data_pos
);
1020 #endif /* NTFS_RW */
1026 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1027 * @vol: ntfs super block describing device whose mft mirror to load
1029 * Return 'true' on success or 'false' on error.
1031 static bool load_and_init_mft_mirror(ntfs_volume
*vol
)
1033 struct inode
*tmp_ino
;
1036 ntfs_debug("Entering.");
1037 /* Get mft mirror inode. */
1038 tmp_ino
= ntfs_iget(vol
->sb
, FILE_MFTMirr
);
1039 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1040 if (!IS_ERR(tmp_ino
))
1042 /* Caller will display error message. */
1046 * Re-initialize some specifics about $MFTMirr's inode as
1047 * ntfs_read_inode() will have set up the default ones.
1049 /* Set uid and gid to root. */
1050 tmp_ino
->i_uid
= GLOBAL_ROOT_UID
;
1051 tmp_ino
->i_gid
= GLOBAL_ROOT_GID
;
1052 /* Regular file. No access for anyone. */
1053 tmp_ino
->i_mode
= S_IFREG
;
1054 /* No VFS initiated operations allowed for $MFTMirr. */
1055 tmp_ino
->i_op
= &ntfs_empty_inode_ops
;
1056 tmp_ino
->i_fop
= &ntfs_empty_file_ops
;
1057 /* Put in our special address space operations. */
1058 tmp_ino
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1059 tmp_ni
= NTFS_I(tmp_ino
);
1060 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1061 NInoSetMstProtected(tmp_ni
);
1062 NInoSetSparseDisabled(tmp_ni
);
1064 * Set up our little cheat allowing us to reuse the async read io
1065 * completion handler for directories.
1067 tmp_ni
->itype
.index
.block_size
= vol
->mft_record_size
;
1068 tmp_ni
->itype
.index
.block_size_bits
= vol
->mft_record_size_bits
;
1069 vol
->mftmirr_ino
= tmp_ino
;
1070 ntfs_debug("Done.");
1075 * check_mft_mirror - compare contents of the mft mirror with the mft
1076 * @vol: ntfs super block describing device whose mft mirror to check
1078 * Return 'true' on success or 'false' on error.
1080 * Note, this function also results in the mft mirror runlist being completely
1081 * mapped into memory. The mft mirror write code requires this and will BUG()
1082 * should it find an unmapped runlist element.
1084 static bool check_mft_mirror(ntfs_volume
*vol
)
1086 struct super_block
*sb
= vol
->sb
;
1087 ntfs_inode
*mirr_ni
;
1088 struct page
*mft_page
, *mirr_page
;
1090 runlist_element
*rl
, rl2
[2];
1092 int mrecs_per_page
, i
;
1094 ntfs_debug("Entering.");
1095 /* Compare contents of $MFT and $MFTMirr. */
1096 mrecs_per_page
= PAGE_CACHE_SIZE
/ vol
->mft_record_size
;
1097 BUG_ON(!mrecs_per_page
);
1098 BUG_ON(!vol
->mftmirr_size
);
1099 mft_page
= mirr_page
= NULL
;
1100 kmft
= kmirr
= NULL
;
1105 /* Switch pages if necessary. */
1106 if (!(i
% mrecs_per_page
)) {
1108 ntfs_unmap_page(mft_page
);
1109 ntfs_unmap_page(mirr_page
);
1111 /* Get the $MFT page. */
1112 mft_page
= ntfs_map_page(vol
->mft_ino
->i_mapping
,
1114 if (IS_ERR(mft_page
)) {
1115 ntfs_error(sb
, "Failed to read $MFT.");
1118 kmft
= page_address(mft_page
);
1119 /* Get the $MFTMirr page. */
1120 mirr_page
= ntfs_map_page(vol
->mftmirr_ino
->i_mapping
,
1122 if (IS_ERR(mirr_page
)) {
1123 ntfs_error(sb
, "Failed to read $MFTMirr.");
1126 kmirr
= page_address(mirr_page
);
1129 /* Do not check the record if it is not in use. */
1130 if (((MFT_RECORD
*)kmft
)->flags
& MFT_RECORD_IN_USE
) {
1131 /* Make sure the record is ok. */
1132 if (ntfs_is_baad_recordp((le32
*)kmft
)) {
1133 ntfs_error(sb
, "Incomplete multi sector "
1134 "transfer detected in mft "
1137 ntfs_unmap_page(mirr_page
);
1139 ntfs_unmap_page(mft_page
);
1143 /* Do not check the mirror record if it is not in use. */
1144 if (((MFT_RECORD
*)kmirr
)->flags
& MFT_RECORD_IN_USE
) {
1145 if (ntfs_is_baad_recordp((le32
*)kmirr
)) {
1146 ntfs_error(sb
, "Incomplete multi sector "
1147 "transfer detected in mft "
1148 "mirror record %i.", i
);
1152 /* Get the amount of data in the current record. */
1153 bytes
= le32_to_cpu(((MFT_RECORD
*)kmft
)->bytes_in_use
);
1154 if (bytes
< sizeof(MFT_RECORD_OLD
) ||
1155 bytes
> vol
->mft_record_size
||
1156 ntfs_is_baad_recordp((le32
*)kmft
)) {
1157 bytes
= le32_to_cpu(((MFT_RECORD
*)kmirr
)->bytes_in_use
);
1158 if (bytes
< sizeof(MFT_RECORD_OLD
) ||
1159 bytes
> vol
->mft_record_size
||
1160 ntfs_is_baad_recordp((le32
*)kmirr
))
1161 bytes
= vol
->mft_record_size
;
1163 /* Compare the two records. */
1164 if (memcmp(kmft
, kmirr
, bytes
)) {
1165 ntfs_error(sb
, "$MFT and $MFTMirr (record %i) do not "
1166 "match. Run ntfsfix or chkdsk.", i
);
1169 kmft
+= vol
->mft_record_size
;
1170 kmirr
+= vol
->mft_record_size
;
1171 } while (++i
< vol
->mftmirr_size
);
1172 /* Release the last pages. */
1173 ntfs_unmap_page(mft_page
);
1174 ntfs_unmap_page(mirr_page
);
1176 /* Construct the mft mirror runlist by hand. */
1178 rl2
[0].lcn
= vol
->mftmirr_lcn
;
1179 rl2
[0].length
= (vol
->mftmirr_size
* vol
->mft_record_size
+
1180 vol
->cluster_size
- 1) / vol
->cluster_size
;
1181 rl2
[1].vcn
= rl2
[0].length
;
1182 rl2
[1].lcn
= LCN_ENOENT
;
1185 * Because we have just read all of the mft mirror, we know we have
1186 * mapped the full runlist for it.
1188 mirr_ni
= NTFS_I(vol
->mftmirr_ino
);
1189 down_read(&mirr_ni
->runlist
.lock
);
1190 rl
= mirr_ni
->runlist
.rl
;
1191 /* Compare the two runlists. They must be identical. */
1194 if (rl2
[i
].vcn
!= rl
[i
].vcn
|| rl2
[i
].lcn
!= rl
[i
].lcn
||
1195 rl2
[i
].length
!= rl
[i
].length
) {
1196 ntfs_error(sb
, "$MFTMirr location mismatch. "
1198 up_read(&mirr_ni
->runlist
.lock
);
1201 } while (rl2
[i
++].length
);
1202 up_read(&mirr_ni
->runlist
.lock
);
1203 ntfs_debug("Done.");
1208 * load_and_check_logfile - load and check the logfile inode for a volume
1209 * @vol: ntfs super block describing device whose logfile to load
1211 * Return 'true' on success or 'false' on error.
1213 static bool load_and_check_logfile(ntfs_volume
*vol
,
1214 RESTART_PAGE_HEADER
**rp
)
1216 struct inode
*tmp_ino
;
1218 ntfs_debug("Entering.");
1219 tmp_ino
= ntfs_iget(vol
->sb
, FILE_LogFile
);
1220 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1221 if (!IS_ERR(tmp_ino
))
1223 /* Caller will display error message. */
1226 if (!ntfs_check_logfile(tmp_ino
, rp
)) {
1228 /* ntfs_check_logfile() will have displayed error output. */
1231 NInoSetSparseDisabled(NTFS_I(tmp_ino
));
1232 vol
->logfile_ino
= tmp_ino
;
1233 ntfs_debug("Done.");
1237 #define NTFS_HIBERFIL_HEADER_SIZE 4096
1240 * check_windows_hibernation_status - check if Windows is suspended on a volume
1241 * @vol: ntfs super block of device to check
1243 * Check if Windows is hibernated on the ntfs volume @vol. This is done by
1244 * looking for the file hiberfil.sys in the root directory of the volume. If
1245 * the file is not present Windows is definitely not suspended.
1247 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1248 * definitely suspended (this volume is not the system volume). Caveat: on a
1249 * system with many volumes it is possible that the < 4kiB check is bogus but
1250 * for now this should do fine.
1252 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1253 * hiberfil header (which is the first 4kiB). If this begins with "hibr",
1254 * Windows is definitely suspended. If it is completely full of zeroes,
1255 * Windows is definitely not hibernated. Any other case is treated as if
1256 * Windows is suspended. This caters for the above mentioned caveat of a
1257 * system with many volumes where no "hibr" magic would be present and there is
1260 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1261 * hibernated on the volume, and -errno on error.
1263 static int check_windows_hibernation_status(ntfs_volume
*vol
)
1269 ntfs_name
*name
= NULL
;
1271 static const ntfschar hiberfil
[13] = { cpu_to_le16('h'),
1272 cpu_to_le16('i'), cpu_to_le16('b'),
1273 cpu_to_le16('e'), cpu_to_le16('r'),
1274 cpu_to_le16('f'), cpu_to_le16('i'),
1275 cpu_to_le16('l'), cpu_to_le16('.'),
1276 cpu_to_le16('s'), cpu_to_le16('y'),
1277 cpu_to_le16('s'), 0 };
1279 ntfs_debug("Entering.");
1281 * Find the inode number for the hibernation file by looking up the
1282 * filename hiberfil.sys in the root directory.
