drivers/firmware/dmi_scan.c: fetch dmi version from SMBIOS if it exists
[linux/fpc-iii.git] / drivers / crypto / hifn_795x.c
blobfda32968a66b660cf5ff4faf3048394736458264
1 /*
2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3 * All rights reserved.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/mm.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/scatterlist.h>
31 #include <linux/highmem.h>
32 #include <linux/crypto.h>
33 #include <linux/hw_random.h>
34 #include <linux/ktime.h>
36 #include <crypto/algapi.h>
37 #include <crypto/des.h>
39 #include <asm/kmap_types.h>
41 //#define HIFN_DEBUG
43 #ifdef HIFN_DEBUG
44 #define dprintk(f, a...) printk(f, ##a)
45 #else
46 #define dprintk(f, a...) do {} while (0)
47 #endif
49 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
50 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
51 MODULE_PARM_DESC(hifn_pll_ref,
52 "PLL reference clock (pci[freq] or ext[freq], default ext)");
54 static atomic_t hifn_dev_number;
56 #define ACRYPTO_OP_DECRYPT 0
57 #define ACRYPTO_OP_ENCRYPT 1
58 #define ACRYPTO_OP_HMAC 2
59 #define ACRYPTO_OP_RNG 3
61 #define ACRYPTO_MODE_ECB 0
62 #define ACRYPTO_MODE_CBC 1
63 #define ACRYPTO_MODE_CFB 2
64 #define ACRYPTO_MODE_OFB 3
66 #define ACRYPTO_TYPE_AES_128 0
67 #define ACRYPTO_TYPE_AES_192 1
68 #define ACRYPTO_TYPE_AES_256 2
69 #define ACRYPTO_TYPE_3DES 3
70 #define ACRYPTO_TYPE_DES 4
72 #define PCI_VENDOR_ID_HIFN 0x13A3
73 #define PCI_DEVICE_ID_HIFN_7955 0x0020
74 #define PCI_DEVICE_ID_HIFN_7956 0x001d
76 /* I/O region sizes */
78 #define HIFN_BAR0_SIZE 0x1000
79 #define HIFN_BAR1_SIZE 0x2000
80 #define HIFN_BAR2_SIZE 0x8000
82 /* DMA registres */
84 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
85 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
86 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
87 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
88 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
89 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
90 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
91 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
92 #define HIFN_CHIP_ID 0x98 /* Chip ID */
95 * Processing Unit Registers (offset from BASEREG0)
97 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
98 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
99 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
100 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
101 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
102 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
103 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
104 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
105 #define HIFN_0_SPACESIZE 0x20 /* Register space size */
107 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
108 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
109 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
110 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
111 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
112 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
114 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
115 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
116 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
117 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
118 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
119 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
120 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
121 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
122 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
123 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
124 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
126 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
127 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
128 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
129 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
130 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
131 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
132 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
133 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
134 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
135 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
136 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
137 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
138 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
139 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
140 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
141 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
142 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
143 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
144 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
145 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
146 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
147 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
148 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
149 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
151 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
152 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
153 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
154 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
155 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
156 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
157 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
158 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
159 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
160 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
161 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
163 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
164 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
165 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
166 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
167 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
168 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
169 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
170 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
171 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
172 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
173 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
174 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
175 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
176 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
177 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
178 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
179 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
180 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
182 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
183 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
184 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
186 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
187 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
190 * DMA Interface Registers (offset from BASEREG1)
192 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
193 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
194 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
195 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
196 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
197 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
198 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
199 #define HIFN_1_PLL 0x4c /* 795x: PLL config */
200 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
201 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
202 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
203 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
204 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
205 #define HIFN_1_REVID 0x98 /* Revision ID */
206 #define HIFN_1_UNLOCK_SECRET1 0xf4
207 #define HIFN_1_UNLOCK_SECRET2 0xfc
208 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
209 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
210 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
211 #define HIFN_1_PUB_OP 0x308 /* Public Operand */
212 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */
213 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
214 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
215 #define HIFN_1_RNG_DATA 0x318 /* RNG data */
216 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
217 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
219 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
220 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
221 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
222 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
223 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
224 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
225 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
226 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
227 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
228 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
229 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
230 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
231 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
232 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
233 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
234 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
235 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
236 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
237 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
238 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
239 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
240 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
241 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
242 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
243 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
244 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
245 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
246 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
247 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
248 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
249 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
250 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
251 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
252 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
253 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
254 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
255 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
256 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
257 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
259 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
260 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
261 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
262 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
263 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
264 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
265 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
266 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
267 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
268 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
269 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
270 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
271 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
272 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
273 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
274 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
275 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
276 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
277 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
278 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
279 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
280 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
281 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
283 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
284 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
285 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
286 #define HIFN_DMACNFG_UNLOCK 0x00000800
287 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
288 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
289 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
290 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
291 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
293 /* PLL configuration register */
294 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
295 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
296 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
297 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
298 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
299 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
300 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
301 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
302 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
303 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
304 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
305 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
306 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
307 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
308 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
309 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
310 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
312 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
314 /* Public key reset register (HIFN_1_PUB_RESET) */
315 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
317 /* Public base address register (HIFN_1_PUB_BASE) */
318 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
320 /* Public operand length register (HIFN_1_PUB_OPLEN) */
321 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
322 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
323 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
324 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */
325 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
326 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
328 /* Public operation register (HIFN_1_PUB_OP) */
329 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
330 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
331 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
332 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
333 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
334 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
335 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
336 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
337 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
338 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
339 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
340 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
341 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
342 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
343 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
344 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
345 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
346 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
347 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
348 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
350 /* Public status register (HIFN_1_PUB_STATUS) */
351 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
352 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
354 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
355 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
357 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
358 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
360 #define HIFN_NAMESIZE 32
361 #define HIFN_MAX_RESULT_ORDER 5
363 #define HIFN_D_CMD_RSIZE 24*1
364 #define HIFN_D_SRC_RSIZE 80*1
365 #define HIFN_D_DST_RSIZE 80*1
366 #define HIFN_D_RES_RSIZE 24*1
368 #define HIFN_D_DST_DALIGN 4
370 #define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
372 #define AES_MIN_KEY_SIZE 16
373 #define AES_MAX_KEY_SIZE 32
375 #define HIFN_DES_KEY_LENGTH 8
376 #define HIFN_3DES_KEY_LENGTH 24
377 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
378 #define HIFN_IV_LENGTH 8
379 #define HIFN_AES_IV_LENGTH 16
380 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
382 #define HIFN_MAC_KEY_LENGTH 64
383 #define HIFN_MD5_LENGTH 16
384 #define HIFN_SHA1_LENGTH 20
385 #define HIFN_MAC_TRUNC_LENGTH 12
387 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
388 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
389 #define HIFN_USED_RESULT 12
391 struct hifn_desc
393 volatile __le32 l;
394 volatile __le32 p;
397 struct hifn_dma {
398 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE+1];
399 struct hifn_desc srcr[HIFN_D_SRC_RSIZE+1];
400 struct hifn_desc dstr[HIFN_D_DST_RSIZE+1];
401 struct hifn_desc resr[HIFN_D_RES_RSIZE+1];
403 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
404 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
407 * Our current positions for insertion and removal from the descriptor
408 * rings.
