2 * Support for Marvell's crypto engine which can be found on some Orion5X
5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/clk.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/sha.h>
23 #include <linux/of_platform.h>
24 #include <linux/of_irq.h>
28 #define MV_CESA "MV-CESA:"
29 #define MAX_HW_HASH_SIZE 0xFFFF
30 #define MV_CESA_EXPIRE 500 /* msec */
34 * /---------------------------------------\
35 * | | request complete
37 * IDLE -> new request -> BUSY -> done -> DEQUEUE
39 * | | more scatter entries
49 * struct req_progress - used for every crypt request
50 * @src_sg_it: sg iterator for src
51 * @dst_sg_it: sg iterator for dst
52 * @sg_src_left: bytes left in src to process (scatter list)
53 * @src_start: offset to add to src start position (scatter list)
54 * @crypt_len: length of current hw crypt/hash process
55 * @hw_nbytes: total bytes to process in hw for this request
56 * @copy_back: whether to copy data back (crypt) or not (hash)
57 * @sg_dst_left: bytes left dst to process in this scatter list
58 * @dst_start: offset to add to dst start position (scatter list)
59 * @hw_processed_bytes: number of bytes processed by hw (request).
61 * sg helper are used to iterate over the scatterlist. Since the size of the
62 * SRAM may be less than the scatter size, this struct struct is used to keep
63 * track of progress within current scatterlist.
66 struct sg_mapping_iter src_sg_it
;
67 struct sg_mapping_iter dst_sg_it
;
68 void (*complete
) (void);
69 void (*process
) (int is_first
);
80 int hw_processed_bytes
;
88 struct task_struct
*queue_th
;
90 /* the lock protects queue and eng_st */
92 struct crypto_queue queue
;
93 enum engine_status eng_st
;
94 struct timer_list completion_timer
;
95 struct crypto_async_request
*cur_req
;
96 struct req_progress p
;
103 static struct crypto_priv
*cpg
;
106 u8 aes_enc_key
[AES_KEY_LEN
];
109 u32 need_calc_aes_dkey
;
127 struct mv_tfm_hash_ctx
{
128 struct crypto_shash
*fallback
;
129 struct crypto_shash
*base_hash
;
130 u32 ivs
[2 * SHA1_DIGEST_SIZE
/ 4];
135 struct mv_req_hash_ctx
{
137 u32 state
[SHA1_DIGEST_SIZE
/ 4];
138 u8 buffer
[SHA1_BLOCK_SIZE
];
139 int first_hash
; /* marks that we don't have previous state */
140 int last_chunk
; /* marks that this is the 'final' request */
141 int extra_bytes
; /* unprocessed bytes in buffer */
146 static void mv_completion_timer_callback(unsigned long unused
)
148 int active
= readl(cpg
->reg
+ SEC_ACCEL_CMD
) & SEC_CMD_EN_SEC_ACCL0
;
150 printk(KERN_ERR MV_CESA
151 "completion timer expired (CESA %sactive), cleaning up.\n",
154 del_timer(&cpg
->completion_timer
);
155 writel(SEC_CMD_DISABLE_SEC
, cpg
->reg
+ SEC_ACCEL_CMD
);
156 while(readl(cpg
->reg
+ SEC_ACCEL_CMD
) & SEC_CMD_DISABLE_SEC
)
157 printk(KERN_INFO MV_CESA
"%s: waiting for engine finishing\n", __func__
);
158 cpg
->eng_st
= ENGINE_W_DEQUEUE
;
159 wake_up_process(cpg
->queue_th
);
162 static void mv_setup_timer(void)
164 setup_timer(&cpg
->completion_timer
, &mv_completion_timer_callback
, 0);
165 mod_timer(&cpg
->completion_timer
,
166 jiffies
+ msecs_to_jiffies(MV_CESA_EXPIRE
));
169 static void compute_aes_dec_key(struct mv_ctx
*ctx
)
171 struct crypto_aes_ctx gen_aes_key
;
174 if (!ctx
->need_calc_aes_dkey
)
177 crypto_aes_expand_key(&gen_aes_key
, ctx
->aes_enc_key
, ctx
->key_len
);
179 key_pos
= ctx
->key_len
+ 24;