1284 mutex_lock(&vol
->root_ino
->i_mutex
);
1285 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->root_ino
), hiberfil
, 12,
1287 mutex_unlock(&vol
->root_ino
->i_mutex
);
1288 if (IS_ERR_MREF(mref
)) {
1289 ret
= MREF_ERR(mref
);
1290 /* If the file does not exist, Windows is not hibernated. */
1291 if (ret
== -ENOENT
) {
1292 ntfs_debug("hiberfil.sys not present. Windows is not "
1293 "hibernated on the volume.");
1296 /* A real error occurred. */
1297 ntfs_error(vol
->sb
, "Failed to find inode number for "
1301 /* We do not care for the type of match that was found. */
1303 /* Get the inode. */
1304 vi
= ntfs_iget(vol
->sb
, MREF(mref
));
1305 if (IS_ERR(vi
) || is_bad_inode(vi
)) {
1308 ntfs_error(vol
->sb
, "Failed to load hiberfil.sys.");
1309 return IS_ERR(vi
) ? PTR_ERR(vi
) : -EIO
;
1311 if (unlikely(i_size_read(vi
) < NTFS_HIBERFIL_HEADER_SIZE
)) {
1312 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). "
1313 "Windows is hibernated on the volume. This "
1314 "is not the system volume.", i_size_read(vi
));
1317 page
= ntfs_map_page(vi
->i_mapping
, 0);
1319 ntfs_error(vol
->sb
, "Failed to read from hiberfil.sys.");
1320 ret
= PTR_ERR(page
);
1323 kaddr
= (u32
*)page_address(page
);
1324 if (*(le32
*)kaddr
== cpu_to_le32(0x72626968)/*'hibr'*/) {
1325 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is "
1326 "hibernated on the volume. This is the "
1330 kend
= kaddr
+ NTFS_HIBERFIL_HEADER_SIZE
/sizeof(*kaddr
);
1332 if (unlikely(*kaddr
)) {
1333 ntfs_debug("hiberfil.sys is larger than 4kiB "
1334 "(0x%llx), does not contain the "
1335 "\"hibr\" magic, and does not have a "
1336 "zero header. Windows is hibernated "
1337 "on the volume. This is not the "
1338 "system volume.", i_size_read(vi
));
1341 } while (++kaddr
< kend
);
1342 ntfs_debug("hiberfil.sys contains a zero header. Windows is not "
1343 "hibernated on the volume. This is the system "
1347 ntfs_unmap_page(page
);
1354 * load_and_init_quota - load and setup the quota file for a volume if present
1355 * @vol: ntfs super block describing device whose quota file to load
1357 * Return 'true' on success or 'false' on error. If $Quota is not present, we
1358 * leave vol->quota_ino as NULL and return success.
1360 static bool load_and_init_quota(ntfs_volume
*vol
)
1363 struct inode
*tmp_ino
;
1364 ntfs_name
*name
= NULL
;
1365 static const ntfschar Quota
[7] = { cpu_to_le16('$'),
1366 cpu_to_le16('Q'), cpu_to_le16('u'),
1367 cpu_to_le16('o'), cpu_to_le16('t'),
1368 cpu_to_le16('a'), 0 };
1369 static ntfschar Q
[3] = { cpu_to_le16('$'),
1370 cpu_to_le16('Q'), 0 };
1372 ntfs_debug("Entering.");
1374 * Find the inode number for the quota file by looking up the filename
1375 * $Quota in the extended system files directory $Extend.
1377 mutex_lock(&vol
->extend_ino
->i_mutex
);
1378 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->extend_ino
), Quota
, 6,
1380 mutex_unlock(&vol
->extend_ino
->i_mutex
);
1381 if (IS_ERR_MREF(mref
)) {
1383 * If the file does not exist, quotas are disabled and have
1384 * never been enabled on this volume, just return success.
1386 if (MREF_ERR(mref
) == -ENOENT
) {
1387 ntfs_debug("$Quota not present. Volume does not have "
1390 * No need to try to set quotas out of date if they are
1393 NVolSetQuotaOutOfDate(vol
);
1396 /* A real error occurred. */
1397 ntfs_error(vol
->sb
, "Failed to find inode number for $Quota.");
1400 /* We do not care for the type of match that was found. */
1402 /* Get the inode. */
1403 tmp_ino
= ntfs_iget(vol
->sb
, MREF(mref
));
1404 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1405 if (!IS_ERR(tmp_ino
))
1407 ntfs_error(vol
->sb
, "Failed to load $Quota.");
1410 vol
->quota_ino
= tmp_ino
;
1411 /* Get the $Q index allocation attribute. */
1412 tmp_ino
= ntfs_index_iget(vol
->quota_ino
, Q
, 2);
1413 if (IS_ERR(tmp_ino
)) {
1414 ntfs_error(vol
->sb
, "Failed to load $Quota/$Q index.");
1417 vol
->quota_q_ino
= tmp_ino
;
1418 ntfs_debug("Done.");
1423 * load_and_init_usnjrnl - load and setup the transaction log if present
1424 * @vol: ntfs super block describing device whose usnjrnl file to load
1426 * Return 'true' on success or 'false' on error.
1428 * If $UsnJrnl is not present or in the process of being disabled, we set
1429 * NVolUsnJrnlStamped() and return success.
1431 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1432 * i.e. transaction logging has only just been enabled or the journal has been
1433 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1434 * and return success.
1436 static bool load_and_init_usnjrnl(ntfs_volume
*vol
)
1439 struct inode
*tmp_ino
;
1442 ntfs_name
*name
= NULL
;
1444 static const ntfschar UsnJrnl
[9] = { cpu_to_le16('$'),
1445 cpu_to_le16('U'), cpu_to_le16('s'),
1446 cpu_to_le16('n'), cpu_to_le16('J'),
1447 cpu_to_le16('r'), cpu_to_le16('n'),
1448 cpu_to_le16('l'), 0 };
1449 static ntfschar Max
[5] = { cpu_to_le16('$'),
1450 cpu_to_le16('M'), cpu_to_le16('a'),
1451 cpu_to_le16('x'), 0 };
1452 static ntfschar J
[3] = { cpu_to_le16('$'),
1453 cpu_to_le16('J'), 0 };
1455 ntfs_debug("Entering.");
1457 * Find the inode number for the transaction log file by looking up the
1458 * filename $UsnJrnl in the extended system files directory $Extend.
1460 mutex_lock(&vol
->extend_ino
->i_mutex
);
1461 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->extend_ino
), UsnJrnl
, 8,
1463 mutex_unlock(&vol
->extend_ino
->i_mutex
);
1464 if (IS_ERR_MREF(mref
)) {
1466 * If the file does not exist, transaction logging is disabled,
1467 * just return success.
1469 if (MREF_ERR(mref
) == -ENOENT
) {
1470 ntfs_debug("$UsnJrnl not present. Volume does not "
1471 "have transaction logging enabled.");
1474 * No need to try to stamp the transaction log if
1475 * transaction logging is not enabled.
1477 NVolSetUsnJrnlStamped(vol
);
1480 /* A real error occurred. */
1481 ntfs_error(vol
->sb
, "Failed to find inode number for "
1485 /* We do not care for the type of match that was found. */
1487 /* Get the inode. */
1488 tmp_ino
= ntfs_iget(vol
->sb
, MREF(mref
));
1489 if (unlikely(IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
))) {
1490 if (!IS_ERR(tmp_ino
))
1492 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl.");
1495 vol
->usnjrnl_ino
= tmp_ino
;
1497 * If the transaction log is in the process of being deleted, we can
1500 if (unlikely(vol
->vol_flags
& VOLUME_DELETE_USN_UNDERWAY
)) {
1501 ntfs_debug("$UsnJrnl in the process of being disabled. "
1502 "Volume does not have transaction logging "
1506 /* Get the $DATA/$Max attribute. */
1507 tmp_ino
= ntfs_attr_iget(vol
->usnjrnl_ino
, AT_DATA
, Max
, 4);
1508 if (IS_ERR(tmp_ino
)) {
1509 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl/$DATA/$Max "
1513 vol
->usnjrnl_max_ino
= tmp_ino
;
1514 if (unlikely(i_size_read(tmp_ino
) < sizeof(USN_HEADER
))) {
1515 ntfs_error(vol
->sb
, "Found corrupt $UsnJrnl/$DATA/$Max "
1516 "attribute (size is 0x%llx but should be at "
1517 "least 0x%zx bytes).", i_size_read(tmp_ino
),
1518 sizeof(USN_HEADER
));
1521 /* Get the $DATA/$J attribute. */
1522 tmp_ino
= ntfs_attr_iget(vol
->usnjrnl_ino
, AT_DATA
, J
, 2);
1523 if (IS_ERR(tmp_ino
)) {
1524 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl/$DATA/$J "
1528 vol
->usnjrnl_j_ino
= tmp_ino
;
1529 /* Verify $J is non-resident and sparse. */
1530 tmp_ni
= NTFS_I(vol
->usnjrnl_j_ino
);
1531 if (unlikely(!NInoNonResident(tmp_ni
) || !NInoSparse(tmp_ni
))) {
1532 ntfs_error(vol
->sb
, "$UsnJrnl/$DATA/$J attribute is resident "
1533 "and/or not sparse.");
1536 /* Read the USN_HEADER from $DATA/$Max. */
1537 page
= ntfs_map_page(vol
->usnjrnl_max_ino
->i_mapping
, 0);
1539 ntfs_error(vol
->sb
, "Failed to read from $UsnJrnl/$DATA/$Max "
1543 uh
= (USN_HEADER
*)page_address(page
);
1544 /* Sanity check the $Max. */
1545 if (unlikely(sle64_to_cpu(uh
->allocation_delta
) >
1546 sle64_to_cpu(uh
->maximum_size
))) {
1547 ntfs_error(vol
->sb
, "Allocation delta (0x%llx) exceeds "
1548 "maximum size (0x%llx). $UsnJrnl is corrupt.",
1549 (long long)sle64_to_cpu(uh
->allocation_delta
),
1550 (long long)sle64_to_cpu(uh
->maximum_size
));
1551 ntfs_unmap_page(page
);
1555 * If the transaction log has been stamped and nothing has been written
1556 * to it since, we do not need to stamp it.