410 volatile int cmdi, srci, dsti, resi;
411 volatile int cmdu, srcu, dstu, resu;
412 int cmdk, srck, dstk, resk;
415 #define HIFN_FLAG_CMD_BUSY (1<<0)
416 #define HIFN_FLAG_SRC_BUSY (1<<1)
417 #define HIFN_FLAG_DST_BUSY (1<<2)
418 #define HIFN_FLAG_RES_BUSY (1<<3)
419 #define HIFN_FLAG_OLD_KEY (1<<4)
421 #define HIFN_DEFAULT_ACTIVE_NUM 5
423 struct hifn_device
425 char name[HIFN_NAMESIZE];
427 int irq;
429 struct pci_dev *pdev;
430 void __iomem *bar[3];
432 void *desc_virt;
433 dma_addr_t desc_dma;
435 u32 dmareg;
437 void *sa[HIFN_D_RES_RSIZE];
439 spinlock_t lock;
441 u32 flags;
442 int active, started;
443 struct delayed_work work;
444 unsigned long reset;
445 unsigned long success;
446 unsigned long prev_success;
448 u8 snum;
450 struct tasklet_struct tasklet;
452 struct crypto_queue queue;
453 struct list_head alg_list;
455 unsigned int pk_clk_freq;
457 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
458 unsigned int rng_wait_time;
459 ktime_t rngtime;
460 struct hwrng rng;
461 #endif
464 #define HIFN_D_LENGTH 0x0000ffff
465 #define HIFN_D_NOINVALID 0x01000000
466 #define HIFN_D_MASKDONEIRQ 0x02000000
467 #define HIFN_D_DESTOVER 0x04000000
468 #define HIFN_D_OVER 0x08000000
469 #define HIFN_D_LAST 0x20000000
470 #define HIFN_D_JUMP 0x40000000
471 #define HIFN_D_VALID 0x80000000
473 struct hifn_base_command
475 volatile __le16 masks;
476 volatile __le16 session_num;
477 volatile __le16 total_source_count;
478 volatile __le16 total_dest_count;
481 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
482 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
483 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
484 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
485 #define HIFN_BASE_CMD_DECODE 0x2000
486 #define HIFN_BASE_CMD_SRCLEN_M 0xc000
487 #define HIFN_BASE_CMD_SRCLEN_S 14
488 #define HIFN_BASE_CMD_DSTLEN_M 0x3000
489 #define HIFN_BASE_CMD_DSTLEN_S 12
490 #define HIFN_BASE_CMD_LENMASK_HI 0x30000
491 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
494 * Structure to help build up the command data structure.
496 struct hifn_crypt_command
498 volatile __le16 masks;
499 volatile __le16 header_skip;
500 volatile __le16 source_count;
501 volatile __le16 reserved;
504 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
505 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
506 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
507 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
508 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
509 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
510 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
511 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
512 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
513 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
514 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
515 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
516 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
517 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
518 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
519 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
520 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
521 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
522 #define HIFN_CRYPT_CMD_SRCLEN_S 14
525 * Structure to help build up the command data structure.
527 struct hifn_mac_command
529 volatile __le16 masks;
530 volatile __le16 header_skip;
531 volatile __le16 source_count;
532 volatile __le16 reserved;
535 #define HIFN_MAC_CMD_ALG_MASK 0x0001
536 #define HIFN_MAC_CMD_ALG_SHA1 0x0000
537 #define HIFN_MAC_CMD_ALG_MD5 0x0001
538 #define HIFN_MAC_CMD_MODE_MASK 0x000c
539 #define HIFN_MAC_CMD_MODE_HMAC 0x0000
540 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
541 #define HIFN_MAC_CMD_MODE_HASH 0x0008
542 #define HIFN_MAC_CMD_MODE_FULL 0x0004
543 #define HIFN_MAC_CMD_TRUNC 0x0010
544 #define HIFN_MAC_CMD_RESULT 0x0020
545 #define HIFN_MAC_CMD_APPEND 0x0040
546 #define HIFN_MAC_CMD_SRCLEN_M 0xc000
547 #define HIFN_MAC_CMD_SRCLEN_S 14
550 * MAC POS IPsec initiates authentication after encryption on encodes
551 * and before decryption on decodes.
553 #define HIFN_MAC_CMD_POS_IPSEC 0x0200
554 #define HIFN_MAC_CMD_NEW_KEY 0x0800
556 struct hifn_comp_command
558 volatile __le16 masks;
559 volatile __le16 header_skip;
560 volatile __le16 source_count;
561 volatile __le16 reserved;
564 #define HIFN_COMP_CMD_SRCLEN_M 0xc000
565 #define HIFN_COMP_CMD_SRCLEN_S 14
566 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
567 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
568 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
569 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
570 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
571 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
572 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
573 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
575 struct hifn_base_result
577 volatile __le16 flags;
578 volatile __le16 session;
579 volatile __le16 src_cnt; /* 15:0 of source count */
580 volatile __le16 dst_cnt; /* 15:0 of dest count */
583 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
584 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
585 #define HIFN_BASE_RES_SRCLEN_S 14
586 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
587 #define HIFN_BASE_RES_DSTLEN_S 12
589 struct hifn_comp_result
591 volatile __le16 flags;
592 volatile __le16 crc;
595 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
596 #define HIFN_COMP_RES_LCB_S 8
597 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
598 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
599 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
601 struct hifn_mac_result
603 volatile __le16 flags;
604 volatile __le16 reserved;
605 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
608 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
609 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
611 struct hifn_crypt_result
613 volatile __le16 flags;
614 volatile __le16 reserved;
617 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
619 #ifndef HIFN_POLL_FREQUENCY
620 #define HIFN_POLL_FREQUENCY 0x1
621 #endif
623 #ifndef HIFN_POLL_SCALAR
624 #define HIFN_POLL_SCALAR 0x0
625 #endif
627 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
628 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
630 struct hifn_crypto_alg
632 struct list_head entry;
633 struct crypto_alg alg;
634 struct hifn_device *dev;
637 #define ASYNC_SCATTERLIST_CACHE 16
639 #define ASYNC_FLAGS_MISALIGNED (1<<0)
641 struct hifn_cipher_walk
643 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
644 u32 flags;
645 int num;
648 struct hifn_context
650 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
651 struct hifn_device *dev;
652 unsigned int keysize;
655 struct hifn_request_context
657 u8 *iv;
658 unsigned int ivsize;
659 u8 op, type, mode, unused;
660 struct hifn_cipher_walk walk;
663 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
665 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
667 u32 ret;
669 ret = readl(dev->bar[0] + reg);
671 return ret;
674 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
676 u32 ret;
678 ret = readl(dev->bar[1] + reg);
680 return ret;
683 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
685 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
688 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
690 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
693 static void hifn_wait_puc(struct hifn_device *dev)
695 int i;
696 u32 ret;
698 for (i=10000; i > 0; --i) {
699 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
700 if (!(ret & HIFN_PUCTRL_RESET))
701 break;
703 udelay(1);
706 if (!i)
707 dprintk("%s: Failed to reset PUC unit.\n", dev->name);
710 static void hifn_reset_puc(struct hifn_device *dev)
712 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
713 hifn_wait_puc(dev);
716 static void hifn_stop_device(struct hifn_device *dev)
718 hifn_write_1(dev, HIFN_1_DMA_CSR,
719 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
720 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
721 hifn_write_0(dev, HIFN_0_PUIER, 0);
722 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
725 static void hifn_reset_dma(struct hifn_device *dev, int full)
727 hifn_stop_device(dev);
730 * Setting poll frequency and others to 0.
732 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
733 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
734 mdelay(1);
737 * Reset DMA.