180 memcpy(ctx
->aes_dec_key
, &gen_aes_key
.key_enc
[key_pos
], 4 * 4);
181 switch (ctx
->key_len
) {
182 case AES_KEYSIZE_256
:
185 case AES_KEYSIZE_192
:
187 memcpy(&ctx
->aes_dec_key
[4], &gen_aes_key
.key_enc
[key_pos
],
191 ctx
->need_calc_aes_dkey
= 0;
194 static int mv_setkey_aes(struct crypto_ablkcipher
*cipher
, const u8
*key
,
197 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
198 struct mv_ctx
*ctx
= crypto_tfm_ctx(tfm
);
201 case AES_KEYSIZE_128
:
202 case AES_KEYSIZE_192
:
203 case AES_KEYSIZE_256
:
206 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
210 ctx
->need_calc_aes_dkey
= 1;
212 memcpy(ctx
->aes_enc_key
, key
, AES_KEY_LEN
);
216 static void copy_src_to_buf(struct req_progress
*p
, char *dbuf
, int len
)
223 if (!p
->sg_src_left
) {
224 ret
= sg_miter_next(&p
->src_sg_it
);
226 p
->sg_src_left
= p
->src_sg_it
.length
;
230 sbuf
= p
->src_sg_it
.addr
+ p
->src_start
;
232 copy_len
= min(p
->sg_src_left
, len
);
233 memcpy(dbuf
, sbuf
, copy_len
);
235 p
->src_start
+= copy_len
;
236 p
->sg_src_left
-= copy_len
;
243 static void setup_data_in(void)
245 struct req_progress
*p
= &cpg
->p
;
247 min(p
->hw_nbytes
- p
->hw_processed_bytes
, cpg
->max_req_size
);
248 copy_src_to_buf(p
, cpg
->sram
+ SRAM_DATA_IN_START
+ p
->crypt_len
,
249 data_in_sram
- p
->crypt_len
);
250 p
->crypt_len
= data_in_sram
;
253 static void mv_process_current_q(int first_block
)
255 struct ablkcipher_request
*req
= ablkcipher_request_cast(cpg
->cur_req
);
256 struct mv_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
257 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
258 struct sec_accel_config op
;
260 switch (req_ctx
->op
) {
262 op
.config
= CFG_OP_CRYPT_ONLY
| CFG_ENCM_AES
| CFG_ENC_MODE_ECB
;
266 op
.config
= CFG_OP_CRYPT_ONLY
| CFG_ENCM_AES
| CFG_ENC_MODE_CBC
;
267 op
.enc_iv
= ENC_IV_POINT(SRAM_DATA_IV
) |
268 ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF
);
270 memcpy(cpg
->sram
+ SRAM_DATA_IV
, req
->info
, 16);
273 if (req_ctx
->decrypt
) {
274 op
.config
|= CFG_DIR_DEC
;
275 memcpy(cpg
->sram
+ SRAM_DATA_KEY_P
, ctx
->aes_dec_key
,
278 op
.config
|= CFG_DIR_ENC
;
279 memcpy(cpg
->sram
+ SRAM_DATA_KEY_P
, ctx
->aes_enc_key
,
283 switch (ctx
->key_len
) {
284 case AES_KEYSIZE_128
:
285 op
.config
|= CFG_AES_LEN_128
;
287 case AES_KEYSIZE_192
:
288 op
.config
|= CFG_AES_LEN_192
;
290 case AES_KEYSIZE_256
:
291 op
.config
|= CFG_AES_LEN_256
;
294 op
.enc_p
= ENC_P_SRC(SRAM_DATA_IN_START
) |
295 ENC_P_DST(SRAM_DATA_OUT_START
);
296 op
.enc_key_p
= SRAM_DATA_KEY_P
;
299 op
.enc_len
= cpg
->p
.crypt_len
;
300 memcpy(cpg
->sram
+ SRAM_CONFIG
, &op
,
301 sizeof(struct sec_accel_config
));
305 writel(SEC_CMD_EN_SEC_ACCL0
, cpg
->reg
+ SEC_ACCEL_CMD
);
308 static void mv_crypto_algo_completion(void)
310 struct ablkcipher_request
*req
= ablkcipher_request_cast(cpg
->cur_req
);
311 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
313 sg_miter_stop(&cpg
->p
.src_sg_it
);
314 sg_miter_stop(&cpg
->p
.dst_sg_it
);
316 if (req_ctx
->op
!= COP_AES_CBC
)
319 memcpy(req
->info
, cpg
->sram
+ SRAM_DATA_IV_BUF
, 16);
322 static void mv_process_hash_current(int first_block
)
324 struct ahash_request
*req
= ahash_request_cast(cpg
->cur_req
);
325 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
326 struct mv_req_hash_ctx
*req_ctx
= ahash_request_ctx(req
);