1558 if (unlikely(sle64_to_cpu(uh
->lowest_valid_usn
) >=
1559 i_size_read(vol
->usnjrnl_j_ino
))) {
1560 if (likely(sle64_to_cpu(uh
->lowest_valid_usn
) ==
1561 i_size_read(vol
->usnjrnl_j_ino
))) {
1562 ntfs_unmap_page(page
);
1563 ntfs_debug("$UsnJrnl is enabled but nothing has been "
1564 "logged since it was last stamped. "
1565 "Treating this as if the volume does "
1566 "not have transaction logging "
1570 ntfs_error(vol
->sb
, "$UsnJrnl has lowest valid usn (0x%llx) "
1571 "which is out of bounds (0x%llx). $UsnJrnl "
1573 (long long)sle64_to_cpu(uh
->lowest_valid_usn
),
1574 i_size_read(vol
->usnjrnl_j_ino
));
1575 ntfs_unmap_page(page
);
1578 ntfs_unmap_page(page
);
1579 ntfs_debug("Done.");
1584 * load_and_init_attrdef - load the attribute definitions table for a volume
1585 * @vol: ntfs super block describing device whose attrdef to load
1587 * Return 'true' on success or 'false' on error.
1589 static bool load_and_init_attrdef(ntfs_volume
*vol
)
1592 struct super_block
*sb
= vol
->sb
;
1595 pgoff_t index
, max_index
;
1598 ntfs_debug("Entering.");
1599 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1600 ino
= ntfs_iget(sb
, FILE_AttrDef
);
1601 if (IS_ERR(ino
) || is_bad_inode(ino
)) {
1606 NInoSetSparseDisabled(NTFS_I(ino
));
1607 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1608 i_size
= i_size_read(ino
);
1609 if (i_size
<= 0 || i_size
> 0x7fffffff)
1611 vol
->attrdef
= (ATTR_DEF
*)ntfs_malloc_nofs(i_size
);
1615 max_index
= i_size
>> PAGE_CACHE_SHIFT
;
1616 size
= PAGE_CACHE_SIZE
;
1617 while (index
< max_index
) {
1618 /* Read the attrdef table and copy it into the linear buffer. */
1619 read_partial_attrdef_page
:
1620 page
= ntfs_map_page(ino
->i_mapping
, index
);
1622 goto free_iput_failed
;
1623 memcpy((u8
*)vol
->attrdef
+ (index
++ << PAGE_CACHE_SHIFT
),
1624 page_address(page
), size
);
1625 ntfs_unmap_page(page
);
1627 if (size
== PAGE_CACHE_SIZE
) {
1628 size
= i_size
& ~PAGE_CACHE_MASK
;
1630 goto read_partial_attrdef_page
;
1632 vol
->attrdef_size
= i_size
;
1633 ntfs_debug("Read %llu bytes from $AttrDef.", i_size
);
1637 ntfs_free(vol
->attrdef
);
1638 vol
->attrdef
= NULL
;
1642 ntfs_error(sb
, "Failed to initialize attribute definition table.");
1646 #endif /* NTFS_RW */
1649 * load_and_init_upcase - load the upcase table for an ntfs volume
1650 * @vol: ntfs super block describing device whose upcase to load
1652 * Return 'true' on success or 'false' on error.
1654 static bool load_and_init_upcase(ntfs_volume
*vol
)
1657 struct super_block
*sb
= vol
->sb
;
1660 pgoff_t index
, max_index
;
1664 ntfs_debug("Entering.");
1665 /* Read upcase table and setup vol->upcase and vol->upcase_len. */
1666 ino
= ntfs_iget(sb
, FILE_UpCase
);
1667 if (IS_ERR(ino
) || is_bad_inode(ino
)) {
1673 * The upcase size must not be above 64k Unicode characters, must not
1674 * be zero and must be a multiple of sizeof(ntfschar).
1676 i_size
= i_size_read(ino
);
1677 if (!i_size
|| i_size
& (sizeof(ntfschar
) - 1) ||
1678 i_size
> 64ULL * 1024 * sizeof(ntfschar
))
1679 goto iput_upcase_failed
;
1680 vol
->upcase
= (ntfschar
*)ntfs_malloc_nofs(i_size
);
1682 goto iput_upcase_failed
;
1684 max_index
= i_size
>> PAGE_CACHE_SHIFT
;
1685 size
= PAGE_CACHE_SIZE
;
1686 while (index
< max_index
) {
1687 /* Read the upcase table and copy it into the linear buffer. */
1688 read_partial_upcase_page
:
1689 page
= ntfs_map_page(ino
->i_mapping
, index
);
1691 goto iput_upcase_failed
;
1692 memcpy((char*)vol
->upcase
+ (index
++ << PAGE_CACHE_SHIFT
),
1693 page_address(page
), size
);
1694 ntfs_unmap_page(page
);
1696 if (size
== PAGE_CACHE_SIZE
) {
1697 size
= i_size
& ~PAGE_CACHE_MASK
;
1699 goto read_partial_upcase_page
;
1701 vol
->upcase_len
= i_size
>> UCHAR_T_SIZE_BITS
;
1702 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1703 i_size
, 64 * 1024 * sizeof(ntfschar
));
1705 mutex_lock(&ntfs_lock
);
1706 if (!default_upcase
) {
1707 ntfs_debug("Using volume specified $UpCase since default is "
1709 mutex_unlock(&ntfs_lock
);
1712 max
= default_upcase_len
;
1713 if (max
> vol
->upcase_len
)
1714 max
= vol
->upcase_len
;
1715 for (i
= 0; i
< max
; i
++)
1716 if (vol
->upcase
[i
] != default_upcase
[i
])
1719 ntfs_free(vol
->upcase
);
1720 vol
->upcase
= default_upcase
;
1721 vol
->upcase_len
= max
;
1722 ntfs_nr_upcase_users
++;
1723 mutex_unlock(&ntfs_lock
);
1724 ntfs_debug("Volume specified $UpCase matches default. Using "
1728 mutex_unlock(&ntfs_lock
);
1729 ntfs_debug("Using volume specified $UpCase since it does not match "
1734 ntfs_free(vol
->upcase
);
1737 mutex_lock(&ntfs_lock
);
1738 if (default_upcase
) {
1739 vol
->upcase
= default_upcase
;
1740 vol
->upcase_len
= default_upcase_len
;
1741 ntfs_nr_upcase_users
++;
1742 mutex_unlock(&ntfs_lock
);
1743 ntfs_error(sb
, "Failed to load $UpCase from the volume. Using "
1747 mutex_unlock(&ntfs_lock
);
1748 ntfs_error(sb
, "Failed to initialize upcase table.");
1753 * The lcn and mft bitmap inodes are NTFS-internal inodes with
1754 * their own special locking rules:
1756 static struct lock_class_key
1757 lcnbmp_runlist_lock_key
, lcnbmp_mrec_lock_key
,
1758 mftbmp_runlist_lock_key
, mftbmp_mrec_lock_key
;
1761 * load_system_files - open the system files using normal functions
1762 * @vol: ntfs super block describing device whose system files to load
1764 * Open the system files with normal access functions and complete setting up
1765 * the ntfs super block @vol.
1767 * Return 'true' on success or 'false' on error.
1769 static bool load_system_files(ntfs_volume
*vol
)
1771 struct super_block
*sb
= vol
->sb
;
1773 VOLUME_INFORMATION
*vi
;
1774 ntfs_attr_search_ctx
*ctx
;
1776 RESTART_PAGE_HEADER
*rp
;
1778 #endif /* NTFS_RW */
1780 ntfs_debug("Entering.");
1782 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1783 if (!load_and_init_mft_mirror(vol
) || !check_mft_mirror(vol
)) {
1784 static const char *es1
= "Failed to load $MFTMirr";
1785 static const char *es2
= "$MFTMirr does not match $MFT";
1786 static const char *es3
= ". Run ntfsfix and/or chkdsk.";
1788 /* If a read-write mount, convert it to a read-only mount. */
1789 if (!(sb
->s_flags
& MS_RDONLY
)) {
1790 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1791 ON_ERRORS_CONTINUE
))) {
1792 ntfs_error(sb
, "%s and neither on_errors="
1793 "continue nor on_errors="
1794 "remount-ro was specified%s",
1795 !vol
->mftmirr_ino
? es1
: es2
,
1797 goto iput_mirr_err_out
;
1799 sb
->s_flags
|= MS_RDONLY
;
1800 ntfs_error(sb
, "%s. Mounting read-only%s",
1801 !vol
->mftmirr_ino
? es1
: es2
, es3
);
1803 ntfs_warning(sb
, "%s. Will not be able to remount "
1805 !vol
->mftmirr_ino
? es1
: es2
, es3
);
1806 /* This will prevent a read-write remount. */
1809 #endif /* NTFS_RW */
1810 /* Get mft bitmap attribute inode. */
1811 vol
->mftbmp_ino
= ntfs_attr_iget(vol
->mft_ino
, AT_BITMAP
, NULL
, 0);
1812 if (IS_ERR(vol
->mftbmp_ino
)) {
1813 ntfs_error(sb
, "Failed to load $MFT/$BITMAP attribute.");
1814 goto iput_mirr_err_out
;
1816 lockdep_set_class(&NTFS_I(vol
->mftbmp_ino
)->runlist
.lock
,
1817 &mftbmp_runlist_lock_key
);
1818 lockdep_set_class(&NTFS_I(vol
->mftbmp_ino
)->mrec_lock
,
1819 &mftbmp_mrec_lock_key
);
1820 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1821 if (!load_and_init_upcase(vol
))
1822 goto iput_mftbmp_err_out
;
1825 * Read attribute definitions table and setup @vol->attrdef and
1826 * @vol->attrdef_size.
1828 if (!load_and_init_attrdef(vol
))
1829 goto iput_upcase_err_out
;
1830 #endif /* NTFS_RW */
1832 * Get the cluster allocation bitmap inode and verify the size, no
1833 * need for any locking at this stage as we are already running
1834 * exclusively as we are mount in progress task.
