staging: ozwpan: Add module parameter description
[linux/fpc-iii.git] / crypto / asymmetric_keys / x509_public_key.c
blobf3d62307e6eef7bf507dc78dddc4822739100cf9
1 /* Instantiate a public key crypto key from an X.509 Certificate
3 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public Licence
8 * as published by the Free Software Foundation; either version
9 * 2 of the Licence, or (at your option) any later version.
12 #define pr_fmt(fmt) "X.509: "fmt
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/mpi.h>
18 #include <linux/asn1_decoder.h>
19 #include <keys/asymmetric-subtype.h>
20 #include <keys/asymmetric-parser.h>
21 #include <keys/system_keyring.h>
22 #include <crypto/hash.h>
23 #include "asymmetric_keys.h"
24 #include "public_key.h"
25 #include "x509_parser.h"
27 static bool use_builtin_keys;
28 static char *ca_keyid;
30 #ifndef MODULE
31 static int __init ca_keys_setup(char *str)
33 if (!str) /* default system keyring */
34 return 1;
36 if (strncmp(str, "id:", 3) == 0)
37 ca_keyid = str; /* owner key 'id:xxxxxx' */
38 else if (strcmp(str, "builtin") == 0)
39 use_builtin_keys = true;
41 return 1;
43 __setup("ca_keys=", ca_keys_setup);
44 #endif
46 /**
47 * x509_request_asymmetric_key - Request a key by X.509 certificate params.
48 * @keyring: The keys to search.
49 * @subject: The name of the subject to whom the key belongs.
50 * @key_id: The subject key ID as a hex string.
52 * Find a key in the given keyring by subject name and key ID. These might,
53 * for instance, be the issuer name and the authority key ID of an X.509
54 * certificate that needs to be verified.
56 struct key *x509_request_asymmetric_key(struct key *keyring,
57 const char *subject,
58 const char *key_id)
60 key_ref_t key;
61 size_t subject_len = strlen(subject), key_id_len = strlen(key_id);
62 char *id;
64 /* Construct an identifier "<subjname>:<keyid>". */
65 id = kmalloc(subject_len + 2 + key_id_len + 1, GFP_KERNEL);
66 if (!id)
67 return ERR_PTR(-ENOMEM);
69 memcpy(id, subject, subject_len);
70 id[subject_len + 0] = ':';
71 id[subject_len + 1] = ' ';
72 memcpy(id + subject_len + 2, key_id, key_id_len);
73 id[subject_len + 2 + key_id_len] = 0;
75 pr_debug("Look up: \"%s\"\n", id);
77 key = keyring_search(make_key_ref(keyring, 1),
78 &key_type_asymmetric, id);
79 if (IS_ERR(key))
80 pr_debug("Request for key '%s' err %ld\n", id, PTR_ERR(key));
81 kfree(id);
83 if (IS_ERR(key)) {
84 switch (PTR_ERR(key)) {
85 /* Hide some search errors */
86 case -EACCES:
87 case -ENOTDIR:
88 case -EAGAIN:
89 return ERR_PTR(-ENOKEY);
90 default:
91 return ERR_CAST(key);
95 pr_devel("<==%s() = 0 [%x]\n", __func__,
96 key_serial(key_ref_to_ptr(key)));
97 return key_ref_to_ptr(key);
99 EXPORT_SYMBOL_GPL(x509_request_asymmetric_key);
102 * Set up the signature parameters in an X.509 certificate. This involves
103 * digesting the signed data and extracting the signature.
105 int x509_get_sig_params(struct x509_certificate *cert)
107 struct crypto_shash *tfm;
108 struct shash_desc *desc;
109 size_t digest_size, desc_size;
110 void *digest;
111 int ret;
113 pr_devel("==>%s()\n", __func__);
115 if (cert->sig.rsa.s)
116 return 0;
118 cert->sig.rsa.s = mpi_read_raw_data(cert->raw_sig, cert->raw_sig_size);
119 if (!cert->sig.rsa.s)
120 return -ENOMEM;
121 cert->sig.nr_mpi = 1;
123 /* Allocate the hashing algorithm we're going to need and find out how
124 * big the hash operational data will be.
126 tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
127 if (IS_ERR(tfm))
128 return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);
130 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
131 digest_size = crypto_shash_digestsize(tfm);
133 /* We allocate the hash operational data storage on the end of the
134 * digest storage space.
136 ret = -ENOMEM;
137 digest = kzalloc(digest_size + desc_size, GFP_KERNEL);
138 if (!digest)
139 goto error;
141 cert->sig.digest = digest;
142 cert->sig.digest_size = digest_size;
144 desc = digest + digest_size;
145 desc->tfm = tfm;
146 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
148 ret = crypto_shash_init(desc);
149 if (ret < 0)
150 goto error;
151 might_sleep();
152 ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, digest);
153 error:
154 crypto_free_shash(tfm);
155 pr_devel("<==%s() = %d\n", __func__, ret);
156 return ret;
158 EXPORT_SYMBOL_GPL(x509_get_sig_params);
161 * Check the signature on a certificate using the provided public key
163 int x509_check_signature(const struct public_key *pub,
164 struct x509_certificate *cert)
166 int ret;
168 pr_devel("==>%s()\n", __func__);
170 ret = x509_get_sig_params(cert);
171 if (ret < 0)
172 return ret;
174 ret = public_key_verify_signature(pub, &cert->sig);
175 pr_debug("Cert Verification: %d\n", ret);
176 return ret;
178 EXPORT_SYMBOL_GPL(x509_check_signature);
181 * Check the new certificate against the ones in the trust keyring. If one of
182 * those is the signing key and validates the new certificate, then mark the
183 * new certificate as being trusted.