327 struct req_progress
*p
= &cpg
->p
;
328 struct sec_accel_config op
= { 0 };
331 switch (req_ctx
->op
) {
334 op
.config
= CFG_OP_MAC_ONLY
| CFG_MACM_SHA1
;
337 op
.config
= CFG_OP_MAC_ONLY
| CFG_MACM_HMAC_SHA1
;
338 memcpy(cpg
->sram
+ SRAM_HMAC_IV_IN
,
339 tfm_ctx
->ivs
, sizeof(tfm_ctx
->ivs
));
344 MAC_SRC_DATA_P(SRAM_DATA_IN_START
) | MAC_SRC_TOTAL_LEN((u32
)
351 MAC_DIGEST_P(SRAM_DIGEST_BUF
) | MAC_FRAG_LEN(p
->crypt_len
);
353 MAC_INNER_IV_P(SRAM_HMAC_IV_IN
) |
354 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT
);
356 is_last
= req_ctx
->last_chunk
357 && (p
->hw_processed_bytes
+ p
->crypt_len
>= p
->hw_nbytes
)
358 && (req_ctx
->count
<= MAX_HW_HASH_SIZE
);
359 if (req_ctx
->first_hash
) {
361 op
.config
|= CFG_NOT_FRAG
;
363 op
.config
|= CFG_FIRST_FRAG
;
365 req_ctx
->first_hash
= 0;
368 op
.config
|= CFG_LAST_FRAG
;
370 op
.config
|= CFG_MID_FRAG
;
373 writel(req_ctx
->state
[0], cpg
->reg
+ DIGEST_INITIAL_VAL_A
);
374 writel(req_ctx
->state
[1], cpg
->reg
+ DIGEST_INITIAL_VAL_B
);
375 writel(req_ctx
->state
[2], cpg
->reg
+ DIGEST_INITIAL_VAL_C
);
376 writel(req_ctx
->state
[3], cpg
->reg
+ DIGEST_INITIAL_VAL_D
);
377 writel(req_ctx
->state
[4], cpg
->reg
+ DIGEST_INITIAL_VAL_E
);
381 memcpy(cpg
->sram
+ SRAM_CONFIG
, &op
, sizeof(struct sec_accel_config
));
385 writel(SEC_CMD_EN_SEC_ACCL0
, cpg
->reg
+ SEC_ACCEL_CMD
);
388 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx
*ctx
,
389 struct shash_desc
*desc
)
392 struct sha1_state shash_state
;
394 shash_state
.count
= ctx
->count
+ ctx
->count_add
;
395 for (i
= 0; i
< 5; i
++)
396 shash_state
.state
[i
] = ctx
->state
[i
];
397 memcpy(shash_state
.buffer
, ctx
->buffer
, sizeof(shash_state
.buffer
));
398 return crypto_shash_import(desc
, &shash_state
);
401 static int mv_hash_final_fallback(struct ahash_request
*req
)
403 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
404 struct mv_req_hash_ctx
*req_ctx
= ahash_request_ctx(req
);
406 struct shash_desc shash
;
407 char ctx
[crypto_shash_descsize(tfm_ctx
->fallback
)];
411 desc
.shash
.tfm
= tfm_ctx
->fallback
;
412 desc
.shash
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
413 if (unlikely(req_ctx
->first_hash
)) {
414 crypto_shash_init(&desc
.shash
);
415 crypto_shash_update(&desc
.shash
, req_ctx
->buffer
,
416 req_ctx
->extra_bytes
);
418 /* only SHA1 for now....
420 rc
= mv_hash_import_sha1_ctx(req_ctx
, &desc
.shash
);
424 rc
= crypto_shash_final(&desc
.shash
, req
->result
);
429 static void mv_save_digest_state(struct mv_req_hash_ctx
*ctx
)
431 ctx
->state
[0] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_A
);
432 ctx
->state
[1] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_B
);
433 ctx
->state
[2] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_C
);
434 ctx
->state
[3] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_D
);
435 ctx
->state
[4] = readl(cpg
->reg
+ DIGEST_INITIAL_VAL_E
);
438 static void mv_hash_algo_completion(void)
440 struct ahash_request
*req
= ahash_request_cast(cpg
->cur_req
);
441 struct mv_req_hash_ctx
*ctx
= ahash_request_ctx(req
);
443 if (ctx
->extra_bytes
)
444 copy_src_to_buf(&cpg
->p
, ctx
->buffer
, ctx
->extra_bytes
);
445 sg_miter_stop(&cpg
->p
.src_sg_it
);
447 if (likely(ctx
->last_chunk
)) {
448 if (likely(ctx
->count
<= MAX_HW_HASH_SIZE
)) {
449 memcpy(req
->result
, cpg
->sram