739 if (full) {
740 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
741 mdelay(1);
742 } else {
743 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
744 HIFN_DMACNFG_MSTRESET);
745 hifn_reset_puc(dev);
748 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
749 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
751 hifn_reset_puc(dev);
754 static u32 hifn_next_signature(u_int32_t a, u_int cnt)
756 int i;
757 u32 v;
759 for (i = 0; i < cnt; i++) {
761 /* get the parity */
762 v = a & 0x80080125;
763 v ^= v >> 16;
764 v ^= v >> 8;
765 v ^= v >> 4;
766 v ^= v >> 2;
767 v ^= v >> 1;
769 a = (v & 1) ^ (a << 1);
772 return a;
775 static struct pci2id {
776 u_short pci_vendor;
777 u_short pci_prod;
778 char card_id[13];
779 } pci2id[] = {
781 PCI_VENDOR_ID_HIFN,
782 PCI_DEVICE_ID_HIFN_7955,
783 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
784 0x00, 0x00, 0x00, 0x00, 0x00 }
787 PCI_VENDOR_ID_HIFN,
788 PCI_DEVICE_ID_HIFN_7956,
789 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
790 0x00, 0x00, 0x00, 0x00, 0x00 }
794 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
795 static int hifn_rng_data_present(struct hwrng *rng, int wait)
797 struct hifn_device *dev = (struct hifn_device *)rng->priv;
798 s64 nsec;
800 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
801 nsec -= dev->rng_wait_time;
802 if (nsec <= 0)
803 return 1;
804 if (!wait)
805 return 0;
806 ndelay(nsec);
807 return 1;
810 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
812 struct hifn_device *dev = (struct hifn_device *)rng->priv;
814 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
815 dev->rngtime = ktime_get();
816 return 4;
819 static int hifn_register_rng(struct hifn_device *dev)
822 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
824 dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
825 dev->pk_clk_freq) * 256;
827 dev->rng.name = dev->name;
828 dev->rng.data_present = hifn_rng_data_present,
829 dev->rng.data_read = hifn_rng_data_read,
830 dev->rng.priv = (unsigned long)dev;
832 return hwrng_register(&dev->rng);
835 static void hifn_unregister_rng(struct hifn_device *dev)
837 hwrng_unregister(&dev->rng);
839 #else
840 #define hifn_register_rng(dev) 0
841 #define hifn_unregister_rng(dev)
842 #endif
844 static int hifn_init_pubrng(struct hifn_device *dev)
846 int i;
848 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
849 HIFN_PUBRST_RESET);
851 for (i=100; i > 0; --i) {
852 mdelay(1);
854 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
855 break;
858 if (!i)
859 dprintk("Chip %s: Failed to initialise public key engine.\n",
860 dev->name);
861 else {
862 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
863 dev->dmareg |= HIFN_DMAIER_PUBDONE;
864 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
866 dprintk("Chip %s: Public key engine has been successfully "
867 "initialised.\n", dev->name);
871 * Enable RNG engine.
874 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
875 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
876 dprintk("Chip %s: RNG engine has been successfully initialised.\n",
877 dev->name);
879 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
880 /* First value must be discarded */
881 hifn_read_1(dev, HIFN_1_RNG_DATA);
882 dev->rngtime = ktime_get();
883 #endif
884 return 0;
887 static int hifn_enable_crypto(struct hifn_device *dev)
889 u32 dmacfg, addr;
890 char *offtbl = NULL;
891 int i;
893 for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
894 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
895 pci2id[i].pci_prod == dev->pdev->device) {
896 offtbl = pci2id[i].card_id;
897 break;
901 if (offtbl == NULL) {
902 dprintk("Chip %s: Unknown card!\n", dev->name);
903 return -ENODEV;
906 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
908 hifn_write_1(dev, HIFN_1_DMA_CNFG,
909 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
910 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
911 mdelay(1);
912 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
913 mdelay(1);
914 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
915 mdelay(1);
917 for (i=0; i<12; ++i) {
918 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
919 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
921 mdelay(1);
923 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
925 dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
927 return 0;
930 static void hifn_init_dma(struct hifn_device *dev)
932 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
933 u32 dptr = dev->desc_dma;
934 int i;
936 for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
937 dma->cmdr[i].p = __cpu_to_le32(dptr +
938 offsetof(struct hifn_dma, command_bufs[i][0]));
939 for (i=0; i<HIFN_D_RES_RSIZE; ++i)
940 dma->resr[i].p = __cpu_to_le32(dptr +
941 offsetof(struct hifn_dma, result_bufs[i][0]));
944 * Setup LAST descriptors.
946 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
947 offsetof(struct hifn_dma, cmdr[0]));
948 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
949 offsetof(struct hifn_dma, srcr[0]));
950 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
951 offsetof(struct hifn_dma, dstr[0]));
952 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
953 offsetof(struct hifn_dma, resr[0]));
955 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
956 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
957 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
961 * Initialize the PLL. We need to know the frequency of the reference clock
962 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
963 * allows us to operate without the risk of overclocking the chip. If it
964 * actually uses 33MHz, the chip will operate at half the speed, this can be
965 * overriden by specifying the frequency as module parameter (pci33).
967 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
968 * stable clock and the PCI clock frequency may vary, so the default is the
969 * external clock. There is no way to find out its frequency, we default to
970 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
971 * has an external crystal populated at 66MHz.
973 static void hifn_init_pll(struct hifn_device *dev)
975 unsigned int freq, m;
976 u32 pllcfg;
978 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
980 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
981 pllcfg |= HIFN_PLL_REF_CLK_PLL;
982 else
983 pllcfg |= HIFN_PLL_REF_CLK_HBI;
985 if (hifn_pll_ref[3] != '\0')
986 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
987 else {
988 freq = 66;
989 printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
990 "override with hifn_pll_ref=%.3s<frequency>\n",
991 freq, hifn_pll_ref);
994 m = HIFN_PLL_FCK_MAX / freq;
996 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
997 if (m <= 8)
998 pllcfg |= HIFN_PLL_IS_1_8;
999 else
1000 pllcfg |= HIFN_PLL_IS_9_12;
1002 /* Select clock source and enable clock bypass */
1003 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1004 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1006 /* Let the chip lock to the input clock */
1007 mdelay(10);
1009 /* Disable clock bypass */
1010 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1011 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1013 /* Switch the engines to the PLL */
1014 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1015 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
1018 * The Fpk_clk runs at half the total speed. Its frequency is needed to
1019 * calculate the minimum time between two reads of the rng. Since 33MHz
1020 * is actually 33.333... we overestimate the frequency here, resulting
1021 * in slightly larger intervals.
1023 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1026 static void hifn_init_registers(struct hifn_device *dev)
1028 u32 dptr = dev->desc_dma;
1030 /* Initialization magic... */
1031 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1032 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1033 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1035 /* write all 4 ring address registers */
1036 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1037 offsetof(struct hifn_dma, cmdr[0]));
1038 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1039 offsetof(struct hifn_dma, srcr[0]));
1040 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1041 offsetof(struct hifn_dma, dstr[0]));
1042 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1043 offsetof(struct hifn_dma, resr[0]));
1045 mdelay(2);
1046 #if 0
1047 hifn_write_1(dev, HIFN_1_DMA_CSR,
1048 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1049 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1050 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1051 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1052 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1053 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1054 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1055 HIFN_DMACSR_S_WAIT |
1056 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1057 HIFN_DMACSR_C_WAIT |
1058 HIFN_DMACSR_ENGINE |
1059 HIFN_DMACSR_PUBDONE);
1060 #else
1061 hifn_write_1(dev, HIFN_1_DMA_CSR,
1062 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1063 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1064 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1065 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1066 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1067 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1068 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1069 HIFN_DMACSR_S_WAIT |
1070 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1071 HIFN_DMACSR_C_WAIT |
1072 HIFN_DMACSR_ENGINE |
1073 HIFN_DMACSR_PUBDONE);
1074 #endif
1075 hifn_read_1(dev, HIFN_1_DMA_CSR);
1077 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1078 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1079 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1080 HIFN_DMAIER_ENGINE;
1081 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1083 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1084 hifn_read_1(dev, HIFN_1_DMA_IER);
1085 #if 0
1086 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1087 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1088 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1089 HIFN_PUCNFG_DRAM);
1090 #else
1091 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1092 #endif
1093 hifn_init_pll(dev);
1095 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1096 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1097 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1098 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1099 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1102 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1103 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1105 struct hifn_base_command *base_cmd;