1836 vol
->lcnbmp_ino
= ntfs_iget(sb
, FILE_Bitmap
);
1837 if (IS_ERR(vol
->lcnbmp_ino
) || is_bad_inode(vol
->lcnbmp_ino
)) {
1838 if (!IS_ERR(vol
->lcnbmp_ino
))
1839 iput(vol
->lcnbmp_ino
);
1842 lockdep_set_class(&NTFS_I(vol
->lcnbmp_ino
)->runlist
.lock
,
1843 &lcnbmp_runlist_lock_key
);
1844 lockdep_set_class(&NTFS_I(vol
->lcnbmp_ino
)->mrec_lock
,
1845 &lcnbmp_mrec_lock_key
);
1847 NInoSetSparseDisabled(NTFS_I(vol
->lcnbmp_ino
));
1848 if ((vol
->nr_clusters
+ 7) >> 3 > i_size_read(vol
->lcnbmp_ino
)) {
1849 iput(vol
->lcnbmp_ino
);
1851 ntfs_error(sb
, "Failed to load $Bitmap.");
1852 goto iput_attrdef_err_out
;
1855 * Get the volume inode and setup our cache of the volume flags and
1858 vol
->vol_ino
= ntfs_iget(sb
, FILE_Volume
);
1859 if (IS_ERR(vol
->vol_ino
) || is_bad_inode(vol
->vol_ino
)) {
1860 if (!IS_ERR(vol
->vol_ino
))
1863 ntfs_error(sb
, "Failed to load $Volume.");
1864 goto iput_lcnbmp_err_out
;
1866 m
= map_mft_record(NTFS_I(vol
->vol_ino
));
1872 if (!(ctx
= ntfs_attr_get_search_ctx(NTFS_I(vol
->vol_ino
), m
))) {
1873 ntfs_error(sb
, "Failed to get attribute search context.");
1874 goto get_ctx_vol_failed
;
1876 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
1877 ctx
) || ctx
->attr
->non_resident
|| ctx
->attr
->flags
) {
1879 ntfs_attr_put_search_ctx(ctx
);
1881 unmap_mft_record(NTFS_I(vol
->vol_ino
));
1882 goto iput_volume_failed
;
1884 vi
= (VOLUME_INFORMATION
*)((char*)ctx
->attr
+
1885 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
1886 /* Some bounds checks. */
1887 if ((u8
*)vi
< (u8
*)ctx
->attr
|| (u8
*)vi
+
1888 le32_to_cpu(ctx
->attr
->data
.resident
.value_length
) >
1889 (u8
*)ctx
->attr
+ le32_to_cpu(ctx
->attr
->length
))
1891 /* Copy the volume flags and version to the ntfs_volume structure. */
1892 vol
->vol_flags
= vi
->flags
;
1893 vol
->major_ver
= vi
->major_ver
;
1894 vol
->minor_ver
= vi
->minor_ver
;
1895 ntfs_attr_put_search_ctx(ctx
);
1896 unmap_mft_record(NTFS_I(vol
->vol_ino
));
1897 printk(KERN_INFO
"NTFS volume version %i.%i.\n", vol
->major_ver
,
1899 if (vol
->major_ver
< 3 && NVolSparseEnabled(vol
)) {
1900 ntfs_warning(vol
->sb
, "Disabling sparse support due to NTFS "
1901 "volume version %i.%i (need at least version "
1902 "3.0).", vol
->major_ver
, vol
->minor_ver
);
1903 NVolClearSparseEnabled(vol
);
1906 /* Make sure that no unsupported volume flags are set. */
1907 if (vol
->vol_flags
& VOLUME_MUST_MOUNT_RO_MASK
) {
1908 static const char *es1a
= "Volume is dirty";
1909 static const char *es1b
= "Volume has been modified by chkdsk";
1910 static const char *es1c
= "Volume has unsupported flags set";
1911 static const char *es2a
= ". Run chkdsk and mount in Windows.";
1912 static const char *es2b
= ". Mount in Windows.";
1913 const char *es1
, *es2
;
1916 if (vol
->vol_flags
& VOLUME_IS_DIRTY
)
1918 else if (vol
->vol_flags
& VOLUME_MODIFIED_BY_CHKDSK
) {
1923 ntfs_warning(sb
, "Unsupported volume flags 0x%x "
1925 (unsigned)le16_to_cpu(vol
->vol_flags
));
1927 /* If a read-write mount, convert it to a read-only mount. */
1928 if (!(sb
->s_flags
& MS_RDONLY
)) {
1929 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1930 ON_ERRORS_CONTINUE
))) {
1931 ntfs_error(sb
, "%s and neither on_errors="
1932 "continue nor on_errors="
1933 "remount-ro was specified%s",
1935 goto iput_vol_err_out
;
1937 sb
->s_flags
|= MS_RDONLY
;
1938 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1940 ntfs_warning(sb
, "%s. Will not be able to remount "
1941 "read-write%s", es1
, es2
);
1943 * Do not set NVolErrors() because ntfs_remount() re-checks the
1944 * flags which we need to do in case any flags have changed.
1948 * Get the inode for the logfile, check it and determine if the volume
1949 * was shutdown cleanly.
1952 if (!load_and_check_logfile(vol
, &rp
) ||
1953 !ntfs_is_logfile_clean(vol
->logfile_ino
, rp
)) {
1954 static const char *es1a
= "Failed to load $LogFile";
1955 static const char *es1b
= "$LogFile is not clean";
1956 static const char *es2
= ". Mount in Windows.";
1959 es1
= !vol
->logfile_ino
? es1a
: es1b
;
1960 /* If a read-write mount, convert it to a read-only mount. */
1961 if (!(sb
->s_flags
& MS_RDONLY
)) {
1962 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1963 ON_ERRORS_CONTINUE
))) {
1964 ntfs_error(sb
, "%s and neither on_errors="
1965 "continue nor on_errors="
1966 "remount-ro was specified%s",
1968 if (vol
->logfile_ino
) {
1972 goto iput_logfile_err_out
;
1974 sb
->s_flags
|= MS_RDONLY
;
1975 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1977 ntfs_warning(sb
, "%s. Will not be able to remount "
1978 "read-write%s", es1
, es2
);
1979 /* This will prevent a read-write remount. */
1983 #endif /* NTFS_RW */
1984 /* Get the root directory inode so we can do path lookups. */
1985 vol
->root_ino
= ntfs_iget(sb
, FILE_root
);
1986 if (IS_ERR(vol
->root_ino
) || is_bad_inode(vol
->root_ino
)) {
1987 if (!IS_ERR(vol
->root_ino
))
1988 iput(vol
->root_ino
);
1989 ntfs_error(sb
, "Failed to load root directory.");
1990 goto iput_logfile_err_out
;
1994 * Check if Windows is suspended to disk on the target volume. If it
1995 * is hibernated, we must not write *anything* to the disk so set
1996 * NVolErrors() without setting the dirty volume flag and mount
1997 * read-only. This will prevent read-write remounting and it will also
1998 * prevent all writes.
2000 err
= check_windows_hibernation_status(vol
);
2001 if (unlikely(err
)) {
2002 static const char *es1a
= "Failed to determine if Windows is "
2004 static const char *es1b
= "Windows is hibernated";
2005 static const char *es2
= ". Run chkdsk.";
2008 es1
= err
< 0 ? es1a
: es1b
;
2009 /* If a read-write mount, convert it to a read-only mount. */
2010 if (!(sb
->s_flags
& MS_RDONLY
)) {
2011 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2012 ON_ERRORS_CONTINUE
))) {
2013 ntfs_error(sb
, "%s and neither on_errors="
2014 "continue nor on_errors="
2015 "remount-ro was specified%s",
2017 goto iput_root_err_out
;
2019 sb
->s_flags
|= MS_RDONLY
;
2020 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2022 ntfs_warning(sb
, "%s. Will not be able to remount "
2023 "read-write%s", es1
, es2
);
2024 /* This will prevent a read-write remount. */
2027 /* If (still) a read-write mount, mark the volume dirty. */
2028 if (!(sb
->s_flags
& MS_RDONLY
) &&
2029 ntfs_set_volume_flags(vol
, VOLUME_IS_DIRTY
)) {
2030 static const char *es1
= "Failed to set dirty bit in volume "
2031 "information flags";
2032 static const char *es2
= ". Run chkdsk.";
2034 /* Convert to a read-only mount. */
2035 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2036 ON_ERRORS_CONTINUE
))) {
2037 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2038 "on_errors=remount-ro was specified%s",
2040 goto iput_root_err_out
;
2042 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2043 sb
->s_flags
|= MS_RDONLY
;
2045 * Do not set NVolErrors() because ntfs_remount() might manage
2046 * to set the dirty flag in which case all would be well.
2050 // TODO: Enable this code once we start modifying anything that is
2051 // different between NTFS 1.2 and 3.x...
2053 * If (still) a read-write mount, set the NT4 compatibility flag on
2054 * newer NTFS version volumes.
2056 if (!(sb
->s_flags
& MS_RDONLY
) && (vol
->major_ver
> 1) &&
2057 ntfs_set_volume_flags(vol
, VOLUME_MOUNTED_ON_NT4
)) {
2058 static const char *es1
= "Failed to set NT4 compatibility flag";
2059 static const char *es2
= ". Run chkdsk.";
2061 /* Convert to a read-only mount. */
2062 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2063 ON_ERRORS_CONTINUE
))) {
2064 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2065 "on_errors=remount-ro was specified%s",
2067 goto iput_root_err_out
;
2069 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2070 sb
->s_flags
|= MS_RDONLY
;
2074 /* If (still) a read-write mount, empty the logfile. */
2075 if (!(sb
->s_flags
& MS_RDONLY
) &&
2076 !ntfs_empty_logfile(vol
->logfile_ino
)) {
2077 static const char *es1
= "Failed to empty $LogFile";
2078 static const char *es2
= ". Mount in Windows.";
2080 /* Convert to a read-only mount. */
2081 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2082 ON_ERRORS_CONTINUE
))) {
2083 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2084 "on_errors=remount-ro was specified%s",
2086 goto iput_root_err_out
;
2088 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2089 sb
->s_flags
|= MS_RDONLY
;
2092 #endif /* NTFS_RW */
2093 /* If on NTFS versions before 3.0, we are done. */
2094 if (unlikely(vol
->major_ver
< 3))
2096 /* NTFS 3.0+ specific initialization. */
2097 /* Get the security descriptors inode. */
2098 vol
->secure_ino
= ntfs_iget(sb
, FILE_Secure
);
2099 if (IS_ERR(vol
->secure_ino
) || is_bad_inode(vol
->secure_ino
)) {
2100 if (!IS_ERR(vol
->secure_ino
))
2101 iput(vol
->secure_ino
);
2102 ntfs_error(sb
, "Failed to load $Secure.");
2103 goto iput_root_err_out
;
2105 // TODO: Initialize security.