+ SRAM_DIGEST_BUF
,
450 crypto_ahash_digestsize(crypto_ahash_reqtfm
453 mv_save_digest_state(ctx
);
454 mv_hash_final_fallback(req
);
457 mv_save_digest_state(ctx
);
461 static void dequeue_complete_req(void)
463 struct crypto_async_request
*req
= cpg
->cur_req
;
466 cpg
->p
.hw_processed_bytes
+= cpg
->p
.crypt_len
;
467 if (cpg
->p
.copy_back
) {
468 int need_copy_len
= cpg
->p
.crypt_len
;
473 if (!cpg
->p
.sg_dst_left
) {
474 ret
= sg_miter_next(&cpg
->p
.dst_sg_it
);
476 cpg
->p
.sg_dst_left
= cpg
->p
.dst_sg_it
.length
;
477 cpg
->p
.dst_start
= 0;
480 buf
= cpg
->p
.dst_sg_it
.addr
;
481 buf
+= cpg
->p
.dst_start
;
483 dst_copy
= min(need_copy_len
, cpg
->p
.sg_dst_left
);
486 cpg
->sram
+ SRAM_DATA_OUT_START
+ sram_offset
,
488 sram_offset
+= dst_copy
;
489 cpg
->p
.sg_dst_left
-= dst_copy
;
490 need_copy_len
-= dst_copy
;
491 cpg
->p
.dst_start
+= dst_copy
;
492 } while (need_copy_len
> 0);
495 cpg
->p
.crypt_len
= 0;
497 BUG_ON(cpg
->eng_st
!= ENGINE_W_DEQUEUE
);
498 if (cpg
->p
.hw_processed_bytes
< cpg
->p
.hw_nbytes
) {
499 /* process next scatter list entry */
500 cpg
->eng_st
= ENGINE_BUSY
;
504 cpg
->eng_st
= ENGINE_IDLE
;
506 req
->complete(req
, 0);
511 static int count_sgs(struct scatterlist
*sl
, unsigned int total_bytes
)
517 cur_len
= sl
[i
].length
;
519 if (total_bytes
> cur_len
)
520 total_bytes
-= cur_len
;
528 static void mv_start_new_crypt_req(struct ablkcipher_request
*req
)
530 struct req_progress
*p
= &cpg
->p
;
533 cpg
->cur_req
= &req
->base
;
534 memset(p
, 0, sizeof(struct req_progress
));
535 p
->hw_nbytes
= req
->nbytes
;
536 p
->complete
= mv_crypto_algo_completion
;
537 p
->process
= mv_process_current_q
;
540 num_sgs
= count_sgs(req
->src
, req
->nbytes
);
541 sg_miter_start(&p
->src_sg_it
, req
->src
, num_sgs
, SG_MITER_FROM_SG
);
543 num_sgs
= count_sgs(req
->dst
, req
->nbytes
);
544 sg_miter_start(&p
->dst_sg_it
, req
->dst
, num_sgs
, SG_MITER_TO_SG
);
546 mv_process_current_q(1);
549 static void mv_start_new_hash_req(struct ahash_request
*req
)
551 struct req_progress
*p
= &cpg
->p
;
552 struct mv_req_hash_ctx
*ctx
= ahash_request_ctx(req
);
553 int num_sgs
, hw_bytes
, old_extra_bytes
, rc
;
554 cpg
->cur_req
= &req
->base
;
555 memset(p
, 0, sizeof(struct req_progress
));
556 hw_bytes
= req
->nbytes
+ ctx
->extra_bytes
;
557 old_extra_bytes
= ctx
->extra_bytes
;
559 ctx
->extra_bytes
= hw_bytes
% SHA1_BLOCK_SIZE
;
560 if (ctx
->extra_bytes
!= 0
561 && (!ctx
->last_chunk
|| ctx
->count
> MAX_HW_HASH_SIZE
))
562 hw_bytes
-= ctx
->extra_bytes
;
564 ctx
->extra_bytes
= 0;
566 num_sgs
= count_sgs(req
->src
, req
->nbytes
);
567 sg_miter_start(&p
->src_sg_it
, req
->src
, num_sgs
, SG_MITER_FROM_SG
);
570 p
->hw_nbytes
= hw_bytes
;
571 p
->complete
= mv_hash_algo_completion
;
572 p
->process
= mv_process_hash_current
;
574 if (unlikely(old_extra_bytes
)) {
575 memcpy(cpg
->sram
+ SRAM_DATA_IN_START
, ctx
->buffer
,
577 p
->crypt_len
= old_extra_bytes
;
580 mv_process_hash_current(1);
582 copy_src_to_buf(p
, ctx
->buffer
+ old_extra_bytes
,
583 ctx
->extra_bytes
- old_extra_bytes
);
584 sg_miter_stop(&p
->src_sg_it
);
586 rc
= mv_hash_final_fallback(req
);
589 cpg
->eng_st
= ENGINE_IDLE
;
591 req
->base
.complete(&req
->base
, rc
);
596 static int queue_manag(void *data
)
598 cpg
->eng_st
= ENGINE_IDLE
;
600 struct crypto_async_request