1106 u8 *buf_pos = buf;
1108 base_cmd = (struct hifn_base_command *)buf_pos;
1109 base_cmd->masks = __cpu_to_le16(mask);
1110 base_cmd->total_source_count =
1111 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1112 base_cmd->total_dest_count =
1113 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1115 dlen >>= 16;
1116 slen >>= 16;
1117 base_cmd->session_num = __cpu_to_le16(snum |
1118 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1119 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1121 return sizeof(struct hifn_base_command);
1124 static int hifn_setup_crypto_command(struct hifn_device *dev,
1125 u8 *buf, unsigned dlen, unsigned slen,
1126 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1128 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1129 struct hifn_crypt_command *cry_cmd;
1130 u8 *buf_pos = buf;
1131 u16 cmd_len;
1133 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1135 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1136 dlen >>= 16;
1137 cry_cmd->masks = __cpu_to_le16(mode |
1138 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1139 HIFN_CRYPT_CMD_SRCLEN_M));
1140 cry_cmd->header_skip = 0;
1141 cry_cmd->reserved = 0;
1143 buf_pos += sizeof(struct hifn_crypt_command);
1145 dma->cmdu++;
1146 if (dma->cmdu > 1) {
1147 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1148 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1151 if (keylen) {
1152 memcpy(buf_pos, key, keylen);
1153 buf_pos += keylen;
1155 if (ivsize) {
1156 memcpy(buf_pos, iv, ivsize);
1157 buf_pos += ivsize;
1160 cmd_len = buf_pos - buf;
1162 return cmd_len;
1165 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1166 struct hifn_context *ctx, struct hifn_request_context *rctx,
1167 void *priv, unsigned int nbytes)
1169 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1170 int cmd_len, sa_idx;
1171 u8 *buf, *buf_pos;
1172 u16 mask;
1174 sa_idx = dma->cmdi;
1175 buf_pos = buf = dma->command_bufs[dma->cmdi];
1177 mask = 0;
1178 switch (rctx->op) {
1179 case ACRYPTO_OP_DECRYPT:
1180 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1181 break;
1182 case ACRYPTO_OP_ENCRYPT:
1183 mask = HIFN_BASE_CMD_CRYPT;
1184 break;
1185 case ACRYPTO_OP_HMAC:
1186 mask = HIFN_BASE_CMD_MAC;
1187 break;
1188 default:
1189 goto err_out;
1192 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1193 nbytes, mask, dev->snum);
1195 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1196 u16 md = 0;
1198 if (ctx->keysize)
1199 md |= HIFN_CRYPT_CMD_NEW_KEY;
1200 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1201 md |= HIFN_CRYPT_CMD_NEW_IV;
1203 switch (rctx->mode) {
1204 case ACRYPTO_MODE_ECB:
1205 md |= HIFN_CRYPT_CMD_MODE_ECB;
1206 break;
1207 case ACRYPTO_MODE_CBC:
1208 md |= HIFN_CRYPT_CMD_MODE_CBC;
1209 break;
1210 case ACRYPTO_MODE_CFB:
1211 md |= HIFN_CRYPT_CMD_MODE_CFB;
1212 break;
1213 case ACRYPTO_MODE_OFB:
1214 md |= HIFN_CRYPT_CMD_MODE_OFB;
1215 break;
1216 default:
1217 goto err_out;
1220 switch (rctx->type) {
1221 case ACRYPTO_TYPE_AES_128:
1222 if (ctx->keysize != 16)
1223 goto err_out;
1224 md |= HIFN_CRYPT_CMD_KSZ_128 |
1225 HIFN_CRYPT_CMD_ALG_AES;
1226 break;
1227 case ACRYPTO_TYPE_AES_192:
1228 if (ctx->keysize != 24)
1229 goto err_out;
1230 md |= HIFN_CRYPT_CMD_KSZ_192 |
1231 HIFN_CRYPT_CMD_ALG_AES;
1232 break;
1233 case ACRYPTO_TYPE_AES_256:
1234 if (ctx->keysize != 32)
1235 goto err_out;
1236 md |= HIFN_CRYPT_CMD_KSZ_256 |
1237 HIFN_CRYPT_CMD_ALG_AES;
1238 break;
1239 case ACRYPTO_TYPE_3DES:
1240 if (ctx->keysize != 24)
1241 goto err_out;
1242 md |= HIFN_CRYPT_CMD_ALG_3DES;
1243 break;
1244 case ACRYPTO_TYPE_DES:
1245 if (ctx->keysize != 8)
1246 goto err_out;
1247 md |= HIFN_CRYPT_CMD_ALG_DES;
1248 break;
1249 default:
1250 goto err_out;
1253 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1254 nbytes, nbytes, ctx->key, ctx->keysize,
1255 rctx->iv, rctx->ivsize, md);
1258 dev->sa[sa_idx] = priv;
1259 dev->started++;
1261 cmd_len = buf_pos - buf;
1262 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1263 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1265 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1266 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1267 HIFN_D_VALID | HIFN_D_LAST |
1268 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1269 dma->cmdi = 0;
1270 } else
1271 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1273 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1274 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1275 dev->flags |= HIFN_FLAG_CMD_BUSY;
1277 return 0;
1279 err_out:
1280 return -EINVAL;
1283 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1284 unsigned int offset, unsigned int size, int last)
1286 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1287 int idx;
1288 dma_addr_t addr;
1290 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1292 idx = dma->srci;
1294 dma->srcr[idx].p = __cpu_to_le32(addr);
1295 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1296 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1298 if (++idx == HIFN_D_SRC_RSIZE) {
1299 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1300 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1301 (last ? HIFN_D_LAST : 0));
1302 idx = 0;
1305 dma->srci = idx;
1306 dma->srcu++;
1308 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1309 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1310 dev->flags |= HIFN_FLAG_SRC_BUSY;
1313 return size;
1316 static void hifn_setup_res_desc(struct hifn_device *dev)
1318 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1320 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1321 HIFN_D_VALID | HIFN_D_LAST);
1323 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1324 * HIFN_D_LAST);
1327 if (++dma->resi == HIFN_D_RES_RSIZE) {
1328 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1329 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1330 dma->resi = 0;
1333 dma->resu++;
1335 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1336 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1337 dev->flags |= HIFN_FLAG_RES_BUSY;
1341 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1342 unsigned offset, unsigned size, int last)
1344 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1345 int idx;
1346 dma_addr_t addr;
1348 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1350 idx = dma->dsti;
1351 dma->dstr[idx].p = __cpu_to_le32(addr);
1352 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1353 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1355 if (++idx == HIFN_D_DST_RSIZE) {
1356 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1357 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1358 (last ? HIFN_D_LAST : 0));
1359 idx = 0;
1361 dma->dsti = idx;
1362 dma->dstu++;
1364 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1365 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1366 dev->flags |= HIFN_FLAG_DST_BUSY;
1370 static int hifn_setup_dma(struct hifn_device *dev,
1371 struct hifn_context *ctx, struct hifn_request_context *rctx,
1372 struct scatterlist *src, struct scatterlist *dst,
1373 unsigned int nbytes, void *priv)
1375 struct scatterlist *t;
1376 struct page *spage, *dpage;
1377 unsigned int soff, doff;
1378 unsigned int n, len;
1380 n = nbytes;
1381 while (n) {
1382 spage = sg_page(src);
1383 soff = src->offset;
1384 len = min(src->length, n);
1386 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1388 src++;
1389 n -= len;
1392 t = &rctx->walk.cache[0];
1393 n = nbytes;
1394 while (n) {
1395 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1396 BUG_ON(!sg_page(t));
1397 dpage = sg_page(t);
1398 doff = 0;
1399 len = t->length;
1400 } else {
1401 BUG_ON(!sg_page(dst));
1402 dpage = sg_page(dst);
1403 doff = dst->offset;
1404 len = dst->length;
1406 len = min(len, n);
1408 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1410 dst++;
1411 t++;
1412 n -= len;
1415 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1416 hifn_setup_res_desc(dev);
1417 return 0;
1420 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1421 int num, gfp_t gfp_flags)
1423 int i;
1425 num = min(ASYNC_SCATTERLIST_CACHE, num);
1426 sg_init_table(w->cache, num);
1428 w->num = 0;
1429 for (i=0; i<num; ++i) {
1430 struct page *page = alloc_page(gfp_flags);
1431 struct scatterlist *s;
1433 if (!page)
1434 break;
1436 s = &w->cache[i];
1438 sg_set_page(s, page, PAGE_SIZE, 0);
1439 w->num++;
1442 return i;
1445 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1447 int i;
1449 for (i=0; i<w->num; ++i) {
1450 struct scatterlist *s = &w->cache[i];
1452 __free_page(sg_page(s));
1454 s->length = 0;
1457 w->num = 0;
1460 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1461 unsigned int size, unsigned int *nbytesp)
1463 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1464 int idx = 0;
1466 if (drest < size || size > nbytes)
1467 return -EINVAL;
1469 while (size) {
1470 copy = min3(drest, size, dst->length);
1472 size -= copy;
1473 drest -= copy;
1474 nbytes -= copy;
1476 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1477 __func__, copy, size, drest, nbytes);
1479 dst++;
1480 idx++;
1483 *nbytesp = nbytes;
1484 *drestp = drest;
1486 return idx;
1489 static int hifn_cipher_walk(struct ablkcipher_request *req,
1490 struct hifn_cipher_walk *w)
1492 struct scatterlist *dst, *t;
1493 unsigned int nbytes = req->nbytes, offset, copy, diff;
1494 int idx, tidx, err;
1496 tidx = idx = 0;
1497 offset = 0;
1498 while (nbytes) {
1499 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1500 return -EINVAL;
1502 dst = &req->dst[idx];
1504 dprintk("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1505 __func__, dst->length, dst->offset, offset, nbytes);
1507 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1508 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1509 offset) {
1510 unsigned slen = min(dst->length - offset, nbytes);
1511 unsigned dlen = PAGE_SIZE;
1513 t = &w->cache[idx];
1515 err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1516 if (err < 0)
1517 return err;
1519 idx += err;
1521 copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1522 diff = slen & (HIFN_D_DST_DALIGN - 1);
1524 if (dlen < nbytes) {
1526 * Destination page does not have enough space
1527 * to put there additional blocksized chunk,
1528 * so we mark that page as containing only
1529 * blocksize aligned chunks:
1530 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1531 * and increase number of bytes to be processed
1532 * in next chunk:
1533 * nbytes += diff;
1535 nbytes += diff;
1538 * Temporary of course...