2106 /* Get the extended system files' directory inode. */
2107 vol
->extend_ino
= ntfs_iget(sb
, FILE_Extend
);
2108 if (IS_ERR(vol
->extend_ino
) || is_bad_inode(vol
->extend_ino
)) {
2109 if (!IS_ERR(vol
->extend_ino
))
2110 iput(vol
->extend_ino
);
2111 ntfs_error(sb
, "Failed to load $Extend.");
2112 goto iput_sec_err_out
;
2115 /* Find the quota file, load it if present, and set it up. */
2116 if (!load_and_init_quota(vol
)) {
2117 static const char *es1
= "Failed to load $Quota";
2118 static const char *es2
= ". Run chkdsk.";
2120 /* If a read-write mount, convert it to a read-only mount. */
2121 if (!(sb
->s_flags
& MS_RDONLY
)) {
2122 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2123 ON_ERRORS_CONTINUE
))) {
2124 ntfs_error(sb
, "%s and neither on_errors="
2125 "continue nor on_errors="
2126 "remount-ro was specified%s",
2128 goto iput_quota_err_out
;
2130 sb
->s_flags
|= MS_RDONLY
;
2131 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2133 ntfs_warning(sb
, "%s. Will not be able to remount "
2134 "read-write%s", es1
, es2
);
2135 /* This will prevent a read-write remount. */
2138 /* If (still) a read-write mount, mark the quotas out of date. */
2139 if (!(sb
->s_flags
& MS_RDONLY
) &&
2140 !ntfs_mark_quotas_out_of_date(vol
)) {
2141 static const char *es1
= "Failed to mark quotas out of date";
2142 static const char *es2
= ". Run chkdsk.";
2144 /* Convert to a read-only mount. */
2145 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2146 ON_ERRORS_CONTINUE
))) {
2147 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2148 "on_errors=remount-ro was specified%s",
2150 goto iput_quota_err_out
;
2152 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2153 sb
->s_flags
|= MS_RDONLY
;
2157 * Find the transaction log file ($UsnJrnl), load it if present, check
2158 * it, and set it up.
2160 if (!load_and_init_usnjrnl(vol
)) {
2161 static const char *es1
= "Failed to load $UsnJrnl";
2162 static const char *es2
= ". Run chkdsk.";
2164 /* If a read-write mount, convert it to a read-only mount. */
2165 if (!(sb
->s_flags
& MS_RDONLY
)) {
2166 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2167 ON_ERRORS_CONTINUE
))) {
2168 ntfs_error(sb
, "%s and neither on_errors="
2169 "continue nor on_errors="
2170 "remount-ro was specified%s",
2172 goto iput_usnjrnl_err_out
;
2174 sb
->s_flags
|= MS_RDONLY
;
2175 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2177 ntfs_warning(sb
, "%s. Will not be able to remount "
2178 "read-write%s", es1
, es2
);
2179 /* This will prevent a read-write remount. */
2182 /* If (still) a read-write mount, stamp the transaction log. */
2183 if (!(sb
->s_flags
& MS_RDONLY
) && !ntfs_stamp_usnjrnl(vol
)) {
2184 static const char *es1
= "Failed to stamp transaction log "
2186 static const char *es2
= ". Run chkdsk.";
2188 /* Convert to a read-only mount. */
2189 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2190 ON_ERRORS_CONTINUE
))) {
2191 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2192 "on_errors=remount-ro was specified%s",
2194 goto iput_usnjrnl_err_out
;
2196 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2197 sb
->s_flags
|= MS_RDONLY
;
2200 #endif /* NTFS_RW */
2203 iput_usnjrnl_err_out
:
2204 if (vol
->usnjrnl_j_ino
)
2205 iput(vol
->usnjrnl_j_ino
);
2206 if (vol
->usnjrnl_max_ino
)
2207 iput(vol
->usnjrnl_max_ino
);
2208 if (vol
->usnjrnl_ino
)
2209 iput(vol
->usnjrnl_ino
);
2211 if (vol
->quota_q_ino
)
2212 iput(vol
->quota_q_ino
);
2214 iput(vol
->quota_ino
);
2215 iput(vol
->extend_ino
);
2216 #endif /* NTFS_RW */
2218 iput(vol
->secure_ino
);
2220 iput(vol
->root_ino
);
2221 iput_logfile_err_out
:
2223 if (vol
->logfile_ino
)
2224 iput(vol
->logfile_ino
);
2226 #endif /* NTFS_RW */
2228 iput_lcnbmp_err_out
:
2229 iput(vol
->lcnbmp_ino
);
2230 iput_attrdef_err_out
:
2231 vol
->attrdef_size
= 0;
2233 ntfs_free(vol
->attrdef
);
2234 vol
->attrdef
= NULL
;
2237 iput_upcase_err_out
:
2238 #endif /* NTFS_RW */
2239 vol
->upcase_len
= 0;
2240 mutex_lock(&ntfs_lock
);
2241 if (vol
->upcase
== default_upcase
) {
2242 ntfs_nr_upcase_users
--;
2245 mutex_unlock(&ntfs_lock
);
2247 ntfs_free(vol
->upcase
);
2250 iput_mftbmp_err_out
:
2251 iput(vol
->mftbmp_ino
);
2254 if (vol
->mftmirr_ino
)
2255 iput(vol
->mftmirr_ino
);
2256 #endif /* NTFS_RW */
2261 * ntfs_put_super - called by the vfs to unmount a volume
2262 * @sb: vfs superblock of volume to unmount
2264 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2265 * the volume is being unmounted (umount system call has been invoked) and it
2266 * releases all inodes and memory belonging to the NTFS specific part of the
2269 static void ntfs_put_super(struct super_block
*sb
)
2271 ntfs_volume
*vol
= NTFS_SB(sb
);
2273 ntfs_debug("Entering.");
2277 * Commit all inodes while they are still open in case some of them
2278 * cause others to be dirtied.
2280 ntfs_commit_inode(vol
->vol_ino
);
2282 /* NTFS 3.0+ specific. */
2283 if (vol
->major_ver
>= 3) {
2284 if (vol
->usnjrnl_j_ino
)
2285 ntfs_commit_inode(vol
->usnjrnl_j_ino
);
2286 if (vol
->usnjrnl_max_ino
)
2287 ntfs_commit_inode(vol
->usnjrnl_max_ino
);
2288 if (vol
->usnjrnl_ino
)
2289 ntfs_commit_inode(vol
->usnjrnl_ino
);
2290 if (vol
->quota_q_ino
)
2291 ntfs_commit_inode(vol
->quota_q_ino
);
2293 ntfs_commit_inode(vol
->quota_ino
);
2294 if (vol
->extend_ino
)
2295 ntfs_commit_inode(vol
->extend_ino
);
2296 if (vol
->secure_ino
)
2297 ntfs_commit_inode(vol
->secure_ino
);
2300 ntfs_commit_inode(vol
->root_ino
);
2302 down_write(&vol
->lcnbmp_lock
);
2303 ntfs_commit_inode(vol
->lcnbmp_ino
);
2304 up_write(&vol
->lcnbmp_lock
);
2306 down_write(&vol
->mftbmp_lock
);
2307 ntfs_commit_inode(vol
->mftbmp_ino
);
2308 up_write(&vol
->mftbmp_lock
);
2310 if (vol
->logfile_ino
)
2311 ntfs_commit_inode(vol
->logfile_ino
);
2313 if (vol
->mftmirr_ino
)
2314 ntfs_commit_inode(vol
->mftmirr_ino
);
2315 ntfs_commit_inode(vol
->mft_ino
);
2318 * If a read-write mount and no volume errors have occurred, mark the
2319 * volume clean. Also, re-commit all affected inodes.
2321 if (!(sb
->s_flags
& MS_RDONLY
)) {
2322 if (!NVolErrors(vol
)) {
2323 if (ntfs_clear_volume_flags(vol
, VOLUME_IS_DIRTY
))
2324 ntfs_warning(sb
, "Failed to clear dirty bit "
2325 "in volume information "
2326 "flags. Run chkdsk.");
2327 ntfs_commit_inode(vol
->vol_ino
);
2328 ntfs_commit_inode(vol
->root_ino
);
2329 if (vol
->mftmirr_ino
)
2330 ntfs_commit_inode(vol
->mftmirr_ino
);
2331 ntfs_commit_inode(vol
->mft_ino
);
2333 ntfs_warning(sb
, "Volume has errors. Leaving volume "
2334 "marked dirty. Run chkdsk.");
2337 #endif /* NTFS_RW */
2340 vol
->vol_ino
= NULL
;
2342 /* NTFS 3.0+ specific clean up. */
2343 if (vol
->major_ver
>= 3) {
2345 if (vol
->usnjrnl_j_ino
) {
2346 iput(vol
->usnjrnl_j_ino
);
2347 vol
->usnjrnl_j_ino
= NULL
;
2349 if (vol
->usnjrnl_max_ino
) {
2350 iput(vol
->usnjrnl_max_ino
);
2351 vol
->usnjrnl_max_ino
= NULL
;
2353 if (vol
->usnjrnl_ino
) {
2354 iput(vol
->usnjrnl_ino
);
2355 vol
->usnjrnl_ino
= NULL
;
2357 if (vol
->quota_q_ino
) {
2358 iput(vol
->quota_q_ino
);
2359 vol
->quota_q_ino
= NULL
;
2361 if (vol
->quota_ino
) {
2362 iput(vol
->quota_ino
);
2363 vol
->quota_ino
= NULL
;
2365 #endif /* NTFS_RW */
2366 if (vol
->extend_ino
) {
2367 iput(vol
->extend_ino
);
2368 vol
->extend_ino
= NULL
;
2370 if (vol
->secure_ino
) {
2371 iput(vol
->secure_ino
);
2372 vol
->secure_ino
= NULL
;
2376 iput(vol
->root_ino
);
2377 vol
->root_ino
= NULL
;
2379 down_write(&vol
->lcnbmp_lock
);
2380 iput(vol
->lcnbmp_ino
);
2381 vol
->lcnbmp_ino
= NULL
;
2382 up_write(&vol
->lcnbmp_lock
);
2384 down_write(&vol
->mftbmp_lock
);
2385 iput(vol
->mftbmp_ino
);
2386 vol
->mftbmp_ino
= NULL
;
2387 up_write(&vol
->mftbmp_lock
);
2390 if (vol
->logfile_ino
) {
2391 iput(vol
->logfile_ino
);
2392 vol
->logfile_ino
= NULL
;
2394 if (vol
->mftmirr_ino
) {
2395 /* Re-commit the mft mirror and mft just in case. */
2396 ntfs_commit_inode(vol
->mftmirr_ino
);
2397 ntfs_commit_inode(vol
->mft_ino
);
2398 iput(vol
->mftmirr_ino
);
2399 vol
->mftmirr_ino
= NULL
;
2402 * We should have no dirty inodes left, due to
2403 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2404 * the underlying mft records are written out and cleaned.