*async_req
= NULL
;
601 struct crypto_async_request
*backlog
;
603 __set_current_state(TASK_INTERRUPTIBLE
);
605 if (cpg
->eng_st
== ENGINE_W_DEQUEUE
)
606 dequeue_complete_req();
608 spin_lock_irq(&cpg
->lock
);
609 if (cpg
->eng_st
== ENGINE_IDLE
) {
610 backlog
= crypto_get_backlog(&cpg
->queue
);
611 async_req
= crypto_dequeue_request(&cpg
->queue
);
613 BUG_ON(cpg
->eng_st
!= ENGINE_IDLE
);
614 cpg
->eng_st
= ENGINE_BUSY
;
617 spin_unlock_irq(&cpg
->lock
);
620 backlog
->complete(backlog
, -EINPROGRESS
);
625 if (async_req
->tfm
->__crt_alg
->cra_type
!=
626 &crypto_ahash_type
) {
627 struct ablkcipher_request
*req
=
628 ablkcipher_request_cast(async_req
);
629 mv_start_new_crypt_req(req
);
631 struct ahash_request
*req
=
632 ahash_request_cast(async_req
);
633 mv_start_new_hash_req(req
);
640 } while (!kthread_should_stop());
644 static int mv_handle_req(struct crypto_async_request
*req
)
649 spin_lock_irqsave(&cpg
->lock
, flags
);
650 ret
= crypto_enqueue_request(&cpg
->queue
, req
);
651 spin_unlock_irqrestore(&cpg
->lock
, flags
);
652 wake_up_process(cpg
->queue_th
);
656 static int mv_enc_aes_ecb(struct ablkcipher_request
*req
)
658 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
660 req_ctx
->op
= COP_AES_ECB
;
661 req_ctx
->decrypt
= 0;
663 return mv_handle_req(&req
->base
);
666 static int mv_dec_aes_ecb(struct ablkcipher_request
*req
)
668 struct mv_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
669 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
671 req_ctx
->op
= COP_AES_ECB
;
672 req_ctx
->decrypt
= 1;
674 compute_aes_dec_key(ctx
);
675 return mv_handle_req(&req
->base
);
678 static int mv_enc_aes_cbc(struct ablkcipher_request
*req
)
680 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
682 req_ctx
->op
= COP_AES_CBC
;
683 req_ctx
->decrypt
= 0;
685 return mv_handle_req(&req
->base
);
688 static int mv_dec_aes_cbc(struct ablkcipher_request
*req
)
690 struct mv_ctx
*ctx
= crypto_tfm_ctx(req
->base
.tfm
);
691 struct mv_req_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
693 req_ctx
->op
= COP_AES_CBC
;
694 req_ctx
->decrypt
= 1;
696 compute_aes_dec_key(ctx
);
697 return mv_handle_req(&req
->base
);
700 static int mv_cra_init(struct crypto_tfm
*tfm
)
702 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct mv_req_ctx
);
706 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx
*ctx
, int op
,
707 int is_last
, unsigned int req_len
,
710 memset(ctx
, 0, sizeof(*ctx
));
712 ctx
->count
= req_len
;
714 ctx
->last_chunk
= is_last
;
715 ctx
->count_add
= count_add
;
718 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx
*ctx
, int is_last
,
721 ctx
->last_chunk
= is_last
;
722 ctx
->count
+= req_len
;
725 static int mv_hash_init(struct ahash_request
*req
)
727 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
728 mv_init_hash_req_ctx(ahash_request_ctx(req
), tfm_ctx
->op
, 0, 0,
733 static int mv_hash_update(struct ahash_request
*req
)
738 mv_update_hash_req_ctx(ahash_request_ctx(req
), 0, req
->nbytes
);
739 return mv_handle_req(&req
->base
);
742 static int mv_hash_final(struct ahash_request
*req
)
744 struct mv_req_hash_ctx
*ctx
= ahash_request_ctx(req
);
746 ahash_request_set_crypt(req
, NULL
, req
->result
, 0);
747 mv_update_hash_req_ctx(ctx
, 1, 0);
748 return mv_handle_req(&req
->base
);
751 static int mv_hash_finup(struct ahash_request