1539 * Kick author if you will catch this one.
1541 printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1542 "slen: %u, offset: %u.\n",
1543 __func__, dlen, nbytes, slen, offset);
1544 printk(KERN_ERR "%s: please contact author to fix this "
1545 "issue, generally you should not catch "
1546 "this path under any condition but who "
1547 "knows how did you use crypto code.\n"
1548 "Thank you.\n", __func__);
1549 BUG();
1550 } else {
1551 copy += diff + nbytes;
1553 dst = &req->dst[idx];
1555 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1556 if (err < 0)
1557 return err;
1559 idx += err;
1562 t->length = copy;
1563 t->offset = offset;
1564 } else {
1565 nbytes -= min(dst->length, nbytes);
1566 idx++;
1569 tidx++;
1572 return tidx;
1575 static int hifn_setup_session(struct ablkcipher_request *req)
1577 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1578 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1579 struct hifn_device *dev = ctx->dev;
1580 unsigned long dlen, flags;
1581 unsigned int nbytes = req->nbytes, idx = 0;
1582 int err = -EINVAL, sg_num;
1583 struct scatterlist *dst;
1585 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1586 goto err_out_exit;
1588 rctx->walk.flags = 0;
1590 while (nbytes) {
1591 dst = &req->dst[idx];
1592 dlen = min(dst->length, nbytes);
1594 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1595 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1596 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1598 nbytes -= dlen;
1599 idx++;
1602 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1603 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1604 if (err < 0)
1605 return err;
1608 sg_num = hifn_cipher_walk(req, &rctx->walk);
1609 if (sg_num < 0) {
1610 err = sg_num;
1611 goto err_out_exit;
1614 spin_lock_irqsave(&dev->lock, flags);
1615 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1616 err = -EAGAIN;
1617 goto err_out;
1620 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1621 if (err)
1622 goto err_out;
1624 dev->snum++;
1626 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1627 spin_unlock_irqrestore(&dev->lock, flags);
1629 return 0;
1631 err_out:
1632 spin_unlock_irqrestore(&dev->lock, flags);
1633 err_out_exit:
1634 if (err) {
1635 printk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1636 "type: %u, err: %d.\n",
1637 dev->name, rctx->iv, rctx->ivsize,
1638 ctx->key, ctx->keysize,
1639 rctx->mode, rctx->op, rctx->type, err);
1642 return err;
1645 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1647 int n, err;
1648 u8 src[16];
1649 struct hifn_context ctx;
1650 struct hifn_request_context rctx;
1651 u8 fips_aes_ecb_from_zero[16] = {
1652 0x66, 0xE9, 0x4B, 0xD4,
1653 0xEF, 0x8A, 0x2C, 0x3B,
1654 0x88, 0x4C, 0xFA, 0x59,
1655 0xCA, 0x34, 0x2B, 0x2E};
1656 struct scatterlist sg;
1658 memset(src, 0, sizeof(src));
1659 memset(ctx.key, 0, sizeof(ctx.key));
1661 ctx.dev = dev;
1662 ctx.keysize = 16;
1663 rctx.ivsize = 0;
1664 rctx.iv = NULL;
1665 rctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1666 rctx.mode = ACRYPTO_MODE_ECB;
1667 rctx.type = ACRYPTO_TYPE_AES_128;
1668 rctx.walk.cache[0].length = 0;
1670 sg_init_one(&sg, &src, sizeof(src));
1672 err = hifn_setup_dma(dev, &ctx, &rctx, &sg, &sg, sizeof(src), NULL);
1673 if (err)
1674 goto err_out;
1676 dev->started = 0;
1677 msleep(200);
1679 dprintk("%s: decoded: ", dev->name);
1680 for (n=0; n<sizeof(src); ++n)
1681 dprintk("%02x ", src[n]);
1682 dprintk("\n");
1683 dprintk("%s: FIPS : ", dev->name);
1684 for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1685 dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1686 dprintk("\n");
1688 if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1689 printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1690 "passed.\n", dev->name);
1691 return 0;
1694 err_out:
1695 printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1696 return -1;
1699 static int hifn_start_device(struct hifn_device *dev)
1701 int err;
1703 dev->started = dev->active = 0;
1704 hifn_reset_dma(dev, 1);
1706 err = hifn_enable_crypto(dev);
1707 if (err)
1708 return err;
1710 hifn_reset_puc(dev);
1712 hifn_init_dma(dev);
1714 hifn_init_registers(dev);
1716 hifn_init_pubrng(dev);
1718 return 0;
1721 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1722 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1724 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1725 void *daddr;
1726 int idx = 0;
1728 if (srest < size || size > nbytes)
1729 return -EINVAL;
1731 while (size) {
1732 copy = min3(srest, dst->length, size);
1734 daddr = kmap_atomic(sg_page(dst));
1735 memcpy(daddr + dst->offset + offset, saddr, copy);
1736 kunmap_atomic(daddr);
1738 nbytes -= copy;
1739 size -= copy;
1740 srest -= copy;
1741 saddr += copy;
1742 offset = 0;
1744 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1745 __func__, copy, size, srest, nbytes);
1747 dst++;
1748 idx++;
1751 *nbytesp = nbytes;
1752 *srestp = srest;
1754 return idx;
1757 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1759 unsigned long flags;
1761 spin_lock_irqsave(&dev->lock, flags);
1762 dev->sa[i] = NULL;
1763 dev->started--;
1764 if (dev->started < 0)
1765 printk("%s: started: %d.\n", __func__, dev->started);
1766 spin_unlock_irqrestore(&dev->lock, flags);
1767 BUG_ON(dev->started < 0);
1770 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1772 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1774 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1775 unsigned int nbytes = req->nbytes;
1776 int idx = 0, err;
1777 struct scatterlist *dst, *t;
1778 void *saddr;
1780 while (nbytes) {
1781 t = &rctx->walk.cache[idx];
1782 dst = &req->dst[idx];
1784 dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1785 "sg_page(dst): %p, dst->length: %u, "
1786 "nbytes: %u.\n",
1787 __func__, sg_page(t), t->length,
1788 sg_page(dst), dst->length, nbytes);
1790 if (!t->length) {
1791 nbytes -= min(dst->length, nbytes);
1792 idx++;
1793 continue;
1796 saddr = kmap_atomic(sg_page(t));
1798 err = ablkcipher_get(saddr, &t->length, t->offset,
1799 dst, nbytes, &nbytes);
1800 if (err < 0) {
1801 kunmap_atomic(saddr);
1802 break;
1805 idx += err;
1806 kunmap_atomic(saddr);
1809 hifn_cipher_walk_exit(&rctx->walk);
1812 req->base.complete(&req->base, error);
1815 static void hifn_clear_rings(struct hifn_device *dev, int error)
1817 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1818 int i, u;
1820 dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1821 "k: %d.%d.%d.%d.\n",
1822 dev->name,
1823 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1824 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1825 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1827 i = dma->resk; u = dma->resu;
1828 while (u != 0) {
1829 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1830 break;
1832 if (dev->sa[i]) {
1833 dev->success++;
1834 dev->reset = 0;
1835 hifn_process_ready(dev->sa[i], error);
1836 hifn_complete_sa(dev, i);
1839 if (++i == HIFN_D_RES_RSIZE)
1840 i = 0;
1841 u--;
1843 dma->resk = i; dma->resu = u;
1845 i = dma->srck; u = dma->srcu;
1846 while (u != 0) {
1847 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1848 break;
1849 if (++i == HIFN_D_SRC_RSIZE)
1850 i = 0;
1851 u--;
1853 dma->srck = i; dma->srcu = u;
1855 i = dma->cmdk; u = dma->cmdu;
1856 while (u != 0) {
1857 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1858 break;
1859 if (++i == HIFN_D_CMD_RSIZE)
1860 i = 0;
1861 u--;
1863 dma->cmdk = i; dma->cmdu = u;
1865 i = dma->dstk; u = dma->dstu;
1866 while (u != 0) {
1867 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1868 break;
1869 if (++i == HIFN_D_DST_RSIZE)
1870 i = 0;
1871 u--;
1873 dma->dstk = i; dma->dstu = u;
1875 dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1876 "k: %d.%d.%d.%d.\n",
1877 dev->name,
1878 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1879 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1880 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1883 static void hifn_work(struct work_struct *work)
1885 struct delayed_work *dw = to_delayed_work(work);
1886 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1887 unsigned long flags;
1888 int reset = 0;
1889 u32 r = 0;
1891 spin_lock_irqsave(&dev->lock, flags);