2406 ntfs_commit_inode(vol
->mft_ino
);
2407 write_inode_now(vol
->mft_ino
, 1);
2408 #endif /* NTFS_RW */
2411 vol
->mft_ino
= NULL
;
2413 /* Throw away the table of attribute definitions. */
2414 vol
->attrdef_size
= 0;
2416 ntfs_free(vol
->attrdef
);
2417 vol
->attrdef
= NULL
;
2419 vol
->upcase_len
= 0;
2421 * Destroy the global default upcase table if necessary. Also decrease
2422 * the number of upcase users if we are a user.
2424 mutex_lock(&ntfs_lock
);
2425 if (vol
->upcase
== default_upcase
) {
2426 ntfs_nr_upcase_users
--;
2429 if (!ntfs_nr_upcase_users
&& default_upcase
) {
2430 ntfs_free(default_upcase
);
2431 default_upcase
= NULL
;
2433 if (vol
->cluster_size
<= 4096 && !--ntfs_nr_compression_users
)
2434 free_compression_buffers();
2435 mutex_unlock(&ntfs_lock
);
2437 ntfs_free(vol
->upcase
);
2441 unload_nls(vol
->nls_map
);
2443 sb
->s_fs_info
= NULL
;
2448 * get_nr_free_clusters - return the number of free clusters on a volume
2449 * @vol: ntfs volume for which to obtain free cluster count
2451 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2452 * actually calculate the number of clusters in use instead because this
2453 * allows us to not care about partial pages as these will be just zero filled
2454 * and hence not be counted as allocated clusters.
2456 * The only particularity is that clusters beyond the end of the logical ntfs
2457 * volume will be marked as allocated to prevent errors which means we have to
2458 * discount those at the end. This is important as the cluster bitmap always
2459 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2460 * the logical volume and marked in use when they are not as they do not exist.
2462 * If any pages cannot be read we assume all clusters in the erroring pages are
2463 * in use. This means we return an underestimate on errors which is better than
2466 static s64
get_nr_free_clusters(ntfs_volume
*vol
)
2468 s64 nr_free
= vol
->nr_clusters
;
2469 struct address_space
*mapping
= vol
->lcnbmp_ino
->i_mapping
;
2471 pgoff_t index
, max_index
;
2473 ntfs_debug("Entering.");
2474 /* Serialize accesses to the cluster bitmap. */
2475 down_read(&vol
->lcnbmp_lock
);
2477 * Convert the number of bits into bytes rounded up, then convert into
2478 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2479 * full and one partial page max_index = 2.
2481 max_index
= (((vol
->nr_clusters
+ 7) >> 3) + PAGE_CACHE_SIZE
- 1) >>
2483 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2484 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2485 max_index
, PAGE_CACHE_SIZE
/ 4);
2486 for (index
= 0; index
< max_index
; index
++) {
2487 unsigned long *kaddr
;
2490 * Read the page from page cache, getting it from backing store
2491 * if necessary, and increment the use count.
2493 page
= read_mapping_page(mapping
, index
, NULL
);
2494 /* Ignore pages which errored synchronously. */
2496 ntfs_debug("read_mapping_page() error. Skipping "
2497 "page (index 0x%lx).", index
);
2498 nr_free
-= PAGE_CACHE_SIZE
* 8;
2501 kaddr
= kmap_atomic(page
);
2503 * Subtract the number of set bits. If this
2504 * is the last page and it is partial we don't really care as
2505 * it just means we do a little extra work but it won't affect
2506 * the result as all out of range bytes are set to zero by
2509 nr_free
-= bitmap_weight(kaddr
,
2510 PAGE_CACHE_SIZE
* BITS_PER_BYTE
);
2511 kunmap_atomic(kaddr
);
2512 page_cache_release(page
);
2514 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index
- 1);
2516 * Fixup for eventual bits outside logical ntfs volume (see function
2517 * description above).
2519 if (vol
->nr_clusters
& 63)
2520 nr_free
+= 64 - (vol
->nr_clusters
& 63);
2521 up_read(&vol
->lcnbmp_lock
);
2522 /* If errors occurred we may well have gone below zero, fix this. */
2525 ntfs_debug("Exiting.");
2530 * __get_nr_free_mft_records - return the number of free inodes on a volume
2531 * @vol: ntfs volume for which to obtain free inode count
2532 * @nr_free: number of mft records in filesystem
2533 * @max_index: maximum number of pages containing set bits
2535 * Calculate the number of free mft records (inodes) on the mounted NTFS
2536 * volume @vol. We actually calculate the number of mft records in use instead
2537 * because this allows us to not care about partial pages as these will be just
2538 * zero filled and hence not be counted as allocated mft record.
2540 * If any pages cannot be read we assume all mft records in the erroring pages
2541 * are in use. This means we return an underestimate on errors which is better
2542 * than an overestimate.
2544 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2546 static unsigned long __get_nr_free_mft_records(ntfs_volume
*vol
,
2547 s64 nr_free
, const pgoff_t max_index
)
2549 struct address_space
*mapping
= vol
->mftbmp_ino
->i_mapping
;
2553 ntfs_debug("Entering.");
2554 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2555 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2556 "0x%lx.", max_index
, PAGE_CACHE_SIZE
/ 4);
2557 for (index
= 0; index
< max_index
; index
++) {
2558 unsigned long *kaddr
;
2561 * Read the page from page cache, getting it from backing store
2562 * if necessary, and increment the use count.
2564 page
= read_mapping_page(mapping
, index
, NULL
);
2565 /* Ignore pages which errored synchronously. */
2567 ntfs_debug("read_mapping_page() error. Skipping "
2568 "page (index 0x%lx).", index
);
2569 nr_free
-= PAGE_CACHE_SIZE
* 8;
2572 kaddr
= kmap_atomic(page
);
2574 * Subtract the number of set bits. If this
2575 * is the last page and it is partial we don't really care as
2576 * it just means we do a little extra work but it won't affect
2577 * the result as all out of range bytes are set to zero by
2580 nr_free
-= bitmap_weight(kaddr
,
2581 PAGE_CACHE_SIZE
* BITS_PER_BYTE
);
2582 kunmap_atomic(kaddr
);
2583 page_cache_release(page
);
2585 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2587 /* If errors occurred we may well have gone below zero, fix this. */
2590 ntfs_debug("Exiting.");
2595 * ntfs_statfs - return information about mounted NTFS volume
2596 * @dentry: dentry from mounted volume
2597 * @sfs: statfs structure in which to return the information
2599 * Return information about the mounted NTFS volume @dentry in the statfs structure
2600 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2601 * called). We interpret the values to be correct of the moment in time at
2602 * which we are called. Most values are variable otherwise and this isn't just
2603 * the free values but the totals as well. For example we can increase the
2604 * total number of file nodes if we run out and we can keep doing this until
2605 * there is no more space on the volume left at all.
2607 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2608 * ustat system calls.
2610 * Return 0 on success or -errno on error.
2612 static int ntfs_statfs(struct dentry
*dentry
, struct kstatfs
*sfs
)
2614 struct super_block
*sb
= dentry
->d_sb
;
2616 ntfs_volume
*vol
= NTFS_SB(sb
);
2617 ntfs_inode
*mft_ni
= NTFS_I(vol
->mft_ino
);
2619 unsigned long flags
;
2621 ntfs_debug("Entering.");
2622 /* Type of filesystem. */
2623 sfs
->f_type
= NTFS_SB_MAGIC
;
2624 /* Optimal transfer block size. */
2625 sfs
->f_bsize
= PAGE_CACHE_SIZE
;
2627 * Total data blocks in filesystem in units of f_bsize and since
2628 * inodes are also stored in data blocs ($MFT is a file) this is just
2629 * the total clusters.
2631 sfs
->f_blocks
= vol
->nr_clusters
<< vol
->cluster_size_bits
>>
2633 /* Free data blocks in filesystem in units of f_bsize. */
2634 size
= get_nr_free_clusters(vol
) << vol
->cluster_size_bits
>>
2638 /* Free blocks avail to non-superuser, same as above on NTFS. */
2639 sfs
->f_bavail
= sfs
->f_bfree
= size
;
2640 /* Serialize accesses to the inode bitmap. */
2641 down_read(&vol
->mftbmp_lock
);
2642 read_lock_irqsave(&mft_ni
->size_lock
, flags
);
2643 size
= i_size_read(vol
->mft_ino
) >> vol
->mft_record_size_bits
;
2645 * Convert the maximum number of set bits into bytes rounded up, then
2646 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2647 * have one full and one partial page max_index = 2.