*req
)
753 mv_update_hash_req_ctx(ahash_request_ctx(req
), 1, req
->nbytes
);
754 return mv_handle_req(&req
->base
);
757 static int mv_hash_digest(struct ahash_request
*req
)
759 const struct mv_tfm_hash_ctx
*tfm_ctx
= crypto_tfm_ctx(req
->base
.tfm
);
760 mv_init_hash_req_ctx(ahash_request_ctx(req
), tfm_ctx
->op
, 1,
761 req
->nbytes
, tfm_ctx
->count_add
);
762 return mv_handle_req(&req
->base
);
765 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx
*ctx
, const void *istate
,
768 const struct sha1_state
*isha1_state
= istate
, *osha1_state
= ostate
;
770 for (i
= 0; i
< 5; i
++) {
771 ctx
->ivs
[i
] = cpu_to_be32(isha1_state
->state
[i
]);
772 ctx
->ivs
[i
+ 5] = cpu_to_be32(osha1_state
->state
[i
]);
776 static int mv_hash_setkey(struct crypto_ahash
*tfm
, const u8
* key
,
780 struct mv_tfm_hash_ctx
*ctx
= crypto_tfm_ctx(&tfm
->base
);
786 rc
= crypto_shash_setkey(ctx
->fallback
, key
, keylen
);
790 /* Can't see a way to extract the ipad/opad from the fallback tfm
791 so I'm basically copying code from the hmac module */
792 bs
= crypto_shash_blocksize(ctx
->base_hash
);
793 ds
= crypto_shash_digestsize(ctx
->base_hash
);
794 ss
= crypto_shash_statesize(ctx
->base_hash
);
798 struct shash_desc shash
;
799 char ctx
[crypto_shash_descsize(ctx
->base_hash
)];
805 desc
.shash
.tfm
= ctx
->base_hash
;
806 desc
.shash
.flags
= crypto_shash_get_flags(ctx
->base_hash
) &
807 CRYPTO_TFM_REQ_MAY_SLEEP
;
813 crypto_shash_digest(&desc
.shash
, key
, keylen
, ipad
);
819 memcpy(ipad
, key
, keylen
);
821 memset(ipad
+ keylen
, 0, bs
- keylen
);
822 memcpy(opad
, ipad
, bs
);
824 for (i
= 0; i
< bs
; i
++) {
829 rc
= crypto_shash_init(&desc
.shash
) ? :
830 crypto_shash_update(&desc
.shash
, ipad
, bs
) ? :
831 crypto_shash_export(&desc
.shash
, ipad
) ? :
832 crypto_shash_init(&desc
.shash
) ? :
833 crypto_shash_update(&desc
.shash
, opad
, bs
) ? :
834 crypto_shash_export(&desc
.shash
, opad
);
837 mv_hash_init_ivs(ctx
, ipad
, opad
);
843 static int mv_cra_hash_init(struct crypto_tfm
*tfm
, const char *base_hash_name
,
844 enum hash_op op
, int count_add
)
846 const char *fallback_driver_name
= tfm
->__crt_alg
->cra_name
;
847 struct mv_tfm_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
848 struct crypto_shash
*fallback_tfm
= NULL
;
849 struct crypto_shash
*base_hash
= NULL
;
853 ctx
->count_add
= count_add
;
855 /* Allocate a fallback and abort if it failed. */
856 fallback_tfm
= crypto_alloc_shash(fallback_driver_name
, 0,
857 CRYPTO_ALG_NEED_FALLBACK
);
858 if (IS_ERR(fallback_tfm
)) {
859 printk(KERN_WARNING MV_CESA
860 "Fallback driver '%s' could not be loaded!\n",
861 fallback_driver_name
);
862 err
= PTR_ERR(fallback_tfm
);
865 ctx
->fallback
= fallback_tfm
;
867 if (base_hash_name
) {
868 /* Allocate a hash to compute the ipad/opad of hmac. */
869 base_hash
= crypto_alloc_shash(base_hash_name
, 0,
870 CRYPTO_ALG_NEED_FALLBACK
);
871 if (IS_ERR(base_hash
)) {
872 printk(KERN_WARNING MV_CESA
873 "Base driver '%s' could not be loaded!\n",
875 err
= PTR_ERR(base_hash
);
879 ctx
->base_hash
= base_hash
;
881 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
882 sizeof(struct mv_req_hash_ctx
) +
883 crypto_shash_descsize(ctx
->fallback
));
886 crypto_free_shash(fallback_tfm
);
891 static void mv_cra_hash_exit(struct crypto_tfm
*tfm
)