1892 if (dev->active == 0) {
1893 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1895 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1896 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1897 r |= HIFN_DMACSR_C_CTRL_DIS;
1899 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1900 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1901 r |= HIFN_DMACSR_S_CTRL_DIS;
1903 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1904 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1905 r |= HIFN_DMACSR_D_CTRL_DIS;
1907 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1908 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1909 r |= HIFN_DMACSR_R_CTRL_DIS;
1911 if (r)
1912 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1913 } else
1914 dev->active--;
1916 if ((dev->prev_success == dev->success) && dev->started)
1917 reset = 1;
1918 dev->prev_success = dev->success;
1919 spin_unlock_irqrestore(&dev->lock, flags);
1921 if (reset) {
1922 if (++dev->reset >= 5) {
1923 int i;
1924 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1926 printk("%s: r: %08x, active: %d, started: %d, "
1927 "success: %lu: qlen: %u/%u, reset: %d.\n",
1928 dev->name, r, dev->active, dev->started,
1929 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1930 reset);
1932 printk("%s: res: ", __func__);
1933 for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1934 printk("%x.%p ", dma->resr[i].l, dev->sa[i]);
1935 if (dev->sa[i]) {
1936 hifn_process_ready(dev->sa[i], -ENODEV);
1937 hifn_complete_sa(dev, i);
1940 printk("\n");
1942 hifn_reset_dma(dev, 1);
1943 hifn_stop_device(dev);
1944 hifn_start_device(dev);
1945 dev->reset = 0;
1948 tasklet_schedule(&dev->tasklet);
1951 schedule_delayed_work(&dev->work, HZ);
1954 static irqreturn_t hifn_interrupt(int irq, void *data)
1956 struct hifn_device *dev = (struct hifn_device *)data;
1957 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1958 u32 dmacsr, restart;
1960 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1962 dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1963 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1964 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1965 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1966 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1968 if ((dmacsr & dev->dmareg) == 0)
1969 return IRQ_NONE;
1971 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1973 if (dmacsr & HIFN_DMACSR_ENGINE)
1974 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1975 if (dmacsr & HIFN_DMACSR_PUBDONE)
1976 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1977 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1979 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1980 if (restart) {
1981 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1983 printk(KERN_WARNING "%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1984 dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
1985 !!(dmacsr & HIFN_DMACSR_D_OVER),
1986 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1987 if (!!(puisr & HIFN_PUISR_DSTOVER))
1988 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1989 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1990 HIFN_DMACSR_D_OVER));
1993 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1994 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1995 if (restart) {
1996 printk(KERN_WARNING "%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
1997 dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
1998 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1999 !!(dmacsr & HIFN_DMACSR_D_ABORT),
2000 !!(dmacsr & HIFN_DMACSR_R_ABORT));
2001 hifn_reset_dma(dev, 1);
2002 hifn_init_dma(dev);
2003 hifn_init_registers(dev);
2006 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2007 dprintk("%s: wait on command.\n", dev->name);
2008 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2009 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2012 tasklet_schedule(&dev->tasklet);
2014 return IRQ_HANDLED;
2017 static void hifn_flush(struct hifn_device *dev)
2019 unsigned long flags;
2020 struct crypto_async_request *async_req;
2021 struct ablkcipher_request *req;
2022 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2023 int i;
2025 for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2026 struct hifn_desc *d = &dma->resr[i];
2028 if (dev->sa[i]) {
2029 hifn_process_ready(dev->sa[i],
2030 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2031 hifn_complete_sa(dev, i);
2035 spin_lock_irqsave(&dev->lock, flags);
2036 while ((async_req = crypto_dequeue_request(&dev->queue))) {
2037 req = container_of(async_req, struct ablkcipher_request, base);
2038 spin_unlock_irqrestore(&dev->lock, flags);
2040 hifn_process_ready(req, -ENODEV);
2042 spin_lock_irqsave(&dev->lock, flags);
2044 spin_unlock_irqrestore(&dev->lock, flags);
2047 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2048 unsigned int len)
2050 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2051 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2052 struct hifn_device *dev = ctx->dev;
2054 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2055 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2056 return -1;
2059 if (len == HIFN_DES_KEY_LENGTH) {
2060 u32 tmp[DES_EXPKEY_WORDS];
2061 int ret = des_ekey(tmp, key);
2063 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2064 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2065 return -EINVAL;
2069 dev->flags &= ~HIFN_FLAG_OLD_KEY;
2071 memcpy(ctx->key, key, len);
2072 ctx->keysize = len;
2074 return 0;
2077 static int hifn_handle_req(struct ablkcipher_request *req)
2079 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2080 struct hifn_device *dev = ctx->dev;
2081 int err = -EAGAIN;
2083 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2084 err = hifn_setup_session(req);
2086 if (err == -EAGAIN) {
2087 unsigned long flags;
2089 spin_lock_irqsave(&dev->lock, flags);
2090 err = ablkcipher_enqueue_request(&dev->queue, req);
2091 spin_unlock_irqrestore(&dev->lock, flags);
2094 return err;
2097 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2098 u8 type, u8 mode)
2100 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2101 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2102 unsigned ivsize;
2104 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2106 if (req->info && mode != ACRYPTO_MODE_ECB) {
2107 if (type == ACRYPTO_TYPE_AES_128)
2108 ivsize = HIFN_AES_IV_LENGTH;
2109 else if (type == ACRYPTO_TYPE_DES)
2110 ivsize = HIFN_DES_KEY_LENGTH;
2111 else if (type == ACRYPTO_TYPE_3DES)
2112 ivsize = HIFN_3DES_KEY_LENGTH;
2115 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2116 if (ctx->keysize == 24)
2117 type = ACRYPTO_TYPE_AES_192;
2118 else if (ctx->keysize == 32)
2119 type = ACRYPTO_TYPE_AES_256;
2122 rctx->op = op;
2123 rctx->mode = mode;
2124 rctx->type = type;
2125 rctx->iv = req->info;
2126 rctx->ivsize = ivsize;
2129 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2130 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2131 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2134 return hifn_handle_req(req);
2137 static int hifn_process_queue(struct hifn_device *dev)
2139 struct crypto_async_request *async_req, *backlog;
2140 struct ablkcipher_request *req;
2141 unsigned long flags;
2142 int err = 0;
2144 while (dev->started < HIFN_QUEUE_LENGTH) {
2145 spin_lock_irqsave(&dev->lock, flags);
2146 backlog = crypto_get_backlog(&dev->queue);
2147 async_req = crypto_dequeue_request(&dev->queue);
2148 spin_unlock_irqrestore(&dev->lock, flags);
2150 if (!async_req)
2151 break;
2153 if (backlog)
2154 backlog->complete(backlog, -EINPROGRESS);
2156 req = container_of(async_req, struct ablkcipher_request, base);
2158 err = hifn_handle_req(req);
2159 if (err)
2160 break;
2163 return err;
2166 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2167 u8 type, u8 mode)
2169 int err;
2170 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2171 struct hifn_device *dev = ctx->dev;
2173 err = hifn_setup_crypto_req(req, op, type, mode);
2174 if (err)
2175 return err;
2177 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2178 hifn_process_queue(dev);
2180 return -EINPROGRESS;
2184 * AES ecryption functions.