2649 max_index
= ((((mft_ni
->initialized_size
>> vol
->mft_record_size_bits
)
2650 + 7) >> 3) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
2651 read_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
2652 /* Number of inodes in filesystem (at this point in time). */
2653 sfs
->f_files
= size
;
2654 /* Free inodes in fs (based on current total count). */
2655 sfs
->f_ffree
= __get_nr_free_mft_records(vol
, size
, max_index
);
2656 up_read(&vol
->mftbmp_lock
);
2658 * File system id. This is extremely *nix flavour dependent and even
2659 * within Linux itself all fs do their own thing. I interpret this to
2660 * mean a unique id associated with the mounted fs and not the id
2661 * associated with the filesystem driver, the latter is already given
2662 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2663 * volume serial number splitting it into two 32-bit parts. We enter
2664 * the least significant 32-bits in f_fsid[0] and the most significant
2665 * 32-bits in f_fsid[1].
2667 sfs
->f_fsid
.val
[0] = vol
->serial_no
& 0xffffffff;
2668 sfs
->f_fsid
.val
[1] = (vol
->serial_no
>> 32) & 0xffffffff;
2669 /* Maximum length of filenames. */
2670 sfs
->f_namelen
= NTFS_MAX_NAME_LEN
;
2675 static int ntfs_write_inode(struct inode
*vi
, struct writeback_control
*wbc
)
2677 return __ntfs_write_inode(vi
, wbc
->sync_mode
== WB_SYNC_ALL
);
2682 * The complete super operations.
2684 static const struct super_operations ntfs_sops
= {
2685 .alloc_inode
= ntfs_alloc_big_inode
, /* VFS: Allocate new inode. */
2686 .destroy_inode
= ntfs_destroy_big_inode
, /* VFS: Deallocate inode. */
2688 .write_inode
= ntfs_write_inode
, /* VFS: Write dirty inode to
2690 #endif /* NTFS_RW */
2691 .put_super
= ntfs_put_super
, /* Syscall: umount. */
2692 .statfs
= ntfs_statfs
, /* Syscall: statfs */
2693 .remount_fs
= ntfs_remount
, /* Syscall: mount -o remount. */
2694 .evict_inode
= ntfs_evict_big_inode
, /* VFS: Called when an inode is
2695 removed from memory. */
2696 .show_options
= ntfs_show_options
, /* Show mount options in
2701 * ntfs_fill_super - mount an ntfs filesystem
2702 * @sb: super block of ntfs filesystem to mount
2703 * @opt: string containing the mount options
2704 * @silent: silence error output
2706 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2707 * with the mount otions in @data with the NTFS filesystem.
2709 * If @silent is true, remain silent even if errors are detected. This is used
2710 * during bootup, when the kernel tries to mount the root filesystem with all
2711 * registered filesystems one after the other until one succeeds. This implies
2712 * that all filesystems except the correct one will quite correctly and
2713 * expectedly return an error, but nobody wants to see error messages when in
2714 * fact this is what is supposed to happen.
2716 * NOTE: @sb->s_flags contains the mount options flags.
2718 static int ntfs_fill_super(struct super_block
*sb
, void *opt
, const int silent
)
2721 struct buffer_head
*bh
;
2722 struct inode
*tmp_ino
;
2723 int blocksize
, result
;
2726 * We do a pretty difficult piece of bootstrap by reading the
2727 * MFT (and other metadata) from disk into memory. We'll only
2728 * release this metadata during umount, so the locking patterns
2729 * observed during bootstrap do not count. So turn off the
2730 * observation of locking patterns (strictly for this context
2731 * only) while mounting NTFS. [The validator is still active
2732 * otherwise, even for this context: it will for example record
2733 * lock class registrations.]
2736 ntfs_debug("Entering.");
2738 sb
->s_flags
|= MS_RDONLY
;
2739 #endif /* ! NTFS_RW */
2740 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2741 sb
->s_fs_info
= kmalloc(sizeof(ntfs_volume
), GFP_NOFS
);
2745 ntfs_error(sb
, "Allocation of NTFS volume structure "
2746 "failed. Aborting mount...");
2750 /* Initialize ntfs_volume structure. */
2751 *vol
= (ntfs_volume
) {
2754 * Default is group and other don't have any access to files or
2755 * directories while owner has full access. Further, files by
2756 * default are not executable but directories are of course
2762 init_rwsem(&vol
->mftbmp_lock
);
2763 init_rwsem(&vol
->lcnbmp_lock
);
2765 /* By default, enable sparse support. */
2766 NVolSetSparseEnabled(vol
);
2768 /* Important to get the mount options dealt with now. */
2769 if (!parse_options(vol
, (char*)opt
))
2772 /* We support sector sizes up to the PAGE_CACHE_SIZE. */
2773 if (bdev_logical_block_size(sb
->s_bdev
) > PAGE_CACHE_SIZE
) {
2775 ntfs_error(sb
, "Device has unsupported sector size "
2776 "(%i). The maximum supported sector "
2777 "size on this architecture is %lu "
2779 bdev_logical_block_size(sb
->s_bdev
),
2784 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2785 * sector size, whichever is bigger.
2787 blocksize
= sb_min_blocksize(sb
, NTFS_BLOCK_SIZE
);
2788 if (blocksize
< NTFS_BLOCK_SIZE
) {
2790 ntfs_error(sb
, "Unable to set device block size.");
2793 BUG_ON(blocksize
!= sb
->s_blocksize
);
2794 ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2795 blocksize
, sb
->s_blocksize_bits
);
2796 /* Determine the size of the device in units of block_size bytes. */
2797 if (!i_size_read(sb
->s_bdev
->bd_inode
)) {
2799 ntfs_error(sb
, "Unable to determine device size.");
2802 vol
->nr_blocks
= i_size_read(sb
->s_bdev
->bd_inode
) >>
2803 sb
->s_blocksize_bits
;
2804 /* Read the boot sector and return unlocked buffer head to it. */
2805 if (!(bh
= read_ntfs_boot_sector(sb
, silent
))) {
2807 ntfs_error(sb
, "Not an NTFS volume.");
2811 * Extract the data from the boot sector and setup the ntfs volume
2814 result
= parse_ntfs_boot_sector(vol
, (NTFS_BOOT_SECTOR
*)bh
->b_data
);
2818 ntfs_error(sb
, "Unsupported NTFS filesystem.");
2822 * If the boot sector indicates a sector size bigger than the current
2823 * device block size, switch the device block size to the sector size.
2824 * TODO: It may be possible to support this case even when the set
2825 * below fails, we would just be breaking up the i/o for each sector
2826 * into multiple blocks for i/o purposes but otherwise it should just
2827 * work. However it is safer to leave disabled until someone hits this
2828 * error message and then we can get them to try it without the setting
2829 * so we know for sure that it works.
2831 if (vol
->sector_size
> blocksize
) {
2832 blocksize
= sb_set_blocksize(sb
, vol
->sector_size
);
2833 if (blocksize
!= vol
->sector_size
) {
2835 ntfs_error(sb
, "Unable to set device block "
2836 "size to sector size (%i).",
2840 BUG_ON(blocksize
!= sb
->s_blocksize
);
2841 vol
->nr_blocks
= i_size_read(sb
->s_bdev
->bd_inode
) >>
2842 sb
->s_blocksize_bits
;
2843 ntfs_debug("Changed device block size to %i bytes (block size "
2844 "bits %i) to match volume sector size.",
2845 blocksize
, sb
->s_blocksize_bits
);
2847 /* Initialize the cluster and mft allocators. */
2848 ntfs_setup_allocators(vol
);
2849 /* Setup remaining fields in the super block. */
2850 sb
->s_magic
= NTFS_SB_MAGIC
;
2852 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2853 * sb->s_maxbytes = ~0ULL >> 1;
2854 * But the kernel uses a long as the page cache page index which on
2855 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2856 * defined to the maximum the page cache page index can cope with
2857 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2859 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2860 /* Ntfs measures time in 100ns intervals. */
2861 sb
->s_time_gran
= 100;
2863 * Now load the metadata required for the page cache and our address
2864 * space operations to function. We do this by setting up a specialised
2865 * read_inode method and then just calling the normal iget() to obtain
2866 * the inode for $MFT which is sufficient to allow our normal inode
2867 * operations and associated address space operations to function.
2869 sb
->s_op
= &ntfs_sops
;
2870 tmp_ino
= new_inode(sb
);
2873 ntfs_error(sb
, "Failed to load essential metadata.");
2876 tmp_ino
->i_ino
= FILE_MFT
;
2877 insert_inode_hash(tmp_ino
);
2878 if (ntfs_read_inode_mount(tmp_ino
) < 0) {
2880 ntfs_error(sb
, "Failed to load essential metadata.");
2881 goto iput_tmp_ino_err_out_now
;
2883 mutex_lock(&ntfs_lock
);
2885 * The current mount is a compression user if the cluster size is
2886 * less than or equal 4kiB.
2888 if (vol
->cluster_size
<= 4096 && !ntfs_nr_compression_users
++) {
2889 result
= allocate_compression_buffers();
2891 ntfs_error(NULL
, "Failed to allocate buffers "
2892 "for compression engine.");
2893 ntfs_nr_compression_users
--;
2894 mutex_unlock(&ntfs_lock
);
2895 goto iput_tmp_ino_err_out_now
;
2899 * Generate the global default upcase table if necessary. Also
2900 * temporarily increment the number of upcase users to avoid race
2901 * conditions with concurrent (u)mounts.
2903 if (!default_upcase
)
2904 default_upcase
= generate_default_upcase();
2905 ntfs_nr_upcase_users
++;
2906 mutex_unlock(&ntfs_lock
);
2908 * From now on, ignore @silent parameter. If we fail below this line,
2909 * it will be due to a corrupt fs or a system error, so we report it.
2912 * Open the system files with normal access functions and complete
2913 * setting up the ntfs super block.
2915 if (!load_system_files(vol
)) {
2916 ntfs_error(sb
, "Failed to load system files.");
2917 goto unl_upcase_iput_tmp_ino_err_out_now
;
2920 /* We grab a reference, simulating an ntfs_iget(). */
2921 ihold(vol
->root_ino
);
2922 if ((sb
->s_root
= d_make_root(vol
->root_ino
))) {
2923 ntfs_debug("Exiting, status successful.");
2924 /* Release the default upcase if it has no users. */
2925 mutex_lock(&ntfs_lock
);
2926 if (!--ntfs_nr_upcase_users
&& default_upcase
) {
2927 ntfs_free(default_upcase
);
2928 default_upcase
= NULL
;
2930 mutex_unlock(&ntfs_lock
);
2931 sb
->s_export_op
= &ntfs_export_ops
;
2935 ntfs_error(sb
, "Failed to allocate root directory.");
2936 /* Clean up after the successful load_system_files() call from above. */
2937 // TODO: Use ntfs_put_super() instead of repeating all this code...