893 struct mv_tfm_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
895 crypto_free_shash(ctx
->fallback
);
897 crypto_free_shash(ctx
->base_hash
);
900 static int mv_cra_hash_sha1_init(struct crypto_tfm
*tfm
)
902 return mv_cra_hash_init(tfm
, NULL
, COP_SHA1
, 0);
905 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm
*tfm
)
907 return mv_cra_hash_init(tfm
, "sha1", COP_HMAC_SHA1
, SHA1_BLOCK_SIZE
);
910 irqreturn_t
crypto_int(int irq
, void *priv
)
914 val
= readl(cpg
->reg
+ SEC_ACCEL_INT_STATUS
);
915 if (!(val
& SEC_INT_ACCEL0_DONE
))
918 if (!del_timer(&cpg
->completion_timer
)) {
919 printk(KERN_WARNING MV_CESA
920 "got an interrupt but no pending timer?\n");
922 val
&= ~SEC_INT_ACCEL0_DONE
;
923 writel(val
, cpg
->reg
+ FPGA_INT_STATUS
);
924 writel(val
, cpg
->reg
+ SEC_ACCEL_INT_STATUS
);
925 BUG_ON(cpg
->eng_st
!= ENGINE_BUSY
);
926 cpg
->eng_st
= ENGINE_W_DEQUEUE
;
927 wake_up_process(cpg
->queue_th
);
931 struct crypto_alg mv_aes_alg_ecb
= {
932 .cra_name
= "ecb(aes)",
933 .cra_driver_name
= "mv-ecb-aes",
935 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
936 CRYPTO_ALG_KERN_DRIVER_ONLY
| CRYPTO_ALG_ASYNC
,
938 .cra_ctxsize
= sizeof(struct mv_ctx
),
940 .cra_type
= &crypto_ablkcipher_type
,
941 .cra_module
= THIS_MODULE
,
942 .cra_init
= mv_cra_init
,
945 .min_keysize
= AES_MIN_KEY_SIZE
,
946 .max_keysize
= AES_MAX_KEY_SIZE
,
947 .setkey
= mv_setkey_aes
,
948 .encrypt
= mv_enc_aes_ecb
,
949 .decrypt
= mv_dec_aes_ecb
,
954 struct crypto_alg mv_aes_alg_cbc
= {
955 .cra_name
= "cbc(aes)",
956 .cra_driver_name
= "mv-cbc-aes",
958 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
959 CRYPTO_ALG_KERN_DRIVER_ONLY
| CRYPTO_ALG_ASYNC
,
960 .cra_blocksize
= AES_BLOCK_SIZE
,
961 .cra_ctxsize
= sizeof(struct mv_ctx
),
963 .cra_type
= &crypto_ablkcipher_type
,
964 .cra_module
= THIS_MODULE
,
965 .cra_init
= mv_cra_init
,
968 .ivsize
= AES_BLOCK_SIZE
,
969 .min_keysize
= AES_MIN_KEY_SIZE
,
970 .max_keysize
= AES_MAX_KEY_SIZE
,
971 .setkey
= mv_setkey_aes
,
972 .encrypt
= mv_enc_aes_cbc
,
973 .decrypt
= mv_dec_aes_cbc
,
978 struct ahash_alg mv_sha1_alg
= {
979 .init
= mv_hash_init
,
980 .update
= mv_hash_update
,
981 .final
= mv_hash_final
,
982 .finup
= mv_hash_finup
,
983 .digest
= mv_hash_digest
,
985 .digestsize
= SHA1_DIGEST_SIZE
,
988 .cra_driver_name
= "mv-sha1",
991 CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
|
992 CRYPTO_ALG_NEED_FALLBACK
,
993 .cra_blocksize
= SHA1_BLOCK_SIZE
,
994 .cra_ctxsize
= sizeof(struct mv_tfm_hash_ctx
),
995 .cra_init
= mv_cra_hash_sha1_init
,
996 .cra_exit
= mv_cra_hash_exit
,
997 .cra_module
= THIS_MODULE
,
1002 struct ahash_alg mv_hmac_sha1_alg
= {
1003 .init
= mv_hash_init
,
1004 .update
= mv_hash_update
,
1005 .final
= mv_hash_final
,
1006 .finup
= mv_hash_finup
,
1007 .digest
= mv_hash_digest
,
1008 .setkey
= mv_hash_setkey
,
1010 .digestsize
= SHA1_DIGEST_SIZE
,
1012 .cra_name
= "hmac(sha1)",
1013 .cra_driver_name
= "mv-hmac-sha1",
1014 .cra_priority
= 300,
1016 CRYPTO_ALG_ASYNC
| CRYPTO_ALG_KERN_DRIVER_ONLY
|
1017 CRYPTO_ALG_NEED_FALLBACK
,
1018 .cra_blocksize
= SHA1_BLOCK_SIZE
,
1019 .cra_ctxsize
= sizeof(struct mv_tfm_hash_ctx
),
1020 .cra_init
= mv_cra_hash_hmac_sha1_init
,
1021 .cra_exit
= mv_cra_hash_exit
,
1022 .cra_module
= THIS_MODULE
,
1027 static int mv_probe(struct platform_device
*pdev
)
1029 struct crypto_priv
*cp
;