2186 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2188 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2189 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2191 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2193 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2194 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2196 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2198 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2199 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2201 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2203 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2204 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2208 * AES decryption functions.
2210 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2212 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2213 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2215 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2217 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2218 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2220 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2222 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2223 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2225 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2227 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2228 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2232 * DES ecryption functions.
2234 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2236 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2237 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2239 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2241 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2242 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2244 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2246 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2247 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2249 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2251 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2252 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2256 * DES decryption functions.
2258 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2260 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2261 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2263 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2265 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2266 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2268 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2270 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2271 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2273 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2275 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2276 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2280 * 3DES ecryption functions.
2282 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2284 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2285 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2287 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2289 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2290 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2292 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2294 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2295 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2297 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2299 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2300 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2304 * 3DES decryption functions.
2306 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2308 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2309 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2311 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2313 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2314 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2316 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2318 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2319 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2321 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2323 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2324 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2327 struct hifn_alg_template
2329 char name[CRYPTO_MAX_ALG_NAME];
2330 char drv_name[CRYPTO_MAX_ALG_NAME];
2331 unsigned int bsize;
2332 struct ablkcipher_alg ablkcipher;
2335 static struct hifn_alg_template hifn_alg_templates[] = {
2337 * 3DES ECB, CBC, CFB and OFB modes.
2340 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2341 .ablkcipher = {
2342 .min_keysize = HIFN_3DES_KEY_LENGTH,
2343 .max_keysize = HIFN_3DES_KEY_LENGTH,
2344 .setkey = hifn_setkey,
2345 .encrypt = hifn_encrypt_3des_cfb,
2346 .decrypt = hifn_decrypt_3des_cfb,
2350 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2351 .ablkcipher = {
2352 .min_keysize = HIFN_3DES_KEY_LENGTH,
2353 .max_keysize = HIFN_3DES_KEY_LENGTH,
2354 .setkey = hifn_setkey,
2355 .encrypt = hifn_encrypt_3des_ofb,
2356 .decrypt = hifn_decrypt_3des_ofb,
2360 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2361 .ablkcipher = {
2362 .ivsize = HIFN_IV_LENGTH,
2363 .min_keysize = HIFN_3DES_KEY_LENGTH,
2364 .max_keysize = HIFN_3DES_KEY_LENGTH,
2365 .setkey = hifn_setkey,
2366 .encrypt = hifn_encrypt_3des_cbc,
2367 .decrypt = hifn_decrypt_3des_cbc,
2371 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2372 .ablkcipher = {
2373 .min_keysize = HIFN_3DES_KEY_LENGTH,
2374 .max_keysize = HIFN_3DES_KEY_LENGTH,
2375 .setkey = hifn_setkey,
2376 .encrypt = hifn_encrypt_3des_ecb,
2377 .decrypt = hifn_decrypt_3des_ecb,
2382 * DES ECB, CBC, CFB and OFB modes.
2385 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2386 .ablkcipher = {
2387 .min_keysize = HIFN_DES_KEY_LENGTH,
2388 .max_keysize = HIFN_DES_KEY_LENGTH,
2389 .setkey = hifn_setkey,
2390 .encrypt = hifn_encrypt_des_cfb,
2391 .decrypt = hifn_decrypt_des_cfb,
2395 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2396 .ablkcipher = {
2397 .min_keysize = HIFN_DES_KEY_LENGTH,
2398 .max_keysize = HIFN_DES_KEY_LENGTH,
2399 .setkey = hifn_setkey,
2400 .encrypt = hifn_encrypt_des_ofb,
2401 .decrypt = hifn_decrypt_des_ofb,
2405 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2406 .ablkcipher = {
2407 .ivsize = HIFN_IV_LENGTH,
2408 .min_keysize = HIFN_DES_KEY_LENGTH,
2409 .max_keysize = HIFN_DES_KEY_LENGTH,
2410 .setkey = hifn_setkey,
2411 .encrypt = hifn_encrypt_des_cbc,
2412 .decrypt = hifn_decrypt_des_cbc,
2416 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2417 .ablkcipher = {
2418 .min_keysize = HIFN_DES_KEY_LENGTH,
2419 .max_keysize = HIFN_DES_KEY_LENGTH,
2420 .setkey = hifn_setkey,
2421 .encrypt = hifn_encrypt_des_ecb,
2422 .decrypt = hifn_decrypt_des_ecb,
2427 * AES ECB, CBC, CFB and OFB modes.