2938 // FIXME: Should mark the volume clean as the error is most likely
2941 vol
->vol_ino
= NULL
;
2942 /* NTFS 3.0+ specific clean up. */
2943 if (vol
->major_ver
>= 3) {
2945 if (vol
->usnjrnl_j_ino
) {
2946 iput(vol
->usnjrnl_j_ino
);
2947 vol
->usnjrnl_j_ino
= NULL
;
2949 if (vol
->usnjrnl_max_ino
) {
2950 iput(vol
->usnjrnl_max_ino
);
2951 vol
->usnjrnl_max_ino
= NULL
;
2953 if (vol
->usnjrnl_ino
) {
2954 iput(vol
->usnjrnl_ino
);
2955 vol
->usnjrnl_ino
= NULL
;
2957 if (vol
->quota_q_ino
) {
2958 iput(vol
->quota_q_ino
);
2959 vol
->quota_q_ino
= NULL
;
2961 if (vol
->quota_ino
) {
2962 iput(vol
->quota_ino
);
2963 vol
->quota_ino
= NULL
;
2965 #endif /* NTFS_RW */
2966 if (vol
->extend_ino
) {
2967 iput(vol
->extend_ino
);
2968 vol
->extend_ino
= NULL
;
2970 if (vol
->secure_ino
) {
2971 iput(vol
->secure_ino
);
2972 vol
->secure_ino
= NULL
;
2975 iput(vol
->root_ino
);
2976 vol
->root_ino
= NULL
;
2977 iput(vol
->lcnbmp_ino
);
2978 vol
->lcnbmp_ino
= NULL
;
2979 iput(vol
->mftbmp_ino
);
2980 vol
->mftbmp_ino
= NULL
;
2982 if (vol
->logfile_ino
) {
2983 iput(vol
->logfile_ino
);
2984 vol
->logfile_ino
= NULL
;
2986 if (vol
->mftmirr_ino
) {
2987 iput(vol
->mftmirr_ino
);
2988 vol
->mftmirr_ino
= NULL
;
2990 #endif /* NTFS_RW */
2991 /* Throw away the table of attribute definitions. */
2992 vol
->attrdef_size
= 0;
2994 ntfs_free(vol
->attrdef
);
2995 vol
->attrdef
= NULL
;
2997 vol
->upcase_len
= 0;
2998 mutex_lock(&ntfs_lock
);
2999 if (vol
->upcase
== default_upcase
) {
3000 ntfs_nr_upcase_users
--;
3003 mutex_unlock(&ntfs_lock
);
3005 ntfs_free(vol
->upcase
);
3009 unload_nls(vol
->nls_map
);
3010 vol
->nls_map
= NULL
;
3012 /* Error exit code path. */
3013 unl_upcase_iput_tmp_ino_err_out_now
:
3015 * Decrease the number of upcase users and destroy the global default
3016 * upcase table if necessary.
3018 mutex_lock(&ntfs_lock
);
3019 if (!--ntfs_nr_upcase_users
&& default_upcase
) {
3020 ntfs_free(default_upcase
);
3021 default_upcase
= NULL
;
3023 if (vol
->cluster_size
<= 4096 && !--ntfs_nr_compression_users
)
3024 free_compression_buffers();
3025 mutex_unlock(&ntfs_lock
);
3026 iput_tmp_ino_err_out_now
:
3028 if (vol
->mft_ino
&& vol
->mft_ino
!= tmp_ino
)
3030 vol
->mft_ino
= NULL
;
3031 /* Errors at this stage are irrelevant. */
3033 sb
->s_fs_info
= NULL
;
3035 ntfs_debug("Failed, returning -EINVAL.");
3041 * This is a slab cache to optimize allocations and deallocations of Unicode
3042 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3043 * (255) Unicode characters + a terminating NULL Unicode character.
3045 struct kmem_cache
*ntfs_name_cache
;
3047 /* Slab caches for efficient allocation/deallocation of inodes. */
3048 struct kmem_cache
*ntfs_inode_cache
;
3049 struct kmem_cache
*ntfs_big_inode_cache
;
3051 /* Init once constructor for the inode slab cache. */
3052 static void ntfs_big_inode_init_once(void *foo
)
3054 ntfs_inode
*ni
= (ntfs_inode
*)foo
;
3056 inode_init_once(VFS_I(ni
));
3060 * Slab caches to optimize allocations and deallocations of attribute search
3061 * contexts and index contexts, respectively.
3063 struct kmem_cache
*ntfs_attr_ctx_cache
;
3064 struct kmem_cache
*ntfs_index_ctx_cache
;
3066 /* Driver wide mutex. */
3067 DEFINE_MUTEX(ntfs_lock
);
3069 static struct dentry
*ntfs_mount(struct file_system_type
*fs_type
,
3070 int flags
, const char *dev_name
, void *data
)
3072 return mount_bdev(fs_type
, flags
, dev_name
, data
, ntfs_fill_super
);
3075 static struct file_system_type ntfs_fs_type
= {
3076 .owner
= THIS_MODULE
,
3078 .mount
= ntfs_mount
,
3079 .kill_sb
= kill_block_super
,
3080 .fs_flags
= FS_REQUIRES_DEV
,
3083 /* Stable names for the slab caches. */
3084 static const char ntfs_index_ctx_cache_name
[] = "ntfs_index_ctx_cache";
3085 static const char ntfs_attr_ctx_cache_name
[] = "ntfs_attr_ctx_cache";
3086 static const char ntfs_name_cache_name
[] = "ntfs_name_cache";
3087 static const char ntfs_inode_cache_name
[] = "ntfs_inode_cache";
3088 static const char ntfs_big_inode_cache_name
[] = "ntfs_big_inode_cache";
3090 static int __init
init_ntfs_fs(void)
3094 /* This may be ugly but it results in pretty output so who cares. (-8 */
3095 printk(KERN_INFO
"NTFS driver " NTFS_VERSION
" [Flags: R/"
3109 ntfs_debug("Debug messages are enabled.");
3111 ntfs_index_ctx_cache
= kmem_cache_create(ntfs_index_ctx_cache_name
,
3112 sizeof(ntfs_index_context
), 0 /* offset */,
3113 SLAB_HWCACHE_ALIGN
, NULL
/* ctor */);
3114 if (!ntfs_index_ctx_cache
) {
3115 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3116 ntfs_index_ctx_cache_name
);
3119 ntfs_attr_ctx_cache
= kmem_cache_create(ntfs_attr_ctx_cache_name
,
3120 sizeof(ntfs_attr_search_ctx
), 0 /* offset */,
3121 SLAB_HWCACHE_ALIGN
, NULL
/* ctor */);
3122 if (!ntfs_attr_ctx_cache
) {
3123 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3124 ntfs_attr_ctx_cache_name
);
3128 ntfs_name_cache
= kmem_cache_create(ntfs_name_cache_name
,
3129 (NTFS_MAX_NAME_LEN
+1) * sizeof(ntfschar
), 0,
3130 SLAB_HWCACHE_ALIGN
, NULL
);
3131 if (!ntfs_name_cache
) {
3132 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3133 ntfs_name_cache_name
);
3137 ntfs_inode_cache
= kmem_cache_create(ntfs_inode_cache_name
,
3138 sizeof(ntfs_inode
), 0,
3139 SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
, NULL
);
3140 if (!ntfs_inode_cache
) {
3141 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3142 ntfs_inode_cache_name
);
3146 ntfs_big_inode_cache
= kmem_cache_create(ntfs_big_inode_cache_name
,
3147 sizeof(big_ntfs_inode
), 0,
3148 SLAB_HWCACHE_ALIGN
|SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
,
3149 ntfs_big_inode_init_once
);
3150 if (!ntfs_big_inode_cache
) {
3151 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3152 ntfs_big_inode_cache_name
);
3153 goto big_inode_err_out
;
3156 /* Register the ntfs sysctls. */
3157 err
= ntfs_sysctl(1);
3159 printk(KERN_CRIT
"NTFS: Failed to register NTFS sysctls!\n");
3160 goto sysctl_err_out
;
3163 err
= register_filesystem(&ntfs_fs_type
);
3165 ntfs_debug("NTFS driver registered successfully.");
3166 return 0; /* Success! */
3168 printk(KERN_CRIT
"NTFS: Failed to register NTFS filesystem driver!\n");
3170 /* Unregister the ntfs sysctls. */
3173 kmem_cache_destroy(ntfs_big_inode_cache
);
3175 kmem_cache_destroy(ntfs_inode_cache
);
3177 kmem_cache_destroy(ntfs_name_cache
);
3179 kmem_cache_destroy(ntfs_attr_ctx_cache
);
3181 kmem_cache_destroy(ntfs_index_ctx_cache
);
3184 printk(KERN_CRIT
"NTFS: Aborting NTFS filesystem driver "
3185 "registration...\n");
3191 static void __exit
exit_ntfs_fs(void)
3193 ntfs_debug("Unregistering NTFS driver.");
3195 unregister_filesystem(&ntfs_fs_type
);
3198 * Make sure all delayed rcu free inodes are flushed before we
3202 kmem_cache_destroy(ntfs_big_inode_cache
);
3203 kmem_cache_destroy(ntfs_inode_cache
);
3204 kmem_cache_destroy(ntfs_name_cache
);
3205 kmem_cache_destroy(ntfs_attr_ctx_cache
);
3206 kmem_cache_destroy(ntfs_index_ctx_cache
);
3207 /* Unregister the ntfs sysctls. */
3211 MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
3212 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc.");
3213 MODULE_VERSION(NTFS_VERSION
);
3214 MODULE_LICENSE("GPL");
3216 module_param(debug_msgs
, bint
, 0);
3217 MODULE_PARM_DESC(debug_msgs
, "Enable debug messages.");
3220 module_init(init_ntfs_fs
)
3221 module_exit(exit_ntfs_fs
)