1 /* Validate the trust chain of a PKCS#7 message.
3 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public Licence
8 * as published by the Free Software Foundation; either version
9 * 2 of the Licence, or (at your option) any later version.
12 #define pr_fmt(fmt) "PKCS7: "fmt
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/asn1.h>
18 #include <linux/key.h>
19 #include <keys/asymmetric-type.h>
20 #include "public_key.h"
21 #include "pkcs7_parser.h"
24 * Check the trust on one PKCS#7 SignedInfo block.
26 int pkcs7_validate_trust_one(struct pkcs7_message
*pkcs7
,
27 struct pkcs7_signed_info
*sinfo
,
28 struct key
*trust_keyring
)
30 struct public_key_signature
*sig
= &sinfo
->sig
;
31 struct x509_certificate
*x509
, *last
= NULL
, *p
;
36 kenter(",%u,", sinfo
->index
);
38 for (x509
= sinfo
->signer
; x509
; x509
= x509
->signer
) {
41 trusted
= x509
->trusted
;
44 kleave(" = -ENOKEY [cached]");
49 /* Look to see if this certificate is present in the trusted
52 key
= x509_request_asymmetric_key(trust_keyring
, x509
->subject
,
55 /* One of the X.509 certificates in the PKCS#7 message
56 * is apparently the same as one we already trust.
57 * Verify that the trusted variant can also validate
58 * the signature on the descendant.
61 if (key
== ERR_PTR(-ENOMEM
))
64 /* Self-signed certificates form roots of their own, and if we
65 * don't know them, then we can't accept them.
67 if (x509
->next
== x509
) {
68 kleave(" = -ENOKEY [unknown self-signed]");
77 /* No match - see if the root certificate has a signer amongst the
80 if (!last
|| !last
->issuer
|| !last
->authority
) {
81 kleave(" = -ENOKEY [no backref]");
85 key
= x509_request_asymmetric_key(trust_keyring
, last
->issuer
,
88 return PTR_ERR(key
) == -ENOMEM
? -ENOMEM
: -ENOKEY
;
92 ret
= verify_signature(key
, sig
);
93 trusted
= test_bit(KEY_FLAG_TRUSTED
, &key
->flags
);
98 kleave(" = -EKEYREJECTED [verify %d]", ret
);
103 x509
->verified
= true;
104 for (p
= sinfo
->signer
; p
!= x509
; p
= p
->signer
) {
106 p
->trusted
= trusted
;
108 sinfo
->trusted
= trusted
;
114 * pkcs7_validate_trust - Validate PKCS#7 trust chain
115 * @pkcs7: The PKCS#7 certificate to validate
116 * @trust_keyring: Signing certificates to use as starting points
117 * @_trusted: Set to true if trustworth, false otherwise
119 * Validate that the certificate chain inside the PKCS#7 message intersects
120 * keys we already know and trust.
122 * Returns, in order of descending priority:
124 * (*) -EKEYREJECTED if a signature failed to match for which we have a valid
127 * (*) 0 if at least one signature chain intersects with the keys in the trust
130 * (*) -ENOPKG if a suitable crypto module couldn't be found for a check on a
133 * (*) -ENOKEY if we couldn't find a match for any of the signature chains in
136 * May also return -ENOMEM.
138 int pkcs7_validate_trust(struct pkcs7_message
*pkcs7
,
139 struct key
*trust_keyring
,
142 struct pkcs7_signed_info
*sinfo
;
143 struct x509_certificate
*p
;
144 int cached_ret
= 0, ret
;
146 for (p
= pkcs7
->certs
; p
; p
= p
->next
)
149 for (sinfo
= pkcs7
->signed_infos
; sinfo
; sinfo
= sinfo
->next
) {
150 ret
= pkcs7_validate_trust_one(pkcs7
, sinfo
, trust_keyring
);
152 if (ret
== -ENOPKG
) {
153 cached_ret
= -ENOPKG
;
154 } else if (ret
== -ENOKEY
) {
156 cached_ret
= -ENOKEY
;
161 *_trusted
|= sinfo
->trusted
;
166 EXPORT_SYMBOL_GPL(pkcs7_validate_trust
);