2430 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2431 .ablkcipher = {
2432 .min_keysize = AES_MIN_KEY_SIZE,
2433 .max_keysize = AES_MAX_KEY_SIZE,
2434 .setkey = hifn_setkey,
2435 .encrypt = hifn_encrypt_aes_ecb,
2436 .decrypt = hifn_decrypt_aes_ecb,
2440 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2441 .ablkcipher = {
2442 .ivsize = HIFN_AES_IV_LENGTH,
2443 .min_keysize = AES_MIN_KEY_SIZE,
2444 .max_keysize = AES_MAX_KEY_SIZE,
2445 .setkey = hifn_setkey,
2446 .encrypt = hifn_encrypt_aes_cbc,
2447 .decrypt = hifn_decrypt_aes_cbc,
2451 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2452 .ablkcipher = {
2453 .min_keysize = AES_MIN_KEY_SIZE,
2454 .max_keysize = AES_MAX_KEY_SIZE,
2455 .setkey = hifn_setkey,
2456 .encrypt = hifn_encrypt_aes_cfb,
2457 .decrypt = hifn_decrypt_aes_cfb,
2461 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2462 .ablkcipher = {
2463 .min_keysize = AES_MIN_KEY_SIZE,
2464 .max_keysize = AES_MAX_KEY_SIZE,
2465 .setkey = hifn_setkey,
2466 .encrypt = hifn_encrypt_aes_ofb,
2467 .decrypt = hifn_decrypt_aes_ofb,
2472 static int hifn_cra_init(struct crypto_tfm *tfm)
2474 struct crypto_alg *alg = tfm->__crt_alg;
2475 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2476 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2478 ctx->dev = ha->dev;
2479 tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2480 return 0;
2483 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2485 struct hifn_crypto_alg *alg;
2486 int err;
2488 alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2489 if (!alg)
2490 return -ENOMEM;
2492 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2493 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2494 t->drv_name, dev->name);
2496 alg->alg.cra_priority = 300;
2497 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2498 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2499 alg->alg.cra_blocksize = t->bsize;
2500 alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2501 alg->alg.cra_alignmask = 0;
2502 alg->alg.cra_type = &crypto_ablkcipher_type;
2503 alg->alg.cra_module = THIS_MODULE;
2504 alg->alg.cra_u.ablkcipher = t->ablkcipher;
2505 alg->alg.cra_init = hifn_cra_init;
2507 alg->dev = dev;
2509 list_add_tail(&alg->entry, &dev->alg_list);
2511 err = crypto_register_alg(&alg->alg);
2512 if (err) {
2513 list_del(&alg->entry);
2514 kfree(alg);
2517 return err;
2520 static void hifn_unregister_alg(struct hifn_device *dev)
2522 struct hifn_crypto_alg *a, *n;
2524 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2525 list_del(&a->entry);
2526 crypto_unregister_alg(&a->alg);
2527 kfree(a);
2531 static int hifn_register_alg(struct hifn_device *dev)
2533 int i, err;
2535 for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2536 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2537 if (err)
2538 goto err_out_exit;
2541 return 0;
2543 err_out_exit:
2544 hifn_unregister_alg(dev);
2545 return err;
2548 static void hifn_tasklet_callback(unsigned long data)
2550 struct hifn_device *dev = (struct hifn_device *)data;
2553 * This is ok to call this without lock being held,
2554 * althogh it modifies some parameters used in parallel,
2555 * (like dev->success), but they are used in process
2556 * context or update is atomic (like setting dev->sa[i] to NULL).
2558 hifn_clear_rings(dev, 0);
2560 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2561 hifn_process_queue(dev);
2564 static int __devinit hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2566 int err, i;
2567 struct hifn_device *dev;
2568 char name[8];
2570 err = pci_enable_device(pdev);
2571 if (err)
2572 return err;
2573 pci_set_master(pdev);
2575 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2576 if (err)
2577 goto err_out_disable_pci_device;
2579 snprintf(name, sizeof(name), "hifn%d",
2580 atomic_inc_return(&hifn_dev_number)-1);
2582 err = pci_request_regions(pdev, name);
2583 if (err)
2584 goto err_out_disable_pci_device;
2586 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2587 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2588 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2589 dprintk("%s: Broken hardware - I/O regions are too small.\n",
2590 pci_name(pdev));
2591 err = -ENODEV;
2592 goto err_out_free_regions;
2595 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2596 GFP_KERNEL);
2597 if (!dev) {
2598 err = -ENOMEM;
2599 goto err_out_free_regions;
2602 INIT_LIST_HEAD(&dev->alg_list);
2604 snprintf(dev->name, sizeof(dev->name), "%s", name);
2605 spin_lock_init(&dev->lock);
2607 for (i=0; i<3; ++i) {
2608 unsigned long addr, size;
2610 addr = pci_resource_start(pdev, i);
2611 size = pci_resource_len(pdev, i);
2613 dev->bar[i] = ioremap_nocache(addr, size);
2614 if (!dev->bar[i]) {
2615 err = -ENOMEM;
2616 goto err_out_unmap_bars;
2620 dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
2621 &dev->desc_dma);
2622 if (!dev->desc_virt) {
2623 dprintk("Failed to allocate descriptor rings.\n");
2624 err = -ENOMEM;
2625 goto err_out_unmap_bars;
2627 memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
2629 dev->pdev = pdev;
2630 dev->irq = pdev->irq;
2632 for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2633 dev->sa[i] = NULL;
2635 pci_set_drvdata(pdev, dev);
2637 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2639 crypto_init_queue(&dev->queue, 1);
2641 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2642 if (err) {
2643 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2644 dev->irq = 0;
2645 goto err_out_free_desc;
2648 err = hifn_start_device(dev);
2649 if (err)
2650 goto err_out_free_irq;
2652 err = hifn_test(dev, 1, 0);
2653 if (err)
2654 goto err_out_stop_device;
2656 err = hifn_register_rng(dev);
2657 if (err)
2658 goto err_out_stop_device;
2660 err = hifn_register_alg(dev);
2661 if (err)
2662 goto err_out_unregister_rng;
2664 INIT_DELAYED_WORK(&dev->work, hifn_work);
2665 schedule_delayed_work(&dev->work, HZ);
2667 dprintk("HIFN crypto accelerator card at %s has been "
2668 "successfully registered as %s.\n",
2669 pci_name(pdev), dev->name);
2671 return 0;
2673 err_out_unregister_rng:
2674 hifn_unregister_rng(dev);
2675 err_out_stop_device:
2676 hifn_reset_dma(dev, 1);
2677 hifn_stop_device(dev);
2678 err_out_free_irq:
2679 free_irq(dev->irq, dev->name);
2680 tasklet_kill(&dev->tasklet);
2681 err_out_free_desc:
2682 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2683 dev->desc_virt, dev->desc_dma);
2685 err_out_unmap_bars:
2686 for (i=0; i<3; ++i)
2687 if (dev->bar[i])
2688 iounmap(dev->bar[i]);
2690 err_out_free_regions:
2691 pci_release_regions(pdev);
2693 err_out_disable_pci_device:
2694 pci_disable_device(pdev);
2696 return err;
2699 static void __devexit hifn_remove(struct pci_dev *pdev)
2701 int i;
2702 struct hifn_device *dev;
2704 dev = pci_get_drvdata(pdev);
2706 if (dev) {
2707 cancel_delayed_work_sync(&dev->work);
2709 hifn_unregister_rng(dev);
2710 hifn_unregister_alg(dev);
2711 hifn_reset_dma(dev, 1);
2712 hifn_stop_device(dev);
2714 free_irq(dev->irq, dev->name);
2715 tasklet_kill(&dev->tasklet);
2717 hifn_flush(dev);
2719 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2720 dev->desc_virt, dev->desc_dma);
2721 for (i=0; i<3; ++i)
2722 if (dev->bar[i])
2723 iounmap(dev->bar[i]);
2725 kfree(dev);
2728 pci_release_regions(pdev);
2729 pci_disable_device(pdev);
2732 static struct pci_device_id hifn_pci_tbl[] = {
2733 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2734 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2735 { 0 }
2737 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2739 static struct pci_driver hifn_pci_driver = {
2740 .name = "hifn795x",
2741 .id_table = hifn_pci_tbl,
2742 .probe = hifn_probe,
2743 .remove = __devexit_p(hifn_remove),
2746 static int __init hifn_init(void)
2748 unsigned int freq;
2749 int err;
2751 /* HIFN supports only 32-bit addresses */
2752 BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2754 if (strncmp(hifn_pll_ref, "ext", 3) &&
2755 strncmp(hifn_pll_ref, "pci", 3)) {
2756 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2757 "must be pci or ext");
2758 return -EINVAL;
2762 * For the 7955/7956 the reference clock frequency must be in the
2763 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2764 * but this chip is currently not supported.
2766 if (hifn_pll_ref[3] != '\0') {
2767 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2768 if (freq < 20 || freq > 100) {
2769 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2770 "frequency, must be in the range "
2771 "of 20-100");
2772 return -EINVAL;
2776 err = pci_register_driver(&hifn_pci_driver);
2777 if (err < 0) {
2778 dprintk("Failed to register PCI driver for %s device.\n",
2779 hifn_pci_driver.name);
2780 return -ENODEV;
2783 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2784 "has been successfully registered.\n");
2786 return 0;
2789 static void __exit hifn_fini(void)
2791 pci_unregister_driver(&hifn_pci_driver);
2793 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2794 "has been successfully unregistered.\n");
2797 module_init(hifn_init);
2798 module_exit(hifn_fini);
2800 MODULE_LICENSE("GPL");
2801 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2802 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");