1030 struct resource
*res
;
1035 printk(KERN_ERR MV_CESA
"Second crypto dev?\n");
1039 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "regs");
1043 cp
= kzalloc(sizeof(*cp
), GFP_KERNEL
);
1047 spin_lock_init(&cp
->lock
);
1048 crypto_init_queue(&cp
->queue
, 50);
1049 cp
->reg
= ioremap(res
->start
, resource_size(res
));
1055 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "sram");
1060 cp
->sram_size
= resource_size(res
);
1061 cp
->max_req_size
= cp
->sram_size
- SRAM_CFG_SPACE
;
1062 cp
->sram
= ioremap(res
->start
, cp
->sram_size
);
1068 if (pdev
->dev
.of_node
)
1069 irq
= irq_of_parse_and_map(pdev
->dev
.of_node
, 0);
1071 irq
= platform_get_irq(pdev
, 0);
1072 if (irq
< 0 || irq
== NO_IRQ
) {
1074 goto err_unmap_sram
;
1078 platform_set_drvdata(pdev
, cp
);
1081 cp
->queue_th
= kthread_run(queue_manag
, cp
, "mv_crypto");
1082 if (IS_ERR(cp
->queue_th
)) {
1083 ret
= PTR_ERR(cp
->queue_th
);
1084 goto err_unmap_sram
;
1087 ret
= request_irq(irq
, crypto_int
, IRQF_DISABLED
, dev_name(&pdev
->dev
),
1092 /* Not all platforms can gate the clock, so it is not
1093 an error if the clock does not exists. */
1094 cp
->clk
= clk_get(&pdev
->dev
, NULL
);
1095 if (!IS_ERR(cp
->clk
))
1096 clk_prepare_enable(cp
->clk
);
1098 writel(0, cpg
->reg
+ SEC_ACCEL_INT_STATUS
);
1099 writel(SEC_INT_ACCEL0_DONE
, cpg
->reg
+ SEC_ACCEL_INT_MASK
);
1100 writel(SEC_CFG_STOP_DIG_ERR
, cpg
->reg
+ SEC_ACCEL_CFG
);
1101 writel(SRAM_CONFIG
, cpg
->reg
+ SEC_ACCEL_DESC_P0
);
1103 ret
= crypto_register_alg(&mv_aes_alg_ecb
);
1105 printk(KERN_WARNING MV_CESA
1106 "Could not register aes-ecb driver\n");
1110 ret
= crypto_register_alg(&mv_aes_alg_cbc
);
1112 printk(KERN_WARNING MV_CESA
1113 "Could not register aes-cbc driver\n");
1117 ret
= crypto_register_ahash(&mv_sha1_alg
);
1121 printk(KERN_WARNING MV_CESA
"Could not register sha1 driver\n");
1123 ret
= crypto_register_ahash(&mv_hmac_sha1_alg
);
1125 cpg
->has_hmac_sha1
= 1;
1127 printk(KERN_WARNING MV_CESA
1128 "Could not register hmac-sha1 driver\n");
1133 crypto_unregister_alg(&mv_aes_alg_ecb
);
1136 if (!IS_ERR(cp
->clk
)) {
1137 clk_disable_unprepare(cp
->clk
);
1141 kthread_stop(cp
->queue_th
);
1149 platform_set_drvdata(pdev
, NULL
);
1153 static int mv_remove(struct platform_device
*pdev
)
1155 struct crypto_priv
*cp
= platform_get_drvdata(pdev
);
1157 crypto_unregister_alg(&mv_aes_alg_ecb
);
1158 crypto_unregister_alg(&mv_aes_alg_cbc
);
1160 crypto_unregister_ahash(&mv_sha1_alg
);
1161 if (cp
->has_hmac_sha1
)
1162 crypto_unregister_ahash(&mv_hmac_sha1_alg
);
1163 kthread_stop(cp
->queue_th
);
1164 free_irq(cp
->irq
, cp
);
1165 memset(cp
->sram
, 0, cp
->sram_size
);
1169 if (!IS_ERR(cp
->clk
)) {
1170 clk_disable_unprepare(cp
->clk
);
1179 static const struct of_device_id mv_cesa_of_match_table
[] = {
1180 { .compatible
= "marvell,orion-crypto", },
1183 MODULE_DEVICE_TABLE(of
, mv_cesa_of_match_table
);
1185 static struct platform_driver marvell_crypto
= {
1187 .remove
= __devexit_p(mv_remove
),
1189 .owner
= THIS_MODULE
,
1190 .name
= "mv_crypto",
1191 .of_match_table
= of_match_ptr(mv_cesa_of_match_table
),
1194 MODULE_ALIAS("platform:mv_crypto");
1196 module_platform_driver(marvell_crypto
);
1198 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1199 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1200 MODULE_LICENSE("GPL");