185 * Return 0 if the new certificate was successfully validated, 1 if we couldn't
186 * find a matching parent certificate in the trusted list and an error if there
187 * is a matching certificate but the signature check fails.
189 static int x509_validate_trust(struct x509_certificate *cert,
190 struct key *trust_keyring)
192 struct key *key;
193 int ret = 1;
195 if (!trust_keyring)
196 return -EOPNOTSUPP;
198 if (ca_keyid && !asymmetric_keyid_match(cert->authority, ca_keyid))
199 return -EPERM;
201 key = x509_request_asymmetric_key(trust_keyring,
202 cert->issuer, cert->authority);
203 if (!IS_ERR(key)) {
204 if (!use_builtin_keys
205 || test_bit(KEY_FLAG_BUILTIN, &key->flags))
206 ret = x509_check_signature(key->payload.data, cert);
207 key_put(key);
209 return ret;
213 * Attempt to parse a data blob for a key as an X509 certificate.
215 static int x509_key_preparse(struct key_preparsed_payload *prep)
217 struct x509_certificate *cert;
218 size_t srlen, sulen;
219 char *desc = NULL;
220 int ret;
222 cert = x509_cert_parse(prep->data, prep->datalen);
223 if (IS_ERR(cert))
224 return PTR_ERR(cert);
226 pr_devel("Cert Issuer: %s\n", cert->issuer);
227 pr_devel("Cert Subject: %s\n", cert->subject);
229 if (cert->pub->pkey_algo >= PKEY_ALGO__LAST ||
230 cert->sig.pkey_algo >= PKEY_ALGO__LAST ||
231 cert->sig.pkey_hash_algo >= PKEY_HASH__LAST ||
232 !pkey_algo[cert->pub->pkey_algo] ||
233 !pkey_algo[cert->sig.pkey_algo] ||
234 !hash_algo_name[cert->sig.pkey_hash_algo]) {
235 ret = -ENOPKG;
236 goto error_free_cert;
239 pr_devel("Cert Key Algo: %s\n", pkey_algo_name[cert->pub->pkey_algo]);
240 pr_devel("Cert Valid From: %04ld-%02d-%02d %02d:%02d:%02d\n",
241 cert->valid_from.tm_year + 1900, cert->valid_from.tm_mon + 1,
242 cert->valid_from.tm_mday, cert->valid_from.tm_hour,
243 cert->valid_from.tm_min, cert->valid_from.tm_sec);
244 pr_devel("Cert Valid To: %04ld-%02d-%02d %02d:%02d:%02d\n",
245 cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1,
246 cert->valid_to.tm_mday, cert->valid_to.tm_hour,
247 cert->valid_to.tm_min, cert->valid_to.tm_sec);
248 pr_devel("Cert Signature: %s + %s\n",
249 pkey_algo_name[cert->sig.pkey_algo],
250 hash_algo_name[cert->sig.pkey_hash_algo]);
252 if (!cert->fingerprint) {
253 pr_warn("Cert for '%s' must have a SubjKeyId extension\n",
254 cert->subject);
255 ret = -EKEYREJECTED;
256 goto error_free_cert;
259 cert->pub->algo = pkey_algo[cert->pub->pkey_algo];
260 cert->pub->id_type = PKEY_ID_X509;
262 /* Check the signature on the key if it appears to be self-signed */
263 if (!cert->authority ||
264 strcmp(cert->fingerprint, cert->authority) == 0) {
265 ret = x509_check_signature(cert->pub, cert); /* self-signed */
266 if (ret < 0)
267 goto error_free_cert;
268 } else if (!prep->trusted) {
269 ret = x509_validate_trust(cert, get_system_trusted_keyring());
270 if (!ret)
271 prep->trusted = 1;
274 /* Propose a description */
275 sulen = strlen(cert->subject);
276 srlen = strlen(cert->fingerprint);
277 ret = -ENOMEM;
278 desc = kmalloc(sulen + 2 + srlen + 1, GFP_KERNEL);
279 if (!desc)
280 goto error_free_cert;
281 memcpy(desc, cert->subject, sulen);
282 desc[sulen] = ':';
283 desc[sulen + 1] = ' ';
284 memcpy(desc + sulen + 2, cert->fingerprint, srlen);
285 desc[sulen + 2 + srlen] = 0;
287 /* We're pinning the module by being linked against it */
288 __module_get(public_key_subtype.owner);
289 prep->type_data[0] = &public_key_subtype;
290 prep->type_data[1] = cert->fingerprint;
291 prep->payload[0] = cert->pub;
292 prep->description = desc;
293 prep->quotalen = 100;
295 /* We've finished with the certificate */
296 cert->pub = NULL;
297 cert->fingerprint = NULL;
298 desc = NULL;
299 ret = 0;
301 error_free_cert:
302 x509_free_certificate(cert);
303 return ret;
306 static struct asymmetric_key_parser x509_key_parser = {
307 .owner = THIS_MODULE,
308 .name = "x509",
309 .parse = x509_key_preparse,
313 * Module stuff
315 static int __init x509_key_init(void)
317 return register_asymmetric_key_parser(&x509_key_parser);
320 static void __exit x509_key_exit(void)
322 unregister_asymmetric_key_parser(&x509_key_parser);
325 module_init(x509_key_init);
326 module_exit(x509_key_exit);
328 MODULE_DESCRIPTION("X.509 certificate parser");
329 MODULE_LICENSE("GPL");